1
|
Wu X, Yang Z, Zhu Y, Zhan Y, Li Y, Teng W, Han Y, Zhao X. Bioinformatics Identification and Expression Analysis of Acetyl-CoA Carboxylase Reveal Its Role in Isoflavone Accumulation during Soybean Seed Development. Int J Mol Sci 2024; 25:10221. [PMID: 39337707 PMCID: PMC11432495 DOI: 10.3390/ijms251810221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Isoflavones belong to the class of flavonoid compounds, which are important secondary metabolites that play a crucial role in plant development and defense. Acetyl-CoA carboxylase (ACCase) is a biotin-dependent enzyme that catalyzes the conversion of Acetyl-CoA into Malonyl-CoA in plants. It is a key enzyme in fatty acid synthesis and also catalyzes the production of various secondary metabolites. However, information on the ACC gene family in the soybean (Glycine max L. Merr.) genome and the specific members involved in isoflavone biosynthesis is still lacking. In this study, we identified 20 ACC family genes (GmACCs) from the soybean genome and further characterized their evolutionary relationships and expression patterns. Phylogenetic analysis showed that the GmACCs could be divided into five groups, and the gene structures within the same groups were highly conserved, indicating that they had similar functions. The GmACCs were randomly distributed across 12 chromosomes, and collinearity analysis suggested that many GmACCs originated from tandem and segmental duplications, with these genes being under purifying selection. In addition, gene expression pattern analysis indicated that there was functional divergence among GmACCs in different tissues. The GmACCs reached their peak expression levels during the early or middle stages of seed development. Based on the transcriptome and isoflavone content data, a weighted gene co-expression network was constructed, and three candidate genes (Glyma.06G105900, Glyma.13G363500, and Glyma.13G057400) that may positively regulate isoflavone content were identified. These results provide valuable information for the further functional characterization and application of GmACCs in isoflavone biosynthesis in soybean.
Collapse
Affiliation(s)
- Xu Wu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Febres VJ, Fadli A, Meyering B, Yu F, Bowman KD, Chaparro JX, Albrecht U. Dissection of transcriptional events in graft incompatible reactions of "Bearss" lemon ( Citrus limon) and "Valencia" sweet orange ( C. sinensis) on a novel citrandarin ( C. reticulata × Poncirus trifoliata) rootstock. FRONTIERS IN PLANT SCIENCE 2024; 15:1421734. [PMID: 38966146 PMCID: PMC11222572 DOI: 10.3389/fpls.2024.1421734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Citrus is commercially propagated via grafting, which ensures trees have consistent fruit traits combined with favorable traits from the rootstock such as soil adaptability, vigor, and resistance to soil pathogens. Graft incompatibility can occur when the scion and rootstock are not able to form a permanent, healthy union. Understanding and preventing graft incompatibility is of great importance in the breeding of new fruit cultivars and in the choice of scion and rootstock by growers. The rootstock US-1283, a citrandarin generated from a cross of "Ninkat" mandarin (Citrus reticulata) and "Gotha Road" #6 trifoliate orange (Poncirus trifoliata), was released after years of field evaluation because of its superior productivity and good fruit quality on "Hamlin" sweet orange (C. sinensis) under Florida's growing conditions. Subsequently, it was observed that trees of "Bearss" lemon (C. limon) and "Valencia" sweet orange (C. sinensis) grafted onto US-1283 exhibited unhealthy growth near the graft union. The incompatibility manifested as stem grooving and necrosis underneath the bark on the rootstock side of the graft. Another citrandarin rootstock, US-812 (C. reticulata "Sunki" × P. trifoliata "Benecke"), is fully graft compatible with the same scions. Transcriptome analysis was performed on the vascular tissues above and below the graft union of US-812 and US-1283 graft combinations with "Bearss" and "Valencia" to identify expression networks associated with incompatibility and help understand the processes and potential causes of incompatibility. Transcriptional reprogramming was stronger in the incompatible rootstock than in the grafted scions. Differentially expressed genes (DEGs) in US-1283, but not the scions, were associated with oxidative stress and plant defense, among others, similar to a pathogen-induced immune response localized to the rootstock; however, no pathogen infection was detected. Therefore, it is hypothesized that this response could have been triggered by signaling miscommunications between rootstock and scion either through (1) unknown molecules from the scion that were perceived as danger signals by the rootstock, (2) missing signals from the scion or missing receptors in the rootstock necessary for the formation of a healthy graft union, (3) the overall perception of the scion by the rootstock as non-self, or (4) a combination of the above.
Collapse
Affiliation(s)
- Vicente J. Febres
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL, United States
| | - Anas Fadli
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| | - Bo Meyering
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
| | - Kim D. Bowman
- Horticultural Research Laboratory, United States Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Jose Xavier Chaparro
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL, United States
| | - Ute Albrecht
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| |
Collapse
|
3
|
Lacroux J, Atteia A, Brugière S, Couté Y, Vallon O, Steyer JP, van Lis R. Proteomics unveil a central role for peroxisomes in butyrate assimilation of the heterotrophic Chlorophyte alga Polytomella sp. Front Microbiol 2022; 13:1029828. [PMID: 36353459 PMCID: PMC9637915 DOI: 10.3389/fmicb.2022.1029828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/05/2022] [Indexed: 09/08/2023] Open
Abstract
Volatile fatty acids found in effluents of the dark fermentation of biowastes can be used for mixotrophic growth of microalgae, improving productivity and reducing the cost of the feedstock. Microalgae can use the acetate in the effluents very well, but butyrate is poorly assimilated and can inhibit growth above 1 gC.L-1. The non-photosynthetic chlorophyte alga Polytomella sp. SAG 198.80 was found to be able to assimilate butyrate fast. To decipher the metabolic pathways implicated in butyrate assimilation, quantitative proteomics study was developed comparing Polytomella sp. cells grown on acetate and butyrate at 1 gC.L-1. After statistical analysis, a total of 1772 proteins were retained, of which 119 proteins were found to be overaccumulated on butyrate vs. only 46 on acetate, indicating that butyrate assimilation necessitates additional metabolic steps. The data show that butyrate assimilation occurs in the peroxisome via the β-oxidation pathway to produce acetyl-CoA and further tri/dicarboxylic acids in the glyoxylate cycle. Concomitantly, reactive oxygen species defense enzymes as well as the branched amino acid degradation pathway were strongly induced. Although no clear dedicated butyrate transport mechanism could be inferred, several membrane transporters induced on butyrate are identified as potential condidates. Metabolic responses correspond globally to the increased needs for central cofactors NAD, ATP and CoA, especially in the peroxisome and the cytosol.
Collapse
Affiliation(s)
| | - Ariane Atteia
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA, INSERM, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA, INSERM, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne Université, Paris, France
| | | | | |
Collapse
|
4
|
Gibbs NM, Su SH, Masson PH. Application of Cadaverine to Inhibit Biotin Biosynthesis in Plants. Bio Protoc 2022; 12:e4389. [PMID: 35800104 PMCID: PMC9081473 DOI: 10.21769/bioprotoc.4389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Biotin is an essential vitamin in plants. However, characterization of biotin deficiency has been limited by embryo lethality in mutants, which can only be rescued by supplementation of biotin. Here, we describe a protocol to characterize biotin deficiency in Arabidopsis thaliana through application of the polyamine cadaverine. Cadaverine induces changes in primary root growth. Protein biotinylation in Arabidopsis seedlings can be quantified through an assay similar to a western blot, in which protein biotinylation is detected by a streptavidin probe. This technique provides a chemical means of inhibiting biotin synthesis, allowing for further characterization of biotin deficiency on a physiological and molecular level.
Collapse
Affiliation(s)
- Nicole M. Gibbs
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; ,
*For correspondence:
| |
Collapse
|
5
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
6
|
Gibbs NM, Su S, Lopez‐Nieves S, Mann S, Alban C, Maeda HA, Masson PH. Cadaverine regulates biotin synthesis to modulate primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1283-1298. [PMID: 34250670 PMCID: PMC8518694 DOI: 10.1111/tpj.15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.
Collapse
Affiliation(s)
- Nicole M. Gibbs
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
- Present address:
Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCA92037USA
| | - Shih‐Heng Su
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | - Stéphane Mann
- Muséum National d'Histoire NaturelleUMR 7245CNRSMNHNMolécules de Communication et Adaptation des Micro‐organismesCP 5457 Rue CuvierParis75005France
| | - Claude Alban
- Université Grenoble AlpesINRAECEACNRSIRIGLPCVGrenoble38000France
| | - Hiroshi A. Maeda
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Patrick H. Masson
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
7
|
Jeon BJ, Kang JE, Park MY, Kim BS. Antifungal activity of streptavidin C1 and C2 against pathogens causing Fusarium wilt. Lett Appl Microbiol 2021; 73:453-459. [PMID: 34214198 DOI: 10.1111/lam.13533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Fusarium wilt is caused by the soil-inhabiting fungus Fusarium oxysporum ff. spp. and is one of the most devastating plant diseases, resulting in losses and decreasing the quality and safety of agricultural crops. We recently reported the structures and biochemical properties of two biotin-binding proteins, streptavidin C1 and C2 (isolated from Streptomyces cinnamonensis strain KPP02129). In the present study, the potential of the biotin-binding proteins as antifungal agent for Fusarium wilt pathogens was investigated using recombinant streptavidin C1 and C2. The minimum inhibitory concentration of streptavidin C2 was found to be 16 µg ml-1 for inhibiting the mycelial growth of F. oxysporum f.sp. cucumerinum and F. oxysporum f.sp. lycopersici, while that of streptavidin C1 was found to be 64 µg ml-1 . Compared with the nontreated control soil, the population density of F. oxysporum f.sp. lycopersici in the soil was reduced to 49·5% and 39·6% on treatment with streptavidin C1 (500 µg ml-1 ) and C2 (500 µg ml-1 ), respectively. A greenhouse experiment revealed that Fusarium wilt of tomato plants was completely inhibited on soil drenching using a 50-ml culture filtrate of the streptavidin-producing strain KPP02129.
Collapse
Affiliation(s)
- B J Jeon
- Department of Plant Biotechnology, Korea University Graduate School, Seoul, South Korea
| | - J E Kang
- Department of Plant Biotechnology, Korea University Graduate School, Seoul, South Korea.,Department of Plant Biotechnology, Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| | - M Y Park
- Department of Plant Biotechnology, Korea University Graduate School, Seoul, South Korea.,Materials Research Team, Central Research Institute of Kyung Nong Corporation, Gyungju, Gyungbuk, South Korea
| | - B S Kim
- Department of Plant Biotechnology, Korea University Graduate School, Seoul, South Korea.,Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
8
|
Shui L, Huo K, Chen Y, Zhang Z, Li Y, Niu J. Integrated metabolome and transcriptome revealed the flavonoid biosynthetic pathway in developing Vernonia amygdalina leaves. PeerJ 2021; 9:e11239. [PMID: 33981500 PMCID: PMC8083182 DOI: 10.7717/peerj.11239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Vernonia amygdalina as a tropical horticultural crop has been widely used for medicinal herb, feed, and vegetable. Recently, increasing studies revealed that this species possesses multiple pharmacological properties. Notably, V. amygdalina leaves possess an abundance of flavonoids, but the specific profiles of flavonoids and the mechanisms of fl avonoid bi osynthesis in developing leaves are largely unknown. Methods The total flavonoids of V. amygdalina leaves were detected using ultraviolet spectrophotometer. The temporal flavonoid profiles of V. amygdalina leaves were analyzed by LC-MS. The transcriptome analysis of V. amygdalina leaves was performed by Illumina sequencing. Functional annotation and differential expression analysis of V. amygdalina genes were performed by Blast2GO v2.3.5 and RSEM v1.2.31, respectively. qRT-PCR analysis was used to verify the gene expressions in developing V. amygdalina leaves. Results By LC-MS analysis, three substrates (p-coumaric acid, trans-cinnamic acid, and phenylalanine) for flavonoid biosynthesis were identified in V. amygdalina leaves. Additionally, 42 flavonoids were identified from V. amygdalina leaves, including six dihydroflavones, 14 flavones, eight isoflavones, nine flavonols, two xanthones, one chalcone, one cyanidin, and one dihydroflavonol. Glycosylation and methylation were common at the hydroxy group of C3, C7, and C4’ positions. Moreover, dynamic patterns of different flavonoids showed diversity. By Illumina sequencing, the obtained over 200 million valid reads were assembled into 60,422 genes. Blast analysis indicated that 31,872 genes were annotated at least in one of public databases. Greatly increasing molecular resources makes up for the lack of gene information in V. amygdalina. By digital expression profiling and qRT-PCR, we specifically characterized some key enzymes, such as Va-PAL1, Va-PAL4, Va-C4H1, Va-4CL3, Va-ACC1, Va-CHS1, Va-CHI, Va-FNSII, and Va-IFS3, involved in flavonoid biosynthesis. Importantly, integrated metabolome and transcriptome data of V. amygdalina leaves, we systematically constructed a flavonoid biosynthetic pathway with regards to material supplying, flavonoid scaffold biosynthesis, and flavonoid modifications. Our findings contribute significantly to understand the underlying mechanisms of flavonoid biosynthesis in V. amygdalina leaves, and also provide valuable information for potential metabolic engineering.
Collapse
Affiliation(s)
- Lanya Shui
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Kaisen Huo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yan Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zilin Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yanfang Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
9
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
10
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
11
|
Li Y, Yang C, Ahmad H, Maher M, Fang C, Luo J. Benefiting others and self: Production of vitamins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:210-227. [PMID: 33289302 DOI: 10.1111/jipb.13047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mechanisms underlying how vitamins are synthesized, transported, and regulated in plants. We also stress the exploration of variation in vitamins by the use of forward genetic approaches, such as quantitative trait locus mapping and genome-wide association studies. Overall, we conclude that exploring the diversity of vitamins could provide new insights into plant metabolism and crop breeding.
Collapse
Affiliation(s)
- Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
12
|
Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C. Challenging microalgal vitamins for human health. Microb Cell Fact 2020; 19:201. [PMID: 33138823 PMCID: PMC7607653 DOI: 10.1186/s12934-020-01459-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/17/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vitamins' deficiency in humans is an important threat worldwide and requires solutions. In the concept of natural biofactory for bioactive compounds production, microalgae represent one of the most promising targets filling many biotechnological applications, and allowing the development of an eco-sustainable production of natural bioactive metabolites. Vitamins are probably one of the cutting edges of microalgal diversity compounds. MAIN TEXT Microalgae can usefully provide many of the required vitamins in humans, more than terrestrial plants, for instance. Indeed, vitamins D and K, little present in many plants or fruits, are instead available from microalgae. The same occurs for some vitamins B (B12, B9, B6), while the other vitamins (A, C, D, E) are also provided by microalgae. This large panel of vitamins diversity in microalgal cells represents an exploitable platform in order to use them as natural vitamins' producers for human consumption. This study aims to provide an integrative overview on vitamins content in the microalgal realm, and discuss on the great potential of microalgae as sources of different forms of vitamins to be included as functional ingredients in food or nutraceuticals for the human health. We report on the biological roles of vitamins in microalgae, the current knowledge on their modulation by environmental or biological forcing and on the biological activity of the different vitamins in human metabolism and health protection. CONCLUSION Finally, we critically discuss the challenges for promoting microalgae as a relevant source of vitamins, further enhancing the interests of microalgal "biofactory" for biotechnological applications, such as in nutraceuticals or cosmeceuticals.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Elisabet Sané
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
13
|
Wang Y, Wang M, Ye X, Liu H, Takano T, Tsugama D, Liu S, Bu Y. Biotin plays an important role in Arabidopsis thaliana seedlings under carbonate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110639. [PMID: 33180716 DOI: 10.1016/j.plantsci.2020.110639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, many saline-alkali soils are rich in NaHCO3 and Na2CO3, which are characterized by a high pH Carbonate stress caused by this kind of soil severely damages plant cells and inhibits plant growth. Biotin and HCO3- participate in the first and rate-limiting reaction of the fatty acid biosynthesis pathway, but whether biotin contributes to plant responses to carbonate stress is unclear. In this study, we revealed that high carbonate and biotin concentrations inhibited Arabidopsis (Arabidopsis thaliana) seedling growth. However, specific concentrations of carbonate and biotin decreased the inhibitory effects of the other compound at the germination and seedling stages. Additionally, a carbonate treatment increased the endogenous biotin content and expression of AtBIO2, which encodes a biotin synthase. Moreover, phenotypic analyses indicated that the overexpression of AtBIO2 in Arabidopsis enhanced the tolerance to carbonate stress, whereas mutations to AtBIO2 had the opposite effect. Furthermore, the carbonate stress-induced accumulation of reactive oxygen species was lower in plants overexpressing AtBIO2 than in the wild-type and bio2 mutants. Accordingly, biotin, which is an essential vitamin for plants, can enhance the resistance to carbonate stress.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hua Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shenkui Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China.
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
14
|
Arora D, Abel NB, Liu C, Van Damme P, Yperman K, Eeckhout D, Vu LD, Wang J, Tornkvist A, Impens F, Korbei B, Van Leene J, Goossens A, De Jaeger G, Ott T, Moschou PN, Van Damme D. Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems. THE PLANT CELL 2020; 32:3388-3407. [PMID: 32843435 PMCID: PMC7610282 DOI: 10.1105/tpc.20.00235] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 05/19/2023]
Abstract
Proximity labeling is a powerful approach for detecting protein-protein interactions. Most proximity labeling techniques use a promiscuous biotin ligase or a peroxidase fused to a protein of interest, enabling the covalent biotin labeling of proteins and subsequent capture and identification of interacting and neighboring proteins without the need for the protein complex to remain intact. To date, only a few studies have reported on the use of proximity labeling in plants. Here, we present the results of a systematic study applying a variety of biotin-based proximity labeling approaches in several plant systems using various conditions and bait proteins. We show that TurboID is the most promiscuous variant in several plant model systems and establish protocols that combine mass spectrometry-based analysis with harsh extraction and washing conditions. We demonstrate the applicability of TurboID in capturing membrane-associated protein interactomes using Lotus japonicus symbiotically active receptor kinases as a test case. We further benchmark the efficiency of various promiscuous biotin ligases in comparison with one-step affinity purification approaches. We identified both known and novel interactors of the endocytic TPLATE complex. We furthermore present a straightforward strategy to identify both nonbiotinylated and biotinylated peptides in a single experimental setup. Finally, we provide initial evidence that our approach has the potential to suggest structural information of protein complexes.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nikolaj B Abel
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Petra Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Anna Tornkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Francis Impens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- VIB Proteomics Core, 9052 Ghent, Belgium
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Panagiotis Nikolaou Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
15
|
Late embryogenesis abundant group3 protein (DrLEA3) is involved in antioxidation in the extremophilic bacterium Deinococcus radiodurans. Microbiol Res 2020; 240:126559. [PMID: 32721821 DOI: 10.1016/j.micres.2020.126559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
Deinococcus radiodurans is able to survive under extreme conditions, including high doses of ionizing radiation, desiccation and oxidative stress. In addition to enhanced DNA repair capabilities, an effective antioxidation system plays an important role in its robustness. Previous studies have linked the radiation resistance of D. radiodurans to its prolonged desiccation tolerance phenotype, which both cause DNA damage. In the current study, we investigated the roles of dr_1172 in D. radiodurans, the gene encoding a typical group 3 LEA protein (DrLEA3) conserved within Deinococcus species. In addition to the increased transcriptional level under oxidative stress, the inactivation of dr_1172-sensitized cells to H2O2 treatments and the reduced cellular antioxidation activities suggested that dr_1172 is involved in the cellular defense against oxidative stress. Moreover, DrLEA3 was enriched at the cell membrane and bound to various types of metal ions. Cells devoid of DrLEA3 showed a decreased intracellular Mn/Fe concentration ratio, indicating that DrLEA3 also plays a role in maintaining metal ion homeostasis in vivo.
Collapse
|
16
|
Suzuki M, Wu S, Mimura M, Alseekh S, Fernie AR, Hanson AD, McCarty DR. Construction and applications of a B vitamin genetic resource for investigation of vitamin-dependent metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:442-454. [PMID: 31520508 DOI: 10.1111/tpj.14535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 05/06/2023]
Abstract
The B vitamins provide essential co-factors for central metabolism in all organisms. In plants, B vitamins have surprising emerging roles in development, stress tolerance and pathogen resistance. Hence, there is a paramount interest in understanding the regulation of vitamin biosynthesis as well as the consequences of vitamin deficiency in crop species. To facilitate genetic analysis of B vitamin biosynthesis and functions in maize, we have mined the UniformMu transposon resource to identify insertional mutations in vitamin pathway genes. A screen of 190 insertion lines for seed and seedling phenotypes identified mutations in biotin, pyridoxine and niacin biosynthetic pathways. Importantly, isolation of independent insertion alleles enabled genetic confirmation of genotype-to-phenotype associations. Because B vitamins are essential for survival, null mutations often have embryo lethal phenotypes that prevent elucidation of subtle, but physiologically important, metabolic consequences of sub-optimal (functional) vitamin status. To circumvent this barrier, we demonstrate a strategy for refined genetic manipulation of vitamin status based on construction of heterozygotes that combine strong and hypomorphic mutant alleles. Dosage analysis of pdx2 alleles in endosperm revealed that endosperm supplies pyridoxine to the developing embryo. Similarly, a hypomorphic bio1 allele enabled analysis of transcriptome and metabolome responses to incipient biotin deficiency in seedling leaves. We show that systemic pipecolic acid accumulation is an early metabolic response to sub-optimal biotin status highlighting an intriguing connection between biotin, lysine metabolism and systemic disease resistance signaling. Seed-stocks carrying insertions for vitamin pathway genes are available for free, public distribution via the Maize Genetics Cooperation Stock Center.
Collapse
Affiliation(s)
- Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology, 4000, Plovdiv, Bulgaria
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
17
|
Kwon KM, Bekal S, Domier LL, Lambert KN. Active and inactive forms of biotin synthase occur in Heterodera glycines. J Nematol 2019; 51:e2019-69. [PMID: 34179812 PMCID: PMC6909392 DOI: 10.21307/jofnem-2019-069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/11/2022] Open
Abstract
Heterodera glycines, the soybean cyst nematode (SCN), is a plant-parasitic nematode capable of manipulating host plant biochemistry and development. Many studies have suggested that the nematode has acquired genes from bacteria via horizontal gene transfer events (HGTs) that have the potential to enhance nematode parasitism. A recent allelic imbalance analysis identified two candidate virulence genes, which also appear to have entered the SCN genome through HGTs. One of the candidate genes, H. glycines biotin synthase (HgBioB), contained sequence polymorphisms between avirulent and virulent inbred SCN strains. To test the function of these HgBioB alleles, a complementation experiment using biotin synthase-deficient Escherichia coli was conducted. Here, we report that avirulent nematodes produce an active biotin synthase while virulent ones contain an inactive form of the enzyme. Moreover, sequencing analysis of HgBioB genes from SCN field populations indicates the presence of diverse mixture of HgBioB alleles with the virulent form being the most prevalent. We hypothesize that the mutations in the inactive HgBioB allele within the virulent SCN could result in a change in protein function that in some unknown way bolster its parasitic lifestyle.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Crop Sciences, University of Illinois, Urbana, IL.,Department of Plant Pathology and Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Sadia Bekal
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL.,United States Department of Agriculture - Agricultural Research Service, Urbana, IL
| | - Kris N Lambert
- Department of Crop Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
18
|
Han X, Li L, Bao J. Microbial extraction of biotin from lignocellulose biomass and its application on glutamic acid production. BIORESOURCE TECHNOLOGY 2019; 288:121523. [PMID: 31146079 DOI: 10.1016/j.biortech.2019.121523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Biotin (vitamin B7) is an important nutrient for various fermentations. It is abundant in agricultural lignocellulose biomass and maintains stable in biorefinery processing chain including acid pretreatment, biodetoxification and saccharification. Here we show a microbial extraction of biotin from biotin-rich corn leaves hydrolysate. Corynebacterium glutamicum was found to have the highest biotin uptake capacity among different biotin auxotrophic microorganisms, and it was further significantly increased by overexpressing the bioYMN gene cluster encoding biotin transporter. Finally 250 folds greater biotin was extracted by recombinant C. glutamicum (303.8 mg/kg dry cell) from virgin corn leaves (1.2 mg/kg), which was far higher than that in commonly used fermentation additives including yeast extract (∼2 mg/kg), molasses (∼1 mg/kg) and corn steep liquor (∼0.75 mg/kg). The biotin extracted from corn leaves was successfully applied to glutamic acid fermentation. This is the first report on microbial extraction of biotin from lignocellulose biomass and fermentation promotion application.
Collapse
Affiliation(s)
- Xushen Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
19
|
Joyard J, Lichtenthaler HK. Tribute Roland Douce, 1939-2018. PHOTOSYNTHESIS RESEARCH 2019; 141:131-142. [PMID: 30877517 DOI: 10.1007/s11120-019-00634-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
On November 4, 2018, Roland Douce, Professor Emeritus at the University of Grenoble, France, died at the age of 79. In Grenoble, where he spent most of his scientific career, Roland Douce created a world-renowned school of plant science, studying the structure, functions, and interactions of plant organelles involved in photosynthesis, respiration, and photorespiration. His main achievements concern the chemical and functional characterization of chloroplast envelope membranes, the demonstration of the uniqueness of plant mitochondria, and the integration of metabolism within the plant cell, among manifold activities. Roland Douce devoted his whole life to science and research with passion and enthusiasm: he was a true charismatic leader.
Collapse
Affiliation(s)
- Jacques Joyard
- Laboratoire de Physiologie cellulaire et végétale, Institut de Recherche Interdisciplinaire de Grenoble, Université Grenoble Alpes, CEA, CNRS, INRA, Grenoble, France.
| | - Hartmut K Lichtenthaler
- Botany 2 (Molecular Biology and Biochemistry of Plants), Karlsruhe Institute of Technology, Kaiserstr. 12, 76133, Karlsruhe, Germany
| |
Collapse
|
20
|
Lee AR, Kwon M, Kang MK, Kim J, Kim SU, Ro DK. Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana). Metab Eng 2019; 52:20-28. [PMID: 30389612 DOI: 10.1016/j.ymben.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/29/2018] [Accepted: 10/27/2018] [Indexed: 01/16/2023]
Abstract
Terpenoids are the most diverse natural products with many industrial applications and are all synthesized from simple precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized by two distinct metabolic pathways - cytosolic mevalonate (MVA) pathway for C15 sesquiterpene and C30 triterpene, and plastidic methylerythritol phosphate (MEP) pathway for C10 monoterpene and C20 diterpene. A number of studies have altered the metabolic gene expressions in either the MVA or MEP pathway to increase terpene production; however, it remains unknown if the alteration of the acetyl-CoA pool in plastid fatty acid biosynthesis can influence terpenoid flux. Here, we focused on the fact that acetyl-CoA is the precursor for both fatty acid biosynthesis in plastid and terpene biosynthesis in cytosol, and the metabolic impact of increased plastidic acetyl-CoA level on the cytosolic terpene biosynthesis was investigated. In tobacco leaf infiltration studies, the acetyl-CoA carboxylase complex (the enzyme supplying malonyl-CoA in plastid) was partially inhibited by overexpressing the inactive form of biotin carboxyl carrier protein (BCCP) by a negative dominant effect. Overexpression of BCCP showed 1.4-2.4-fold increase of sesquiterpenes in cytosol; however, surprisingly overexpression of BCCP linked to truncated HMG-CoA reductase (tHMGR) by a cleavable peptide 2A showed 20-40-fold increases of C15 sesquiterpenes (α-bisabolol, amorphadiene, and valerenadiene) and a 6-fold increase of C30 β-amyrin. α-Bisabolol and β-amyrin production reached 28.8 mg g-1 and 9.8 mg g-1 dry weight, respectively. Detailed analyses showed that a large increase in flux was achieved by the additive effect of BCCP- and tHMGR-overexpression, and an enhanced tHMGR activity by 2A peptide tag. Kinetic analyses showed that tHMGR-2A has a three-fold higher kcat value than tHMGR. The tHMGR-2A-BCCP1 co-expression strategy in this work provides a new insight into metabolic cross-talks and can be a generally applicable approach to over-produce sesqui- and tri-terpene in plants.
Collapse
Affiliation(s)
- Ah-Reum Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Min-Kyoung Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeonghan Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Un Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, Hubei, China.
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada.
| |
Collapse
|
21
|
D'Hooghe P, Picot D, Brunel-Muguet S, Kopriva S, Avice JC, Trouverie J. Germinative and Post-Germinative Behaviours of Brassica napus Seeds Are Impacted by the Severity of S Limitation Applied to the Parent Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E12. [PMID: 30621264 PMCID: PMC6359240 DOI: 10.3390/plants8010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022]
Abstract
In oilseed rape (Brassica napus L.), sulphur (S) limitation leads to a reduction of seed yield and nutritional quality, but also to a reduction of seed viability and vigour. S metabolism is known to be involved in the control of germination sensu stricto and seedling establishment. Nevertheless, how the germination and the first steps of plant growth are impacted in seeds produced by plants subjected to various sulphate limitations remains largely unknown. Therefore, this study aimed at determining the impact of various S-limited conditions applied to the mother plants on the germination indexes and the rate of viable seedlings in a spring oilseed rape cultivar (cv. Yudal). Using a 34S-sulphate pulse method, the sulphate uptake capacity during the seedling development was also investigated. The rate of viable seedlings was significantly reduced for seeds produced under the strongest S-limited conditions. This is related to a reduction of germination vigour and to perturbations of post-germinative events. Compared to green seedlings obtained from seeds produced by well-S-supplied plants, the viable seedlings coming from seeds harvested on plants subjected to severe S-limitation treatment showed nonetheless a higher dry biomass and were able to enhance the sulphate uptake by roots and the S translocation to shoots.
Collapse
Affiliation(s)
- Philippe D'Hooghe
- Normandie Univ, UNICAEN, INRA, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France.
| | - Dimitri Picot
- Normandie Univ, UNICAEN, INRA, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France.
| | - Sophie Brunel-Muguet
- Normandie Univ, UNICAEN, INRA, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France.
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany.
| | - Jean-Christophe Avice
- Normandie Univ, UNICAEN, INRA, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France.
| | - Jacques Trouverie
- Normandie Univ, UNICAEN, INRA, UMR EVA, SFR Normandie Végétal FED4277, Esplanade de la Paix, F-14032 Caen, France.
| |
Collapse
|
22
|
Ethylene -dependent and -independent superficial scald resistance mechanisms in 'Granny Smith' apple fruit. Sci Rep 2018; 8:11436. [PMID: 30061655 PMCID: PMC6065312 DOI: 10.1038/s41598-018-29706-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Superficial scald is a major physiological disorder of apple fruit (Malus domestica Borkh.) characterized by skin browning following cold storage; however, knowledge regarding the downstream processes that modulate scald phenomenon is unclear. To gain insight into the mechanisms underlying scald resistance, ‘Granny Smith’ apples after harvest were treated with diphenylamine (DPA) or 1-methylcyclopropene (1-MCP), then cold stored (0 °C for 3 months) and subsequently were ripened at room temperature (20 °C for 8 days). Phenotypic and physiological data indicated that both chemical treatments induced scald resistance while 1-MCP inhibited the ethylene-dependent ripening. A combination of multi-omic analysis in apple skin tissue enabled characterization of potential genes, proteins and metabolites that were regulated by DPA and 1-MCP at pro-symptomatic and scald-symptomatic period. Specifically, we characterized strata of scald resistance responses, among which we focus on selected pathways including dehydroabietic acid biosynthesis and UDP-D-glucose regulation. Through this approach, we revealed scald-associated transcriptional, proteomic and metabolic signatures and identified pathways modulated by the common or distinct functions of DPA and 1-MCP. Also, evidence is presented supporting that cytosine methylation-based epigenetic regulation is involved in scald resistance. Results allow a greater comprehension of the ethylene–dependent and –independent metabolic events controlling scald resistance.
Collapse
|
23
|
Wen J, Xiao Y, Liu T, Gao Q, Bao J. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:132. [PMID: 29760774 PMCID: PMC5944095 DOI: 10.1186/s13068-018-1132-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/28/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. RESULTS We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum. Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. CONCLUSIONS The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients for cellulosic fermentations.
Collapse
Affiliation(s)
- Jingbai Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Yanqiu Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Ting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
24
|
Abstract
Malaria parasites require certain host nutrients for growth and survival. In this project, we examined the role of the human vitamin biotin in all stages of the malaria life cycle. We cultured blood- and liver-stage malaria parasites in the absence of biotin and found that, whereas blood-stage replication was unaffected, liver-stage parasites deprived of biotin were no longer capable of establishing a blood-stage infection. Interestingly, biotin depletion resulted in more severe developmental defects than the genetic disruption of parasite biotin metabolism. This finding suggests that host biotin metabolism also contributes to parasite development. Because neither the parasite nor the human host can synthesize biotin, parasite infectivity may be affected by the nutritional status of the host. Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that is the target of several classes of herbicides. Malaria parasites contain a plant-like ACC, and this is the only protein predicted to be biotinylated in the parasite. We found that ACC is expressed in the apicoplast organelle in liver- and blood-stage malaria parasites; however, it is activated through biotinylation only in the liver stages. Consistent with this observation, deletion of the biotin ligase responsible for ACC biotinylation does not impede blood-stage growth, but results in late liver-stage developmental defects. Biotin depletion increases the severity of the developmental defects, demonstrating that parasite and host biotin metabolism are required for normal liver-stage progression. This finding may link the development of liver-stage malaria parasites to the nutritional status of the host, as neither the parasite nor the human host can synthesize biotin.
Collapse
|
25
|
Villegente M, Marmey P, Job C, Galland M, Cueff G, Godin B, Rajjou L, Balliau T, Zivy M, Fogliani B, Sarramegna-Burtet V, Job D. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Proteomes 2017; 5:E19. [PMID: 28788068 PMCID: PMC5620536 DOI: 10.3390/proteomes5030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda, an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.
Collapse
Affiliation(s)
- Matthieu Villegente
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Philippe Marmey
- Institut de recherche pour le développement (IRD), UMR Diversité, Adaptation et Développement des plantes (DIADE), BP A5, 98848 Nouméa Cedex, Nouvelle-Calédonie.
| | - Claudette Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
| | - Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Thierry Balliau
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Michel Zivy
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
- Institut Agronomique Néo-Calédonien (IAC), Équipe ARBOREAL, Agriculture Biodiversité et Valorisation, BP 73 Port Laguerre, 98890 Païta, Nouvelle-Calédonie.
| | - Valérie Sarramegna-Burtet
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Dominique Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| |
Collapse
|
26
|
Parra O, Gallego AM, Urrea A, Rojas LF, Correa C, Atehortúa L. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:59-66. [PMID: 27914320 DOI: 10.1016/j.plaphy.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors.
Collapse
Affiliation(s)
- O Parra
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia.
| | - A M Gallego
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - A Urrea
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - L F Rojas
- Universidad de Antioquia, Grupo de Biotecnología - Escuela de Microbiología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - C Correa
- Instituto Tecnológico Metropolitano, Grupo de investigación: Calidad, Metrología y Producción, Calle 73 No 76A - 354, Colombia
| | - L Atehortúa
- Universidad de Antioquia, Grupo de Biotecnología, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| |
Collapse
|
27
|
Hahn HG, Choi JS, Lim HK, Lee KI, Hwang IT. Triazolyl phenyl disulfides: 8-Amino-7-oxononanoate synthase inhibitors as potential herbicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 125:78-83. [PMID: 26615154 DOI: 10.1016/j.pestbp.2015.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 06/05/2023]
Abstract
The chemical validation of a potential herbicide target was investigated with 8-amino-7-oxononanoate synthase (AONS, also known as 7-keto-8-aminopelargonate synthase, KAPAS) and triazolyl phenyl disulfide derivatives in vitro and in vivo. AONS activity was completely inhibited by these synthesized compounds, with an IC50 of 48 to 592μM in vitro. Forty five-day old Arabidopsis thaliana plants were completely killed by representative compound KHG23844 {N-(2-fluorophenyl)-3-(phenyldisulphanyl)-1H-1,2,4-triazole-1-carboxamide} at the application rate of 250gha(-1) of foliar treatment in greenhouse conditions. Foliar application of 1000gha(-1) KHG23844 induced 2.3-fold higher l-alanine accumulation in the treated A. thaliana plants. Foliar supplement of 1mM biotin at 1 and 2days before KHG23844 application effectively recovered the growth inhibition of A. thaliana plant treated with KHG23844. The results strongly suggested that representative compound KHG23844 and its derivatives are potential AONS inhibitors.
Collapse
Affiliation(s)
- Hoh-Gyu Hahn
- Korea Institute of Science and Technology, 39-1, Wolsong-Gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Jung-Sup Choi
- Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejon, 305-600, Republic of Korea
| | - Hee Kyung Lim
- Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejon, 305-600, Republic of Korea
| | - Kee-In Lee
- Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejon, 305-600, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejon 305-350, Republic of Korea
| | - In Taek Hwang
- Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejon, 305-600, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejon 305-350, Republic of Korea.
| |
Collapse
|
28
|
D'Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice JC, Trouverie J. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in sulfur-limited Brassica napus L. Mol Cell Proteomics 2014; 13:1165-83. [PMID: 24554741 DOI: 10.1074/mcp.m113.034215] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase β-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of β-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate synthase, which is essential for the use of fatty acids during seedling establishment.
Collapse
|
29
|
Plant amino acid-derived vitamins: biosynthesis and function. Amino Acids 2013; 46:809-24. [PMID: 24368523 DOI: 10.1007/s00726-013-1653-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 02/06/2023]
Abstract
Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.
Collapse
|
30
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:21-34. [PMID: 23473981 DOI: 10.1016/j.plaphy.2013.02.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Helliwell KE, Wheeler GL, Smith AG. Widespread decay of vitamin-related pathways: coincidence or consequence? Trends Genet 2013; 29:469-78. [DOI: 10.1016/j.tig.2013.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/09/2013] [Accepted: 03/25/2013] [Indexed: 02/03/2023]
|
32
|
Van de Poel B, Bulens I, Oppermann Y, Hertog MLATM, Nicolai BM, Sauter M, Geeraerd AH. S-adenosyl-L-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. PHYSIOLOGIA PLANTARUM 2013; 148:176-88. [PMID: 23020643 DOI: 10.1111/j.1399-3054.2012.01703.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/23/2012] [Accepted: 09/09/2012] [Indexed: 05/04/2023]
Abstract
S-adenosyl-L-methionine (SAM) is the major methyl donor in cells and it is also used for the biosynthesis of polyamines and the plant hormone ethylene. During climacteric ripening of tomato (Solanum lycopersicum 'Bonaparte'), ethylene production rises considerably which makes it an ideal object to study SAM involvement. We examined in ripening fruit how a 1-MCP treatment affects SAM usage by the three major SAM-associated pathways. The 1-MCP treatment inhibited autocatalytic ethylene production but did not affect SAM levels. We also observed that 1-(malonylamino)cyclopropane-1-carboxylic acid formation during ripening is ethylene dependent. SAM decarboxylase expression was also found to be upregulated by ethylene. Nonetheless polyamine content was higher in 1-MCP-treated fruit. This leads to the conclusion that the ethylene and polyamine pathway can operate simultaneously. We also observed a higher methylation capacity in 1-MCP-treated fruit. During fruit ripening substantial methylation reactions occur which are gradually inhibited by the methylation product S-adenosyl-L-homocysteine (SAH). SAH accumulation is caused by a drop in adenosine kinase expression, which is not observed in 1-MCP-treated fruit. We can conclude that tomato fruit possesses the capability to simultaneously consume SAM during ripening to ensure a high rate of ethylene and polyamine production and transmethylation reactions. SAM usage during ripening requires a complex cellular regulation mechanism in order to control SAM levels.
Collapse
Affiliation(s)
- Bram Van de Poel
- Division of Mechatronics, Biostatistics and Sensors-MeBioS, Department of Biosystems-BIOSYST, KU Leuven, Leuven 3001, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Bandaranayake PCG, Yoder JI. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:575-84. [PMID: 23383721 DOI: 10.1094/mpmi-12-12-0297-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Parasitic species of the family Orobanchaceae are devastating agricultural pests in many parts of the world. The control of weedy Orobanchaceae spp. is challenging, particularly due to the highly coordinated life cycles of the parasite and host plants. Although host genetic resistance often provides the foundation of plant pathogen management, few genes that confer resistance to root parasites have been identified and incorporated into crop species. Members of the family Orobanchaceae acquire water, nutrients, macromolecules, and oligonucleotides from host plants through haustoria that connect parasite and host plant roots. We are evaluating a resistance strategy based on using interfering RNA (RNAi) that is made in the host but inhibitory in the parasite as a parasite-derived oligonucleotide toxin. Sequences from the cytosolic acetyl-CoA carboxylase (ACCase) gene from Triphysaria versicolor were cloned in hairpin conformation and introduced into Medicago truncatula roots by Agrobacterium rhizogenes transformation. Transgenic roots were recovered for four of five ACCase constructions and infected with T. versicolor against parasitic weeds. In all cases, Triphysaria root viability was reduced up to 80% when parasitizing a host root bearing the hairpin ACCase. Triphysaria root growth was recovered by exogenous application of malonate. Reverse-transcriptase polymerase chain reaction (RT-PCR) showed that ACCase transcript levels were dramatically decreased in Triphysaria spp. parasitizing transgenic Medicago roots. Northern blot analysis identified a 21-nucleotide, ACCase-specific RNA in transgenic M. truncatula and in T. versicolor attached to them. One hairpin ACCase construction was lethal to Medicago spp. unless grown in media supplemented with malonate. Quantitative RT-PCR showed that the Medicago ACCase was inhibited by the Triphysaria ACCase RNAi. This work shows that ACCase is an effective target for inactivation in parasitic plants by trans-specific gene silencing.
Collapse
|
34
|
Würschum T, Maurer HP, Dreyer F, Reif JC. Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:435-41. [PMID: 23052025 DOI: 10.1007/s00122-012-1991-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/21/2012] [Indexed: 05/05/2023]
Abstract
The loci detected by association mapping which are involved in the expression of important agronomic traits in crops often explain only a small proportion of the total genotypic variance. Here, 17 SNPs derived from 9 candidate genes from the triacylglycerol biosynthetic pathway were studied in an association analysis in a population of 685 diverse elite rapeseed inbred lines. The 685 lines were evaluated for oil content, as well as for glucosinolates, yield, and thousand-kernel weight in field trials at 4 locations. We detected main effects for most of the studied genes illustrating that genetic diversity for oil content can be exploited by the selection of favorable alleles. In addition to main effects, both intergenic and intragenic epistasis was detected that contributes to a considerable amount to the genotypic variance observed for oil content. The proportion of explained genotypic variance was doubled when in addition to main effects epistasis was considered. Therefore, a knowledge-based improvement of oil content in rapeseed should also take such favorable epistatic interactions into account. Our results suggest, that the observed high contribution of epistasis may to some extent explain the missing heritability in genome-wide association studies.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany.
| | | | | | | |
Collapse
|
35
|
Chen X, Chou HH, Wurtele ES. Holocarboxylase synthetase 1 physically interacts with histone h3 in Arabidopsis. SCIENTIFICA 2013; 2013:983501. [PMID: 24278788 PMCID: PMC3820309 DOI: 10.1155/2013/983501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/30/2012] [Indexed: 05/22/2023]
Abstract
Biotin is a water-soluble vitamin required by all organisms, but only synthesized by plants and some bacterial and fungal species. As a cofactor, biotin is responsible for carbon dioxide transfer in all biotin-dependent carboxylases, including acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, and pyruvate carboxylase. Adding biotin to carboxylases is catalyzed by the enzyme holocarboxylase synthetase (HCS). Biotin is also involved in gene regulation, and there is some indication that histones can be biotinylated in humans. Histone proteins and most histone modifications are highly conserved among eukaryotes. HCS1 is the only functional biotin ligase in Arabidopsis and has a high homology with human HCS. Therefore, we hypothesized that HCS1 also biotinylates histone proteins in Arabidopsis. A comparison of the catalytic domain of HCS proteins was performed among eukaryotes, prokaryotes, and archaea, and this domain is highly conserved across the selected organisms. Biotinylated histones could not be identified in vivo by using avidin precipitation or two-dimensional gel analysis. However, HCS1 physically interacts with Arabidopsis histone H3 in vitro, indicating the possibility of the role of this enzyme in the regulation of gene expression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- *Eve Syrkin Wurtele:
| |
Collapse
|
36
|
Yao Z, Liu L, Gao F, Rampitsch C, Reinecke DM, Ozga JA, Ayele BT. Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1477-88. [PMID: 22742946 DOI: 10.1016/j.jplph.2012.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/01/2012] [Accepted: 06/01/2012] [Indexed: 05/08/2023]
Abstract
Enzymatic antioxidant system plays an important role in maintaining seed vigor and regulating plant growth and development. It involves a number of enzymes that scavenge excessive reactive oxygen species (ROS) produced during seed aging and also modulate the level of these compounds during plant developmental processes. This study investigated the transcriptional regulation of enzymatic antioxidative capacity in pea during the pre- and post-germinative phases and in response to seed aging by analyzing the spatio-temporal expression of five antioxidative genes: PsAPX, PsSOD, PsGRcyt, PsGRcm and PsCAT. Transcripts of all these genes were found in mature dry seeds, embryo axes and cotyledons of germinating seeds, and cotyledons, roots and shoots of young seedlings. However, PsAPX and PsSOD were predominant and exhibited developmental regulation, suggesting that these genes play important roles in controlling the intracellular homeostasis of ROS for promoting cell elongation, and thereby embryo axis expansion and early seedling growth in pea. Accelerated aging of pea seeds led to reduction in seed viability and seedling growth, and this effect was correlated with substantial decrease in the transcriptional activation of the prominent antioxidative genes. Furthermore, our proteomic analysis indicated the association of seed aging with changes in the abundance of specific proteins, revealing additional mechanisms underlying seed aging in pea.
Collapse
Affiliation(s)
- Zhen Yao
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | | | | | | | |
Collapse
|
37
|
Biotin-binding proteins in the defense of mushrooms against predators and parasites. Appl Environ Microbiol 2012; 78:8485-7. [PMID: 23001676 DOI: 10.1128/aem.02286-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tamavidins are fungal biotin-binding proteins (BBPs) displaying antifungal activity against phytopathogens. Here we show high toxicity of tamavidins toward nematodes, insects, and amoebae. As these organisms represent important phyla of fungal predators and parasites, we propose that BBPs are part of the chemical defense system of fungi.
Collapse
|
38
|
Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SMD, Henry CS, de Crécy-Lagard V, Hanson AD. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5379-95. [PMID: 22915736 DOI: 10.1093/jxb/ers208] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The B vitamins and the cofactors derived from them are essential for life. B vitamin synthesis in plants is consequently as crucial to plants themselves as it is to humans and animals, whose B vitamin nutrition depends largely on plants. The synthesis and salvage pathways for the seven plant B vitamins are now broadly known, but certain enzymes and many transporters have yet to be identified, and the subcellular locations of various reactions are unclear. Although very substantial, what is not known about plant B vitamin pathways is regrettably difficult to discern from the literature or from biochemical pathway databases. Nor do databases accurately represent all that is known about B vitamin pathways-above all their compartmentation-because the facts are scattered throughout the literature, and thus hard to piece together. These problems (i) deter discoveries because newcomers to B vitamins cannot see which mysteries still need solving; and (ii) impede metabolic reconstruction and modelling of B vitamin pathways because genes for reactions or transport steps are missing. This review therefore takes a fresh approach to capture current knowledge of B vitamin pathways in plants. The synthesis pathways, key salvage routes, and their subcellular compartmentation are surveyed in depth, and encoded in the SEED database (http://pubseed.theseed.org/seedviewer.cgi?page=PlantGateway) for Arabidopsis and maize. The review itself and the encoded pathways specifically identify enigmatic or missing reactions, enzymes, and transporters. The SEED-encoded B vitamin pathway collection is a publicly available, expertly curated, one-stop resource for metabolic reconstruction and modeling.
Collapse
Affiliation(s)
- Svetlana Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Minas IS, Tanou G, Belghazi M, Job D, Manganaris GA, Molassiotis A, Vasilakakis M. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2449-64. [PMID: 22268155 PMCID: PMC3346216 DOI: 10.1093/jxb/err418] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/12/2011] [Accepted: 11/21/2011] [Indexed: 05/18/2023]
Abstract
Post-harvest ozone application has recently been shown to inhibit the onset of senescence symptoms on fleshy fruit and vegetables; however, the exact mechanism of action is yet unknown. To characterize the impact of ozone on the post-harvest performance of kiwifruit (Actinidia deliciosa cv. 'Hayward'), fruits were cold stored (0 °C, 95% relative humidity) in a commercial ethylene-free room for 1, 3, or 5 months in the absence (control) or presence of ozone (0.3 μl l(-1)) and subsequently were allowed to ripen at a higher temperature (20 °C), herein defined as the shelf-life period, for up to 12 days. Ozone blocked ethylene production, delayed ripening, and stimulated antioxidant and anti-radical activities of fruits. Proteomic analysis using 1D-SDS-PAGE and mass spectrometry identified 102 kiwifruit proteins during ripening, which are mainly involved in energy, protein metabolism, defence, and cell structure. Ripening induced protein carbonylation in kiwifruit but this effect was depressed by ozone. A set of candidate kiwifruit proteins that are sensitive to carbonylation was also discovered. Overall, the present data indicate that ozone improved kiwifruit post-harvest behaviour, thus providing a first step towards understanding the active role of this molecule in fruit ripening.
Collapse
Affiliation(s)
- Ioannis S. Minas
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maya Belghazi
- Centre d’Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, F–13916 Marseille cedex 20, France
| | - Dominique Job
- CNRS-Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, F–69263 Lyon cedex 9, France
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus
| | - Athanassios Molassiotis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Miltiadis Vasilakakis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
40
|
Li J, Brader G, Helenius E, Kariola T, Palva ET. Biotin deficiency causes spontaneous cell death and activation of defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:315-26. [PMID: 22126457 DOI: 10.1111/j.1365-313x.2011.04871.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In addition to its essential metabolic functions, biotin has been suggested to play a critical role in regulating gene expression. The first committed enzyme in biotin biosynthesis in Arabidopsis, 7-keto-8-aminopelargonic acid synthase, is encoded by At5g04620 (BIO4). We isolated a T-DNA insertion mutant of BIO4 (bio4-1) with a spontaneous cell death phenotype, which was rescued both by exogenous biotin and genetic complementation. The bio4-1 plants exhibited massive accumulation of hydrogen peroxide and constitutive up-regulation of a number of genes that are diagnostic for defense and reactive oxygen species signaling. The cell-death phenotype was independent of salicylic acid and jasmonate signaling. Interestingly, the observed increase in defense gene expression was not accompanied by enhanced resistance to bacterial pathogens, which may be explained by uncoupling of defense gene transcription from accumulation of the corresponding protein. Characterization of biotinylated protein profiles showed a substantial reduction of both chloroplastic biotinylated proteins and a nuclear biotinylated polypeptide in the mutant. Our results suggest that biotin deficiency results in light-dependent spontaneous cell death and modulates defense gene expression. The isolation and molecular characterization of the bio4-1 mutant provides a valuable tool for elucidating new functions of biotin.
Collapse
Affiliation(s)
- Jing Li
- Division of Genetics, Department of Biosciences, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
41
|
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:507-33. [PMID: 22136565 DOI: 10.1146/annurev-arplant-042811-105550] [Citation(s) in RCA: 503] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Collapse
Affiliation(s)
- Loïc Rajjou
- CNRS-Bayer CropScience Joint Laboratory, UMR 5240, Bayer CropScience, Lyon Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Polyak SW, Abell AD, Wilce MCJ, Zhang L, Booker GW. Structure, function and selective inhibition of bacterial acetyl-coa carboxylase. Appl Microbiol Biotechnol 2011; 93:983-92. [PMID: 22183085 DOI: 10.1007/s00253-011-3796-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 11/24/2022]
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the first committed step in fatty acid biosynthesis: a metabolic pathway required for several important biological processes including the synthesis and maintenance of cellular membranes. ACC employs a covalently attached biotin moiety to bind a carboxyl anion and then transfer it to acetyl-CoA, yielding malonyl-CoA. These activities occur at two different subsites: the biotin carboxylase (BC) and carboxyltransferase (CT). Structural biology, together with small molecule inhibitor studies, has provided new insights into the molecular mechanisms that govern ACC catalysis, specifically the BC and CT subunits. Here, we review these recent findings and highlight key differences between the bacterial and eukaryotic isozymes with a view to establish those features that provide an opportunity for selective inhibition. Especially important are examples of highly selective small molecule inhibitors capable of differentiating between ACCs from different phyla. The implications for early stage antibiotic discovery projects, stemming from these studies, are discussed.
Collapse
Affiliation(s)
- S W Polyak
- School of Molecular and Biomedical Science, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia.
| | | | | | | | | |
Collapse
|
43
|
Yacoubi R, Job C, Belghazi M, Chaibi W, Job D. Toward Characterizing Seed Vigor in Alfalfa Through Proteomic Analysis of Germination and Priming. J Proteome Res 2011; 10:3891-903. [DOI: 10.1021/pr101274f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rafika Yacoubi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Claudette Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| | - Maya Belghazi
- Centre d’Analyses Protéomiques de Marseille (CAPM), IFR Jean Roche, Faculté de médecine, Marseille cedex 20, France
| | - Wided Chaibi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Dominique Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| |
Collapse
|
44
|
Murray C, Markwick NP, Kaji R, Poulton J, Martin H, Christeller JT. Expression of various biotin-binding proteins in transgenic tobacco confers resistance to potato tuber moth, Phthorimaea operculella (Zeller) (fam. Gelechiidae). Transgenic Res 2010; 19:1041-51. [PMID: 20217475 DOI: 10.1007/s11248-010-9380-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
The high affinity biotin-binding proteins (BBPs) avidin and streptavidin are established insecticidal agents, effective against a range of insect pests. Earlier work showed that, when expressed in planta, full length avidin and a truncated form of streptavidin are highly insecticidal. More recently, a wide range of BBPs, found in diverse organisms or engineered for various biotechnological applications have been reported. However, their effectiveness as plant-based insecticides has not been established. Here we report in planta expression of three different genes, designed to produce BBP variant proteins in the vacuole. The first was mature full length chicken avidin, the second a circularly permuted dual chain chicken avidin, and the third was an avidin homologue, a native bradavidin from Bradyrhyzobium japonicum. All three proteins were expressed in Nicotiana tabacum (tobacco). The transgenic tobacco lines were healthy, phenotypically normal and, when subjected to bioassay, resistant to the important cosmopolitan pest, potato tuber moth (Phthorimaea operculella) larvae at concentrations of ~50 ppm.
Collapse
Affiliation(s)
- Colleen Murray
- The New Zealand Institute of Plant and Food Research Ltd., Private Bag 11030, Manawatu Mail Centre, 4442, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
45
|
Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 2010; 9:1063-84. [PMID: 20061580 DOI: 10.1074/mcp.m900325-mcp200] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further validated as the compartmentation of well known pathways (for instance, photosynthesis and amino acid, fatty acid, or glycerolipid biosynthesis) within chloroplasts could be dissected. It also allowed revisiting the compartmentation of the chloroplast metabolism and functions.
Collapse
Affiliation(s)
- Myriam Ferro
- INSERM, Laboratoire d'Etude de Dynamique des Protéomes, U880, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lytovchenko A, Beleggia R, Schauer N, Isaacson T, Leuendorf JE, Hellmann H, Rose JKC, Fernie AR. Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues. PLANT METHODS 2009; 5:4. [PMID: 19393072 PMCID: PMC2680844 DOI: 10.1186/1746-4811-5-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 04/24/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND The concept of metabolite profiling has been around for decades and technical innovations are now enabling it to be carried out on a large scale with respect to the number of both metabolites measured and experiments carried out. However, studies are generally confined to polar compounds alone. Here we describe a simple method for lipophilic compounds analysis in various plant tissues. RESULTS We choose the same preparative and instrumental platform for lipophilic profiling as that we routinely use for polar metabolites measurements. The method was validated in terms of linearity, carryover, reproducibility and recovery rates, as well as using various plant tissues.As a first case study we present metabolic profiling of Arabidopsis root and shoot tissue of wild type (C24) and mutant (rsr4-1) plants deficient on vitamin B6. We found significant alterations in lipid constituent contents, especially in the roots, which were characterised by dramatic increases in several fatty acids, thus providing further hint for the role of pyridoxine in oxidative stress and lipid peroxidation.The second example is the lipophilic profiling of red and green tomato fruit cuticles of wild type (Alisa Craig) and the DFD (delayed fruit deterioration) mutant, which we compared and contrasted with the more focused wax analysis of these plants reported before. CONCLUSION We can rapidly and reliably detect and quantify over 40 lipophilic metabolites including fatty acids, fatty alcohols, alkanes, sterols and tocopherols. The method presented here affords a simple and rapid, yet robust complement to previously validated methods of polar metabolite profiling by gas-chromatography mass-spectrometry.
Collapse
Affiliation(s)
- Anna Lytovchenko
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Romina Beleggia
- CRA Cereal Research Center, S.S. 16, km 675, 71100 Foggia, Italy
| | - Nicolas Schauer
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Present address: De Ruiter Seeds, Leeuwenhoekweg 52, 2661CZ Bergschenhoek, the Netherlands
| | - Tal Isaacson
- Department of Plant Biology, Cornell University, 331 Emerson Hall, Ithaca, New York 14853, USA
| | - Jan E Leuendorf
- Institute of Biology/Applied Genetics, Free University of Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, PO Box 644236 Pullman, WA 99164-4236, USA
| | - Jocelyn KC Rose
- Department of Plant Biology, Cornell University, 331 Emerson Hall, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
47
|
Bourgeois M, Jacquin F, Savois V, Sommerer N, Labas V, Henry C, Burstin J. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 2009; 9:254-71. [PMID: 19086096 DOI: 10.1002/pmic.200700903] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.
Collapse
Affiliation(s)
- Michael Bourgeois
- Unité Mixte de Recherche en Génétique et Ecophysiologie des Légumineuses à Graines, Institut National de la Recherche Agronomique, Bretenières, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Martin H, Murray C, Christeller J, McGhie T. A fluorescence polarization assay to quantify biotin and biotin-binding proteins in whole plant extracts using Alexa-Fluor 594 biocytin. Anal Biochem 2008; 381:107-12. [PMID: 18611389 DOI: 10.1016/j.ab.2008.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 11/18/2022]
Abstract
A high-throughput fluorescence polarization assay has been developed for the detection of biotin and biotin-binding proteins in whole leaf extracts. Various groups are investigating the insecticidal properties of avidin and other biotin-binding proteins expressed in leaves of transgenic plants. The methods commonly used to quantify biotin and avidin in leaf extracts are enzyme-linked immunosorbent assay (ELISA) and Western blotting. Here we describe a homogeneous fluorescence polarization (FP) method that quantifies transgenic avidin in whole leaf extract by the simple addition of the fluorescent avidin ligand Alexa-Fluor 594 biocytin (AFB). The FP assay exploits the fact that AFB excites and emits in regions of the spectrum that are relatively free of background fluorescence in leaf extract. Transgenic leaf avidin can be quantified within 1-2 h by the FP method, in comparison with 1-2 days for ELISA and Western blotting. The FP method can also measure the amount of biotin in control leaves, not expressing avidin. Functional avidin levels of 1.54 microM (26.1 microg/g leaf tissue) were detected in tobacco leaves expressing vacuole-targeted avidin. Control leaves had biotin levels of around 0.74 microM (approximately 0.18 microg/g leaf tissue). Reagent costs are minimal: typically AFB is used at concentrations of 1-10 nM, avidin is used at 1-100 nM, and sample volumes are 20 microL in 384-well microplates.
Collapse
Affiliation(s)
- Harry Martin
- The Horticulture and Food Research Institute of New Zealand Limited, HortResearch, Palmerston North 4474, New Zealand.
| | | | | | | |
Collapse
|
49
|
Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. PLANT PHYSIOLOGY 2008; 148:620-41. [PMID: 18599647 PMCID: PMC2528126 DOI: 10.1104/pp.108.123141] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 06/20/2008] [Indexed: 05/18/2023]
Abstract
A variety of mechanisms have been proposed to account for the extension of life span in seeds (seed longevity). In this work, we used Arabidopsis (Arabidopsis thaliana) seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural importance. In our system based on a controlled deterioration treatment (CDT), we compared seed samples treated for different periods of time up to 7 d. Germination tests showed a progressive decrease of germination vigor depending on the duration of CDT. Proteomic analyses revealed that this loss in seed vigor can be accounted for by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. Furthermore, CDT strongly increased the extent of protein oxidation (carbonylation), which might induce a loss of functional properties of seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. These results revealed essential mechanisms for seed vigor, such as translational capacity, mobilization of seed storage reserves, and detoxification efficiency. Finally, this work shows that similar molecular events accompany artificial and natural seed aging.
Collapse
Affiliation(s)
- Loïc Rajjou
- UMR 204, INRA-AgroParisTech, Laboratoire de Biologie des Semences, AgroParisTech, Chaire de Physiologie Végétale, F-75231 Paris cedex 05, France.
| | | | | | | | | | | |
Collapse
|
50
|
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. THE ARABIDOPSIS BOOK 2008; 6:e0113. [PMID: 22303238 PMCID: PMC3243342 DOI: 10.1199/tab.0113] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the life cycle of higher plants, seed development is a key process connecting two distinct sporophytic generations. Seed development can be divided into embryo morphogenesis and seed maturation. An essential metabolic function of maturing seeds is the deposition of storage compounds that are mobilised to fuel post-germinative seedling growth. Given the importance of seeds for food and animal feed and considering the tremendous interest in using seed storage products as sustainable industrial feedstocks to replace diminishing fossil reserves, understanding the metabolic and developmental control of seed filling constitutes a major focus of plant research. Arabidopsis thaliana is an oilseed species closely related to the agronomically important Brassica oilseed crops. The main storage compounds accumulated in seeds of A. thaliana consist of oil stored as triacylglycerols (TAGs) and seed storage proteins (SSPs). Extensive tools developed for the molecular dissection of A. thaliana development and metabolism together with analytical and cytological procedures adapted for very small seeds have led to a good description of the biochemical pathways producing storage compounds. In recent years, studies using these tools have shed new light on the intricate regulatory network controlling the seed maturation process. This network involves sugar and hormone signalling together with a set of developmentally regulated transcription factors. Although much remains to be elucidated, the framework of the regulatory system controlling seed filling is coming into focus.
Collapse
Affiliation(s)
- Sébastien Baud
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Bertrand Dubreucq
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Martine Miquel
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Christine Rochat
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Loïc Lepiniec
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| |
Collapse
|