1
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Gautam D, Clarke EM, Roweth HG, Smith MR, Battinelli EM. Platelets and circulating (tumor) cells: partners in promoting metastatic cancer. Curr Opin Hematol 2025; 32:52-60. [PMID: 39508182 DOI: 10.1097/moh.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW Despite being discovered decades ago, metastasis remains a formidable challenge in cancer treatment. During the intermediate phase of metastasis, tumor cells detach from primary tumor or metastatic sites and travel through the bloodstream and lymphatic system to distant tissues. These tumor cells in the circulation are known as circulating tumor cells (CTCs), and a higher number of CTCs has been linked to poor prognoses in various cancers. The blood is an inhospitable environment for any foreign cells, including CTCs, as they face numerous challenges, such as the shear stress within blood vessels and their interactions with blood and immune cells. However, the exact mechanisms by which CTCs survive the hostile conditions of the bloodstream remain enigmatic. Platelets have been studied for their interactions with tumor cells, promoting their survival, growth, and metastasis. This review explores the latest clinical methods for enumerating CTCs, recent findings on platelet-CTC crosstalk, and current research on antiplatelet therapy as a potential strategy to inhibit metastasis, offering new therapeutic insights. RECENT FINDINGS Laboratory and clinical data have provided insights into the role of platelets in promoting CTC survival, while clinical advancements in CTC enumeration offer improved prognostic tools. SUMMARY CTCs play a critical role in metastasis, and their interactions with platelets aid their survival in the hostile environment of the bloodstream. Understanding this crosstalk offers insights into potential therapeutic strategies, including antiplatelet therapy, to inhibit metastasis and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M Clarke
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
| | - Harvey G Roweth
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret R Smith
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Lin SH, Su TC, Huang SJ, Jen CP. Enhancing the efficiency of lung cancer cell capture using microfluidic dielectrophoresis and aptamer-based surface modification. Electrophoresis 2024; 45:1088-1098. [PMID: 38175846 DOI: 10.1002/elps.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Metastasis remains a significant cause to cancer-related mortality, underscoring the critical need for early detection and analysis of circulating tumor cells (CTCs). This study presents a novel microfluidic chip designed to efficiently capture A549 lung cancer cells by combining dielectrophoresis (DEP) and aptamer-based binding, thereby enhancing capture efficiency and specificity. The microchip features interdigitated electrodes made of indium-tin-oxide that generate a nonuniform electric field to manipulate CTCs. Following three chip design, scenarios were investigated: (A) bare glass surface, (B) glass modified with gold nanoparticles (AuNPs) only, and (C) glass modified with both AuNPs and aptamers. Experimental results demonstrate that AuNPs significantly enhance capture efficiency under DEP, with scenarios (B) and (C) exhibiting similar performance. Notably, scenario (C) stands out as aptamer-functionalized surfaces resisting fluid shear forces, achieving CTCs retention even after electric field deactivation. Additionally, an innovative reverse pumping method mitigates inlet clogging, enhancing experimental efficiency. This research offers valuable insights into optimizing surface modifications and understanding key factors influencing cell capture, contributing to the development of efficient cell manipulation techniques with potential applications in cancer research and personalized treatment options.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shuo Jie Huang
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
4
|
Zhao L, Wang X. 3D printed microfluidics for cell biological applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability. Sci Rep 2022; 12:12100. [PMID: 35840699 PMCID: PMC9287561 DOI: 10.1038/s41598-022-16286-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Early detection of circulating tumor cells (CTCs) in a patient's blood is essential to accurate prognosis and effective cancer treatment monitoring. The methods used to detect and separate CTCs should have a high recovery rate and ensure cells viability for post-processing operations, such as cell culture and genetic analysis. In this paper, a novel dielectrophoresis (DEP)-based microfluidic system is presented for separating MDA-MB-231 cancer cells from various subtypes of WBCs with the practical cell viability approach. Three configurations for the sidewall electrodes are investigated to evaluate the separation performance. The simulation results based on the finite-element method show that semi-circular electrodes have the best performance with a recovery rate of nearly 95% under the same operational and geometric conditions. In this configuration, the maximum applied electric field (1.11 × 105 V/m) to separate MDA-MB-231 is lower than the threshold value for cell electroporation. Also, the Joule heating study in this configuration shows that the cells are not damaged in the fluid temperature gradient (equal to 1 K). We hope that such a complete and step-by-step design is suitable to achieve DEP-based applicable cell separation biochips.
Collapse
|
6
|
Sun Y, Li H, Cui G, Wu X, Yang M, Piao Y, Bai Z, Wang L, Kraft M, Zhao W, Wen L. A magnetic nanoparticle assisted microfluidic system for low abundance cell sorting with high recovery. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wang Y, Wang DF, Wang HF, Wang JW, Pan JZ, Guo XG, Fang Q. A microfluidic robot for rare cell sorting based on machine vision identification and multi-step sorting strategy. Talanta 2021; 226:122136. [PMID: 33676690 DOI: 10.1016/j.talanta.2021.122136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
The identification, sorting and analysis of rare target single cells in human blood has always been a clinically meaningful medical challenge. Here, we developed a microfluidic robot platform for sorting specific rare cells from complex clinical blood samples based on machine vision-based image identification, liquid handling robot and droplet-based microfluidic techniques. The robot integrated a cell capture and droplet generation module, a laser-induced fluorescence imaging module, a target cell identification and data analysis module, and a system control module, which could automatically achieve the scanning imaging of cell array, cell identification, capturing, and droplet generation of rare target cells from blood samples containing large numbers of normal cells. Based on the robot platform, a novel "gold panning" multi-step sorting strategy was proposed to achieve the sorting of rare target cells in large-scale cell samples with high operation efficiency and high sorting purity (>90%). The robot platform and the multi-step sorting strategy were applied in the sorting of circulating endothelial progenitor cells (CEPCs) in human blood to demonstrate their feasibility and application potential in the sorting and analysis of rare specific cells. Approximately 1,000 CEPCs were automatically identified from 3,000,000 blood cells at a scanning speed of ca. 4,000 cells/s, and 20 25-nL droplets containing single CEPCs were generated.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Fei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Gang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Liu Y, Xu H, Li T, Wang W. Microtechnology-enabled filtration-based liquid biopsy: challenges and practical considerations. LAB ON A CHIP 2021; 21:994-1015. [PMID: 33710188 DOI: 10.1039/d0lc01101k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid biopsy, an important enabling technology for early diagnosis and dynamic monitoring of cancer, has drawn extensive attention in the past decade. With the rapid developments of microtechnology, it has been possible to manipulate cells at the single-cell level, which dramatically improves the liquid biopsy capability. As the microtechnology-enabled liquid biopsy matures from proof-of-concept demonstrations towards practical applications, a main challenge it is facing now is to process clinical samples which are usually of a large volume while containing very rare targeted cells in complex backgrounds. Therefore, a high-throughput liquid biopsy which is capable of processing liquid samples with a large volume in a reasonable time along with a high recovery rate of rare targeted cells from complex clinical liquids is in high demand. Moreover, the purity, viability and release feasibility of recovered targeted cells are the other three key impact factors requiring careful considerations. To date, among the developed techniques, micropore-type filtration has been acknowledged as the most promising solution to address the aforementioned challenges in practical applications. However, the presently reported studies about micropore-type filtration are mostly based on trial and error for device designs aiming at different cancer types, which requires lots of efforts. Therefore, there is an urgent need to investigate and elaborate the fundamental theories of micropore-type filtration and key features that influence the working performances in the liquid biopsy of real clinical samples to promote the application efficacy in practical applications. In this review, the state of the art of microtechnology-enabled filtration is systematically and comprehensively summarized. Four key features of the filtration, including throughput, purity, viability and release feasibility of the captured targeted cells, are elaborated to provide the guidelines for filter designs. The recent progress in the filtration mode modulation and sample standardization to improve the filtration performance of real clinical samples is also discussed. Finally, this review concludes with prospective views for future developments of filtration-based liquid biopsy to promote its application efficacy in clinical practice.
Collapse
Affiliation(s)
- Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | | | | | | |
Collapse
|
9
|
Xu S, Wu L, Qin Y, Jiang Y, Sun K, Holcomb C, Gravett MG, Vojtech L, Schiro PG, Chiu DT. Sequential Ensemble-Decision Aliquot Ranking Isolation and Fluorescence In Situ Hybridization Identification of Rare Cells from Blood by Using Concentrated Peripheral Blood Mononuclear Cells. Anal Chem 2021; 93:3196-3201. [PMID: 33528996 PMCID: PMC9901914 DOI: 10.1021/acs.analchem.0c04629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Isolation and analysis of circulating rare cells is a promising approach for early detection of cancer and other diseases and for prenatal diagnosis. Isolation of rare cells is usually difficult due to their heterogeneity as well as their low abundance in peripheral blood. We previously reported a two-stage ensemble-decision aliquot ranking platform (S-eDAR) for isolating circulating tumor cells from whole blood with high throughput, high recovery rate (>90%), and good purity (>70%), allowing detection of low surface antigen-expressing cancer cells linked to metastasis. However, due to the scarcity of these cells, large sample volumes and large quantities of antibodies were required to isolate sufficient cells for downstream analysis. Here, we drastically increased the number of nucleated cells analyzed by first concentrating peripheral blood mononuclear cells (PBMCs) from whole blood by density gradient centrifugation. The S-eDAR platform was capable of isolating rare cells from concentrated PBMCs (108/mL, equivalent to processing ∼20 mL of whole blood in the 1 mL sample volume used by our instrument) at a high recovery rate (>85%). We then applied the S-eDAR platform for isolating rare fetal nucleated red blood cells (fNRBCs) from concentrated PBMCs spiked with umbilical cord blood cells and confirmed fNRBC recovery by immunostaining and fluorescence in situ hybridization, demonstrating the potential of the S-eDAR system for isolating rare fetal cells from maternal PBMCs to improve noninvasive prenatal diagnosis.
Collapse
Affiliation(s)
- Shihan Xu
- Department of Bioengineering, University of Washington, Seattle, WA, USA,Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Li Wu
- Department of Chemistry, University of Washington, Seattle, WA, USA,School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Yuling Qin
- Department of Chemistry, University of Washington, Seattle, WA, USA,School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Kai Sun
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Chenee Holcomb
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael G. Gravett
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | | | - Daniel T. Chiu
- Department of Bioengineering, University of Washington, Seattle, WA, USA,Department of Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Kong C, Hu M, Weerakoon-Ratnayake KM, Witek MA, Dathathreya K, Hupert ML, Soper SA. Label-free counting of affinity-enriched circulating tumor cells (CTCs) using a thermoplastic micro-Coulter counter (μCC). Analyst 2020; 145:1677-1686. [PMID: 31867587 PMCID: PMC7350181 DOI: 10.1039/c9an01802f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coulter counters are used for counting particles and biological cells. Most Coulter counters are designed to analyze a sample without the ability to pre-process the sample prior to counting. For the analysis of rare cells, such as circulating tumor cells (CTCs), it is not uncommon to require enrichment before counting due to the modest throughput of μCCs and the high abundance of interfering cells, such as blood cells. We report a microfluidic-based Coulter Counter (μCC) fabricated using simple, low-cost techniques for counting rare cells that can be interfaced to sample pre- and/or post-processing units. In the current work, a microfluidic device for the affinity-based enrichment of CTCs from whole blood into a relatively small volume of ∼10 μL was interfaced to the μCC to allow for exhaustive counting of single CTCs following release of the CTCs from the enrichment chip. When integrated to the CTC affinity enrichment chip, the μCC could count the CTCs without loss and the cells could be collected for downstream molecular profiling or culturing if required. The μCC sensor counting efficiency was >93% and inter-chip variability was ∼1%.
Collapse
Affiliation(s)
- Cong Kong
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA and Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mengjia Hu
- BioFluidica, Inc., Lawrence, KS 66047, USA.
| | - Kumuditha M Weerakoon-Ratnayake
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Malgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Kavya Dathathreya
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | | | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA and Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA and BioFluidica, Inc., Lawrence, KS 66047, USA. and BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA and Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047.
| |
Collapse
|
11
|
Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes. MICROMACHINES 2020; 11:mi11030255. [PMID: 32121163 PMCID: PMC7143313 DOI: 10.3390/mi11030255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Bloodstream infection with Candida fungal cells remains one of the most life-threatening complications among hospitalized patients around the world. Although most of the cases are still due to Candida albicans, the rising incidence of infections caused by other Candida strains that may not respond to traditional anti-fungal treatments merits the development of a method for species-specific isolation of Candida. To this end, here we present the characterization of the dielectrophoresis (DEP) response of Candida albicans, Candida tropicalis and Candida parapsilosis. We complement such characterization with a study of the Candida cells morphology. The Candida strains exhibited subtle differences in their morphology and dimensions. All the Candida strains exhibited positive DEP in the range 10-500 kHz, although the strength of the DEP response was different for each Candida strain at different frequencies. Only Candida tropicalis showed positive DEP at 750 kHz. The current results show potential for manipulation and enrichment of a specific Candida strain at specific DEP conditions towards aiding in the rapid identification of Candida strains to enable the effective and timely treatment of Candida infections.
Collapse
|
12
|
Yao C, Tang H, Wu W, Tang J, Guo W, Luo D, Yang D. Double Rolling Circle Amplification Generates Physically Cross-Linked DNA Network for Stem Cell Fishing. J Am Chem Soc 2020; 142:3422-3429. [PMID: 31893497 DOI: 10.1021/jacs.9b11001] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have been widely studied in cell biology and utilized in cell-based therapies, and fishing stem cells from marrow is highly challenging due to the ultralow content. Herein, a physically cross-linked DNA network-based cell fishing strategy is reported, achieving efficient capture, 3D envelop, and enzyme-triggered release of bone marrow mesenchymal stem cells (BMSCs). DNA network is constructed via a double rolling circle amplification method and through the intertwining and self-assembly of two strands of ultralong DNA chains. DNA-chain-1 containing aptamer sequences ensures specific anchor with BMSCs from marrow. Hybridization between DNA-chain-1 and DNA-chain-2 enables the cross-link of cell-anchored DNA chains to form a 3D network, thus realizing cell envelop and separation. DNA network creates a favorable microenvironment for 3D cell culture, and remarkably the physically cross-linked DNA network shows no damage to cells. DNA network is digested by nuclease, realizing the deconstruction from DNA network to fragments, and achieving enzyme-triggered cell release; after release, the activity of cells is well maintained. The strategy provides a powerful and effective method for fishing stem cells from tens of thousands of nontarget cells.
Collapse
Affiliation(s)
- Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Han Tang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Weijian Wu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Jianpu Tang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Weiwei Guo
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300071 , People's Republic of China
| | - Dan Luo
- Department of Biological & Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
13
|
Dong J, Chen JF, Smalley M, Zhao M, Ke Z, Zhu Y, Tseng HR. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903663. [PMID: 31566837 PMCID: PMC6946854 DOI: 10.1002/adma.201903663] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Indexed: 05/03/2023]
Abstract
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.
Collapse
Affiliation(s)
- Jiantong Dong
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie-Fu Chen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Smalley
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
An Integrated Preprocessing Approach for Exploring Single-Cell Gene Expression in Rare Cells. Sci Rep 2019; 9:19758. [PMID: 31875032 PMCID: PMC6930255 DOI: 10.1038/s41598-019-55831-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023] Open
Abstract
Exploring the variability in gene expressions of rare cells at the single-cell level is critical for understanding mechanisms of differentiation in tissue function and development as well as for disease diagnostics and cancer treatment. Such studies, however, have been hindered by major difficulties in tracking the identity of individual cells. We present an approach that combines single-cell picking, lysing, reverse transcription and digital polymerase chain reaction to enable the isolation, tracking and gene expression analysis of rare cells. The approach utilizes a photocleavage bead-based microfluidic device to synthesize and deliver stable cDNA for downstream gene expression analysis, thereby allowing chip-based integration of multiple reactions and facilitating the minimization of sample loss or contamination. The utility of the approach was demonstrated with QuantStudio digital PCR by analyzing the radiation and bystander effect on individual IMR90 human lung fibroblasts. Expression levels of the Cyclin-dependent kinase inhibitor 1a (CDKN1A), Growth/differentiation factor 15 (GDF15), and Prostaglandin-endoperoxide synthase 2 (PTGS2) genes, previously shown to have different responses to direct and bystander irradiation, were measured across individual control, microbeam-irradiated or bystander IMR90 cells. In addition to the confirmation of accurate tracking of cell treatments through the system and efficient analysis of single-cell responses, the results enable comparison of activation levels of different genes and provide insight into signaling pathways within individual cells.
Collapse
|
15
|
Johnson ES, Xu S, Yu HM, Fang WF, Qin Y, Wu L, Wang J, Zhao M, Schiro PG, Fujimoto B, Chen JL, Chiu DT. Isolating Rare Cells and Circulating Tumor Cells with High Purity by Sequential eDAR. Anal Chem 2019; 91:14605-14610. [PMID: 31646861 PMCID: PMC9847251 DOI: 10.1021/acs.analchem.9b03690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isolation and analysis of circulating tumor cells (CTCs) from the blood of patients at risk of metastatic cancers is a promising approach to improving cancer treatment. However, CTC isolation is difficult due to low CTC abundance and heterogeneity. Previously, we reported an ensemble-decision aliquot ranking (eDAR) platform for the rare cell and CTC isolation with high throughput, greater than 90% recovery, and high sensitivity, allowing detection of low surface antigen-expressing cells linked to metastasis. Here we demonstrate a sequential eDAR platform capable of isolating rare cells from whole blood with high purity. This improvement in purity is achieved by using a sequential sorting and flow stretching design in which whole blood is sorted and fluid elements are stretched using herringbone features and the parabolic flow profile being sorted a second time. This platform can be used to collect single CTCs in a multiwell plate for downstream analysis.
Collapse
Affiliation(s)
- Eleanor S. Johnson
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Shihan Xu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| | - Hui-Min Yu
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Wei-Feng Fang
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Yuling Qin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Li Wu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jiasi Wang
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Mengxia Zhao
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Perry G. Schiro
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Bryant Fujimoto
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States
| | - Jui-Lin Chen
- MiCareo Inc., Xing-Ai Road Ln. 77 No. 69 5F, Taipei City, Taiwan
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, United States,Department of Bioengineering, University of Washington, Seattle, Washington, United States
| |
Collapse
|
16
|
Zhang Y, Ouyang M, Ray A, Liu T, Kong J, Bai B, Kim D, Guziak A, Luo Y, Feizi A, Tsai K, Duan Z, Liu X, Kim D, Cheung C, Yalcin S, Ceylan Koydemir H, Garner OB, Di Carlo D, Ozcan A. Computational cytometer based on magnetically modulated coherent imaging and deep learning. LIGHT, SCIENCE & APPLICATIONS 2019; 8:91. [PMID: 31645935 PMCID: PMC6804677 DOI: 10.1038/s41377-019-0203-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 05/08/2023]
Abstract
Detecting rare cells within blood has numerous applications in disease diagnostics. Existing rare cell detection techniques are typically hindered by their high cost and low throughput. Here, we present a computational cytometer based on magnetically modulated lensless speckle imaging, which introduces oscillatory motion to the magnetic-bead-conjugated rare cells of interest through a periodic magnetic force and uses lensless time-resolved holographic speckle imaging to rapidly detect the target cells in three dimensions (3D). In addition to using cell-specific antibodies to magnetically label target cells, detection specificity is further enhanced through a deep-learning-based classifier that is based on a densely connected pseudo-3D convolutional neural network (P3D CNN), which automatically detects rare cells of interest based on their spatio-temporal features under a controlled magnetic force. To demonstrate the performance of this technique, we built a high-throughput, compact and cost-effective prototype for detecting MCF7 cancer cells spiked in whole blood samples. Through serial dilution experiments, we quantified the limit of detection (LoD) as 10 cells per millilitre of whole blood, which could be further improved through multiplexing parallel imaging channels within the same instrument. This compact, cost-effective and high-throughput computational cytometer can potentially be used for rare cell detection and quantification in bodily fluids for a variety of biomedical applications.
Collapse
Affiliation(s)
- Yibo Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Mengxing Ouyang
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Aniruddha Ray
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Janay Kong
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Alexander Guziak
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 USA
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Alborz Feizi
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Yale School of Medicine, New Haven, CT 06510 USA
| | - Katherine Tsai
- Department of Biochemistry, University of California, Los Angeles, CA 90095 USA
| | - Zhuoran Duan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Xuewei Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Danny Kim
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Chloe Cheung
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Sener Yalcin
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Hatice Ceylan Koydemir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Omai B. Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095 USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
17
|
Rapid and efficient isolation and detection of circulating tumor cells based on ZnS:Mn2+ quantum dots and magnetic nanocomposites. Talanta 2019; 202:230-236. [DOI: 10.1016/j.talanta.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 01/07/2023]
|
18
|
Three-Dimensional Autofocusing Visual Feedback for Automated Rare Cells Sorting in Fluorescence Microscopy. MICROMACHINES 2019; 10:mi10090567. [PMID: 31461976 PMCID: PMC6780806 DOI: 10.3390/mi10090567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
Sorting rare cells from heterogeneous mixtures makes a significant contribution to biological research and medical treatment. However, the performances of traditional methods are limited due to the time-consuming preparation, poor purity, and recovery rate. In this paper, we proposed a cell screening method based on the automated microrobotic aspirate-and-place strategy under fluorescence microscopy. A fast autofocusing visual feedback (FAVF) method is introduced for precise and real-time three-dimensional (3D) location. In the context of this method, the scalable correlation coefficient (SCC) matching is presented for planar locating cells with regions of interest (ROI) created for autofocusing. When the overlap occurs, target cells are separated by a segmentation algorithm. To meet the shallow depth of field (DOF) limitation of the microscope, the improved multiple depth from defocus (MDFD) algorithm is used for depth detection, taking 850 ms a time with an accuracy rate of 96.79%. The neighborhood search based algorithm is applied for the tracking of the micropipette. Finally, experiments of screening NIH/3T3 (mouse embryonic fibroblast) cells verifies the feasibility and validity of this method with an average speed of 5 cells/min, 95% purity, and 80% recovery rate. Moreover, such versatile functions as cell counting and injection, for example, could be achieved by this expandable system.
Collapse
|
19
|
Iino T, Okano K, Lee SW, Yamakawa T, Hagihara H, Hong ZY, Maeno T, Kasai Y, Sakuma S, Hayakawa T, Arai F, Ozeki Y, Goda K, Hosokawa Y. High-speed microparticle isolation unlimited by Poisson statistics. LAB ON A CHIP 2019; 19:2669-2677. [PMID: 31332412 DOI: 10.1039/c9lc00324j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-speed isolation of microparticles (e.g., microplastics, heavy metal particles, microbes, cells) from heterogeneous populations is the key element of high-throughput sorting instruments for chemical, biological, industrial and medical applications. Unfortunately, the performance of continuous microparticle isolation or so-called sorting is fundamentally limited by the trade-off between throughput, purity, and yield. For example, at a given throughput, high-purity sorting needs to sacrifice yield, or vice versa. This is due to Poisson statistics of events (i.e., microparticles, microparticle clusters, microparticle debris) in which the interval between successive events is stochastic and can be very short. Here we demonstrate an on-chip microparticle sorter with an ultrashort switching window in both time (10 μs) and space (10 μm) at a high flow speed of 1 m s-1, thereby overcoming the Poisson trade-off. This is made possible by using femtosecond laser pulses that can produce highly localized transient cavitation bubbles in a microchannel to kick target microparticles from an acoustically focused, densely aligned, bumper-to-bumper stream of microparticles. Our method is important for rare-microparticle sorting applications where both high purity and high yield are required to avoid missing rare microparticles.
Collapse
Affiliation(s)
- Takanori Iino
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Kazunori Okano
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Sang Wook Lee
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Yamakawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Hiroki Hagihara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Zhen-Yi Hong
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Takanori Maeno
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Yusuke Kasai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shinya Sakuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Takeshi Hayakawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan and Department of Precision Mechanics, Chuo University, Tokyo 112-8551, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan and Japan Science and Technology Agency, Kawaguchi 332-0012, Japan and Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| |
Collapse
|
20
|
Ahrens L, Vonwil D, Arya N, Forget A, Shastri VP. Biotin-Avidin-Mediated Capture of Microspheres on Polymer Fibers. Molecules 2019; 24:E2036. [PMID: 31141958 PMCID: PMC6600533 DOI: 10.3390/molecules24112036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022] Open
Abstract
Systems for efficient and selective capture of micro-scale objects and structures have application in many areas and are of particular relevance for selective isolation of mammalian cells. Systems for the latter should also not interfere with the biology of the cells. This study demonstrates the capture of microspheres through orthogonal coupling using biotin (ligand) and (strept)avidin (receptor). Fibrous poly(ethylene terephthalate) (PET) meshes were hydrolyzed under controlled alkaline conditions to obtain activated surfaces with COOH groups allowing for the functionalization of the PET with biotin of various spacer length. The system capture efficiency was optimized by varying the length of spacer presenting the biotin against streptavidin. In a proof of concept experiment, avidin-functionalized microspheres were used as surrogates for cells, and their capture under dynamic conditions including virous mixing and high-flow rate perfusion is demonstrated. Functionalization of PET meshes with biotin conjugated to longest spacer yielded the most efficient capture of microspheres. These preliminary results lay the foundation for the development of biosystems for capture of specific cells under physiologically relevant conditions, using biorthogonal avidin-biotin interactions.
Collapse
Affiliation(s)
- Lucas Ahrens
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Daniel Vonwil
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany.
| | - Neha Arya
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany.
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal 462020, India.
| | - Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany.
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
21
|
Selective Detection of Human Lung Adenocarcinoma Cells Based on the Aptamer-Conjugated Self-Assembled Monolayer of Gold Nanoparticles. MICROMACHINES 2019; 10:mi10030195. [PMID: 30893795 PMCID: PMC6470481 DOI: 10.3390/mi10030195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 12/24/2022]
Abstract
This study established a microfluidic chip for the capture of A549 human lung circulating tumor cells via the aptamer-conjugated self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) in the channel. AuNPs are among the most attractive nanomaterials for the signal enhancement of biosensors owing to their unique chemical, physical, and mechanical properties. The microchip was fabricated using soft photolithography and casting and molding techniques. A self-assembly method was designed to attach AuNPs, cell-specific aptamers, and target cells onto the desired area (i.e., SAM area). In this study, the gold microelectrode configuration was characterized by fluorescence microscopy and impedance measurements to confirm the important modification steps. Subsequently, several investigations with the proposed assay were conducted with different cell samples to determine the specific binding ability of the device for A549 adenocarcinoma cancer cells. This work has ensured a simple, convenient, selective, and sensitive approach for the development of biosensors for lung cancer detection during the early stages.
Collapse
|
22
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
23
|
Karthick S, Pradeep PN, Kanchana P, Sen AK. Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. LAB ON A CHIP 2018; 18:3802-3813. [PMID: 30402651 DOI: 10.1039/c8lc00921j] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Label-free isolation of CTCs from blood is critical for the development of diagnostic and prognostic tools for cancer. Here, we report a label-free method based on acoustic impedance contrast for the isolation of CTCs from peripheral blood mononuclear cells (PBMCs) in a microchannel using acoustophoresis. We describe a method in which the acoustophoretic migration of PBMCs is arrested by matching their acoustic impedance with that of the sample medium, and CTCs that have different acoustic impedance compared to PBMCs migrate toward the pressure node or antinode and thus become isolated. We show that acoustic streaming which can adversely affect the CTC isolation is suppressed owing to the inhomogeneous liquid flow configuration. We establish a method for isolation of CTCs that have higher or lower acoustic impedance compared to PBMCs by controlling the acoustic impedance contrast of the liquids across the channel. Applying this method, we demonstrate label-free isolation of HeLa and MDA-MB-231 cells from PBMCs (collected from 2.0 mL of blood) within one hour yielding a recovery of >86% and >50-fold enrichment. Combined impedance and size-based sorting is proposed as a promising tool for the effective isolation of CTCs from blood.
Collapse
Affiliation(s)
- S Karthick
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | | | | | | |
Collapse
|
24
|
Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel. Biosens Bioelectron 2018; 121:10-18. [DOI: 10.1016/j.bios.2018.08.059] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 01/27/2023]
|
25
|
Huang X, Tang J, Hu L, Bian R, Liu M, Cao W, Zhang H. Arrayed microfluidic chip for detection of circulating tumor cells and evaluation of drug potency. Anal Biochem 2018; 564-565:64-71. [PMID: 30312620 DOI: 10.1016/j.ab.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
Abstract
Circulating tumor cells (CTCs) from peripheral blood of cancer patients are considered as one of the most promising pharmacodynamic (PD) biomarkers due to its non-invasive property in disease diagnosis and prognosis. However, the detection of extremely low number of CTCs in patient blood requires methods with high sensitivity and accuracy. We fabricated an arrayed geometrically enhanced mixing (GEM) chip with a "dislocation herringbone" layout based on cell immunoaffinity. By optimizing the injection and rinsing flow rate, an average cell capture rate of 87.02% and an average capture purity of 99.58% were achieved using the human lung adenocarcinoma cell lines H1975. In addition, we determined the specificity, precision, accuracy, and detection limit of our chip. The results demonstrated the chip was stable, accurate and reliable for the "liquid biopsy" of lung cancer cells using the peripheral blood of patients. Our chip can also be used to evaluate the potency of different drugs against tumor cells in parallel due to the presence of four independent microchannels.
Collapse
Affiliation(s)
- Xuejia Huang
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jianlin Tang
- Center for Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lanlan Hu
- Center for Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ruyu Bian
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ming Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Huijing Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
26
|
Liang W, Zhao Y, Huang W, Liang H, Zeng H, He J. Liquid biopsy for early stage lung cancer. J Thorac Dis 2018; 10:S876-S881. [PMID: 29780634 DOI: 10.21037/jtd.2018.04.26] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid biopsy, which analyzes biological fluids especially blood specimen to detect and quantify circulating cancer biomarkers, have been rapidly introduced and represents a promising potency in clinical practice of lung cancer diagnosis and prognosis. Unlike conventional tissue biopsy, liquid biopsy is non-invasive, safe, simple in procedure, and is not influenced by manipulators' skills. Notably, some circulating cancer biomarkers are already detectable in disease with low-burden, making liquid biopsy feasible in detecting early stage lung cancer. In this review, we described a landscape of different liquid biopsy methods by highlighting the rationale and advantages, accessing the value of various circulating biomarkers and discussing their possible future development in the detection of early lung cancer.
Collapse
Affiliation(s)
- Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Weizhe Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Haikang Zeng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
27
|
Uchôa Guimarães CT, Ferreira Martins NN, Cristina da Silva Oliveira K, Almeida CM, Pinheiro TM, Gigek CO, Roberto de Araújo Cavallero S, Assumpção PP, Cardoso Smith MA, Burbano RR, Calcagno DQ. Liquid biopsy provides new insights into gastric cancer. Oncotarget 2018; 9:15144-15156. [PMID: 29599934 PMCID: PMC5871105 DOI: 10.18632/oncotarget.24540] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsies have great promise for precision medicine as they provide information about primary and metastatic tumors via a minimally invasive method. In gastric cancer patients, a large number of blood-based biomarkers have been reported for their potential role in clinical practice for screening, early diagnosis, prognostic evaluation, recurrence monitoring and therapeutic efficiency follow-up. This current review focuses on blood liquid biopsies' role and their clinical implications in gastric cancer patients, with an emphasis on circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) and circulating non-coding RNAs (ncRNAs). We also provide a brief discussion of the potential and limitations of liquid biopsies use and their future use in the routine clinical care of gastric cancer.
Collapse
Affiliation(s)
- Camila Tavares Uchôa Guimarães
- Residência Multiprofissional em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | - Caroline Martins Almeida
- Residência Multiprofissional em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Carolina Oliveira Gigek
- Disciplina de Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Disciplina de Gastroenterologia Cirurgica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brazil
| | - Danielle Queiroz Calcagno
- Residência Multiprofissional em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
28
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
29
|
Scherag FD, Brandstetter T, Rühe J. Geometrically enhanced sensor surfaces for the selective capture of cell-like particles in a laminar flow field. BIOMICROFLUIDICS 2018; 12:014116. [PMID: 30867852 PMCID: PMC6404926 DOI: 10.1063/1.5017714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/22/2018] [Indexed: 06/09/2023]
Abstract
Medical wires inserted into the blood stream of patients offer an attractive perspective to capture rare cells such as circulating tumor cells in vivo. A major challenge in such systems is to achieve an efficient interaction of the desired cells with the sensing surface and avoid those cells that simply flow by the wire without any contact while floating in a laminar flow field at some small distance to the sensor surface. We describe a new strategy to increase the interaction of cells or cell-like particles to such wire-shaped sensor surfaces both from an experimental and a theoretical point of view. For model experiments, we use cell-like particles that are flowing past the profile wire in a blood-like liquid stream. In the fluid dynamics simulations, this sensor is inserted into small capillaries. The influence of geometry and orientation of the wire with respect to the surrounding capillary onto the capture behavior is studied. Parameters, such as wire diameter, profile shape, wire torsion, and orientation of it with respect to the liquid stream, induce in some cases quite strong crossflows. These crossflows enhance the contact probability compared to a straight line wire of the same length by factors of up to about 80. A general model connecting the wire geometry with the crossflow intensity and the particle capture behavior is developed. Particle capture experiments demonstrate that the identified geometric factors can improve the capture of cell-like particles in laminar fluid flows and enhance the performance of such cell sensors.
Collapse
Affiliation(s)
- Frank D Scherag
- Department of Microsystems Engineering, University of Freiburg, Freiburg im Breisgau, Baden-Württemberg 79110, Germany
| | - Thomas Brandstetter
- Department of Microsystems Engineering, University of Freiburg, Freiburg im Breisgau, Baden-Württemberg 79110, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg, Freiburg im Breisgau, Baden-Württemberg 79110, Germany
| |
Collapse
|
30
|
Yan S, Chen P, Zeng X, Zhang X, Li Y, Xia Y, Wang J, Dai X, Feng X, Du W, Liu BF. Integrated Multifunctional Electrochemistry Microchip for Highly Efficient Capture, Release, Lysis, and Analysis of Circulating Tumor Cells. Anal Chem 2017; 89:12039-12044. [DOI: 10.1021/acs.analchem.7b02469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuangqian Yan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xian Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Xia
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofang Dai
- Cancer
Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
31
|
Ezenarro JJ, Uria N, Castillo-Fernández Ó, Párraga N, Sabrià M, Muñoz Pascual FX. Development of an integrated method of concentration and immunodetection of bacteria. Anal Bioanal Chem 2017; 410:105-113. [PMID: 29063163 DOI: 10.1007/s00216-017-0695-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/07/2017] [Accepted: 10/06/2017] [Indexed: 11/27/2022]
Abstract
The microbial quality of water is a key aspect to avoid environmental and public health problems. The low pathogen concentration needed to produce a disease outbreak makes it essential to process large water volumes and use sensitive and specific methods such as immunoassays for its detection. In the present work, we describe the development of a device based on microfiltration membranes to integrate the concentration and the immunodetection of waterborne bacteria. A microfiltration membrane treatment protocol was designed to reduce the non-specific binding of antibodies, for which different blocking agents were tested. Thus, the proof of concept of the microbial detection system was also carried out using Escherichia coli as the bacterial pathogen model. E. coli suspensions were filtered through the membranes at 0.5 mL s-1, and the E. coli concentration measurements were made by absorbance, at 620 nm, of the resultant product of the enzymatic reaction among the horseradish peroxidase (HRP) bonded to the antibody, and the substrate 3,3',5,5'-tetramethylbenzidine (TMB). The results showed that the homemade concentration system together with the developed membrane treatment protocol is able to detect E. coli cells with a limit of detection (LoD) of about 100 CFU in 100 mL. Graphical abstract Scheme of the integrated method of concentration and immunodetection of bacteria.
Collapse
Affiliation(s)
- Josune J Ezenarro
- Institut de Microelectrònica de Barcelona, CNM-CSIC, Esfera UAB-CEI, Campus UAB, 08193, Bellaterra, Spain.
| | - Naroa Uria
- Institut de Microelectrònica de Barcelona, CNM-CSIC, Esfera UAB-CEI, Campus UAB, 08193, Bellaterra, Spain
| | - Óscar Castillo-Fernández
- Institut de Microelectrònica de Barcelona, CNM-CSIC, Esfera UAB-CEI, Campus UAB, 08193, Bellaterra, Spain
| | - Noemí Párraga
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias I Pujol, 08916, Badalona, Spain
- CIBER de Enfermedades Respiratorias, 28029, Madrid, Spain
| | - Miquel Sabrià
- CIBER de Enfermedades Respiratorias, 28029, Madrid, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain
| | | |
Collapse
|
32
|
Shen S, Tian C, Li T, Xu J, Chen SW, Tu Q, Yuan MS, Liu W, Wang J. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation. LAB ON A CHIP 2017; 17:3578-3591. [PMID: 28975177 DOI: 10.1039/c7lc00691h] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Controllable manipulation of fluid flow is crucial for efficient particle separation, which is associated with plenty of biomedical and industrial applications. Microfluidic technologies have achieved promising progress in particle positioning depending on inertial force with or without the help of the Dean effect. Herein, we describe an inertial microfluidic system containing a spiral microchannel for various highly efficient particle separations. We demonstrated that Dean-like secondary flow can be regulated by geometric confinement in the microchannel. On the introduction of a library of micro-obstacles into the spiral microchannels, the resulting linear acceleration of secondary flow can be applied to remarkably enhance particle focusing in time and space. Further, multiple separating and sorting manipulations of particles including polymeric particles, circulating tumor cells, and blood cells, can be successfully accomplished in the dimension-confined spiral channels in a sheathless, high-throughput (typically 3 ml min-1), long-term (at least 4 h), and highly-efficient (up to 99.8% focusing) manner. The methodological achievement pointing to ease-of-use, effective, and high-throughput particle manipulations is useful for both laboratory and commercial developments of microfluidic systems in life and material sciences.
Collapse
Affiliation(s)
- Shaofei Shen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Samadishadlou M, Farshbaf M, Annabi N, Kavetskyy T, Khalilov R, Saghfi S, Akbarzadeh A, Mousavi S. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1314-1330. [DOI: 10.1080/21691401.2017.1389746] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Material Science and Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Taras Kavetskyy
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
- The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Siamak Saghfi
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Sepideh Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
34
|
Macgregor-Ramiasa M, McNicholas K, Ostrikov K, Li J, Michael M, Gleadle JM, Vasilev K. A platform for selective immuno-capture of cancer cells from urine. Biosens Bioelectron 2017; 96:373-380. [DOI: 10.1016/j.bios.2017.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 02/05/2023]
|
35
|
Hyun JC, Choi J, Jung YG, Yang S. Microfluidic cell concentrator with a reduced-deviation-flow herringbone structure. BIOMICROFLUIDICS 2017; 11:054108. [PMID: 29034052 PMCID: PMC5617731 DOI: 10.1063/1.5005612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/19/2017] [Indexed: 05/11/2023]
Abstract
In this study, a microfluidic cell concentrator with a reduced-deviation-flow herringbone structure is proposed. The reduced-deviation-flow herringbone structure reduces the magnitude of deviation flow by a factor of 3.3 compared to the original herringbone structure. This structure shows higher recovery efficiency compared to the original herringbone structure for various particle sizes at high flow rate conditions. Using the reduced-deviation-flow herringbone structure, the experimental results show a recovery efficiency of 98.5% and a concentration factor of 3.4× at a flow rate of 100 ml/h for all particle sizes. An iterative concentration process is performed to achieve a higher concentration factor for 10.2-μm particles and Jurkat cells. With two stages of the concentration process, we were able to achieve over 98% recovery efficiency and a concentration factor of 10-11×. Cell viability was found to be above 96% after iterative concentration. We believe that this device could be used to concentrate cells as a preparatory step for studying low-abundance cells.
Collapse
Affiliation(s)
- Ji-Chul Hyun
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Jongchan Choi
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Yu-Gyung Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | | |
Collapse
|
36
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
37
|
Zhao W, Cheng R, Lim SH, Miller JR, Zhang W, Tang W, Xie J, Mao L. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids. LAB ON A CHIP 2017; 17:2243-2255. [PMID: 28590489 PMCID: PMC5543773 DOI: 10.1039/c7lc00327g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h-1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h-1. The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chaudhuri PK, Ebrahimi Warkiani M, Jing T, Kenry, Lim CT. Microfluidics for research and applications in oncology. Analyst 2017; 141:504-24. [PMID: 26010996 DOI: 10.1039/c5an00382b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer is currently one of the top non-communicable human diseases, and continual research and developmental efforts are being made to better understand and manage this disease. More recently, with the improved understanding in cancer biology as well as the advancements made in microtechnology and rapid prototyping, microfluidics is increasingly being explored and even validated for use in the detection, diagnosis and treatment of cancer. With inherent advantages such as small sample volume, high sensitivity and fast processing time, microfluidics is well-positioned to serve as a promising platform for applications in oncology. In this review, we look at the recent advances in the use of microfluidics, from basic research such as understanding cancer cell phenotypes as well as metastatic behaviors to applications such as the detection, diagnosis, prognosis and drug screening. We then conclude with a future outlook on this promising technology.
Collapse
Affiliation(s)
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Tengyang Jing
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and Department of Biomedical Engineering, National University of Singapore, Singapore 117575.
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411 and BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
| |
Collapse
|
39
|
Yan S, Zhang X, Dai X, Feng X, Du W, Liu BF. Rhipsalis (Cactaceae)-like Hierarchical Structure Based Microfluidic Chip for Highly Efficient Isolation of Rare Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33457-33463. [PMID: 27960420 DOI: 10.1021/acsami.6b11673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The circulating tumor cells (CTCs), originating from the primary tumor, play a vital role in cancer diagnosis, prognosis, disease monitoring, and precise therapy. However, the CTCs are extremely rare in the peripheral bloodstream and hard to be isolated. To overcome current limitations associated with CTC capture and analysis, the strategy incorporating nanostructures with microfluidic devices receives wide attention. Here, we demonstrated a three-dimensional microfluidic device (Rm-chip) for capturing cancer cells with high efficiency by integrating a novel hierarchical structure, the "Rhipsalis (Cactaceae)"-like micropillar array, into the Rm-chip. The PDMS micropillar array was fabricated by soft-lithography and rapid prototyping method, which was then conformally plated with a thin gold layer through electroless plating. EpCAM antibody was modified onto the surface of the micropillars through the thiol-oligonucleotide linkers in order to release captured cancer cells by DNase I treatment. The antibody-functionalized device achieved an average capture efficiency of 88% in PBS and 83.7% in whole blood samples. We believe the Rm-chip provided a convenient, economical, and versatile approach for cell analysis with wide potential applications.
Collapse
Affiliation(s)
- Shuangqian Yan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xian Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiaofang Dai
- Cancer Center, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|
40
|
Ko J, Yelleswarapu V, Singh A, Shah N, Issadore D. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h(-1)) immunomagnetic sorting. LAB ON A CHIP 2016; 16:3049-57. [PMID: 27170379 PMCID: PMC4970905 DOI: 10.1039/c6lc00487c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ < 5 mL h(-1)) and susceptibility to clogging, which have hindered current microfluidic technology from processing relevant volumes of clinical samples, e.g. V > 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h(-1)) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 μm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h(-1)) and specifically sort rare tumor cells from white blood cells.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Venkata Yelleswarapu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Anup Singh
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Nishal Shah
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA. and Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Islam M, Natu R, Larraga-Martinez MF, Martinez-Duarte R. Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis. BIOMICROFLUIDICS 2016; 10:033107. [PMID: 27375816 PMCID: PMC4912558 DOI: 10.1063/1.4954310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 05/12/2023]
Abstract
Here, we report on an enrichment protocol using carbon electrode dielectrophoresis to isolate and purify a targeted cell population from sample volumes up to 4 ml. We aim at trapping, washing, and recovering an enriched cell fraction that will facilitate downstream analysis. We used an increasingly diluted sample of yeast, 10(6)-10(2) cells/ml, to demonstrate the isolation and enrichment of few cells at increasing flow rates. A maximum average enrichment of 154.2 ± 23.7 times was achieved when the sample flow rate was 10 μl/min and yeast cells were suspended in low electrically conductive media that maximizes dielectrophoresis trapping. A COMSOL Multiphysics model allowed for the comparison between experimental and simulation results. Discussion is conducted on the discrepancies between such results and how the model can be further improved.
Collapse
Affiliation(s)
- Monsur Islam
- Mechanical Engineering Department, Clemson University , Clemson, South Carolina 29631, USA
| | - Rucha Natu
- Mechanical Engineering Department, Clemson University , Clemson, South Carolina 29631, USA
| | | | | |
Collapse
|
42
|
Abstract
Isolation and analysis of cancer cells from body fluids have significant implications in diagnosis and therapeutic treatment of cancers. Circulating tumor cells (CTCs) are cancer cells circulating in the peripheral blood or spreading iatrogenically into blood vessels, which is an early step in the cascade of events leading to cancer metastasis. Therefore, CTCs can be used for diagnosing for therapeutic treatment, prognosing a given anticancer intervention, and estimating the risk of metastatic relapse. However, isolation of CTCs is a significant technological challenge due to their rarity and low recovery rate using traditional purification techniques. Recently microfluidic devices represent a promising platform for isolating cancer cells with high efficiency in processing complex cellular fluids, with simplicity, sensitivity, and throughput. This review summarizes recent methods of CTC isolation and analysis, as well as their applications in clinical studies.
Collapse
Affiliation(s)
- J Zhang
- University of Florida, Gainesville, FL, United States
| | - K Chen
- University of Florida, Gainesville, FL, United States
| | - Z H Fan
- University of Florida, Gainesville, FL, United States.
| |
Collapse
|
43
|
Warkiani ME, Wu L, Tay AKP, Han J. Large-Volume Microfluidic Cell Sorting for Biomedical Applications. Annu Rev Biomed Eng 2015; 17:1-34. [DOI: 10.1146/annurev-bioeng-071114-040818] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Majid Ebrahimi Warkiani
- BioSystems and Micromechanics IRG, Singapore–MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602;
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lidan Wu
- Department of Biological Engineering and
| | - Andy Kah Ping Tay
- BioSystems and Micromechanics IRG, Singapore–MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602;
| | - Jongyoon Han
- BioSystems and Micromechanics IRG, Singapore–MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602;
- Department of Biological Engineering and
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
44
|
Alapan Y, Hasan MN, Shen R, Gurkan UA. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices. J Nanotechnol Eng Med 2015; 6. [PMID: 27512530 PMCID: PMC4976826 DOI: 10.1115/1.4031231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.
Collapse
Affiliation(s)
- Yunus Alapan
- Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace, Engineering Department, Case Western Reserve University, Cleveland, OH 44106,
| | - Muhammad Noman Hasan
- Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH 44106,
| | - Richang Shen
- Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH 44106,
| | - Umut A Gurkan
- Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Biomedical Engineering Department, Orthopedics Department, Case Western Reserve University, Cleveland, OH 44106; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| |
Collapse
|
45
|
Micro- and nanodevices integrated with biomolecular probes. Biotechnol Adv 2015; 33:1727-43. [PMID: 26363089 PMCID: PMC4948648 DOI: 10.1016/j.biotechadv.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 12/28/2022]
Abstract
Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities.
Collapse
|
46
|
Marchalot J, Chateaux JF, Faivre M, Mertani HC, Ferrigno R, Deman AL. Dielectrophoretic capture of low abundance cell population using thick electrodes. BIOMICROFLUIDICS 2015; 9:054104. [PMID: 26392836 PMCID: PMC4560720 DOI: 10.1063/1.4928703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/05/2015] [Indexed: 05/12/2023]
Abstract
Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).
Collapse
Affiliation(s)
- Julien Marchalot
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Jean-François Chateaux
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Magalie Faivre
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM U1052-CNRS UMR5286, Université de Lyon 1, Université de Lyon , Lyon 69008, France
| | - Rosaria Ferrigno
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| | - Anne-Laure Deman
- Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Université de Lyon 1, Université de Lyon , Villeurbanne F-69622, France
| |
Collapse
|
47
|
Johnson ES, Anand RK, Chiu DT. Improved Detection by Ensemble-Decision Aliquot Ranking of Circulating Tumor Cells with Low Numbers of a Targeted Surface Antigen. Anal Chem 2015; 87:9389-95. [DOI: 10.1021/acs.analchem.5b02241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Zhao M, Wei B, Nelson WC, Schiro PG, Chiu DT. Simultaneous and selective isolation of multiple subpopulations of rare cells from peripheral blood using ensemble-decision aliquot ranking (eDAR). LAB ON A CHIP 2015; 15:3391-3396. [PMID: 26160592 DOI: 10.1039/c5lc00384a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rare cells, such as circulating tumor cells (CTCs), can be heterogeneous. The isolation and identification of rare cells with different phenotypes is desirable, for clinical and biological applications. However, CTCs exist in a complex biological environment, which complicates the isolation and identification of particular subtypes. To address this need, we re-designed our ensemble-decision aliquot ranking (eDAR) system to detect, isolate, and study two subpopulations of rare cells in the same microchip. With this dual-capture eDAR device, we simultaneously and selectively isolated two subsets of CTCs from the same blood sample: One set expressed epithelial markers and the other had mesenchymal characteristics. We could apply other selection schemes with different sorting logics to isolate the two subpopulations on demand. The average recovery rate for each subpopulation was higher than 88% with a nearly 100% selectivity of the targeted cells; the throughput was 50 μL min(-1).
Collapse
Affiliation(s)
- Mengxia Zhao
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.
| | | | | | | | | |
Collapse
|
49
|
Quyen Chau ND, Ménard-Moyon C, Kostarelos K, Bianco A. Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. Biochem Biophys Res Commun 2015; 468:454-62. [PMID: 26129773 DOI: 10.1016/j.bbrc.2015.06.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/20/2015] [Indexed: 12/19/2022]
Abstract
Nanosized materials and multifunctional nanoscale platforms have attracted in the last years considerable interest in a variety of different fields including biomedicine. Carbon nanotubes and graphene are some of the most widely used carbon nanomaterials (CNMs) due to their unique morphology and structure and their characteristic physicochemical properties. Their high surface area allows efficient drug loading and bioconjugation and makes them the ideal platforms for decoration with magnetic nanoparticles (MNPs). In the biomedical area, MNPs are of particular importance due to their broad range of potential applications in drug delivery, non-invasive tumor imaging and early detection based on their optical and magnetic properties. The remarkable characteristics of CNMs and MNPs can be combined leading to CNM/MNP hybrids which offer numerous promising, desirable and strikingly advantageous properties for improved performance in comparison to the use of either material alone. In this minireview, we attempt to comprehensively report the most recent advances made with CNMs conjugated to different types of MNPs for magnetic targeting, magnetic manipulation, capture and separation of cells towards development of magnetic carbon-based devices.
Collapse
Affiliation(s)
- Ngoc Do Quyen Chau
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000 Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000 Strasbourg, France
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Medical & Human Sciences and National Graphene Institute, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000 Strasbourg, France.
| |
Collapse
|
50
|
Li W, Reátegui E, Park MH, Castleberry S, Deng JZ, Hsu B, Mayner S, Jensen AE, Sequist LV, Maheswaran S, Haber DA, Toner M, Stott SL, Hammond PT. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells. Biomaterials 2015; 65:93-102. [PMID: 26142780 DOI: 10.1016/j.biomaterials.2015.06.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022]
Abstract
Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Eduardo Reátegui
- Department of Surgery, Harvard Medical School, Boston, MA, USA.,Center for Engineering in Medicine, Harvard Medical School, Boston, MA, USA
| | - Myoung-Hwan Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Castleberry
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason Z Deng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,David H. Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bryan Hsu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Mayner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E Jensen
- Center for Engineering in Medicine, Harvard Medical School, Boston, MA, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shyamala Maheswaran
- Department of Surgery, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mehmet Toner
- Department of Surgery, Harvard Medical School, Boston, MA, USA.,Center for Engineering in Medicine, Harvard Medical School, Boston, MA, USA
| | - Shannon L Stott
- Center for Engineering in Medicine, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,David H. Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|