1
|
Gonçalves WA, de Sousa CDF, Teixeira MM, Souza DG. A brief overview of chikungunya-related pain. Eur J Pharmacol 2025; 994:177322. [PMID: 39892450 DOI: 10.1016/j.ejphar.2025.177322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Pain is an important symptom associated with the arboviral disease caused by the Chikungunya virus (CHIKV). For a significant number of patients, this symptom can persist for months or even years, negatively affecting their quality of life. Unfortunately, pharmacological options for this condition are limited and only partially effective, as the underlying mechanisms associated with CHIKV-induced pain are still poorly understood. The re-emergence of CHIKV has led to new outbreaks, and the expected high prevalence of pain in these global events requires new scientific advances to find more effective solutions. Here we review the main aspects of pain caused by CHIKV infection, such as the anatomy of the affected sites, the prevalence and management of this symptom, the diversity of possible cellular and molecular mechanisms, and finally highlight a promising meningeal pathway to elucidate the mechanisms involved in the unsolved problem of CHIKV-associated pain.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Carla Daiane Ferreira de Sousa
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Daniele G Souza
- Laboratório Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Sun K, Appadoo F, Liu Y, Müller M, Macfarlane C, Harris M, Tuplin A. A novel interaction between the 5' untranslated region of the Chikungunya virus genome and Musashi RNA binding protein is essential for efficient virus genome replication. Nucleic Acids Res 2024; 52:10654-10667. [PMID: 39087525 PMCID: PMC11417370 DOI: 10.1093/nar/gkae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedesspp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV replication cycle is poorly understood and specific antiviral therapeutics are lacking. In the current study, we identify host cell Musashi RNA binding protein-2 (MSI-2) as a proviral factor. MSI-2 depletion and small molecule inhibition assays demonstrated that MSI-2 is required for efficient CHIKV genome replication. Depletion of both MSI-2 and MSI-1 homologues was found to synergistically inhibit CHIKV replication, suggesting redundancy in their proviral function. Electromobility shift assay (EMSA) competition studies demonstrated that MSI-2 interacts specifically with an RNA binding motif within the 5' untranslated region (5'UTR) of CHIKV and reverse genetic analysis showed that mutation of the binding motif inhibited genome replication and blocked rescue of mutant virus. For the first time, this study identifies the proviral role of MSI RNA binding proteins in the replication of the CHIKV genome, providing important new insight into mechanisms controlling replication of this significant human pathogen and the potential of a novel therapeutic target.
Collapse
Affiliation(s)
- Kaiwen Sun
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Francesca Appadoo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yuqian Liu
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Catriona Macfarlane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Santos FM, Costa VRDM, de Araújo S, de Sousa CDF, Moreira TP, Gonçalves MR, dos Santos ACPM, Ferreira HAS, Costa PAC, Barrioni BR, Bargi-Souza P, Pereira MDM, Nogueira ML, Souza DDG, Guimarães PPG, Teixeira MM, Queiroz-Junior CM, Costa VV. Essential role of the CCL2-CCR2 axis in Mayaro virus-induced disease. J Virol 2024; 98:e0110223. [PMID: 38169294 PMCID: PMC10805060 DOI: 10.1128/jvi.01102-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.
Collapse
Affiliation(s)
- Franciele Martins Santos
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Victor Rodrigues de Melo Costa
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone de Araújo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla Daiane Ferreira de Sousa
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaiane Pinto Moreira
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Rodrigues Gonçalves
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Clara Paiva Menezes dos Santos
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício Lacerda Nogueira
- Virology Research Laboratory, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Danielle da Glória Souza
- Department of Microbiology, Host Microorganism Interaction Laboratory, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Drug Research and Development Center, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
5
|
Batista RP, Hökerberg YHM, de Oliveira RDVC, Lambert Passos SR. Development and validation of a clinical rule for the diagnosis of chikungunya fever in a dengue-endemic area. PLoS One 2023; 18:e0279970. [PMID: 36608030 PMCID: PMC9821784 DOI: 10.1371/journal.pone.0279970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Rio de Janeiro is a dengue-endemic city that experienced Zika and chikungunya epidemics between 2015 and 2019. Differential diagnosis is crucial for indicating adequate treatment and assessing prognosis and risk of death. This study aims to derive and validate a clinical rule for diagnosing chikungunya based on 3,214 suspected cases consecutively treated at primary and secondary health units of the sentinel surveillance system (up to 7 days from onset of symptoms) in Rio de Janeiro, Brazil. Of the total sample, 624 were chikungunya, 88 Zika, 51 dengue, and 2,451 were negative for all these arboviruses according to real-time polymerase chain reaction (RT-qPCR). The derived rule included fever (1 point), exanthema (1 point), myalgia (2 points), arthralgia or arthritis (2 points), and joint edema (2 points), providing an AUC (area under the receiver operator curve) = 0.695 (95% CI: 0.662-0.725). Scores of 4 points or more (validation sample) showed 74.3% sensitivity (69.0% - 79.2%) and 51.5% specificity (48.8% - 54.3%). Adding more symptoms improved the specificity at the expense of a lower sensitivity compared to definitions proposed by government agencies based on fever alone (European Center for Disease Control) or in combination with arthralgia (World Health Organization) or arthritis (Pan American Health Organization, Brazilian Ministry of Health). The proposed clinical rule offers a rapid, low-cost, easy-to-apply strategy to differentiate chikungunya fever from other arbovirus infections during epidemics.
Collapse
Affiliation(s)
- Raquel Pereira Batista
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: ,
| | - Yara Hahr Marques Hökerberg
- Laboratório de Epidemiologia Clínica, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá (UNESA), Rio de Janeiro, Brazil
| | | | - Sonia Regina Lambert Passos
- Laboratório de Epidemiologia Clínica, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Geng T, Yang D, Lin T, Cahoon JG, Wang P. UBXN3B Controls Immunopathogenesis of Arthritogenic Alphaviruses by Maintaining Hematopoietic Homeostasis. mBio 2022; 13:e0268722. [PMID: 36377866 PMCID: PMC9765034 DOI: 10.1128/mbio.02687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses. Herein, we reported the essential role of UBXN3B in the control of infection and immunopathogenesis of two arthritogenic RNA viruses, Chikungunya (CHIKV) and O'nyong'nyong (ONNV) viruses. Ubxn3b deficient (Ubxn3b-/-) mice presented higher viral loads, more severe foot swelling and immune infiltrates, and slower clearance of viruses and resolution of inflammation than the Ubxn3b+/+ littermates. While the serum cytokine levels were intact, the virus-specific immunoglobulin G and neutralizing antibody levels were lower in the Ubxn3b-/- mice. The Ubxn3b-/- mice had more neutrophils and macrophages, but much fewer B cells in the ipsilateral feet. Of note, this immune dysregulation was also observed in the spleens and blood of uninfected Ubxn3b-/- mice. UBXN3B restricted CHIKV replication in a cell-intrinsic manner but independent of type I IFN signaling. These results demonstrated a dual role of UBXN3B in the maintenance of immune homeostasis and control of RNA virus replication. IMPORTANCE The human genome encodes 13 ubiquitin regulatory X (UBX) domain-containing proteins (UBXN) that might participate in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. Herein, we reported an essential role of UBXN3B in the control of infection and immunopathogenesis of arthritogenic alphaviruses, including Chikungunya virus (CHIKV), which causes acute and chronic crippling arthralgia, long-term neurological disorders, and poses a significant public health problem in the tropical and subtropical regions worldwide. However, there are no approved vaccines or specific antiviral drugs. This was partly due to a poor understanding of the protective and detrimental immune responses elicited by CHIKV. We showed that UBXN3B was critical for the control of CHIKV replication in a cell-intrinsic manner in the acute phase and persistent immunopathogenesis in the post-viremic stage. Mechanistically, UBXN3B was essential for the maintenance of hematopoietic homeostasis during viral infection and in steady-state.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jason G. Cahoon
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
7
|
Bishop CR, Caten FT, Nakaya HI, Suhrbier A. Chikungunya patient transcriptional signatures faithfully recapitulated in a C57BL/6J mouse model. Front Immunol 2022; 13:1092370. [PMID: 36578476 PMCID: PMC9791225 DOI: 10.3389/fimmu.2022.1092370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction An adult wild-type C57BL/6J mouse model of chikungunya virus (CHIKV) infection and disease has been extensively used to study the alphaviral arthritic immunopathology and to evaluate new interventions. How well mouse models recapitulate the gene expression profiles seen in humans remains controversial. Methods Herein we perform a comparative transcriptomics analysis using RNA-Seq datasets from the C57BL/6J CHIKV mouse model with datasets obtained from adults and children acutely infected with CHIKV. Results Despite sampling quite different tissues, peripheral blood from humans and feet from mice, gene expression profiles were quite similar, with an overlap of up to ≈50% for up-regulated single copy orthologue differentially expressed genes. Furthermore, high levels of significant concordance between mouse and human were seen for immune pathways and signatures, which were dominated by interferons, T cells and monocyte/macrophages. Importantly, predicted responses to a series of anti-inflammatory drug and biologic treatments also showed cogent similarities between species. Discussion Comparative transcriptomics and subsequent pathway analysis provides a detailed picture of how a given model recapitulates human gene expression. Using this method, we show that the C57BL/6J CHIKV mouse model provides a reliable and representative system in which to study CHIKV immunopathology and evaluate new treatments.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| | - Andreas Suhrbier
- Department of Infection and Inflammation, Queensland Institute of Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia,Global Virus Network (GVN) Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia,*Correspondence: Helder I. Nakaya, ; Andreas Suhrbier,
| |
Collapse
|
8
|
Parálisis facial aislada posterior a infección por virus de chikunguña: un nuevo diagnóstico diferencial. BIOMÉDICA 2022; 42:435-439. [PMID: 36122282 PMCID: PMC9534523 DOI: 10.7705/biomedica.6308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/04/2022]
Abstract
En las últimas décadas, se ha incrementado el reporte de manifestaciones neurológicas asociadas con la infección por el virus de chikunguña. Se informa el caso de un adulto joven previamente sano que presentó parálisis facial izquierda aislada después de una infección reciente por el virus de chikunguña en el trópico colombiano. Se describen aspectos importantes de la fisiopatología del virus y su tropismo por el sistema nervioso central y periférico, y se sugiere considerar este virus en el diagnóstico diferencial de la parálisis facial en pacientes con infección confirmada por el virus de chikunguña en regiones tropicales endémicas o en aquellos con antecedente de viajes recientes a dichas regiones.
Collapse
|
9
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Regulatory T Cells in acute and chronic human Chikungunya infection. Microbes Infect 2021; 24:104927. [PMID: 34923142 DOI: 10.1016/j.micinf.2021.104927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
Chikungunya virus (CHIKV) infection generates strong immune responses that are associated with the disease pathophysiology. Regulatory T cells (Treg-cluster of differentiation (CD)-4+CD25highforkhead box P3 (FOXP3+)) are essential for the induction and maintenance of peripheral tolerance. Thus, they play key roles in determining the patient prognosis by preventing excessive immune responses via different suppression immune mechanisms. However, the regulatory mechanisms involved in human CHIKV infection are still poorly understood. Here, we characterize for the first time the Treg cell molecule-associated-mechanism during acute and chronic human Chikungunya disease. Here, we assessed the Treg cell population and molecule-associated mechanism in the peripheral blood samples of acute and chronic patients with Chikungunya. Our results indicate that CHIKV infection is associated with reduced frequency of Tregs, along with the impaired expression and production of Treg functional markers, including CD39, CD73, perforin, granzyme, programmed death 1 (PD-1), cytotoxic T lymphocyte antigen (CTLA)-4, and transforming growth factor (TGF)-β. This observation suggests that Treg cells possess poor regulatory capacity in both acute and chronic phases of the disease. Taken together, these data provide significant evidence that the imbalanced response of Treg cells plays an essential role in establishing the pathogenesis of Chikungunya.
Collapse
|
11
|
Macrodomain Binding Compound MRS 2578 Inhibits Alphavirus Replication. Antimicrob Agents Chemother 2021; 65:e0139821. [PMID: 34606339 DOI: 10.1128/aac.01398-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are positive-strand RNA viruses causing febrile disease. Macrodomain-containing proteins, involved in ADP-ribose-mediated signaling, are encoded by both host cells and several virus groups, including alphaviruses. In this study, compound MRS 2578 that targets the human ADP-ribose glycohydrolase MacroD1 inhibited Semliki Forest virus production as well as viral RNA replication and replicase protein expression. The inhibitor was similarly active in alphavirus trans-replication systems, indicating that it targets the viral RNA replication stage.
Collapse
|
12
|
Abdullah N, Ahemad N, Aliazis K, Khairat JE, Lee TC, Abdul Ahmad SA, Adnan NAA, Macha NO, Hassan SS. The Putative Roles and Functions of Indel, Repetition and Duplication Events in Alphavirus Non-Structural Protein 3 Hypervariable Domain (nsP3 HVD) in Evolution, Viability and Re-Emergence. Viruses 2021; 13:v13061021. [PMID: 34071712 PMCID: PMC8228767 DOI: 10.3390/v13061021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Alphavirus non-structural proteins 1–4 (nsP1, nsP2, nsP3, and nsP4) are known to be crucial for alphavirus RNA replication and translation. To date, nsP3 has been demonstrated to mediate many virus–host protein–protein interactions in several fundamental alphavirus mechanisms, particularly during the early stages of replication. However, the molecular pathways and proteins networks underlying these mechanisms remain poorly described. This is due to the low genetic sequence homology of the nsP3 protein among the alphavirus species, especially at its 3′ C-terminal domain, the hypervariable domain (HVD). Moreover, the nsP3 HVD is almost or completely intrinsically disordered and has a poor ability to form secondary structures. Evolution in the nsP3 HVD region allows the alphavirus to adapt to vertebrate and insect hosts. This review focuses on the putative roles and functions of indel, repetition, and duplication events that have occurred in the alphavirus nsP3 HVD, including characterization of the differences and their implications for specificity in the context of virus–host interactions in fundamental alphavirus mechanisms, which have thus directly facilitated the evolution, adaptation, viability, and re-emergence of these viruses.
Collapse
Affiliation(s)
- Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Thong Chuan Lee
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Siti Aisyah Abdul Ahmad
- Immunogenetic Unit, Allergy and Immunology Research Center, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia;
| | - Nur Amelia Azreen Adnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nur Omar Macha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-5514-6340
| |
Collapse
|
13
|
Mayaro Virus Infection: Clinical Features and Global Threat. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Zhang Y, Han JC, Jing J, Liu H, Zhang H, Li ZH, Jin NY, Lu HJ. Construction and Immunogenicity of Recombinant Vaccinia Virus Vaccine Against Japanese Encephalitis and Chikungunya Viruses Infection in Mice. Vector Borne Zoonotic Dis 2020; 20:788-796. [PMID: 32584657 DOI: 10.1089/vbz.2020.2613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Japanese encephalitis virus (JEV) is recognized as a public health risk by the World Health Organization. In Asia, each year, ∼70,000 people become infected with JEV, which results in ∼10,000 deaths. Chikungunya virus (CHIKV) is an RNA virus, whose infection mainly causes fever, myalgia, and skin rash. Although the mortality rate is low, it seriously affects daily life. JEV and CHIKV infect humans through mosquitoes; therefore, a recombinant vaccinia virus coexpressing JEV E and CHIKV E1 proteins was constructed to prevent their concurrent infection. In this study, after mice first immunization, booster immunization was performed at 21 days postimmunization (dpi). At 35 dpi, mice were challenged with JEV and CHIKV. Specific antibodies significantly increased in the rVTT-CE1-JE-EGFP group, which were significantly (p < 0.01) higher than those of the control groups at 35 dpi. The plaque reduction neutralization tests (JEV) of rVTT-CE1-JE-EGFP group was 1:320 at 35 dpi. Furthermore, cytokine levels and the percentage of CD3+CD4+ and CD3+CD8+ T-lymphocytes in the rVTT-CE1-JE-EGFP group were significantly (p < 0.01) higher than those in the control groups at 35 dpi. After challenge, mice body weights in rVTT-CE1-JE-EGFP group were not significantly altered, and the survival rate was 100%. These results showed the rVTT-CE1-JE-EGFP group elicited significant humoral and cellular immune responses, thus indicating that the recombinant vaccine may serve as a candidate for effective prevention of CHIKV and JEV infection.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Ji-Cheng Han
- Institute of Military Veterinary, Academy of Military Sciences, Changchun, People's Republic of China.,Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Jie Jing
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, People's Republic of China.,Institute of Military Veterinary, Academy of Military Sciences, Changchun, People's Republic of China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - He Zhang
- Institute of Military Veterinary, Academy of Military Sciences, Changchun, People's Republic of China
| | - Zhao-Hui Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, People's Republic of China
| | - Ning-Yi Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, People's Republic of China.,Institute of Military Veterinary, Academy of Military Sciences, Changchun, People's Republic of China
| | - Hui-Jun Lu
- Institute of Military Veterinary, Academy of Military Sciences, Changchun, People's Republic of China
| |
Collapse
|
15
|
In-depth characterization of a novel live-attenuated Mayaro virus vaccine candidate using an immunocompetent mouse model of Mayaro disease. Sci Rep 2020; 10:5306. [PMID: 32210270 PMCID: PMC7093544 DOI: 10.1038/s41598-020-62084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mayaro virus (MAYV) is endemic in South American countries where it is responsible for sporadic outbreaks of acute febrile illness. The hallmark of MAYV infection is a highly debilitating and chronic arthralgia. Although MAYV emergence is a potential threat, there are no specific therapies or licensed vaccine. In this study, we developed a murine model of MAYV infection that emulates many of the most relevant clinical features of the infection in humans and tested a live-attenuated MAYV vaccine candidate (MAYV/IRES). Intraplantar inoculation of a WT strain of MAYV into immunocompetent mice induced persistent hypernociception, transient viral replication in target organs, systemic production of inflammatory cytokines, chemokines and specific humoral IgM and IgG responses. Inoculation of MAYV/IRES in BALB/c mice induced strong specific cellular and humoral responses. Moreover, MAYV/IRES vaccination of immunocompetent and interferon receptor-defective mice resulted in protection from disease induced by the virulent wt MAYV strain. Thus, this study describes a novel model of MAYV infection in immunocompetent mice and highlights the potential role of a live-attenuated MAYV vaccine candidate in host's protection from disease induced by a virulent MAYV strain.
Collapse
|
16
|
Nelemans T, Kikkert M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses 2019; 11:v11100961. [PMID: 31635238 PMCID: PMC6832425 DOI: 10.3390/v11100961] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses comprise many (re-)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form the important first line of defence against these viruses. Given their genetic flexibility, these viruses have therefore developed multiple strategies to evade the innate immune response in order to optimize their replication capacity. Already many molecular mechanisms of innate immune evasion by +ssRNA viruses have been identified. However, research addressing the effect of host innate immune evasion on the pathology caused by viral infections is less prevalent in the literature, though very relevant and interesting. Since interferons have been implicated in inflammatory diseases and immunopathology in addition to their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. Therefore, this review discusses what is currently known about the role of interferons and host immune evasion in the pathogenesis of emerging coronaviruses, alphaviruses and flaviviruses.
Collapse
Affiliation(s)
- Tessa Nelemans
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| |
Collapse
|
17
|
Figueiredo CM, Neris RLDS, Gavino-Leopoldino D, da Silva MOL, Almeida JS, Dos-Santos JS, Figueiredo CP, Bellio M, Bozza MT, Assunção-Miranda I. Mayaro Virus Replication Restriction and Induction of Muscular Inflammation in Mice Are Dependent on Age, Type-I Interferon Response, and Adaptive Immunity. Front Microbiol 2019; 10:2246. [PMID: 31632368 PMCID: PMC6779782 DOI: 10.3389/fmicb.2019.02246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022] Open
Abstract
Mayaro virus (MAYV) is an emergent arbovirus first described in forest regions of the American continent, with recent and increasing notification of urban area circulation. Similar to Chikungunya (CHIKV) and other arthritogenic Alphavirus, MAYV-induced disease shows a high prevalence of persistent arthralgia, and myalgia. Despite this, knowledge regarding pathogenesis and characteristics of host immune response of MAYV infections are still limited. Here, using different ages of wild-type (WT), adult Type I Interferon receptor deficient (IFNAR-/-), and adult recombination activation gene-1 deficient (RAG-/-) mice, we have investigated the dependence of age, innate and adaptive immunity for the control of MAYV replication, tissue damage, and inflammation in mice. We have found that MAYV induces clinical signal and replicates in young WT mice, which gain the ability to restrict MAYV replication with aging. In addition, we observed that mice age and type I interferon response are related to restriction of MAYV infection and muscular inflammation in mice. Moreover, MAYV continues to replicate persistently in RAG-/- mice, being detected at blood and tissues 40 days post infection, indicating that adaptive immunity is essential to MAYV clearance. Despite chronic replication, infected adult RAG-/- mice did not develop an apparent signal of muscle damage in early and late infection. On the other hand, MAYV infection in young WT and adult IFNAR-/- mice triggers an increase in the expression of pro-inflammatory mediators, such as TNF, IL-6, KC, IL-1β, MCP-1, and RANTES, in muscle tissue, and decreases TGF-β expression, that were not significantly modulated in adult WT and RAG-/- mice. Taken together, our data demonstrated that age, innate and adaptive immunity are important to restrict MAYV replication and that adaptive immunity is also involved in MAYV-induced tissue damage. These results contribute to the comprehension of MAYV pathogenesis, and describe translational mice models for further studies of MAYV infection, vaccine tests, and therapeutic strategies against this virus.
Collapse
Affiliation(s)
- Camila Menezes Figueiredo
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Romulo Leão da Silva Neris
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gavino-Leopoldino
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana Silva Almeida
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Souza Dos-Santos
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Bellio
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Torres Bozza
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Agrawal M, Pandey N, Rastogi M, Dogra S, Singh SK. Chikungunya virus modulates the miRNA expression patterns in human synovial fibroblasts. J Med Virol 2019; 92:139-148. [PMID: 31483508 DOI: 10.1002/jmv.25588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes. CHIKV infection leads to polyarthritis and polyarthralgia among patients. The synovial fibroblasts are the primary target for CHIKV. The microRNAs (miRNAs) are the small endogenous noncoding RNAs which posttranscriptionally regulate the expression of genes by binding to their target messenger RNAs (mRNAs) through their 3'-untranslated regions. The miRNAs are the key regulators for various pathological processes including viral infection, cancer, cardiovascular disease, and neurodegeneration. This study was designed to dissect out the roles of miRNAs during CHIKV (Ross Strain E1: A226V) infection in primary human synovial fibroblasts. The miRNA microarray profiling was performed on the primary human synovial fibroblasts infected by CHIKV. The gene target prediction analysis, enrichment, and network analysis were performed by various bioinformatics analyses. The subset of 26 differentially expressed microRNAs (DEMs) were identified through microarray profiling and were further screened for gene predictions, Gene Ontology, pathway enrichment, and miRNA-mRNA network using various bioinformatics tools. The bioinformatics analysis indicates the role of DEMs by suppressing the immune response which may contribute to CHIKV persistence in human primary synovial fibroblasts. Our study provides the plausible roles of DEMs, miRNAs, and mRNA interactions and pathways involved in the molecular pathogenesis of CHIKV.
Collapse
Affiliation(s)
- Meghna Agrawal
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Neha Pandey
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Smriti Dogra
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| |
Collapse
|
19
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
20
|
Fernandes AIV, Souza JR, Silva AR, Cruz SBSC, Castellano LRC. Immunoglobulin Therapy in a Patient With Severe Chikungunya Fever and Vesiculobullous Lesions. Front Immunol 2019; 10:1498. [PMID: 31312203 PMCID: PMC6614379 DOI: 10.3389/fimmu.2019.01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging arbovirus whose transmission has already been reported in several countries. Although the majority of individuals acutely infected with CHIKV appear to become asymptomatic, reports showing the occurrence of atypical and severe forms of the disease are increasing. Among them, the neurological and skin manifestations require medical attention. Treatment of CHIKV infection is almost symptomatic. In this sense, we report the case of a 56-years-old man who presented fever, headaches, paresthesia and pain in the right arm with visible red spots on the skin starting 30 days before Hospital admission. Tests determined Chikungunya infection and excluded other co-morbidities. Disease evolved with edema in hands and feet and extensive hemorrhagic bullous lesions on the skin of upper and lower limbs. Variations in hematological counts associated with liver dysfunction determined this patient's admission to the Intensive Care Unit. Then, he received intravenous antibiotic and immunoglobulin therapy (400 mg/Kg/day for the period of 5 days) with total recovery from the lesions after 10 days of follow-up. A general improvement in blood cell count and successful wound healing was observed. After discharge, no other clinical sign of the disease was reported until nowadays. This case reports for the first time the successful administration of intravenous immunoglobulin therapy to a patient with severe atypical dermatological form of Chikungunya Fever without any associated comorbidity.
Collapse
Affiliation(s)
- Ana Isabel V Fernandes
- Human Immunology Research and Education Group-GEPIH, Escola Técnica de Saúde da UFPB, Universidade Federal da Paraíba, João Pessoa, Brazil.,Division for Infectious and Parasitic Diseases, Hospital Universitário Lauro Wanderley, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Joelma R Souza
- Human Immunology Research and Education Group-GEPIH, Escola Técnica de Saúde da UFPB, Universidade Federal da Paraíba, João Pessoa, Brazil.,Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Adriano R Silva
- Division for Infectious and Parasitic Diseases, Hospital Universitário Lauro Wanderley, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sara B S C Cruz
- Human Immunology Research and Education Group-GEPIH, Escola Técnica de Saúde da UFPB, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Lúcio R C Castellano
- Human Immunology Research and Education Group-GEPIH, Escola Técnica de Saúde da UFPB, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
21
|
Yoon JS, Kim G, Jarhad DB, Kim HR, Shin YS, Qu S, Sahu PK, Kim HO, Lee HW, Wang SB, Kong YJ, Chang TS, Ogando NS, Kovacikova K, Snijder EJ, Posthuma CC, van Hemert MJ, Jeong LS. Design, Synthesis, and Anti-RNA Virus Activity of 6'-Fluorinated-Aristeromycin Analogues. J Med Chem 2019; 62:6346-6362. [PMID: 31244113 PMCID: PMC7075649 DOI: 10.1021/acs.jmedchem.9b00781] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 6'-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell S-adenosyl-l-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6'-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and N6-methyladenosine analogues 2a-e showed potent inhibition against SAH hydrolase, while only the adenosine derivatives 2a-c exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6',6'-Difluoroaristeromycin (2c) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug 3a also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6'-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses.
Collapse
Affiliation(s)
- Ji-Seong Yoon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea.,College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju 500-757 , Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Young-Sup Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| | - Shuhao Qu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea.,College of Pharmaceutical Engineering , Henan University of Animal Husbandry and Economy , Zhengzhou , 450046 , China
| | | | - Hea Ok Kim
- Future Medicine Co., Ltd. , Seoul 06665 , Korea
| | | | - Su Bin Wang
- College of Pharmacy , Ewha Womans University , Seoul 120-750 , Korea
| | - Yun Jeong Kong
- College of Pharmacy , Ewha Womans University , Seoul 120-750 , Korea
| | - Tong-Shin Chang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea.,College of Pharmacy , Ewha Womans University , Seoul 120-750 , Korea
| | - Natacha S Ogando
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Kristina Kovacikova
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology , Leiden University Medical Center , Albinusdreef 2 , 2333ZA Leiden , The Netherlands
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 151-742 , Korea
| |
Collapse
|
22
|
Anfasa F, Lim SM, Fekken S, Wever R, Osterhaus ADME, Martina BEE. Characterization of antibody response in patients with acute and chronic chikungunya virus disease. J Clin Virol 2019; 117:68-72. [PMID: 31229935 DOI: 10.1016/j.jcv.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a re-emerging arbovirus capable of causing chronic arthralgia, which can last for months to years. Although neutralizing antibodies have been shown to be important for viral clearance, is it not clear whether the quantitative and qualitative nature of antibodies play a role in progression to chronic disease. OBJECTIVES To characterize and compare the antibody responses in acute and chronic patients in a prospective observational CHIKV study in Curaçao during the 2014-2015 outbreak. STUDY DESIGN We performed virus neutralization tests and ELISA on plasma samples collected from a prospective observational chikungunya study in Curaçao to compare the complement-dependent and -independent neutralization capacity, as well as the antibody avidity index of acute and chronic patients. RESULTS We found that there was no significant difference in the virus neutralization titers between patients with acute and chronic chikungunya infection. Furthermore, we found that complement increased the neutralization capacity when large amounts of virus was used. Moreover, we found that patients with acute chikungunya disease had a significantly higher antibody avidity index compared to those with chronic disease. CONCLUSIONS This study suggests that virus neutralization titers in late convalescent sera do not play a role in chronic chikungunya. However, the median antibody avidity was lower in these patients and may therefore suggest a role for antibody avidity in the development of chronic disease.
Collapse
Affiliation(s)
- Fatih Anfasa
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Stephanie M Lim
- Artemis One Health Research Institute, Utrecht, the Netherlands
| | - Susan Fekken
- Artemis One Health Research Institute, Utrecht, the Netherlands
| | - Robert Wever
- Medical Laboratory Services, Dutch Caribbean, Curaçao
| | - Albert D M E Osterhaus
- Artemis One Health Research Institute, Utrecht, the Netherlands; Center for Infection Medicine and Zoonoses Research (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Byron E E Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Artemis One Health Research Institute, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Lombardi Pereira AP, Suzukawa HT, do Nascimento AM, Bufalo Kawassaki AC, Basso CR, Dos Santos DP, Damasco KF, Machado LF, Amarante MK, Ehara Watanabe MA. An overview of the immune response and Arginase I on CHIKV immunopathogenesis. Microb Pathog 2019; 135:103581. [PMID: 31175971 DOI: 10.1016/j.micpath.2019.103581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Chikungunya virus (CHIKV) is mosquito-borne alphavirus that has caused epidemics around the world. Many individuals affected by the disease may experience joint pain that persists for months after the acute phase. The pathophysiology of viral arthritis is not completely elucidated. And it is important to emphasize that the effects of the viral infection in each host may depend on host factors that include immune response, as well as factors specific to the virus as tissue tropism. The main pathway for the response against viral infection is through induction of type I interferon (IFN-I), whose function is important to control viral replication. Beside this, T cell and macrophage mediated immunopathology in CHIKV infections has been reported. It has been demonstrated that some association with the Arginase I and macrophages type II are involved in the infection profile along with myeloid-derived suppressor cells (MDSC) that are responsible for T cell suppression. Therefore, in this review, will be discuss an overview on CHIKV immunopathogenesis and the importance of Arginase I.
Collapse
Affiliation(s)
- Ana Paula Lombardi Pereira
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Helena Tiemi Suzukawa
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Aline Miquelin do Nascimento
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Aedra Carla Bufalo Kawassaki
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Camila Regina Basso
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Dayane Priscila Dos Santos
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Kamila Falchetti Damasco
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Laís Fernanda Machado
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Marla Karine Amarante
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil.
| | - Maria Angelica Ehara Watanabe
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| |
Collapse
|
24
|
Santos FM, Dias RS, de Oliveira MD, Costa ICTA, Fernandes LDS, Pessoa CR, da Matta SLP, Costa VV, Souza DG, da Silva CC, de Paula SO. Animal model of arthritis and myositis induced by the Mayaro virus. PLoS Negl Trop Dis 2019; 13:e0007375. [PMID: 31050676 PMCID: PMC6519846 DOI: 10.1371/journal.pntd.0007375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/15/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Mayaro virus (MAYV) is an endemic arbovirus in South American countries, where it is responsible for sporadic outbreaks of Mayaro fever. Clinical manifestations include fever, headache, ocular pain, rash, myalgia, and debilitating and persistent polyarthralgia. Understanding the mechanisms associated with MAYV-induced arthritis is of great importance due to the potential for its emergence, urbanization and dispersion to other regions. METHODS 15-day old Balb/c mice were infected by two distinct pathways, below the forelimb and in the rear footpad. Animals were observed for a period of 21 days. During this time, they were monitored every 24 hours for disease signs, such as weight loss and muscle weakness. Histological damage in the muscles and joints was evaluated 3, 7, 10, 15 and 20 days post-infection. The cytokine profile in serum and muscles during MAYV infection was evaluated by flow cytometry at different post-infection times. For pain analysis, the animals were submitted to the von Frey test and titre in different organs was evaluated throughout the study to obtain viral kinetics. FINDINGS Infection by two distinct pathways, below the forelimb and in the rear footpad, resulted in a homogeneous viral spread and the development of acute disease in animals. Clinical signs were observed such as ruffled fur, hunched posture, eye irritation and slight gait alteration. In the physical test, both groups presented loss of resistance, which was associated with histopathological damage, including myositis, arthritis, tenosynovitis and periostitis. The immune response was characterized by a strong inflammatory response mediated by the cytokines TNF-α, IL-6 and INF-γ and chemokine MCP-1, followed by the action of IL-10 and IL-4 cytokines. INTERPRETATION The results showed that Balb/c mice represent a promising model to study mechanisms involved in MAYV pathogenesis and for future antiviral testing.
Collapse
Affiliation(s)
- Franciele Martins Santos
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Sousa Dias
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Michelle Dias de Oliveira
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Luciana de Souza Fernandes
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carine Ribeiro Pessoa
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sérgio Luis Pinto da Matta
- Structural Biology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Danielle G. Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Sérgio Oliveira de Paula
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
25
|
Azar SR, Rossi SL, Haller SH, Yun R, Huang JH, Plante JA, Zhou J, Olano JP, Roundy CM, Hanley KA, Weaver SC, Vasilakis N. ZIKV Demonstrates Minimal Pathologic Effects and Mosquito Infectivity in Viremic Cynomolgus Macaques. Viruses 2018; 10:v10110661. [PMID: 30469417 PMCID: PMC6267344 DOI: 10.3390/v10110661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
To evaluate the effects of ZIKV infection on non-human primates (NHPs), as well as to investigate whether these NHPs develop sufficient viremia to infect the major urban vector mosquito, Aedes aegypti, four cynomolgus macaques (Macaca fascicularis) were subcutaneously infected with 5.0 log10 focus-forming units (FFU) of DNA clone-derived ZIKV strain FSS13025 (Asian lineage, Cambodia, 2010). Following infection, the animals were sampled (blood, urine, tears, and saliva), underwent daily health monitoring, and were exposed to Ae. aegypti at specified time points. All four animals developed viremia, which peaked 3⁻4 days post-infection at a maximum value of 6.9 log10 genome copies/mL. No virus was detected in urine, tears, or saliva. Infection by ZIKV caused minimal overt disease: serum biochemistry and CBC values largely fell within the normal ranges, and cytokine elevations were minimal. Strikingly, the minimally colonized population of Ae. aegypti exposed to viremic animals demonstrated a maximum infection rate of 26% during peak viremia, with two of the four macaques failing to infect a single mosquito at any time point. These data indicate that cynomolgus macaques may be an effective model for ZIKV infection of humans and highlights the relative refractoriness of Ae. aegypti for ZIKV infection at the levels of viremia observed.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Sherry H Haller
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ruimei Yun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jing H Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jiehua Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Juan P Olano
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Christopher M Roundy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Scott C Weaver
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
26
|
Immunomodulatory drug methotrexate used to treat patients with chronic inflammatory rheumatisms post-chikungunya does not impair the synovial antiviral and bone repair responses. PLoS Negl Trop Dis 2018; 12:e0006634. [PMID: 30074983 PMCID: PMC6093699 DOI: 10.1371/journal.pntd.0006634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/15/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted RNA alphavirus causing major outbreaks of infectious chronic inflammatory rheumatisms (CIR). Recently, methotrexate (MTX), a disease modifying anti-rheumatic drug has been used successfully to treat patients suffering from rheumatoid-like arthritis post-CHIK but its immunomodulatory activity in the context of viral persistence has been a matter of concerns. We herein used a model of primary human synovial fibroblasts (HSF) and the synthetic molecule polyriboinosinic:polyribocytidylic acid (PIC) to mimic chronic infectious settings in the joints of CHIKV infected patients. The innate antiviral immune and inflammatory responses were investigated in response to MTX used at the therapeutic concentration of 1 μM. We found that MTX did not affect cellular viability as indicated by the LDH release assay. By quantitative RT-PCR, we observed that HSF responded robustly to PIC by increasing ISG15 and IFNβ mRNA levels. Furthermore, PIC upregulated the mRNA expression of two of the major pattern recognition receptors, RIG-I and MDA5 involved in the innate immune detection of viral RNA. MTX did not impact the antiviral response of PIC on ISG15, IFNβ, RIG-I and MDA5 mRNA expressions. MTX alone or combined with PIC did not affect the expression of proinflammatory CCL2 and CXCL8 chemokines. PIC strongly upregulated the mRNA and protein expression of osteoclastogenic factors (IL-6, GM-CSF but not RANKL). Critically, MTX treatment alone or combined with PIC did not affect the expression of all three tested osteoclastogenic cytokines. We found that MTX alone did not increase the capacity of CHIKV to infect and replicate in HSF. In conclusion, our study argues for a beneficial effect of MTX to treat CIR post-CHIKV given that it does not critically impact the antiviral, the proinflammatory and the bone tissue remodeling responses of synovial cells. Chikungunya is a mosquito-borne virus (CHIKV) and has been incriminated in the development of arthralgia (pain of the joint) and arthritis particularly in elderly patients. Methotrexate (MTX) has been used widely to effectively treat these chronic rheumatic symptoms. Using a model of primary human joint fibroblasts (HSF), we investigated the capacity of the MTX immunosuppressive drug to affect the immune antiviral and inflammatory responses essential to clear the virus while allowing bone tissue repair. This study is important given that CHIKV and its RNA were shown to persist in the joint for months to years post infection and leading to injuries through ill-characterized mechanisms. The molecule PIC was used to mimic the effect of viral RNA. Interestingly, we found that MTX did not affect the expression of several proinflammatory and bone repair factors by HSF. Remarkably, MTX did not also impair the antiviral response of synovial fibroblasts. Our study revealed for the first time that MTX treatment should be considered as safe even in the context of viral persistence associated with chronic inflammation. MTX will not affect the capacity of the synovial tissue to maintain antiviral mechanism, to control inflammation and to promote bone tissue repair.
Collapse
|
27
|
The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last. Viruses 2018; 10:v10030105. [PMID: 29495654 PMCID: PMC5869498 DOI: 10.3390/v10030105] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Alphaviruses encode 4 non-structural proteins (nsPs), most of which have well-understood functions in capping and membrane association (nsP1), polyprotein processing and RNA helicase activity (nsP2) and as RNA-dependent RNA polymerase (nsP4). The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD). In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions.
Collapse
|