1
|
Kan W, Gao Y, Zhu Y, Wang Z, Yang Z, Cheng Y, Guo J, Wang D, Tang C, Wu L. Genome-wide identification and expression analysis of TaFDL gene family responded to vernalization in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:255. [PMID: 40091016 PMCID: PMC11912598 DOI: 10.1186/s12864-025-11436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND FLOWERING LOCUS D (FD) is a basic leucine zipper (bZIP) transcription factor known to be crucial in vernalization, flowering, and stress response across a variety of plants, including biennial and winter annual species. The TaFD-like (TaFDL) gene in wheat is the functional homologue of Arabidopsis FD, yet research on the TaFDL gene family in wheat is still lacking. RESULTS In this study, a total of 62 TaFDL gene family members were identified and classified into 4 main subfamilies, and these genes were located on 21 chromosomes. A comprehensive analysis of the basic physicochemical properties, gene structure, conservation motif, conserved domain, and advanced protein structure of TaFDL gene family revealed the conservation among its individual subfamily. The family members underwent purifying selection. The segmental duplication events were the main driving force behind the expansion of the TaFDL gene family. The TaFDL gene family underwent differentiation in the evolution of FD genes. Additionally, the subcellular localization and transcriptional activation activities of five key TaFDL members were demonstrated. Gene Ontology (GO) annotations and promoter cis-regulatory element analysis indicated that the TaFDL members may play potential roles in regulating flowering, hormone response, low-temperature response, light response, and stress response, which were verified by transcriptome data analysis. Specifically, quantitative real-time PCR (qRT-PCR) analysis revealed that five TaFDL genes exhibited differential responses to different vernalization conditions in winter wheat seeding. Finally, the homologous genes of the five key TaFDL genes across nine different wheat cultivars highlight significant genetic diversity. CONCLUSION These findings enrich the research on FD and its homologous genes, providing valuable insights into the TaFDL gene family's response to vernalization.
Collapse
Affiliation(s)
- Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ziqi Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhu Yang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuan Cheng
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jianjun Guo
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Zhongke Taihe Experimental Station, Taihe, Anhui, 236626, PR China.
| |
Collapse
|
2
|
Liu R, Sun T, Du P, Liu Z, Li Y, Tong X, Zou L. Characterization and Expression Analysis of the bHLH Gene Family During Developmental Stages and Under Various Abiotic Stresses in Sanghuangporus baumii. Genes (Basel) 2025; 16:184. [PMID: 40004513 PMCID: PMC11855202 DOI: 10.3390/genes16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Basic helix-loop-helix (bHLH) transcription factors (TFs) widely exist in eukaryotic organisms and play a key role in plant growth and development in response to environmental stresses. Sanghuangporus baumii, an important medicinal mushroom known for its anticancer properties, has limited research on the bHLH gene family. METHODS This research utilized the genomic data from S. baumii to identify bHLH family members, and their gene structure, conserved motifs, and phylogenetic relationship were characterized. Additionally, we conducted an analysis of promoter cis-elements and predicted protein interaction networks. We also examined the expression profiles of bHLH genes during different developmental stages and in response to four abiotic stresses: heat, cold, oxidative stress, and heavy metal exposure. Finally, we overexpressed the candidate gene SbbHLH3 in yeast to assess its tolerance to these different stress conditions. RESULTS A total of 12 SbbHLH genes were identified in S. baumii, and the members of the bHLH gene family displayed a variety of physicochemical characteristics, reflecting their diverse array of functions. Based on homology, the SbbHLH proteins are more closely related to those found in Lentinula edodes and Pleurotus ostreatus. The analysis of promoter cis-elements showed that SbbHLHs contain several elements associated with abiotic stress response, and a network prediction identified 28 bHLH-interacting proteins. Expression pattern analysis revealed that most SbbHLH genes exhibited a positive response to different developmental stages and abiotic stresses. Notably, the overexpression of SbbHLH3 significantly enhanced stress tolerance in yeast. CONCLUSIONS This study provides a comprehensive assessment of the bHLH family in S. baumii, delivering new genetic resources for breeding resistant varieties.
Collapse
Affiliation(s)
- Ruipeng Liu
- College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.L.)
| | - Tingting Sun
- College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.L.)
- College of Food Engineering, Harbin University, Harbin 150086, China
| | - Pengyu Du
- College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.L.)
| | - Zengcai Liu
- College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.L.)
| | - Yawei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.L.)
| | - Xinyu Tong
- College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.L.)
| | - Li Zou
- College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.L.)
| |
Collapse
|
3
|
Cui J, Li Y, Liu H, Jiang X, Zhang L, Dai H, Wang X, He F, Li M, Kang J. Genome-wide identification and expression analysis of CBF/DREB1 gene family in Medicago sativa L. and functional verification of MsCBF9 affecting flowering time. BMC PLANT BIOLOGY 2025; 25:87. [PMID: 39838277 PMCID: PMC11752619 DOI: 10.1186/s12870-025-06081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient. RESULTS In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No. 4"). These genes were distributed on chromosomes 1, 5, 6 and unassembled scaffolds. Phylogenetics divided the CBF members of Medicago sativa, Arabidopsis thaliana, and Medicago truncatula into six groups, of which group VI had the most MsCBFs members, reaching 52% (13/25). Gene duplication analysis showed that 64% (16/25) of MsCBFs formed tandem duplications, and 32% (8/25) formed segment duplications. The expression pattern of MsCBF9 under different hormone treatments was verified by RT-qPCR, and it was found that MsCBF9 responded to GA3, IAA, SA, and MeJA. Overexpression of MsCBF9 in Arabidopsis significantly delayed the flowering time of Arabidopsis. In contrast, the flowering time of the cbfs mutant was earlier, and overexpression of MsCBF9 also increased the number and size of Arabidopsis rosette leaves. CONCLUSION In this study, the CBF/DREB1 family of alfalfa was comprehensively identified and analyzed, and the function of MsCBF9 in regulating flowering time was studied. This study laid a foundation for further analysis of the function of the CBF family in alfalfa. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jing Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xu Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lili Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongbo Dai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Lan Y, Gong F, Li C, Xia F, Li Y, Liu X, Liu D, Liang G, Fang C, Cai P. New insights into the evolution analysis of trihelix gene family in eggplant (Solanum melongena L.) and expression analysis under abiotic stress. BMC Genomics 2024; 25:1040. [PMID: 39501159 PMCID: PMC11539502 DOI: 10.1186/s12864-024-10959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Trihliex transcription factors (TFs) play crucial roles in plant growth and development, stress response, and plant hormone signaling network transmission. In order to comprehensively investigate the functions of trihliex genes in eggplant development and the abiotic stress response, we conducted an extensive analysis of the trihliex gene family in the eggplant genome. RESULTS In this study, 30 trihelix gene family members were unevenly distributed on 12 chromosomes. On the basis of their phylogenetic relationships, these genes were conserved in different plant species and could be divided into six subfamilies, with trihelix genes within the same subfamily sharing similar structures. The promoter regions of trihelix genes contained cis-acting elements related to plant growth and development, plant hormones, and abiotic stress responses, suggesting potential applications in the development of more resistant crops. Selective pressure assessments indicated that trihliex genes have undergone purifying selection pressure. Expression analysis on the basis of transcriptomic profiles revealed that SmGT18, SmGT29, SmGT6, and SmGT28 are highly expressed in roots, leaves, flowers, and fruits, respectively. Expression analysis via quantitative real-time PCR (qRT‒PCR) revealed that most trihelix genes respond to low temperature, abscisic acid (ABA), and salicylic acid (SA), with SmGT29 exhibiting significant upregulation under cold stress conditions. The SmGT29 gene was subsequently successfully cloned from eggplant, which was located in the nucleus, robust transcriptional activity, and a protein molecular weight of 74.59 kDa. On the basis of these findings, SmGT29 was postulated to be a pivotal candidate gene that actively responds to biotic stress stimuli, thereby supporting the plant's innate stress resistance mechanisms. CONCLUSION In summary, this study was the first report on trihelix genes and their potential roles in eggplant plants. These results provided valuable insights for enhancing stress resistance and quality traits in eggplant breeding, thereby serving as a crucial reference for future improvement efforts.
Collapse
Affiliation(s)
- Yanhong Lan
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Fangyi Gong
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Chun Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Feng Xia
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Yifan Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Xiaojun Liu
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Duchen Liu
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Genyun Liang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China
| | - Chao Fang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China.
| | - Peng Cai
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Sichuan Province Engineering Technology Research Center of Vegetables, Chengdu, 611934, China.
| |
Collapse
|
5
|
Mao C, Zhang J, Zhang Y, Wang B, Li W, Wang X, Huang L. Genome-wide analysis of the WRKY gene family and their response to low-temperature stress in elephant grass. BMC Genomics 2024; 25:947. [PMID: 39379802 PMCID: PMC11462659 DOI: 10.1186/s12864-024-10844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUD Elephant grass (Cenchrus purpureus) is a perennial forage grass characterized by tall plants, high biomass and wide adaptability. Low-temperature stress severely limits elephant grass biomass and geographic distribution. WRKY is one of the largest families of plant-specific transcription factors and plays important roles in plant resistance to low-temperature. However, the understanding of the WRKY family in grasses is limited. In this study, we conducted a genome-wide characterization of WRKY proteins in elephant grass, including gene structure, phylogeny, expression, conserved motif organization, and functional annotation, to identify key CpWRKY candidates involved in cold tolerance. RESULTS In this study, a total of 176 WRKY genes were identified in elephant grass. It was found that 172 were unevenly distributed across its 14 chromosomes, while the remaining 4 genes were not anchored to any chromosome. The genes were classified into three groups based on their WRKY conserved domains and zinc finger motifs. There were 12, 8, 19, 27, 12, 18 and 80 CpWRKYs belonging to group I, group IIa, group IIb, group IIc, group IId, group IIe and group III, respectively. We hypothesized that the ancient subgroup IIc WRKY gene is the ancestor of all WRKY genes in elephant grass. Most CpWRKYs in the same group have similar structure and motif composition. A total of 169 duplicate gene pairs were identified, suggesting that segmental duplication might have contributed to the expansion of the CpWRKY gene family. Ka/Ks analysis revealed that most of the CpWRKYs were subjected to purifying selection during the evolution. It was also found that six genes (CpWRKY51, CpWRKY81, CpWRKY100, CpWRKY101, CpWRKY140 and CpWRKY143) exhibited higher expression in roots compare to leaves, and were significantly induced by low temperature stress. Among them, CpWRKY81 had the highest expression under low-temperature stress, and its over-expression significantly enhanced the cold tolerance in yeast. CONLUSIONS In this study, we characterized WRKY genes in elephant grass and further investigated their physicochemical properties, evolution, and expression patterns under low-temperature stress. This research provides valuable resources for identifying key CpWRKY genes that contribute to cold tolerance in elephant grass.
Collapse
Affiliation(s)
- Chunli Mao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Zhang
- Sichuan Provincial Forestry and Grassland Development Research Center, Chengdu, 610081, China
| | - Yaning Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bixian Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weihang Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Li H, Shen J, Ding Y, Li Y, Du J, Jiang T, Kong X, Han R, Zhang X, Zhao X. Transcriptomic and metabolomic analysis of poplar response to feeding by Hyphantria cunea. BMC PLANT BIOLOGY 2024; 24:920. [PMID: 39354343 PMCID: PMC11446030 DOI: 10.1186/s12870-024-05631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Populus cathayana × canadansis 'Xinlin 1' ('P.'xin lin 1') with the characteristics of rapid growth and high yield, is frequently attacked by herbivorous insects. However, little is known about how it defenses against Hyphantria cunea (H. cunea) at molecular and biochemical levels. Differences in the transcriptome and metabolome were analyzed after 'P. 'xin lin 1' leaves were fed to H. cunea for 0h, 2h, 4h, 8h, 16h and 24h. In the five comparison groups including 2h vs. CK, 4h vs. CK, 8h vs. CK, 16h vs. CK, and 24h vs. CK, a total of 8925 genes and 842 metabolites were differentially expressed. A total of 825 transcription factors (TFs) were identified, which encoded 56 TF families. The results showed that the top four families with the highest number of TFs were AP2/ERF, MYB, C2C2, bHLH. Analyses of leaves which were fed to H. cunea showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in plant hormone signal transduction pathway, MAPK signaling pathway, flavonoid, flavone and flavonol and anthocyanin biosynthesis pathway. Additionally, there were a number of genes significantly up-regulated in MAPK signaling pathway. Some compounds involved in plant hormone signal transduction and flavonoid/flavone and flavonol/ anthocyanin pathways such as jasmonic acid (JA), jasmonoyl-L-Isoleucine (JA-Ile), kaempferol and cyanidin-3-O-glucoside were induced in infested 'P.'xin lin 1'. This study provides a new understanding for exploring the dynamic response mechanism of poplar to the infestation of H. cunea.
Collapse
Affiliation(s)
- Hanxi Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jiajia Shen
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Yutong Ding
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Yuxi Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Jiayu Du
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Xinxin Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China.
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China.
| |
Collapse
|
7
|
Wang C, Yang J, Pan Q, Zhu P, Li J. Integrated transcriptomic and proteomic analysis of exogenous abscisic acid regulation on tuberous root development in Pseudostellaria heterophylla. Front Nutr 2024; 11:1417526. [PMID: 39036490 PMCID: PMC11258014 DOI: 10.3389/fnut.2024.1417526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.
Collapse
Affiliation(s)
| | | | | | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
8
|
Xiong R, Peng Z, Zhou H, Xue G, He A, Yao X, Weng W, Wu W, Ma C, Bai Q, Ruan J. Genome-wide identification, structural characterization and gene expression analysis of the WRKY transcription factor family in pea (Pisum sativum L.). BMC PLANT BIOLOGY 2024; 24:113. [PMID: 38365619 PMCID: PMC10870581 DOI: 10.1186/s12870-024-04774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.
Collapse
Affiliation(s)
- Ruiqi Xiong
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Zhonghua Peng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Hui Zhou
- Sichuan Province Seed Station, Chengdu, Sichuan, 610041, China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Xin Yao
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Chao Ma
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Qing Bai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China.
| |
Collapse
|
9
|
Sabir IA, Manzoor MA, Shah IH, Ahmad Z, Liu X, Alam P, Wang Y, Sun W, Wang J, Liu R, Jiu S, Zhang C. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108222. [PMID: 38016371 DOI: 10.1016/j.plaphy.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishan Ahmad
- Bambo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Felipez W, Villavicencio J, Nizolli VO, Pegoraro C, da Maia L, Costa de Oliveira A. Genome-Wide Identification of Bilberry WRKY Transcription Factors: Go Wild and Duplicate. PLANTS (BASEL, SWITZERLAND) 2023; 12:3176. [PMID: 37765340 PMCID: PMC10535657 DOI: 10.3390/plants12183176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 09/29/2023]
Abstract
WRKY transcription factor genes compose an important family of transcriptional regulators that are present in several plant species. According to previous studies, these genes can also perform important roles in bilberry (Vaccinium myrtillus L.) metabolism, making it essential to deepen our understanding of fruit ripening regulation and anthocyanin biosynthesis. In this context, the detailed characterization of these proteins will provide a comprehensive view of the functional features of VmWRKY genes in different plant organs and in response to different intensities of light. In this study, the investigation of the complete genome of the bilberry identified 76 VmWRKY genes that were evaluated and distributed in all twelve chromosomes. The proteins encoded by these genes were classified into four groups (I, II, III, and IV) based on their conserved domains and zinc finger domain types. Fifteen pairs of VmWRKY genes in segmental duplication and four pairs in tandem duplication were detected. A cis element analysis showed that all promoters of the VmWRKY genes contain at least one potential cis stress-response element. Differential expression analysis of RNA-seq data revealed that VmWRKY genes from bilberry show preferential or specific expression in samples. These findings provide an overview of the functional characterization of these proteins in bilberry.
Collapse
Affiliation(s)
- Winder Felipez
- Instituto de Agroecología y Seguridad Alimentaria, Facultad de Ciências Agrárias, Universidad San Francisco Xavier de Chuquisaca—USFX, Casilla, Correo Central, Sucre 1046, Bolivia;
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Jennifer Villavicencio
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
- Carrera de Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Cientifica del Sur—UCSUR, Antigua Panamericana Sur km 19 Villa el Salvador, Lima CP 150142, Peru
| | - Valeria Oliveira Nizolli
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Camila Pegoraro
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Luciano da Maia
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| |
Collapse
|
11
|
Yang Y, He Y, Lv S, Zhu H, Wang T, Wang G, Hong N, Wang L. The PcMYB44-mediated miR397-PcLACs module regulates defence-induced lignification in pear resistance to fungal disease. MOLECULAR PLANT PATHOLOGY 2023; 24:1107-1125. [PMID: 37312259 PMCID: PMC10423334 DOI: 10.1111/mpp.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023]
Abstract
Diseases caused by Alternaria alternata and Botryosphaeria dothidea diminish pear yield and quality, and restrict the pear agricultural industry. Lignification is a conserved mechanism for plant resistance against pathogen invasion. The regulatory mechanisms underlying defence-induced lignification in pear in response to fungal pathogen infection remain unknown. In this study, analysis of lignification level and lignin content in pear revealed that A. alternata and B. dothidea induced lignification, and transcriptomics showed that lignin biosynthesis was affected. To explore whether laccases (LACs) mediated by miR397 regulate lignification in pear, we investigated the role of PcmiR397 in repressing the expression of PcLACs using 5'-RNA ligase-mediated-RACE and co-transformation in tobacco. Opposite expression patterns for PcmiR397 and PcLAC target genes were observed in pear in response to pathogens. Transient transformation in pear demonstrated that silencing PcmiR397 and overexpressing a single PcLAC enhanced resistance to pathogens via lignin synthesis. To further reveal the mechanism underpinning the PcMIR397 response of pear to pathogens, the PcMIR397 promoter was analysed, and pMIR397-1039 was found to be inhibited by pathogen infection. The transcription factor PcMYB44 was up-regulated, and it bound to the PcMIR397 promoter and inhibited transcription following pathogen infection. The results demonstrate the role of PcmiR397-PcLACs in broad-spectrum resistance to fungal disease, and the potential role of PcMYB44 involved in the miR397-PcLAC module in regulating defence-induced lignification. The findings provide valuable candidate gene resources and guidance for molecular breeding to improve resistance to fungal disease in pear.
Collapse
Affiliation(s)
- Yuekun Yang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Ying He
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Shamei Lv
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Haodong Zhu
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Tingting Wang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Liping Wang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
Xue G, Fan Y, Zheng C, Yang H, Feng L, Chen X, Yang Y, Yao X, Weng W, Kong L, Liu C, Cheng J, Ruan J. bHLH transcription factor family identification, phylogeny, and its response to abiotic stress in Chenopodium quinoa. FRONTIERS IN PLANT SCIENCE 2023; 14:1171518. [PMID: 37476176 PMCID: PMC10355129 DOI: 10.3389/fpls.2023.1171518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 07/22/2023]
Abstract
The second-largest transcription factor superfamily in plants is that of the basic helix-loop-helix (bHLH) family, which plays an important complex physiological role in plant growth, tissue development, and environmental adaptation. Systematic research on the Chenopodium quinoa bHLH family will enable a better understanding of this species. Herein, authors used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 218 CqbHLH genes identified. A total of 218 CqbHLH transcription factor genes were identified in the whole genome, located on 18 chromosomes. A phylogenetic tree was constructed using the CqbHLH and AtbHLH proteins to determine their homology, and the members were divided into 20 subgroups and one unclustered gene. Authors also analyzed 218 CqbHLH genes, conservative motifs, chromosome diffusion, and gene replication. The author constructed one Neighbor-Joining (NJ) tree and a collinearity analysis map of the bHLH family in C. quinoa and six other plant species to study the evolutionary relationship and homology among multiple species. In addition, the expression levels of 20 CqbHLH members from different subgroups in various tissues, different fruit developmental stages, and six abiotic stresses were analyzed. Authors identified 218 CqbHLH genes and studied their biological functions, providing a basis for better understanding and further studying the bHLH family in quinoa.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Hao Yang
- Agricultural Service Center of Langde Town, Kaili, Guizhou, China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, Sichuan, China
| | - Xingyu Chen
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yanqi Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Lingyan Kong
- The First Senior Middle School of Yuanyang County, Xinxiang, Henan, China
| | - Chuang Liu
- Henan Institute of Technology, Xinxiang, Henan, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Liu Q, Wang S, Wen J, Chen J, Sun Y, Dong S. Genome-wide identification and analysis of the WRKY gene family and low-temperature stress response in Prunus sibirica. BMC Genomics 2023; 24:358. [PMID: 37370033 DOI: 10.1186/s12864-023-09469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND WRKY transcription factors are a prominent gene family in plants, playing a crucial role in various biological processes including development, metabolism, defense, differentiation, and stress response. Although the WRKY gene family has been extensively studied and analysed in numerous plant species, research on Prunus sibirica's WRKY genes (PsWRKY) remains lacking. RESULTS This study analysed the basic physicochemical properties, phylogeny, gene structure, cis-acting elements, and Gene ontology (GO) annotation of PsWRKY gene family members using bioinformatics methods based on the whole-genome data of P. sibirica. In total, 55 WRKYs were identified in P. sibirica and were heterogeneously distributed on eight chromosomes. Based on the phylogenetic analysis, these WRKYs were classified into three major groups: Group I, Group II (II-a, II-b, II-c, II-d, II-e), and Group III. Members of different subfamilies have different cis-acting elements, conserved motifs, and intron-exon structures, indicating functional heterogeneity of the WRKY family. Prediction of subcellular localisation indicated that PsWRKYs were mainly located in the nucleus. Twenty pairs of duplicated genes were identified, and segmental duplication events may play an important role in PsWRKY gene family expansion. Analysis of the Ka/Ks ratio showed that the PsWRKY family's homologous genes were primarily purified by selection. Additionally, GO annotation analysis showed that the WRKY gene family was mainly involved in responses to stimuli, immune system processes, and reproductive processes. Furthermore, quantitative real-time PCR (qRT-PCR) analysis showed that 23 PsWRKYs were highly expressed in one or more tissues (pistils and roots) and PsWRKYs showed specific expression patterns under different low-temperature stress conditions. CONCLUSIONS Our results provide a scientific basis for the further exploration and functional validation of WRKYs in P. sibirica.
Collapse
Affiliation(s)
- Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Wen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
14
|
Yuan DP, Yang S, Feng L, Chu J, Dong H, Sun J, Chen H, Li Z, Yamamoto N, Zheng A, Li S, Yoon HC, Chen J, Ma D, Xuan YH. Red-light receptor phytochrome B inhibits BZR1-NAC028-CAD8B signaling to negatively regulate rice resistance to sheath blight. PLANT, CELL & ENVIRONMENT 2023; 46:1249-1263. [PMID: 36457051 DOI: 10.1111/pce.14502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Phytochrome (Phy)-regulated light signalling plays important roles in plant growth, development, and stress responses. However, its function in rice defence against sheath blight disease (ShB) remains unclear. Here, we found that PhyB mutation or shade treatment promoted rice resistance to ShB, while resistance was reduced by PhyB overexpression. Further analysis showed that PhyB interacts with phytochrome-interacting factor-like 15 (PIL15), brassinazole resistant 1 (BZR1), and vascular plant one-zinc-finger 2 (VOZ2). Plants overexpressing PIL15 were more susceptible to ShB in contrast to bzr1-D-overexpressing plants compared with the wild-type, suggesting that PhyB may inhibit BZR1 to negatively regulate rice resistance to ShB. Although BZR1 is known to regulate brassinosteroid (BR) signalling, the observation that BR signalling negatively regulated resistance to ShB indicated an independent role for BZR1 in controlling rice resistance. It was also found that the BZR1 ligand NAC028 positively regulated resistance to ShB. RNA sequencing showed that cinnamyl alcohol dehydrogenase 8B (CAD8B), involved in lignin biosynthesis was upregulated in both bzr1-D- and NAC028-overexpressing plants compared with the wild-type. Yeast-one hybrid, ChIP, and transactivation assays demonstrated that BZR1 and NAC028 activate CAD8B directly. Taken together, the analyses demonstrated that PhyB-mediated light signalling inhibits the BZR1-NAC028-CAD8B pathway to regulate rice resistance to ShB.
Collapse
Affiliation(s)
- De Peng Yuan
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shuo Yang
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lu Feng
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin Chu
- Laboratory of Rice Disease Research, Institution of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Hai Dong
- Laboratory of Rice Disease Research, Institution of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jian Sun
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Huan Chen
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhuo Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Naoki Yamamoto
- Department of Plant Protection, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Department of Plant Protection, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuang Li
- Department of Biological Science, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | | | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Dianrong Ma
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuan Hu Xuan
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Zhang H, Zhu X, Xu R, Yuan Y, Abugu MN, Yan C, Tieman D, Li X. Postharvest chilling diminishes melon flavor via effects on volatile acetate ester biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1067680. [PMID: 36684781 PMCID: PMC9853462 DOI: 10.3389/fpls.2022.1067680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In postharvest handling systems, refrigeration can extend fruit shelf life and delay decay via slowing ripening progress; however, it selectively alters the biosynthesis of flavor-associated volatile organic compounds (VOCs), which results in reduced flavor quality. Volatile esters are major contributors to melon fruit flavor. The more esters, the more consumers enjoy the melon fruit. However, the effects of chilling on melon flavor and volatiles associated with consumer liking are yet to be fully understood. In the present study, consumer sensory evaluation showed that chilling changed the perception of melon fruit. Total ester content was lower after chilling, particularly volatile acetate esters (VAEs). Transcriptomic analysis revealed that transcript abundance of multiple flavor-associated genes in fatty acid and amino acid pathways was reduced after chilling. Additionally, expression levels of the transcription factors (TFs), such as NOR, MYB, and AP2/ERF, also were substantially downregulated, which likely altered the transcript levels of ester-associated pathway genes during cold storage. VAE content and expression of some key genes recover after transfer to room temperature. Therefore, chilling-induced changes of VAE profiles were consistent with expression patterns of some pathway genes that encode specific fatty acid- and amino acid-mobilizing enzymes as well as TFs involved in fruit ripening, metabolic regulation, and hormone signaling.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Xiuxiu Zhu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Runzhe Xu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Yushu Yuan
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Modesta N. Abugu
- Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Congsheng Yan
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Denise Tieman
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Xiang Li
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Thakur S, Vasudev PG. MYB transcription factors and their role in Medicinal plants. Mol Biol Rep 2022; 49:10995-11008. [PMID: 36074230 DOI: 10.1007/s11033-022-07825-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Transcription factors are multi-domain proteins that regulate gene expression in eukaryotic organisms. They are one of the largest families of proteins, which are structurally and functionally diverse. While there are transcription factors that are plant-specific, such as AP2/ERF, B3, NAC, SBP and WRKY, some transcription factors are present in both plants as well as other eukaryotic organisms. MYB transcription factors are widely distributed among all eukaryotes. In plants, the MYB transcription factors are involved in the regulation of numerous functions such as gene regulation in different metabolic pathways especially secondary metabolic pathways, regulation of different signalling pathways of plant hormones, regulation of genes involved in various developmental and morphological processes etc. Out of the thousands of MYB TFs that have been studied in plants, the majority of them have been studied in the model plants like Arabidopsis thaliana, Oryza sativa etc. The study of MYBs in other plants, especially medicinal plants, has been comparatively limited. But the increasing demand for medicinal plants for the production of biopharmaceuticals and important bioactive compounds has also increased the need to explore more number of these multifaceted transcription factors which play a significant role in the regulation of secondary metabolic pathways. These studies will ultimately contribute to medicinal plants' research and increased production of secondary metabolites, either through transgenic plants or through synthetic biology approaches. This review compiles studies on MYB transcription factors that are involved in the regulation of diverse functions in medicinal plants.
Collapse
Affiliation(s)
- Sudipa Thakur
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India.
| | - Prema G Vasudev
- Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
| |
Collapse
|
17
|
Yang Y, He Z, Bing Q, Duan X, Chen S, Zeng M, Liu X. Two Dof transcription factors promote flavonoid synthesis in kumquat fruit by activating C-glucosyltransferase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111234. [PMID: 35351306 DOI: 10.1016/j.plantsci.2022.111234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Although DNA binding with one finger (Dof) constitutes a crucial plant-specific family of transcription factors (TFs) that plays important roles in a wide range of biological processes, the molecular mechanisms underlying Dof regulation of flavonoid biosynthesis in plants remain largely unknown. Here, we characterized 28 Dof genes (FhDof1-FhDof28) from the 'Hongkong' kumquat (Fortunella hindsii) cultivar genome. Promoter analysis and transcriptome profiling revealed that four FhDofs - FhDof4, FhDof9, FhDof15, and FhDof16 - may be involved in flavonoid biosynthesis through binding to the flavonoid C-glycosyltransferase (FhCGT) promoter. We cloned homologous genes of four FhDofs, designated as FcDof4, FcDof9, FcDof15, FcDof16, and a homologous gene of FhCGT, designated as FcCGT, from the widely cultivated 'HuaPi' kumquat (F. crassifolia). Quantitative reverse transcription-polymerase chain reaction analysis revealed that FcDof4 and FcDof16 were significantly correlated with FcCGT expression during development stages in the 'HuaPi' fruit (Pearson's correlation coefficient > 0.7) and were localized to the nucleus. Results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays indicated that the two FcDofs trigger FcCGT expression by specifically binding to its promoters. Moreover, transient overexpression of FcDof4 and FcDof16 enhances the transcription of structural genes in the flavonoid biosynthetic pathway and increases C-glycosylflavonoid content. Our results provide strong evidence that the TFs FcDof4 and FcDof16 promote flavonoid synthesis in kumquat fruit by activating FcCGT expression.
Collapse
Affiliation(s)
- Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhilin He
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qihao Bing
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xinyuan Duan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Suoying Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
18
|
Yang S, Zhang X, Zhang X, Bi Y, Gao W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ 2022; 10:e12939. [PMID: 35282281 PMCID: PMC8916028 DOI: 10.7717/peerj.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.
Collapse
Affiliation(s)
- Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoxiao Zhang
- College of Agriculture, Guangxi University, Nanning, China,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Jin M, Gan S, Jiao J, He Y, Liu H, Yin X, Zhu Q, Rao J. Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110927. [PMID: 34034875 DOI: 10.1016/j.plantsci.2021.110927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 05/21/2023]
Abstract
Chilling injury (CI) is a barrier to the refrigeration of kiwifruit, resulting in decreased fruit quality and increased nutrient loss during storage. Understanding the molecular basis underlying the cold response and its regulation in refrigerated kiwifruit is therefore highly important. Basic (region) leucine zipper (bZIP) transcription factors (TFs) have been widely studied for their roles in abiotic stress resistance in various species. In this study, we identified 81 bZIP family proteins in kiwifruit and classified them into 11 groups. Further transcriptome analysis revealed that the expression of members of the AREB/ABF family was strongly induced by low temperature and abscisic acid (ABA). Ectopic expression of AchnABF1 enhanced plant cold tolerance by upregulating the expression of several key genes associated with ABA-dependent and ABA-independent pathways in Arabidopsis thaliana. Reactive oxygen species (ROS) metabolism was suggested to be involved in the AchnABF1-mediated osmotic stress response. For instance, enhanced ROS-scavenging ability was observed in transgenic plants with enhanced activity of catalase (CAT) and peroxidase (POD), which resulted in decreased in situ O2.- and H2O2 accumulation, ion leakage, and malondialdehyde (MDA) content under various abiotic stresses. In addition, AchnABF1 also participated in the osmotic stress response during both the germination and postgermination stages. We concluded that AchnABF1 may play an important role in kiwifruit during refrigeration.
Collapse
Affiliation(s)
- Mijing Jin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sufu Gan
- Biotechnology of Horticultural Crops, TUM School for Life Sciences Weihenstephan, Technische Universität München, Freising, D-85354, Germany
| | - Jianqing Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiheng He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jingping Rao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
20
|
Fan Y, Yang H, Lai D, He A, Xue G, Feng L, Chen L, Cheng XB, Ruan J, Yan J, Cheng J. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 2021; 22:415. [PMID: 34090335 PMCID: PMC8178921 DOI: 10.1186/s12864-021-07652-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Basic helix-loop-helix (bHLH) is a superfamily of transcription factors that is widely found in plants and animals, and is the second largest transcription factor family in eukaryotes after MYB. They have been shown to be important regulatory components in tissue development and many different biological processes. However, no systemic analysis of the bHLH transcription factor family has yet been reported in Sorghum bicolor. RESULTS We conducted the first genome-wide analysis of the bHLH transcription factor family of Sorghum bicolor and identified 174 SbbHLH genes. Phylogenetic analysis of SbbHLH proteins and 158 Arabidopsis thaliana bHLH proteins was performed to determine their homology. In addition, conserved motifs, gene structure, chromosomal spread, and gene duplication of SbbHLH genes were studied in depth. To further infer the phylogenetic mechanisms in the SbbHLH family, we constructed six comparative syntenic maps of S. bicolor associated with six representative species. Finally, we analyzed the gene-expression response and tissue-development characteristics of 12 typical SbbHLH genes in plants subjected to six different abiotic stresses. Gene expression during flower and fruit development was also examined. CONCLUSIONS This study is of great significance for functional identification and confirmation of the S. bicolor bHLH superfamily and for our understanding of the bHLH superfamily in higher plants.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Liang Feng
- Chengdu Food and Drug Inspection Institute, Chengdu, 610000, P.R. China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, Mianzhu, 618200, P.R. China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, Kangding, 626001, P.R. China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, P.R. China.
| |
Collapse
|
21
|
Analyzing Differentially Expressed Genes and Pathways Associated with Pistil Abortion in Japanese Apricot via RNA-Seq. Genes (Basel) 2020; 11:genes11091079. [PMID: 32942711 PMCID: PMC7565994 DOI: 10.3390/genes11091079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Reproduction is a critical stage in the flower development process, and its failure causes serious problems affecting fruit quality and yield. Pistil abortion is one of the main factors in unsuccessful reproduction and occurs in many fruit plants. In Japanese apricot, the problem of pistil abortion is very common and affects fruit quality and plant yield; however, its molecular mechanism is not clearly understood. Therefore, in the current study, we used RNA-Seq to identify the differentially expressed genes (DEGs) and pathways actively involved in pistil abortion. A total of 3882 differentially expressed genes were found after cutoff and pairwise comparison analysis. According to KEGG pathway analysis, plant hormone signaling transduction and metabolic pathways were found most significantly enriched in this study. A total of 60 transcription factor families such as MADS-box, NAC and TCP showed their role in this process. RT-qPCR assays confirmed that the expression levels were consistent with RNA-Seq results. This study provides an alternative to be considered for further studies and understanding of pistil abortion processes in Japanese apricot, and it provides a reference related to this issue for other deciduous fruit crops.
Collapse
|
22
|
Wang YH, Liu XH, Zhang RR, Yan ZM, Xiong AS, Su XJ. Sequencing, assembly, annotation, and gene expression: novel insights into browning-resistant Luffa cylindrica. PeerJ 2020; 8:e9661. [PMID: 32864209 PMCID: PMC7425639 DOI: 10.7717/peerj.9661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022] Open
Abstract
Luffa is a kind of melon crop widely cultivated in temperate regions worldwide. Browning is one of the serious factors affecting the quality of Luffa. Therefore, the molecular mechanism of Luffa browning is of great significance to study. However, the molecular diversity of Luffa cultivars with different browning-resistant abilities has not been well elucidated. In our study, we used high-throughput sequencing to determine the transcriptome of two Luffa cylindrica cultivars '2D-2' and '35D-7'. A total of 115,099 unigenes were clustered, of which 22,607 were differentially expression genes (DEGs). Of these DEGs, 65 encoding polyphenol oxidase, peroxidase, or ascorbate peroxidase were further analyzed. The quantitative real-time PCR (RT-qPCR) data indicated that the expression levels of the LcPPO gene (Accession No.: Cluster-21832.13892) was significantly higher in '35D-7' compared with that in '2D-2'. Several POD genes (Accession No.: Cluster-21832.19847, Cluster-21832.30619 and Cluster-48491.2) were also upregulated. Analysis of the plantTFDB database indicated that some transcription factors such as WRKY gene family may also participate in the regulation of Luffa browning. The results indicated that the divergence of genes expression related to enzymatic reaction may lead to the different browning resistances of Luffa. Our study will provide a theoretical basis for breeding of browning-resistant Luffa.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Hong Liu
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Ming Yan
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Jun Su
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
23
|
Wang J, Long X, Chern M, Chen X. Understanding the molecular mechanisms of trade-offs between plant growth and immunity. SCIENCE CHINA-LIFE SCIENCES 2020; 64:234-241. [PMID: 32710363 DOI: 10.1007/s11427-020-1719-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Trade-offs between plant growth and immunity are a well-known phenomenon in plants that are meant to ensure the best use of limited resources. Recently, many advances have been achieved on molecular regulations of the trade-offs between plant growth and immunity. Here, we provide an overview on molecular understanding of these trade-offs including those regulated at the transcriptional level or post-transcriptional level by transcriptional factors, microRNAs, and post-translational modifications of proteins, respectively The understanding on the molecular regulation of these trade-offs will provide new strategies to breed crops with high yield and enhanced resistance to disease.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, California, 95616, USA
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
24
|
Hu G, Lei Y, Liu J, Hao M, Zhang Z, Tang Y, Chen A, Wu J. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110438. [PMID: 32081275 DOI: 10.1101/440826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) participate in plant development and defence through post-transcriptional regulation of the target genes. However, few miRNAs were reported to regulate cotton plant disease resistance. Here, we characterized the cotton miR164-NAC100 module in the later induction stage response of the plant to Verticillium dahliae infection. The results of GUS fusing reporter and transcript identity showed that ghr-miR164 can directly cleave the mRNA of GhNAC100 in the post-transcriptional process. The ghr-miR164 positively regulated the cotton plant resistance to V. dahliae according to analyses of its over-expression and knockdown. In link with results, the knockdown of GhNAC100 increased the plant resistance to V. dahliae. Based on LUC reporter, expression analyses and yeast one-hybrid (Y1H) assays, GhNAC100 bound to the CGTA-box of GhPR3 promoter and repressed its expression, negatively regulating plant disease resistance. These results showed that the ghr-miR164 and GhNAC100 module fine-tunes plant defence through the post-transcriptional regulation, which documented that miRNAs play important roles in plant resistance to vascular disease.
Collapse
Affiliation(s)
- Guang Hu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001, Zhengzhou, China
| | - Yu Lei
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianfen Liu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengyan Hao
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhennan Zhang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ye Tang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aiming Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds CO. Ltd, Changji, Xinjiang, 831100, China
| | - Jiahe Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
25
|
Whole-genome and time-course dual RNA-Seq analyses reveal chronic pathogenicity-related gene dynamics in the ginseng rusty root rot pathogen Ilyonectria robusta. Sci Rep 2020; 10:1586. [PMID: 32005849 PMCID: PMC6994667 DOI: 10.1038/s41598-020-58342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ilyonectria robusta causes rusty root rot, the most devastating chronic disease of ginseng. Here, we for the first time report the high-quality genome of the I. robusta strain CD-56. Time-course (36 h, 72 h, and 144 h) dual RNA-Seq analysis of the infection process was performed, and many genes, including candidate effectors, were found to be associated with the progression and success of infection. The gene expression profile of CD-56 showed a trend of initial inhibition and then gradually returned to a profile similar to that of the control. Analyses of the gene expression patterns and functions of pathogenicity-related genes, especially candidate effector genes, indicated that the stress response changed to an adaptive response during the infection process. For ginseng, gene expression patterns were highly related to physiological conditions. Specifically, the results showed that ginseng defenses were activated by CD-56 infection and persisted for at least 144 h thereafter but that the mechanisms invoked were not effective in preventing CD-56 growth. Moreover, CD-56 did not appear to fully suppress plant defenses, even in late stages after infection. Our results provide new insight into the chronic pathogenesis of CD-56 and the comprehensive and complex inducible defense responses of ginseng root to I. robusta infection.
Collapse
|
26
|
Lei W, Li Y, Yao X, Qiao K, Wei L, Liu B, Zhang D, Lin H. NAP is involved in GA-mediated chlorophyll degradation and leaf senescence by interacting with DELLAs in Arabidopsis. PLANT CELL REPORTS 2020; 39:75-87. [PMID: 31646371 DOI: 10.1007/s00299-019-02474-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/18/2019] [Indexed: 05/29/2023]
Abstract
RGA/GAI and NAP interacted with each other, and NAP was involved in GA signaling as a role of regulating age-dependent and dark-induced leaf senescence in Arabidopsis. Leaf senescence is a significant biological process which is beneficial for plant growth, development, and generation alternation in Arabidopsis. Recent researches have shown gibberellins (GAs) could accelerate leaf senescence. Nevertheless, the GA signaling involved in leaf senescence process remains elusive. Here, we reported a new potential regulation mechanism of GA-mediated chlorophyll degradation and leaf senescence. In this study, we confirmed that NAP positively regulated age-dependent and dark-induced leaf senescence and NAP knockout mutant nap was hyposensitive to GA3 (an active form of GA) treatment. DELLA family proteins with highly conserved structural domain function as master growth repressors that integrated GA signaling and leaf senescence. We validated RGA and GAI could interact with NAP in vitro and in vivo, and subsequently impaired the transcriptional activities of NAP to induce SAG113 and AAO3 expression in nap protoplasts. Taken together, we suggest that NAP is a novel component of the regulatory network that modulates the progress of leaf senescence in GA signaling.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiuhong Yao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Kang Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lin Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Baohui Liu
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Dawei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
27
|
Zhong H, Kong W, Gong Z, Fang X, Deng X, Liu C, Li Y. Evolutionary Analyses Reveal Diverged Patterns of SQUAMOSA Promoter Binding Protein-Like ( SPL) Gene Family in Oryza Genus. FRONTIERS IN PLANT SCIENCE 2019; 10:565. [PMID: 31139200 PMCID: PMC6517846 DOI: 10.3389/fpls.2019.00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/15/2019] [Indexed: 05/07/2023]
Abstract
The SPL (SQUAMOSA promoter binding protein-like) gene family is one of the plant-specific transcription factor families and controls a considerable number of biological functions, including floral development, phytohormone signaling, and toxin resistance. However, the evolutionary patterns and driving forces of SPL genes in the Oryza genus are still not well-characterized. In this study, we investigated a total of 105 SPL genes from six AA genome Oryza representative species (O. barthii, O. glumipatula, O. nivara, O. rufipogon, O. glaberrima, and O. sativa). Phylogenetic and motif analyses indicated that SPL proteins could be divided into two distinct lineages (I and II), and further studies showed lineage II consisted of three clades (IIA, IIB, and IIC). We found that clade I had comparable structural features with clade IIA, whereas genes in clade IIC displayed intrinsic differences, such as lower exon numbers and the presence of miR156 regulation elements. Nineteen orthologous groups of OsSPLs in Oryza were also identified, and most exons within those genes maintained constant length, whereas length of intron changed relatively. All groups were constrained by stronger purifying selection and diversified continually including alterative gene number, intron length, and miR156 regulation. Subsequently, cis-acting element analyses revealed the potential role of SPLs in wild rice, which might participate in light-responsive, phytohormone response, and plant growth and development. Our results shed light on that different evolutionary rates and duplication events might result in divergent evolutionary patterns in each lineage of SPL genes, providing a guide in exploring diverse function in the rice gene family among six closely related Oryza species.
Collapse
|
28
|
Patterns of Drought Response of 38 WRKY Transcription Factors of Zanthoxylum bungeanum Maxim. Int J Mol Sci 2018; 20:ijms20010068. [PMID: 30586928 PMCID: PMC6337418 DOI: 10.3390/ijms20010068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 01/06/2023] Open
Abstract
The WRKY family of transcription factors (TFs) includes a number of transcription-specific groupings that play important roles in plant growth and development and in plant responses to various stresses. To screen for WRKY transcription factors associated with drought stress in Zanthoxylum bungeanum, a total of 38 ZbWRKY were identified and these were then classified and identified with Arabidopsis WRKY. Using bioinformatics analyses based on the structural characteristics of the conservative domain, 38 WRKY transcription factors were identified and categorized into three groups: Groups I, II, and III. Of these, Group II can be divided into four subgroups: subgroups IIb, IIc, IId, and IIe. No ZbWRKY members of subgroup IIa were found in the sequencing data. In addition, 38 ZbWRKY were identified by real-time PCR to determine the behavior of this family of genes under drought stress. Twelve ZbWRKY transcription factors were found to be significantly upregulated under drought stress and these were identified by relative quantification. As predicted by the STRING website, the results show that the WRKYs are involved in four signaling pathways—the jasmonic acid (JA), the salicylic acid (SA), the mitogen-activated protein kinase (MAPK), and the ethylene signaling pathways. ZbWRKY33 is the most intense transcription factor in response to drought stress. We predict that WRKY33 binds directly to the ethylene synthesis precursor gene ACS6, to promote ethylene synthesis. Ethylene then binds to the ethylene activator release signal to activate a series of downstream genes for cold stress and osmotic responses. The roles of ZbWRKY transcription factors in drought stress rely on a regulatory network center on the JA signaling pathway.
Collapse
|
29
|
Yang B, Song Z, Li C, Jiang J, Zhou Y, Wang R, Wang Q, Ni C, Liang Q, Chen H, Fan LM. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genet 2018; 14:e1007839. [PMID: 30566447 PMCID: PMC6317822 DOI: 10.1371/journal.pgen.1007839] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/03/2019] [Accepted: 11/19/2018] [Indexed: 12/03/2022] Open
Abstract
MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. RADIALIS-LIKE SANT/MYB 1 (RSM1) belongs to a MYB-related subfamily, and previous transcriptome analysis suggests that RSM1 may play roles in plant development, stress responses and plant hormone signaling. However, the molecular mechanisms of RSM1 action in response to abiotic stresses remain obscure. We show that down-regulation or up-regulation of RSM1 expression alters the sensitivity of seed germination and cotyledon greening to abscisic acid (ABA), NaCl and mannitol in Arabidopsis. The expression of RSM1 is dynamically regulated by ABA and NaCl. Transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) regulate RSM1 expression via binding to the RSM1 promoter. Genetic analyses reveal that RSM1 mediates multiple functions of HY5 in responses of seed germination, post-germination development to ABA and abiotic stresses, and seedling tolerance to salinity. Pull-down and BiFC assays show that RSM1 interacts with HY5/HYH in vitro and in vivo. RSM1 and HY5/HYH may function as a regulatory module in responses to ABA and abiotic stresses. RSM1 binds to the promoter of ABA INSENSITIVE 5 (ABI5), thereby regulating its expression, while RSM1 interaction also stimulates HY5 binding to the ABI5 promoter. However, no evidence was found in the dual-luciferase transient expression assay to support that RSM enhances the activation of ABI5 expression by HY. In summary, HY5/HYH and RSM1 may converge on the ABI5 promoter and independently or somehow dependently regulate ABI5 expression and ABI5-downstream ABA and abiotic stress-responsive genes, thereby improving the adaption of plants to the environment. The phytohormone abscisic acid (ABA) regulates multiple developmental processes in plants, including seed dormancy and germination, growth, and abiotic stress responses. The transcription factor ELONGATED HYPOCOTYL 5 (HY5), a core regulator of light signaling, is involved in ABA and abiotic stress responses by directly regulating the expression of ABA INSENSITIVE 5 (ABI5). In this study, we show that a MYB-related transcription factor, RADIALIS-LIKE SANT/MYB 1 (RSM1), plays important roles in ABA and salinity signaling in Arabidopsis, and we dissect the relationship between RSM1 and HY5. RSM1 interacts with HY5/HYH in vitro and in vivo and they may function as a regulatory module in responses to ABA and abiotic stresses. RSM1 binds to the promoter of ABI5, thereby regulating its expression; moreover, RSM1 interaction stimulates HY5 binding to the ABI5 promoter, but RSM1 was not found to enhance the activation of ABI5 expression by HY5. Genetic analyses reveal that RSM1 mediates the functions of HY5 in responses of seed germination, post-germination developmental responses to ABA and abiotic stresses, and seedling tolerance to salinity. In summary, our work demonstrates that HY5/HYH and RSM1 may bind with the ABI5 promoter to regulate ABI5 expression independently or somehow dependently, thereby controlling the expression of ABI5-downstream target genes in ABA and salinity signaling.
Collapse
Affiliation(s)
- Bencan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Zihao Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Chaonan Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jiahao Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yangyang Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Ruipu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Qi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Chang Ni
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Qing Liang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:683-695. [PMID: 30146417 DOI: 10.1016/j.plaphy.2018.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 05/21/2023]
Abstract
ERF proteins are plant-specific transcription factors that play significant roles in plant defense against various stresses. However, only little information regarding stress-related ERF genes is available in tomato (Solanum lycopersicum, Sl). In this study, a tomato ERF gene, SlERF84, was cloned and functionally characterized. The nucleus localization of SlERF84-sGFP was confirmed through a transient expression assay. Transactivation assays in yeast demonstrated that SlERF84 functions as a transcriptional activator. Real-time PCR analysis revealed that SlERF84 could be markedly induced by drought, salt and by several phytohormones (ABA, MeJA and ACC). Overexpression of SlERF84 in Arabidopsis endows transgenic plants with ABA hypersensitivity and enhanced tolerance to drought and salt stress. Histochemical staining assay showed that SlERF84 renders transgenic plants better ROS-scavenging capability. Pathogen inoculation assay revealed that SlERF84 might negatively modulate plant defense response to Pseudomonas syringae pv. tomato DC3000. Moreover, the transcript levels of pathogenesis-related genes AtPR1 and AtPR3 were compromised in transgenic Arabidopsis, as compared to that in Col-0 plants when inoculated with Pseudomonas syringae pv. tomato DC3000. These results suggest that SlERF84 functions as a stress-responsive transcription factor in differentially modulation of abiotic and biotic stress tolerance, and may have applications in the engineering of economically important crops.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
31
|
Lei N, Yu X, Li S, Zeng C, Zou L, Liao W, Peng M. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep 2017; 7:10016. [PMID: 28855620 PMCID: PMC5577251 DOI: 10.1038/s41598-017-09398-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The TCP transcription factors usually act as integrators of multiple growth regulatory and environmental stimuli. However, little is known about this gene family in the important tropical crop cassava (Manihot esculenta). In this study, 36 TCP genes were identified and renamed based on cassava whole-genome sequence and their sequence similarity with Arabidopsis TCPs. Typical TCP domains were detected in these proteins by multiple sequence alignment analysis. Evolutionary analysis indicated that MeTCPs could be divided into 8 subgroups, which was further supported by gene structure and conserved motif analyses. qRT-PCR analysis revealed tissue-specific and hormone-responsive expression patterns of MeTCP genes. Moreover, with global expression and promoter analysis, we found that MeTCPs showed similar or distinct expression patterns under cold and/or drought stress, suggesting that they might participate in distinct signaling pathways. Our study provides the first comprehensive analysis of TCP gene family in the cassava genome. The data will be useful for uncovering the potential functions of MeTCP genes, and their possible roles in mediating hormone and abiotic stress responses in cassava.
Collapse
Affiliation(s)
- Ning Lei
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Changying Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liangping Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
32
|
Li W, Zhang L, Ding Z, Wang G, Zhang Y, Gong H, Chang T, Zhang Y. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris. BMC PLANT BIOLOGY 2017; 17:54. [PMID: 28241786 PMCID: PMC5329940 DOI: 10.1186/s12870-017-0990-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/31/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. RESULTS Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. CONCLUSION In this study, transcriptome data of this rare andromonoecious Taihangia were reported for the first time. Comparative transcriptome analysis revealed the significant differences in gene expression profiles between male and hermaphroditic flowers at early and late developmental stages. The transcriptome data of Taihangia would be helpful to improve the understanding of the underlying molecular mechanisms in regulation of flower formation and unisexual flower establishment in andromonoecious plants.
Collapse
Affiliation(s)
- Weiguo Li
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Lihui Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| | - Zhan Ding
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Guodong Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yandi Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Hongmei Gong
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Tianjun Chang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yanwen Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| |
Collapse
|
33
|
Hong E, Lim CW, Han SW, Lee SC. Functional Analysis of the Pepper Ethylene-Responsive Transcription Factor, CaAIEF1, in Enhanced ABA Sensitivity and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1407. [PMID: 28878786 PMCID: PMC5572256 DOI: 10.3389/fpls.2017.01407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that plays a critical role in the response to environmental stress conditions, especially regulation of the stomatal aperture under water-deficit conditions. The signal transduction occurring during the stress response is initiated by transcription of defense-related genes. Here, we isolated the pepper ethylene-responsive transcription factor CaAIEF1 (Capsicum annuum ABA Induced ERF 1). The CaAIEF1 gene was significantly induced after exposure to ABA, drought, and high salinity. Fusion of the acidic domain in the C-terminal region of CaAIEF1 to the GAL4 DNA-binding domain had a transactivation effect on the reporter gene in yeast. Further, the CaAIEF1-GFP fusion constructs localized in the nucleus. We used CaAIEF1-silenced plants and CaAIEF1-overexpressing (OX) plants to elucidate the biological function of CaAIEF1 in response to ABA and drought stress. CaAIEF1-silenced pepper plants and CaAIEF1-OX Arabidopsis plants displayed drought-sensitive and -tolerant phenotypes, respectively, which were characterized by regulation of transpirational water loss and stomatal aperture. In drought stress condition, quantitative RT-PCR analyses revealed that the expression levels of pepper stress-related genes were higher in CaAIEF1-silenced pepper plants than control plants. Moreover, expression levels of Arabidopsis stress-related genes were significantly reduced in CaAIEF1-OX plants compared with control plants in drought stress condition. Our findings suggest that CaAIEF1 positively regulates the drought stress response and the ABA signaling.
Collapse
Affiliation(s)
- Eunji Hong
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang UniversityAnseong, South Korea
- *Correspondence: Sang-Wook Han, Sung Chul Lee,
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang UniversitySeoul, South Korea
- *Correspondence: Sang-Wook Han, Sung Chul Lee,
| |
Collapse
|
34
|
Yang L, Wu Y, Yu M, Mao B, Zhao B, Wang J. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism. PLANTA 2016; 244:1011-1028. [PMID: 27357232 DOI: 10.1007/s00425-016-2563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
The comprehensive transcriptome analysis of rice female-sterile line and wild-type line ovule provides an important clue for exploring the regulatory network of the formation of rice fertile female gametophyte. Ovules are the female reproductive tissues of rice (Oryza sativa L.) and play a major role in sexual reproduction. To investigate the potential mechanism of rice female gametophyte fertility, we used RNA sequencing, combined with genetic subtraction, to compare the transcriptome of the ovules of a high-frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. Ovules were harvested at three developmental stages: ovule containing megaspore mother cell in meiosis process (stage 1), ovule containing functional megaspore in mitosis process (stage 2), and ovule containing mature female gametophyte (stage 3). Six cDNA libraries generated a total of 42.2 million high-quality clean reads that aligned with 30,204 genes. The comparison between the fsv1 and Gui 99 ovules identified a large number of differentially expressed genes (DEGs), i.e., 45, 495, and 932 DEGs at the three ovule developmental stages, respectively. From the comparison of the two rice lines, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and MapMan analyses indicated that a large number of DEGs associated with starch and sucrose metabolism, plant hormone signal transduction, protein modification and degradation, oxidative phosphorylation, and receptor kinase. These DEGs might play roles in ovule development and fertile female gametophyte formation. Many transcription factor genes and epigenetic-related genes also exhibit different expression patterns and significantly different expression levels in two rice lines during ovule development, which might provide important information regarding the abortive mechanism of the female gametophyte in rice.
Collapse
Affiliation(s)
- Liyu Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meiling Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
35
|
Lim CW, Baek W, Lim S, Han SW, Lee SC. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:825-33. [PMID: 25738319 DOI: 10.1094/mpmi-10-14-0313-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with a virulent strain of Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of X. campestris pv. vesicatoria. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of X. campestris pv. vesicatoria, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance.
Collapse
Affiliation(s)
- Chae Woo Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sang-Wook Han
- 2 Department of Integrative Plant Science, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Sung Chul Lee
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
36
|
Ahmad A, Niwa Y, Goto S, Ogawa T, Shimizu M, Suzuki A, Kobayashi K, Kobayashi H. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis. PLoS One 2015; 10:e0126872. [PMID: 25978450 PMCID: PMC4433118 DOI: 10.1371/journal.pone.0126872] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/08/2015] [Indexed: 12/16/2022] Open
Abstract
An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.
Collapse
Affiliation(s)
- Aftab Ahmad
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Shingo Goto
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Takeshi Ogawa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Masanori Shimizu
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Akane Suzuki
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Kyoko Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
- * E-mail:
| |
Collapse
|
37
|
Zhu Y, Li Y, Xin D, Chen W, Shao X, Wang Y, Guo W. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Gene 2014; 555:362-76. [PMID: 25447903 DOI: 10.1016/j.gene.2014.11.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/08/2023]
Abstract
Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information.
Collapse
Affiliation(s)
- Youyin Zhu
- College of Agricultural and Biological Engineering, Jinhua Polytechnic, Jinhua, Zhejiang 321007, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Yongqiang Li
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Dedong Xin
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Wenrong Chen
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Xu Shao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Weidong Guo
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
38
|
Ma J, Wang Q, Sun R, Xie F, Jones DC, Zhang B. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii. Sci Rep 2014; 4:6645. [PMID: 25322260 PMCID: PMC5377578 DOI: 10.1038/srep06645] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/30/2014] [Indexed: 12/04/2022] Open
Abstract
Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qinglian Wang
- Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, P. R. China
| | - Runrun Sun
- 1] Department of Biology, East Carolina University, Greenville, NC 27858, USA [2] Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, P. R. China
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | - Baohong Zhang
- 1] Department of Biology, East Carolina University, Greenville, NC 27858, USA [2] Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
39
|
Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 2013; 14:662. [PMID: 24074255 PMCID: PMC3849779 DOI: 10.1186/1471-2164-14-662] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
Background Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Results Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Conclusions Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars.
Collapse
Affiliation(s)
- Yanjie Xu
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W. Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genomics 2013; 14:227. [PMID: 23565705 PMCID: PMC3635961 DOI: 10.1186/1471-2164-14-227] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/22/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Agarwood is an expensive resinous heartwood derived from Aquilaria plants that is widely used in traditional medicines, incense and perfume. Only wounded trees can produce agarwood, and the huge demand for the agarwood products has led all Aquilaria spp. being endangered and listed in the Appendix II of the CITES (http://www.cites.org). The major components of agarwood are sesquiterpenes and phenylethyl chromones. Owing to a lack of genomic information, the molecular basis of wound-induced sesquiterpenes biosynthesis and agarwood formation remains unknown. RESULTS To identify the primary genes that maybe related to agarwood formation, we sequenced 2 cDNA libraries generated from healthy and wounded A. sinensis (Lour.) Gilg. A total of 89,137 unigenes with an average length of 678.65 bp were obtained, and they were annotated in detail at bioinformatics levels. Of those associated with agarwood formation, 30 putatively encoded enzymes in the sesquiterpene biosynthesis pathway, and a handful of transcription factors and protein kinases were related to wound signal transduction. Three full-length cDNAs of sesquiterpene synthases (ASS1-3) were cloned and expressed in Escherichia coli, and enzyme assays revealed that they are active enzymes, with the major products being δ-guaiene. A methyl jasmonate (MJ) induction experiment revealed that the expression of ASS was significantly induced by MJ, and the production of sesquiterpenes was elevated accordingly. The expression of some transcription factors and protein kinases, especially MYB4, WRKY4, MPKK2 and MAPK2, was also induced by MJ and coordinated with ASS expression, suggesting they maybe positive regulators of ASS. CONCLUSIONS This study provides extensive transcriptome information for Aquilaria spp. and valuable clues for elucidating the mechanism of wound-induced agarwood sesquiterpenes biosynthesis and their regulation.
Collapse
|
41
|
Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol 2012; 51:160-73. [PMID: 21901277 DOI: 10.1007/s12033-011-9451-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Knowledge on genes related to plant responses to adverse growth conditions and development is essential for germplasm improvement. In this study, a chrysanthemum R2R3-MYB transcription factor gene, designated CmMYB2 (GenBank accession No. JF795918), was cloned and functionally characterized. Expression of CmMYB2 in chrysanthemum leaves was up-regulated in response to drought, salinity and cold stress, as well as by treatment with exogenous abscisic acid (ABA). When the gene was constitutively expressed in Arabidopsis thaliana, it increased plant sensitivity to ABA and reduced stomatal aperture. Plant survival under drought was improved than in the wild type, as was the plants' salinity tolerance. The level of expression of a number of genes associated with the stress response, including RD22, RD29A, RAB18, COR47, ABA1 and ABA2, was raised in the CmMYB2 transgenic Arabidopsis plants. CmMYB2 transgenic Arabidopsis plants were also delayed in flowering. The expression of CONSTANS (CO), FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), LEAFY (LFY) and APETALA1 (AP1) genes involved in flowering was down-regulated in the CmMYB2 transgenics. Together, these results suggest that CmMYB2 may be a promising gene for the drought and salt tolerance improvement and flowering-time modulation.
Collapse
|
42
|
Singh K, Singla-Pareek SL, Pareek A. Dissecting out the crosstalk between salinity and hormones in roots of Arabidopsis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:913-24. [PMID: 22181020 DOI: 10.1089/omi.2011.0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phytohormones are chemical messengers that play a leading role in regulating the vital activity of plants, including transcription, posttranscriptional pre-mRNA splicing, translation, and posttranslational modifications by interacting with specific protein receptors. Plant hormones are synthesized in one tissue and act on specific target sites in other tissues at vanishingly low concentrations. High salinity is one of the main factors limiting Arabidopsis growth and productivity. In this study, phytohormones including abscisic acid, auxin, ethylene, and cytokinin responsive genes regulating salinity stress in Arabidopsis roots were monitored using microarray data. We identified phytohormone responsive genes on the basis of their expression pattern at genomic level at various time points. Using publicly available microarray data, we analyzed the effect of salt stress on the transcription of phytohormone responsive genes. Gene ontology (GO) analysis of phytohormone responsive genes showed their role in important biological processes such as signal transduction, hormone metabolism, biosynthetic process, and gene expression. Gene enrichment terms also reveal that transcription regulator activity is the main class of ABA responsive genes under salinity stress. We conclude that expression of ABA responsive genes involves induction of several transcription factors under salt stress treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Khushwant Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
43
|
Zhang ZW, Yuan S, Xu F, Yang H, Chen YE, Yuan M, Xu MY, Xue LW, Xu XC, Lin HH. Mg-protoporphyrin, haem and sugar signals double cellular total RNA against herbicide and high-light-derived oxidative stress. PLANT, CELL & ENVIRONMENT 2011; 34:1031-1042. [PMID: 21388419 DOI: 10.1111/j.1365-3040.2011.02302.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellular total RNA level is usually stable, although it may increase gradually during growth or seed germination, or decrease gradually under environmental stresses. However, we found that plant cell RNA could be doubled within 48 h in response to herbicide-induced Mg-protoporphyrin and heme accumulation or a high level of sugar treatment. This rapid RNA multiplication is important for effective cellular resistance to oxidative stress, such as high-light and herbicide co-stress conditions, where the plastid-signalling defective mutant gun1 shows an apparent phenotype (more severe photobleaching). Hexokinase is required for sugar-induced RNA multiplication. While both sugar and Mg-protoporphyrin IX require plastid protein GUN1 and a nuclear transcription factor ABI4, haem appears to function through an independent pathway to control RNA multiplication. The transcription co-factor CAAT binding protein mediates the rapid RNA multiplication in plant cells in all the cases.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Shu Yuan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Fei Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Hui Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yang-Er Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Ming Yuan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Mo-Yun Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Li-Wei Xue
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xiao-Chao Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| |
Collapse
|
44
|
Hussain SS, Kayani MA, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 2011; 27:297-306. [PMID: 21302367 DOI: 10.1002/btpr.514] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/12/2010] [Indexed: 11/12/2022]
Abstract
Plant growth and productivity are greatly affected by abiotic stresses such as drought, salinity, and temperature. Drought stress is one of the major limitations to crop productivity worldwide due to its multigene nature, making the production of transgenic crops a challenging prospect. To develop crop plant with enhanced tolerance of drought stress, a basic understanding of physiological, biochemical, and gene regulatory networks is essential. In the signal transduction network that leads from the perception of stress signals to the expression of stress-responsive genes, transcription factors (TFs) play an essential role. Because TFs, as opposed to most structural genes, tend to control multiple pathways steps, they have emerged as powerful tools for the manipulation of complex metabolic pathways in plants. One such class of TFs is DREB/CBF that binds to drought responsive cis-acting elements. Transgenic plants have been developed with enhanced stress tolerance by manipulating the expression of DREB/CBF. Recently the functions of an increasing number of plant TFs are being elucidated and increased understanding of these factors in controlling drought stress response has lead to practical approaches for engineering stress tolerance in plants. The utility of the various TFs in plant stress research we review is illustrated by several published examples. The manipulation of native plant regularity networks therefore represents a new era for genetically modified crops. This review focuses on the recent understanding, latest advancements related to TFs and present status of their deployment in developing stress tolerant transgenic plants.
Collapse
Affiliation(s)
- Syed Sarfraz Hussain
- Institute for Molecular Physiology and Biotechnology of Plants (IMBIO-Bartels), University of Bonn, Bonn 53115, Germany.
| | | | | |
Collapse
|
45
|
Ordiz MI, Yang J, Barbazuk WB, Beachy RN. Functional analysis of the activation domain of RF2a, a rice transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:835-44. [PMID: 20408988 DOI: 10.1111/j.1467-7652.2010.00520.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Rice transcription factor RF2a binds to the BoxII cis element of the promoter of rice tungro bacilliform virus and activates promoter expression. The acidic acid-rich domain of RF2a is a transcription activator and has been partially characterized (Dai et al., 2003). The RF2a acidic domain (A; amino acids 49-116) was fused with the synthetic zinc finger ZF-TF 2C7 and was co-introduced with a reporter gene into transgenic Arabidopsis plants. Expression of the reporter gene was increased up to seven times by the effector. In transient assays in tobacco BY-2 protoplasts, we identified a subdomain comprising amino acids 56-84 (A5) that was equally as effective as an activator as the entire acidic domain. A chemically inducible system was used to show determined that A and A5 domains are equally as effective in transcription activation as the well-characterized VP16 activation domain. Bioinformatics analyses revealed that the A5 domain is present only in b-ZIP transcription factors. In dicots, the A domain contains an insertion of four amino acids that is not present in monocot proteins. The A5 domain, and similar domains in other b-ZIP transcription factors, is predicted to form an anti-parallel beta sheet structure.
Collapse
Affiliation(s)
- M Isabel Ordiz
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | | | | | | |
Collapse
|
46
|
Fang Y, Xie K, Hou X, Hu H, Xiong L. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomics 2009; 283:157-69. [PMID: 20039179 DOI: 10.1007/s00438-009-0507-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 12/11/2009] [Indexed: 01/25/2023]
Abstract
GT factors constitute a plant-specific transcription factor family with a conserved trihelix DNA-binding domain. In this study, comprehensive sequence analysis suggested that 26 putative GT factors exist in rice. Phylogenetic analysis revealed three distinctive subfamilies (GTalpha, GTbeta, and GTgamma) of plant GT factors and each subfamily has a unique composition of predicted motifs. We characterized the OsGTgamma-1 gene, a typical member of the GTgamma subfamily in rice. This gene encodes a protein containing a conserved trihelix domain, and the OsGTgamma-1:GFP fusion protein was targeted to nuclei of rice cells. The transcript level of OsGTgamma-1 was strongly induced by salt stress and slightly induced by drought and cold stresses and abscisic acid treatment. Two other members of the GTgamma subfamily, OsGTgamma-2 and OsGTgamma-3, were also induced by most of the abiotic stresses. These results suggested that the genes of the GTgamma subfamily in rice may be involved in stress responses. A homozygous mutant osgtgamma-1 (with T-DNA inserted in the promoter region of OsGTgamma-1) showed more sensitive to salt stress than wild-type rice. Overexpression of OsGTgamma-1 in rice enhanced salt tolerance at the seedling stage. This evidence suggests that the OsGTgamma subfamily may participate in the regulation of stress tolerance in rice.
Collapse
Affiliation(s)
- Yujie Fang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070, Wuhan, China
| | | | | | | | | |
Collapse
|
47
|
Gagete AP, Riera M, Franco L, Rodrigo MI. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1703-14. [PMID: 19261920 PMCID: PMC2671620 DOI: 10.1093/jxb/erp038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 05/22/2023]
Abstract
At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.
Collapse
Affiliation(s)
- Andrés P. Gagete
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
| | - Marta Riera
- Consorcio CSIC-IRTA. CID. E-08034 Barcelona, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
| | - M. Isabel Rodrigo
- Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
48
|
Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JEK, Blais S, Tremblay L, Morency MJ, Pavy N, Grima-Pettenati J, Séguin A, Mackay J. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3925-39. [PMID: 18805909 PMCID: PMC2576632 DOI: 10.1093/jxb/ern234] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 05/18/2023]
Abstract
The involvement of two R2R3-MYB genes from Pinus taeda L., PtMYB1 and PtMYB8, in phenylpropanoid metabolism and secondary cell wall biogenesis was investigated in planta. These pine MYBs were constitutively overexpressed (OE) in Picea glauca (Moench) Voss, used as a heterologous conifer expression system. Morphological, histological, chemical (lignin and soluble phenols), and transcriptional analyses, i.e. microarray and reverse transcription quantitative PCR (RT-qPCR) were used for extensive phenotyping of MYB-overexpressing spruce plantlets. Upon germination of somatic embryos, root growth was reduced in both transgenics. Enhanced lignin deposition was also a common feature but ectopic secondary cell wall deposition was more strongly associated with PtMYB8-OE. Microarray and RT-qPCR data showed that overexpression of each MYB led to an overlapping up-regulation of many genes encoding phenylpropanoid enzymes involved in lignin monomer synthesis, while misregulation of several cell wall-related genes and other MYB transcription factors was specifically associated with PtMYB8-OE. Together, the results suggest that MYB1 and MYB8 may be part of a conserved transcriptional network involved in secondary cell wall deposition in conifers.
Collapse
Affiliation(s)
- Claude Bomal
- Centre d'Etude de Forêt, Université Laval, Québec (QC), Canada G1V 0A6.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY 2008; 146:623-35. [PMID: 18162593 PMCID: PMC2245844 DOI: 10.1104/pp.107.110981] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/16/2007] [Indexed: 05/05/2023]
Abstract
AtMYB44 belongs to the R2R3 MYB subgroup 22 transcription factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 transcript accumulation within 30 min. The gene was also activated under various abiotic stresses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an AtMYB44 promoter-driven beta-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more sensitive to ABA and has a more rapid ABA-induced stomatal closure response than wild-type and atmyb44 knockout plants. Transgenic plants exhibited a reduced rate of water loss, as measured by the fresh-weight loss of detached shoots, and remarkably enhanced tolerance to drought and salt stress compared to wild-type plants. Microarray analysis and northern blots revealed that salt-induced activation of the genes that encode a group of serine/threonine protein phosphatases 2C (PP2Cs), such as ABI1, ABI2, AtPP2CA, HAB1, and HAB2, was diminished in transgenic plants overexpressing AtMYB44. By contrast, the atmyb44 knockout mutant line exhibited enhanced salt-induced expression of PP2C-encoding genes and reduced drought/salt stress tolerance compared to wild-type plants. Therefore, enhanced abiotic stress tolerance of transgenic Arabidopsis overexpressing AtMYB44 was conferred by reduced expression of genes encoding PP2Cs, which have been described as negative regulators of ABA signaling.
Collapse
Affiliation(s)
- Choonkyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim J, Kim HY. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett 2006; 580:5251-6. [PMID: 16962584 DOI: 10.1016/j.febslet.2006.08.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/19/2006] [Accepted: 08/24/2006] [Indexed: 11/22/2022]
Abstract
Calcium is known to serve as a secondary messenger to mediate salt stress signaling pathway. We found a calcium-binding basic/helix-loop-helix-type transcription factor (AtNIG1) as a salt stress-responsive gene by using the suppression subtractive hybridization. The AtNIG1 was targeted into nucleus and bound to (45)Ca(2+), suggesting that AtNIG1 is a nuclear calcium-binding protein. In addition, AtNIG1 bound specifically to the E-box-DNA sequence (CANNTG), which is found in the promoter regions of many salt stress-related genes. Functional analyses with an atnig1-1 knockout mutant revealed that the mutant plants show enhanced sensitivity to salt stress. Further analyses indicated that the atnig1-1 plants have reduced survival rate, fresh weight, chlorophyll content, and protein content upon salt stress, suggesting that the AtNIG1 plays a critical role in plant salt stress signaling. Therefore, this study represents that AtNIG1 is the first known calcium-binding transcription factor involved in plant salt stress signaling.
Collapse
Affiliation(s)
- Jiyoung Kim
- Kiyong Biotechnology, 418-29 Goejong-Dong, Saha-Gu, Busan 604-083, South Korea
| | | |
Collapse
|