1
|
Du Z, Zhang B, Weng H, Gao L. Single-Cell RNA Sequencing Reveals the Developmental Landscape of Wheat Roots. PLANT, CELL & ENVIRONMENT 2025; 48:3431-3447. [PMID: 39763237 DOI: 10.1111/pce.15321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 04/03/2025]
Abstract
Allohexaploid wheat (Triticum aestivum L.) is one of the major crops worldwide, however there is very limited research on the transcriptional programmes of underlying cell type specification. Single-cell RNA sequencing (scRNA-seq) was used to unravel the transcriptome heterogeneity of cells and the composition of cell types in broad-spectrum organisms. Here, we reported the scRNA-seq transcriptomes of single cells from root tips of the wheat Chinese spring (CS) cultivar, defined cell-type-specific marker genes, and identified most of the major cell types. We further profiled the reconstructed developmental trajectories of the stem cell niche (SCN), proximal meristems and meristems, unveiled gene expression signature of water transportation, divulged cell-type-specific asymmetric gene transcription in subgenomes and explored the evolutionary conservation and divergence of wheat cultivar (CS) and rice cultivar (Nip and 93-11, ZH11) cell types through interspecies comparison. Collectively, this work underscored the transcriptional landscape of wheat cultivar (CS) roots and provided a single-cell perspective for differentiation trajectory application, unbalanced gene expression pattern and characteristics of cell types between two plant species, contributing to a better understanding of wheat cultivar (CS) root development at unprecedented resolution.
Collapse
Affiliation(s)
- Zhenzhen Du
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Bin Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Han Weng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of China, Scientific Observing and Experimental Station of Korla, Ministry of Agriculture, Urumqi, Xinjiang, People's Republic of China
| |
Collapse
|
2
|
Liu S, Fu X, Wang Y, Du X, Luo L, Chen D, Liu C, Hu J, Fa C, Wu R, Li L, Luo K, Xu C. The auxin-PLETHORA 5 module regulates wood fibre development in Populus tomentosa. NATURE PLANTS 2025; 11:580-594. [PMID: 40108378 DOI: 10.1038/s41477-025-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2025] [Indexed: 03/22/2025]
Abstract
Auxin, as a vital phytohormone, is enriched in the vascular cambium, playing a crucial role in regulating wood formation in trees. While auxin's influence on cambial stem cells is well established, the molecular mechanisms underlying the auxin-directed development of cambial derivatives, such as wood fibres, remain elusive in forest trees. Here we identified a transcription factor, AINTEGUMENTA-like 5 (AIL5)/PLETHORA 5 (PLT5) from Populus tomentosa, that is specifically activated by auxin signalling within the vascular cambium. PLT5 regulated both cell expansion and cell wall thickening in wood fibres. Genetic analysis demonstrated that PLT5 is essential for mediating the action of auxin signalling on wood fibre development. Remarkably, PLT5 specifically inhibits the onset of fibre cell wall thickening by directly repressing SECONDARY WALL-ASSOCIATED NAC DOMAIN 1 (SND1) genes. Our findings reveal a sophisticated auxin-PLT5 signalling pathway that finely tunes the development of wood fibres by controlling cell wall thickening.
Collapse
Affiliation(s)
- Shuai Liu
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yue Wang
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
| | - Xuelian Du
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
| | - Lianjia Luo
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
| | - Dong Chen
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunzhao Liu
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
| | - Jian Hu
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China
| | - Changjian Fa
- Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Beijing Institute of Mathematical Sciences and Applications, Beijing, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Keming Luo
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China.
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| | - Changzheng Xu
- Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing, China.
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Hwang H, Lim Y, Oh MM, Choi H, Shim D, Song YH, Cho H. Spatiotemporal bifurcation of HY5-mediated blue-light signaling regulates wood development during secondary growth. Proc Natl Acad Sci U S A 2024; 121:e2407524121. [PMID: 39585973 PMCID: PMC11626169 DOI: 10.1073/pnas.2407524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Plants have evolved photoreceptors to optimize their development during primary growth, including germination, hypocotyl elongation, cotyledon opening, and root growth, allowing them to adapt to challenging light conditions. The light signaling transduction pathway during seedling establishment has been extensively studied, but little molecular evidence is available for light-regulated secondary growth, and how light regulates cambium-derived tissue production remains largely unexplored. Here, we show that CRYPTOCHROME (CRY)-dependent blue light signaling and the subsequent attenuation of ELONGATED HYPOCOTYL 5 (HY5) movement to hypocotyls are key inducers of xylem fiber differentiation in Arabidopsis thaliana. Using grafted chimeric plants and hypocotyl-specific transcriptome sequencing of light signaling mutants under controlled light conditions, we demonstrate that the perception of blue light by CRYs in shoots drives secondary cell wall (SCW) deposition at xylem fiber cells during the secondary growth of hypocotyls. We propose that HY5 is a blue light-responsive mobile protein that inhibits xylem fiber formation via direct transcriptional repression of NAC SECONDARY WALL THICKENING PROMOTING 3 (NST3). CRYs retain HY5 in the nucleus, impede its long-distance transport from leaf to hypocotyl, and they initiate NST3-driven SCW gene expression, thereby triggering xylem fiber production. Our findings shed light on the long-range CRYs-HY5-NST3 signaling cascade that shapes xylem fiber development, highlighting the activity of HY5 as a transcriptional repressor during secondary growth.
Collapse
Affiliation(s)
- Hyeona Hwang
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Yookyung Lim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Myung-Min Oh
- Department of Horticultural Science, Chungbuk National University, Cheongju28644, Korea
| | - Hyunmo Choi
- Department of Forest Bioresources, National Institute of Forest Science, Suwon16631, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon34134, Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul08826, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| |
Collapse
|
4
|
Phookaew P, Ma Y, Suzuki T, Stolze SC, Harzen A, Sano R, Nakagami H, Demura T, Ohtani M. Active protein ubiquitination regulates xylem vessel functionality. THE PLANT CELL 2024; 36:3298-3317. [PMID: 39092875 PMCID: PMC11371170 DOI: 10.1093/plcell/koae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Xylem vessels function in the long-distance conduction of water in land plants. The NAC transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). We previously isolated suppressor of ectopic xylem vessel cell differentiation induced by VND7 (seiv) mutants. Here, we report that the responsible genes for seiv3, seiv4, seiv6, and seiv9 are protein ubiquitination-related genes encoding PLANT U-BOX46 (PUB46), an uncharacterized F-BOX protein (FBX), PUB36, and UBIQUITIN-SPECIFIC PROTEASE1 (UBP1), respectively. We also found decreased expression of genes downstream of VND7 and abnormal xylem transport activity in the seiv mutants. Upon VND7 induction, ubiquitination levels from 492 and 180 protein groups were upregulated and downregulated, respectively. VND7 induction resulted in the ubiquitination of proteins for cell wall biosynthesis and protein transport, whereas such active protein ubiquitination did not occur in the seiv mutants. We detected the ubiquitination of three lysine residues in VND7: K94, K105, and K260. Substituting K94 with arginine significantly decreased the transactivation activity of VND7, suggesting that the ubiquitination of K94 is crucial for regulating VND7 activity. Our findings highlight the crucial roles of target protein ubiquitination in regulating xylem vessel activity.
Collapse
Affiliation(s)
- Pawittra Phookaew
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ya Ma
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Takaomi Suzuki
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Anne Harzen
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Ryosuke Sano
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Taku Demura
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
5
|
Fan Y, Bai J, Wu S, Zhang M, Li J, Lin R, Hu C, Jing B, Wang J, Xia X, Hu Z, Yu J. The RALF2-FERONIA-MYB63 module orchestrates growth and defense in tomato roots. THE NEW PHYTOLOGIST 2024; 243:1123-1136. [PMID: 38831656 DOI: 10.1111/nph.19865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Plant secreted peptides RAPID ALKALINISATION FACTORs (RALFs), which act through the receptor FERONIA (FER), play important roles in plant growth. However, it remains unclear whether and how RALF-FER contributes to the trade-off of plant growth-defense. Here, we used a variety of techniques such as CRISPR/Cas9, protein-protein interaction and transcriptional regulation methods to investigate the role of RALF2 and its receptor FER in regulating lignin deposition, root growth, and defense against Fusarium oxysporum f. sp. lycopersici (Fol) in tomato (Solanum lycopersicum). The ralf2 and fer mutants show reduced primary root length, elevated lignin accumulation, and enhanced resistance against Fol than the wild-type. FER interacts with and phosphorylates MYB63 to promote its degradation. MYB63 serves as an activator of lignin deposition by regulating the transcription of dirigent protein gene DIR19. Mutation of DIR19 suppresses lignin accumulation, and reverses the short root phenotype and Fol resistance in ralf2 or fer mutant. Collectively, our results demonstrate that the RALF2-FER-MYB63 module fine-tunes root growth and resistance against Fol through regulating the deposition of lignin in tomato roots. The study sheds new light on how plants maintain the growth-defense balance via RALF-FER.
Collapse
Affiliation(s)
- Yanfen Fan
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Junyu Bai
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Shaofang Wu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiajia Li
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Rui Lin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jiachun Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
6
|
Liu J, Carriquí M, Xiong D, Kang S. Influence of IAA and ABA on maize stem vessel diameter and stress resistance in variable environments. PHYSIOLOGIA PLANTARUM 2024; 176:e14443. [PMID: 39039017 DOI: 10.1111/ppl.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
7
|
Rodriguez-Zaccaro FD, Lieberman M, Groover A. A systems genetic analysis identifies putative mechanisms and candidate genes regulating vessel traits in poplar wood. FRONTIERS IN PLANT SCIENCE 2024; 15:1375506. [PMID: 38867883 PMCID: PMC11167656 DOI: 10.3389/fpls.2024.1375506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Wood is the water conducting tissue of tree stems. Like most angiosperm trees, poplar wood contains water-conducting vessel elements whose functional properties affect water transport and growth rates, as well as susceptibility to embolism and hydraulic failure during water stress and drought. Here we used a unique hybrid poplar pedigree carrying genomically characterized chromosomal insertions and deletions to undertake a systems genomics analysis of vessel traits. We assayed gene expression in wood forming tissues from clonal replicates of genotypes covering dosage quantitative trait loci with insertions and deletions, genotypes with extreme vessel trait phenotypes, and control genotypes. A gene co-expression analysis was used to assign genes to modules, which were then used in integrative analyses to identify modules associated with traits, to identify putative molecular and cellular processes associated with each module, and finally to identify candidate genes using multiple criteria including dosage responsiveness. These analyses identified known processes associated with vessel traits including stress response, abscisic acid and cell wall biosynthesis, and in addition identified previously unexplored processes including cell cycle and protein ubiquitination. We discuss our findings relative to component processes contributing to vessel trait variation including signaling, cell cycle, cell expansion, and cell differentiation.
Collapse
Affiliation(s)
| | - Meric Lieberman
- University of California Davis, Genome Center, Davis, CA, United States
| | - Andrew Groover
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- USDA Forest Service, Northern Research Station, Burlington, VT, United States
| |
Collapse
|
8
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Higa T, Kijima ST, Sasaki T, Takatani S, Asano R, Kondo Y, Wakazaki M, Sato M, Toyooka K, Demura T, Fukuda H, Oda Y. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana. NATURE PLANTS 2024; 10:100-117. [PMID: 38172572 DOI: 10.1038/s41477-023-01593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Saku T Kijima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ryosuke Asano
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroo Fukuda
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Japan
- Akita Prefectural University, Akita, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
11
|
Brunot-Garau P, Úrbez C, Vera-Sirera F. Quantification of Tracheary Elements Types in Mature Hypocotyl of Arabidopsis thaliana. Methods Mol Biol 2024; 2722:131-137. [PMID: 37897605 DOI: 10.1007/978-1-0716-3477-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Secondary growth is a highly relevant process for dicot and gymnosperm species development. The process relies on vascular tissue proliferation and culminates with the thickening of stems, roots, and hypocotyls. The formation of tracheary elements is a critical step during this process. Among such tracheary elements, four different cell types are distinguished depending on their secondary cell wall pattern, which is exclusive for each tracheary cell type. Here we describe a method to isolate, dye, and recognize each of these tracheary cell types. The method is optimized to be performed in the Arabidopsis thaliana hypocotyl. This is because, in this species, the hypocotyl is the organ undergoing the largest proportion of secondary growth. Results allow for determining the relative amounts of each of the tracheary cell types.
Collapse
Affiliation(s)
- Paula Brunot-Garau
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), Valencia, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), Valencia, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), Valencia, Spain.
| |
Collapse
|
12
|
Choi J, Makarem M, Lee C, Lee J, Kiemle S, Cosgrove DJ, Kim SH. Tissue-specific directionality of cellulose synthase complex movement inferred from cellulose microfibril polarity in secondary cell walls of Arabidopsis. Sci Rep 2023; 13:22007. [PMID: 38086837 PMCID: PMC10716418 DOI: 10.1038/s41598-023-48545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In plant cells, cellulose synthase complexes (CSCs) are nanoscale machines that synthesize and extrude crystalline cellulose microfibrils (CMFs) into the apoplast where CMFs are assembled with other matrix polymers into specific structures. We report the tissue-specific directionality of CSC movements of the xylem and interfascicular fiber walls of Arabidopsis stems, inferred from the polarity of CMFs determined using vibrational sum frequency generation spectroscopy. CMFs in xylems are deposited in an unidirectionally biased pattern with their alignment axes tilted about 25° off the stem axis, while interfascicular fibers are bidirectional and highly aligned along the longitudinal axis of the stem. These structures are compatible with the design of fiber-reinforced composites for tubular conduit and support pillar, respectively, suggesting that during cell development, CSC movement is regulated to produce wall structures optimized for cell-specific functions.
Collapse
Affiliation(s)
- Juseok Choi
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohamadamin Makarem
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Chonghan Lee
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jongcheol Lee
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah Kiemle
- Materials Characterization Laboratory, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Kułak K, Wojciechowska N, Samelak-Czajka A, Jackowiak P, Bagniewska-Zadworna A. How to explore what is hidden? A review of techniques for vascular tissue expression profile analysis. PLANT METHODS 2023; 19:129. [PMID: 37981669 PMCID: PMC10659056 DOI: 10.1186/s13007-023-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The evolution of plants to efficiently transport water and assimilates over long distances is a major evolutionary success that facilitated their growth and colonization of land. Vascular tissues, namely xylem and phloem, are characterized by high specialization, cell heterogeneity, and diverse cell components. During differentiation and maturation, these tissues undergo an irreversible sequence of events, leading to complete protoplast degradation in xylem or partial degradation in phloem, enabling their undisturbed conductive function. Due to the unique nature of vascular tissue, and the poorly understood processes involved in xylem and phloem development, studying the molecular basis of tissue differentiation is challenging. In this review, we focus on methods crucial for gene expression research in conductive tissues, emphasizing the importance of initial anatomical analysis and appropriate material selection. We trace the expansion of molecular techniques in vascular gene expression studies and discuss the application of single-cell RNA sequencing, a high-throughput technique that has revolutionized transcriptomic analysis. We explore how single-cell RNA sequencing will enhance our knowledge of gene expression in conductive tissues.
Collapse
Affiliation(s)
- Karolina Kułak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
14
|
Sharma NK, Yadav S, Gupta SK, Irulappan V, Francis A, Senthil-Kumar M, Chattopadhyay D. MicroRNA397 regulates tolerance to drought and fungal infection by regulating lignin deposition in chickpea root. PLANT, CELL & ENVIRONMENT 2023; 46:3501-3517. [PMID: 37427826 DOI: 10.1111/pce.14666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Shalini Yadav
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Santosh Kumar Gupta
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Vadivelmurugan Irulappan
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Aleena Francis
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Muthappa Senthil-Kumar
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Debasis Chattopadhyay
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
15
|
Wang J, Jia H, Daniel G, Gao J, Jiang X, Ma L, Yue S, Guo J, Yin Y. Insights into asynchronous changes of cell wall polymers accumulated in different cell types during conifer xylem differentiation. Carbohydr Polym 2023; 316:121076. [PMID: 37321750 DOI: 10.1016/j.carbpol.2023.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
An improved understanding of the events involved in cell wall polymers deposition during xylem development could provide new scientific ways for molecular regulation and biomass utilization. Axial and radial cells are spatially heterogeneous and have highly cross-correlated developmental behavior, whereas the deposition of corresponding cell wall polymers during xylem differentiation is less studied. To clarify our hypothesis that cell wall polymers of two cell types accumulated asynchronously, we performed hierarchical visualization, including label-free in situ spectral imaging of different polymer compositions during the development of Pinus bungeana. In axial tracheids, the deposition of cellulose and glucomannan was observed on earlier stages of secondary wall thickening than that of xylan and lignin, while xylan distribution was strongly related to spatial distribution of lignin during differentiation. The content of lignin and polysaccharides increased by over 130 % and 60 % respectively when the S3 layer was formed, compared to the S2 stage. In ray cells, the deposition of crystalline cellulose, xylan, and lignin was generally lagged compared to that in corresponding axial tracheids, although the process followed a similar order. The concentration of lignin and polysaccharides in ray cells was only approximately 50 % of that in the axial tracheids during secondary wall thickening.
Collapse
Affiliation(s)
- Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Hao Jia
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Geoffrey Daniel
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Jie Gao
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Lingyu Ma
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Juan Guo
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| |
Collapse
|
16
|
Huang C, Kurotani KI, Tabata R, Mitsuda N, Sugita R, Tanoi K, Notaguchi M. Nicotiana benthamiana XYLEM CYSTEINE PROTEASE genes facilitate tracheary element formation in interfamily grafting. HORTICULTURE RESEARCH 2023; 10:uhad072. [PMID: 37303612 PMCID: PMC10251136 DOI: 10.1093/hr/uhad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/08/2023] [Indexed: 06/13/2023]
Abstract
Grafting is a plant propagation technique widely used in agriculture. A recent discovery of the capability of interfamily grafting in Nicotiana has expanded the potential combinations of grafting. In this study, we showed that xylem connection is essential for the achievement of interfamily grafting and investigated the molecular basis of xylem formation at the graft junction. Transcriptome and gene network analyses revealed gene modules for tracheary element (TE) formation during grafting that include genes associated with xylem cell differentiation and immune response. The reliability of the drawn network was validated by examining the role of the Nicotiana benthamiana XYLEM CYSTEINE PROTEASE (NbXCP) genes in TE formation during interfamily grafting. Promoter activities of NbXCP1 and NbXCP2 genes were found in differentiating TE cells in the stem and callus tissues at the graft junction. Analysis of a Nbxcp1;Nbxcp2 loss-of-function mutant indicated that NbXCPs control the timing of de novo TE formation at the graft junction. Moreover, grafts of the NbXCP1 overexpressor increased the scion growth rate as well as the fruit size. Thus, we identified gene modules for TE formation at the graft boundary and demonstrated potential ways to enhance Nicotiana interfamily grafting.
Collapse
Affiliation(s)
- Chaokun Huang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Ryohei Sugita
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
17
|
Zhou Y, Li G, Han G, Xun L, Mao S, Yang L, Wang Y. Developmental Programmed Cell Death Involved in Ontogenesis of Dictamnus dasycarpus Capitate Glandular Hairs. PLANTS (BASEL, SWITZERLAND) 2023; 12:395. [PMID: 36679107 PMCID: PMC9863949 DOI: 10.3390/plants12020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Plant glandular trichomes have received much attention due to their commercial and biological value. Recent studies have focused on the development of various glands in plants, suggesting that programmed cell death (PCD) may play an important role during the development of plant secretory structures. However, the development processes and cytological characteristics in different types of plant secretory structures differed significantly. This study aims to provide new data on the developmental PCD of the capitate glandular hairs in Dictamnus dasycarpus. Light, scanning, immunofluorescence labeling, and transmission electron microscopy were used to determine the different developmental processes of the capitate glandular hairs from a cytological perspective. Morphologically, the capitate glandular hair originates from one initial epidermal cell and differentiates into a multicellular trichome characterized by two basal cells, two lines of stalk cells, and a multicellular head. It is also histochemically detected by essential oils. TUNEL-positive reactions identified nuclei with diffused fluorescence or an irregular figure by DAPI, and Evans blue staining showed that the head and stalk cells lost their viability. Ultrastructural evidence revealed the developmental process by two possible modes of PCD. Non-autolytic PCD was characterized by buckling cell walls and degenerated nuclei, mitochondria, plastids, multivesicular body (MVB), and end-expanded endoplasmic reticulum in the condensed cytoplasm, which were mainly observed in the head cells. The MVB was detected in the degraded vacuole, a degraded nucleus with condensed chromatin and diffused membrane, and eventual loss of the vacuole membrane integrity exhibited typical evidence of vacuole-mediated autolytic PCD in the stalk cells. Furthermore, protoplasm degeneration coupled with dark oil droplets and numerous micro-dark osmiophilic substances was observed during late stages. The secretion mode of essential oils is also described in this paper.
Collapse
Affiliation(s)
- Yafu Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Gen Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Guijun Han
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Lulu Xun
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Shaoli Mao
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Luyao Yang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| | - Yanwen Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, 17 Cui Hua Nan Road, Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, 17 Cui Hua Nan Road, Xi’an 710061, China
| |
Collapse
|
18
|
Dauphin BG, Ranocha P, Dunand C, Burlat V. Cell-wall microdomain remodeling controls crucial developmental processes. TRENDS IN PLANT SCIENCE 2022; 27:1033-1048. [PMID: 35710764 DOI: 10.1016/j.tplants.2022.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Plant cell walls display cellular and subcellular specificities. At the subcellular level, wall regional territories with specific compositions are necessary for macroscopic developmental processes. These regional specificities were named differently throughout the years, and are unified here under the term 'cell-wall microdomains' that define the local composition and organization of wall polymers underlying territories of wall loosening and/or softening or stiffening. We review the occurrence and developmental role of wall microdomains in different cell types. We primarily focus on the contribution of two categories of wall-remodeling molecular actors: fine-tuning of homogalacturonan (HG; pectin) demethylesterification patterns and two classes of oxidoreductases [class III peroxidases (CIII PRXs) and laccases (LACs)], but we also highlight two different molecular scaffolds recently identified for positioning specific CIII PRXs.
Collapse
Affiliation(s)
- Bastien G Dauphin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France.
| |
Collapse
|
19
|
Huai B, Liang MJ, Bai M, He HJ, Chen JZ, Wu H. Localization of CgVPE1 in secondary cell wall formation during tracheary element differentiation in the pericarp of Citrus grandis 'Tomentosa' fruits. PLANTA 2022; 256:89. [PMID: 36169724 DOI: 10.1007/s00425-022-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
CgVPE1 is important in the differentiation of TE cells in C. grandis 'Tomentosa' fruits as it may directly affects secondary cell wall construction while participating in PCD. The vacuolar processing enzyme (VPE) plays an important role in both developmental and environmentally inducible programmed cell death (PCD); it was originally identified as a cysteine protease localized in the vacuole to activate and mature vacuolar proteins in plants. Interestingly, we found a VPE called CgVPE1 to be associated with deposition of the secondary cell wall in tracheary element (TE) cells in the pericarp of Citrus grandis 'Tomentosa' fruits. We then used ultrathin sections and the TUNEL assay to verify that PCD is involved in TE development. Furthermore, CgVPE1 was found to be mainly expressed in secretory cavities and TEs in the pericarp of Citrus grandis 'Tomentosa' fruits. Immunolocalization of CgVPE1 in the pericarp indicated that CgVPE1 is mainly distributed in the central large vacuole, endoplasmic reticulum, Golgi vesicles, cytosol, and secondary wall before TE maturation. CgVPE1 appeared earlier in the endoplasmic reticulum and Golgi vesicles of TEs cells. The vesicles containing CgVPE1 near the large central vacuole and secondary wall were observed, respectively. CgVPE1 proteins content in the cytoplasm decreased sharply, while the CgVPE1 content in the secondary cell wall did not change significantly after vacuole rupture. CgVPE1 protein contents in the secondary cell wall were significantly reduced until the TE cells developed into hollow thick-walled cells. Furthermore, labeling of VPE homologues in Arabidopsis thaliana using immunoelectron microscopy with anti-CgVPE1 antibody revealed that VPE homologues were specifically distributed in the secondary cell wall of stem TEs. Overall, these results suggested that CgVPE1 is not only involved PCD during TE cell development; furthermore, it may directly participate in the construction of plant secondary cell walls.
Collapse
Affiliation(s)
- B Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M J Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - H J He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - J Z Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - H Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Ghosh S, Nelson JF, Cobb GMC, Etchells JP, de Lucas M. Light regulates xylem cell differentiation via PIF in Arabidopsis. Cell Rep 2022; 40:111075. [PMID: 35858547 PMCID: PMC9638722 DOI: 10.1016/j.celrep.2022.111075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
The balance between cell proliferation and differentiation in the cambium defines the formation of plant vascular tissues. As cambium cells proliferate, subsets of daughter cells differentiate into xylem or phloem. TDIF-PXY/TDR signaling is central to this process. TDIF, encoded by CLE41 and CLE44, activates PXY/TDR receptors to maintain proliferative cambium. Light and water are necessary for photosynthesis; thus, vascular differentiation must occur upon light perception to facilitate the transport of water and minerals to the photosynthetic tissues. However, the molecular mechanism controlling vascular differentiation in response to light remains elusive. In this study we show that the accumulation of PIF transcription factors in the dark promotes TDIF signaling and inhibits vascular cell differentiation. On the contrary, PIF inactivation by light leads to a decay in TDIF activity, which induces vascular cell differentiation. Our study connects light to vascular differentiation and highlights the importance of this crosstalk to fine-tune water transport. Active CLE peptide TDIF inhibits xylem differentiation in etiolated seedlings The expression of the TDIF precursor CLE44 is rapidly inhibited by light PIF transcription factors are necessary for TDIF expression in the dark Blue light signaling prevents TDIF expression, which promotes xylem differentiation
Collapse
Affiliation(s)
- Shraboni Ghosh
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Joseph F Nelson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - J Peter Etchells
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Miguel de Lucas
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
21
|
Current Understanding of the Genetics and Molecular Mechanisms Regulating Wood Formation in Plants. Genes (Basel) 2022; 13:genes13071181. [PMID: 35885964 PMCID: PMC9319765 DOI: 10.3390/genes13071181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike herbaceous plants, woody plants undergo volumetric growth (a.k.a. secondary growth) through wood formation, during which the secondary xylem (i.e., wood) differentiates from the vascular cambium. Wood is the most abundant biomass on Earth and, by absorbing atmospheric carbon dioxide, functions as one of the largest carbon sinks. As a sustainable and eco-friendly energy source, lignocellulosic biomass can help address environmental pollution and the global climate crisis. Studies of Arabidopsis and poplar as model plants using various emerging research tools show that the formation and proliferation of the vascular cambium and the differentiation of xylem cells require the modulation of multiple signals, including plant hormones, transcription factors, and signaling peptides. In this review, we summarize the latest knowledge on the molecular mechanism of wood formation, one of the most important biological processes on Earth.
Collapse
|
22
|
Deep conservation and co-option of programmed cell death facilitates evolution of alternative phenotypes at multiple biological levels. Semin Cell Dev Biol 2022; 145:28-41. [PMID: 35654666 DOI: 10.1016/j.semcdb.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
Alternative phenotypes, such as polyphenisms and sexual dimorphisms, are widespread in nature and appear at all levels of biological organization, from genes and cells to morphology and behavior. Yet, our understanding of the mechanisms through which alternative phenotypes develop and how they evolve remains understudied. In this review, we explore the association between alternative phenotypes and programmed cell death, a mechanism responsible for the elimination of superfluous cells during development. We discuss the ancient origins and deep conservation of programmed cell death (its function, forms and underlying core regulatory gene networks), and propose that it was co-opted repeatedly to generate alternative phenotypes at the level of cells, tissues, organs, external morphology, and even individuals. We review several examples from across the tree of life to explore the conditions under which programmed cell death is likely to facilitate the evolution of alternative phenotypes.
Collapse
|
23
|
Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, Watanabe Y, Oda Y, Persson S. Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol 2022; 12:210208. [PMID: 35506204 PMCID: PMC9065968 DOI: 10.1098/rsob.210208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.
Collapse
Affiliation(s)
- Huizhen Xu
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro Giannetti
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Wenna Zheng
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam, Germany
| | - Yoichiro Watanabe
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Staffan Persson
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Zeps M, Kondratovičs T, Grigžde E, Jansons Ā, Zeltiņš P, Samsone I, Matisons R. Plantlet Anatomy of Silver Birch (Betula pendula Roth.) and Hybrid Aspen (Populus tremuloides Michx. × Populus tremula L.) Shows Intraspecific Reactions to Illumination In Vitro. PLANTS 2022; 11:plants11081097. [PMID: 35448825 PMCID: PMC9024933 DOI: 10.3390/plants11081097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Micropropagation of forest reproductive material is becoming an increasingly important tool of climate-smart forest management, whose efficiency is depending on artificial illumination, which in turn can have species-specific effects. To improve the energy-efficiency of micropropagation, light emitting diodes (LED) are becoming more popular; however, they emit light of narrow spectral composition, synergic effects of which can alter plantlet development. Regarding the in vitro cultures of trees, such effects have been scarcely studied. In this study, three clones of silver birch (Betula pendula Roth.) and three clones of hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) from the eastern Baltic region were tested. The responses of leaf and stem anatomy of in vitro cultures to three LED light illumination treatments differing by spectral composition and to illumination by fluorescent tubes were estimated by linear (mixed) models. The studied light treatments had non-interacted effects on stomata density and on the secondary xylem cell wall in the stem of silver birch and in the stomata length, stem radius, and phloem width of hybrid aspen. Furthermore, clone-specific responses to illumination were observed for number of chloroplasts and phloem width of silver birch and for leaf thickness and xylem cell wall thickness of hybrid aspen, implying different mechanisms of shade avoidance. In general, the responses of plantlet anatomy differed according to the width of the light spectrum in case of LED, as well as for fluorescent tubes. Considering the legacy effects of early development of plantlets, adaptability of illumination in terms of spectral composition according to the requirements of genotypes appear highly beneficial for micropropagation of sustainable forest reproductive material.
Collapse
|
25
|
Genome-Wide Investigation of the MiR166 Family Provides New Insights into Its Involvement in the Drought Stress Responses of Tea Plants (Camellia sinensis (L.) O. Kuntze). FORESTS 2022. [DOI: 10.3390/f13040628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MicroRNA166 (miR166) is a highly conserved plant miRNA that plays a crucial role in plant growth and the resistance to various abiotic stresses. However, the miR166s in tea (Camellia sinensis (L.) O. Kuntze) have not been comprehensively identified and analyzed. This study identified 30 mature miR166s and twelve pre-miR166s in tea plants. An evolutionary analysis revealed that csn-miR166s originating from the 3′ arm of their precursors were more conserved than the csn-miR166s derived from the 5′ arm of their precursors. The twelve pre-miR166s in tea were divided into two groups, with csn-MIR166 Scaffold364-2 separated from the other precursors. The Mfold-based predictions indicated that the twelve csn-MIR166s formed typical and stable structures comprising a stem-loop hairpin, with minimum free energy ranging from −110.90 to −71.80 kcal/mol. An analysis of the CsMIR166 promoters detected diverse cis-acting elements, including those related to light responses, biosynthesis and metabolism, abiotic stress defenses, and hormone responses. There was no one-to-one relationship between the csn-miR166s and their targets, but most csn-miR166s targeted HD-Zip III genes. Physiological characterization of tea plants under drought stress showed that leaf water content proportionally decreased with the aggravation of drought stress. In contrast, tea leaves’ malondialdehyde (MDA) content proportionally increased. Moreover, the cleavage site of the ATHB-15-like transcript was identified according to a modified 5′ RNA ligase-mediated rapid amplification of cDNA ends. The RT-qPCR data indicated that the transcription of nine csn-miR166s was negatively correlated with their target gene.
Collapse
|
26
|
Liu M, Zhang M, Yu S, Li X, Zhang A, Cui Z, Dong X, Fan J, Zhang L, Li C, Ruan Y. A Genome-Wide Association Study Dissects the Genetic Architecture of the Metaxylem Vessel Number in Maize Brace Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:847234. [PMID: 35360304 PMCID: PMC8961028 DOI: 10.3389/fpls.2022.847234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 05/31/2023]
Abstract
Metaxylem vessels in maize brace roots are key tissue, and their number (MVN) affects plant water and inorganic salt transportation and lodging resistance. Dissecting the genetic basis of MVN in maize brace roots can help guide the genetic improvement of maize drought resistance and lodging resistance during late developmental stages. In this study, we used 508 inbred lines with tropical, subtropical, and temperate backgrounds to analyze the genetic architecture of MVN in maize brace roots. The phenotypic variation in MVN in brace roots was evaluated in three environments, which revealed broad natural variation and relative low levels of heritability (h 2 = 0.42). Stiff-stalk lines with a temperate background tended to have higher MVNs than plants in other genetic backgrounds. MVN was significantly positively correlated with plant height, tassel maximum axis length, ear length, and kernel number per row, which indicates that MVN may affect plant morphological development and yield. In addition, MVN was extremely significantly negatively correlated with brace root radius, but significantly positively correlated with brace root angle (BRA), diameter, and number, thus suggesting that the morphological function of some brace root traits may be essentially determined by MVN. Association analysis of MVN in brace roots combined 1,253,814 single nucleotide polymorphisms (SNPs) using FarmCPU revealed a total of nine SNPs significantly associated with MVN at P < 7.96 × 10-7. Five candidate genes for MVN that may participate in secondary wall formation (GRMZM2G168365, GRMZM2G470499, and GRMZM2G028982) and regulate flowering time (GRMZM2G381691 and GRMZM2G449165). These results provide useful information for understanding the genetic basis of MVN in brace root development. Further functional studies of identified candidate genes should help elucidate the molecular pathways that regulate MVN in maize brace roots.
Collapse
Affiliation(s)
- Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Meng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhenhai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijun Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
27
|
Hirai R, Wang S, Demura T, Ohtani M. Histone Deacetylation Controls Xylem Vessel Cell Differentiation via Transcriptional Regulation of a Transcription Repressor Complex OFP1/4-MYB75-KNAT7-BLH6. FRONTIERS IN PLANT SCIENCE 2022; 12:825810. [PMID: 35154217 PMCID: PMC8829346 DOI: 10.3389/fpls.2021.825810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Xylem vessels are indispensable tissues in vascular plants that transport water and minerals. The differentiation of xylem vessel cells is characterized by secondary cell wall deposition and programmed cell death. These processes are initiated by a specific set of transcription factors, called VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, through the direct and/or indirectly induction of genes required for secondary cell wall deposition and programmed cell death. In this study, we explored novel regulatory factors for xylem vessel cell differentiation in Arabidopsis thaliana. We tested the effects of cellular stress inducers on VND7-induced differentiation of xylem vessel cells with the VND7-VP16-GR system, in which VND7 activity is post-translationally induced by dexamethasone application. We established that the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sirtinol inhibited VND7-induced xylem vessel cell differentiation. The inhibitory effects of TSA and sirtinol treatment were detected only when they were added at the same time as the dexamethasone application, suggesting that TSA and sirtinol mainly influence the early stages of xylem vessel cell differentiation. Expression analysis revealed that these HDAC inhibitors downregulated VND7-downstream genes, including both direct and indirect targets of transcriptional activation. Notably, the HDAC inhibitors upregulated the transcript levels of negative regulators of xylem vessel cells, OVATE FAMILY PROTEIN1 (OFP1), OFP4, and MYB75, which are known to form a protein complex with BEL1-LIKE HOMEODOMAIN6 (BLH6) to repress gene transcription. The KDB system, another in vitro induction system of ectopic xylem vessel cells, demonstrated that TSA and sirtinol also inhibited ectopic formation of xylem vessel cells, and this inhibition was partially suppressed in knat7-1, bhl6-1, knat7-1 bhl6-1, and quintuple ofp1 ofp2 ofp3 ofp4 ofp5 mutants. Thus, the negative effects of HDAC inhibitors on xylem vessel cell differentiation are mediated, at least partly, by the abnormal upregulation of the transcriptional repressor complex OFP1/4-MYB75-KNAT7-BLH6. Collectively, our findings suggest that active regulation of histone deacetylation by HDACs is involved in xylem vessel cell differentiation via the OFP1/4-MYB75-KNAT7-BLH6 complex.
Collapse
Affiliation(s)
- Risaku Hirai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shumin Wang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
28
|
Arae T, Nakakoji M, Noguchi M, Kamon E, Sano R, Demura T, Ohtani M. Plant secondary cell wall proteome analysis with an inducible system for xylem vessel cell differentiation. Dev Growth Differ 2021; 64:5-15. [PMID: 34918343 DOI: 10.1111/dgd.12767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
Abstract
Plant cell walls are typically composed of polysaccharide polymers and cell wall proteins (CWPs). CWPs account for approximately 10% of the plant cell wall structure and perform a wide range of functions. Previous studies have identified approximately 1000 CWPs in the model plant Arabidopsis thaliana; however, the analyses mainly targeted primary cell walls, which are generated at cell division. In contrast, little is known about CWPs in secondary cell walls (SCWs), which are rigid and contain the phenolic polymer lignin. Here, we performed a cell wall proteome analysis to obtain novel insights into CWPs in SCWs. To this end, we tested multiple methods for cell wall extraction with cultured Arabidopsis cells carrying the VND7-VP16-GR system, with which cells can be transdifferentiated into xylem-vessel-like cells with lignified SCWs by dexamethasone treatment. We then subjected the protein samples to in-gel trypsin digestion followed by LC-MS/MS analysis. The different extraction methods resulted in the detection of different cell wall fraction proteins (CWFPs). In particular, centrifugation conditions had a strong impact on the extracted CWFP species, resulting in the increased number of identified CWFPs. We successfully identified 896 proteins as CWFPs in total, including proteases, expansins, purple phosphatase, well-known lignin-related enzymes (laccase and peroxidase), and 683 of 896 proteins were newly identified CWFPs. These results demonstrate the usefulness of our CWP analysis method. Further analyses of SCW-related CWPs could be expected to produce information useful for understanding the roles of CWPs in plant cell functions.
Collapse
Affiliation(s)
- Toshihiro Arae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Mai Nakakoji
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Masahiro Noguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Eri Kamon
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
29
|
Kamon E, Ohtani M. Xylem vessel cell differentiation: A best model for new integrative cell biology? CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102135. [PMID: 34768235 DOI: 10.1016/j.pbi.2021.102135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 05/22/2023]
Abstract
Xylem vessels transport water and essential low-molecular-weight compounds throughout vascular plants. To achieve maximum performance as conductive tissues, xylem vessel cells undergo secondary cell wall deposition and programmed cell death to produce a hollow tube-like structure with a rigid outer shell. This unique process has been explored in detail from a cell biology and molecular biology perspective, culminating in the identification of the master transcriptional switches of xylem vessel cell differentiation, the VASCULAR-RELATED NAC-DOMAIN (VND) proteins. High-resolution analyses of xylem vessel cell differentiation have since accelerated and are now moving toward single cell-level dissection from a variety of directions. In this review, we introduce the current model of xylem vessel cell differentiation and discuss possible future directions in this field.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Misato Ohtani
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
30
|
van Bel AJE. The plant axis as the command centre for (re)distribution of sucrose and amino acids. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153488. [PMID: 34416599 DOI: 10.1016/j.jplph.2021.153488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Along with the increase in size required for optimal colonization of terrestrial niches, channels for bidirectional bulk transport of materials in land plants evolved during a period of about 100 million years. These transport systems are essentially still in operation - though perfected over the following 400 million years - and make use of hydrostatic differentials. Substances are accumulated or released at the loading and unloading ends, respectively, of the transport channels. The intermediate stretch between the channel termini is bifunctional and executes orchestrated release and retrieval of solutes. Analyses of anatomical and physiological data demonstrate that the release/retrieval zone extends deeper into sources and sinks than is commonly thought and covers usually much more than 99% of the translocation stretch. This review sketches the significance of events in the intermediate stretch for distribution of organic materials over the plant body. Net leakage from the channels does not only serve maintenance and growth of tissues along the pathway, but also diurnal, short-term or seasonal storage of reserve materials, and balanced distribution of organic C- and N-compounds over axial and terminal sinks. Release and retrieval are controlled by plasma-membrane transporters at the vessel/parenchyma interface in the contact pits along xylem vessels and by plasma-membrane transporters at the interface between companion cells and phloem parenchyma along sieve tubes. The xylem-to-phloem pathway vice versa is a bifacial, radially oriented system comprising a symplasmic pathway, of which entrance and exit are controlled at specific membrane checkpoints, and a parallel apoplasmic pathway. A broad range of specific sucrose and amino-acid transporters are deployed at the checkpoint plasma membranes. SUCs, SUTs, STPs, SWEETs, and AAPs, LTHs, CATs are localized to the plasma membranes in question, both in monocots and eudicots. Presence of Umamits in monocots is uncertain. There is some evidence for endo- and exocytosis at the vessel/parenchyma interface supplementary to the transporter-mediated uptake and release. Actions of transporters at the checkpoints are equally decisive for storage and distribution of amino acids and sucrose in monocots and eudicots, but storage and distribution patterns may differ between both taxa. While the majority of reserves is sequestered in vascular parenchyma cells in dicots, lack of space in monocot vasculature urges "outsourcing" of storage in ground parenchyma around the translocation path. In perennial dicots, specialized radial pathways (rays) include the sites for seasonal alternation of storage and mobilization. In dicots, apoplasmic phloem loading and a correlated low rate of release along the path would favour supply with photoassimilates of terminal sinks, while symplasmic phloem loading and a correlated higher rate of release along the path favours supply of axial sinks and transfer to the xylem. The balance between the resource acquisition by terminal and axial sinks is an important determinant of relative growth rate and, hence, for the fitness of plants in various habitats. Body enlargement as the evolutionary drive for emergence of vascular systems and mass transport propelled by hydrostatic differentials.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phythopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany.
| |
Collapse
|
31
|
|
32
|
Kamon E, Noda C, Higaki T, Demura T, Ohtani M. Calcium signaling contributes to xylem vessel cell differentiation via post-transcriptional regulation of VND7 downstream events. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:331-337. [PMID: 34782820 PMCID: PMC8562575 DOI: 10.5511/plantbiotechnology.21.0519a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Secondary cell walls (SCWs) accumulate in specific cell types of vascular plants, notably xylem vessel cells. Previous work has shown that calcium ions (Ca2+) participate in xylem vessel cell differentiation, but whether they function in SCW deposition remains unclear. In this study, we examined the role of Ca2+ in SCW deposition during xylem vessel cell differentiation using Arabidopsis thaliana suspension-cultured cells carrying the VND7-inducible system, in which VND7 activity can be post-translationally upregulated to induce transdifferentiation into protoxylem-type vessel cells. We observed that extracellular Ca2+ concentration was a crucial determinant of differentiation, although it did not have consistent effects on the transcription of VND7-downstream genes as a whole. Increasing the Ca2+ concentration reduced differentiation but the cells could generate the spiral patterning of SCWs. Exposure to a calcium-channel inhibitor partly restored differentiation but resulted in abnormal branched and net-like SCW patterning. These data suggest that Ca2+ signaling participates in xylem vessel cell differentiation via post-transcriptional regulation of VND7-downstream events, such as patterning of SCW deposition.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chihiro Noda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Kumamoto 860-8555, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
33
|
Rodriguez-Zaccaro FD, Henry IM, Groover A. Genetic Regulation of Vessel Morphology in Populus. FRONTIERS IN PLANT SCIENCE 2021; 12:705596. [PMID: 34497621 PMCID: PMC8419429 DOI: 10.3389/fpls.2021.705596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
During secondary growth, forest trees can modify the anatomy of the wood produced by the vascular cambium in response to environmental conditions. Notably, the trees of the model angiosperm genus, Populus, reduce the risk of cavitation and hydraulic failure under water stress by producing water-conducting vessel elements with narrow lumens, which are more numerous and more interconnected with each other. Here, we determined the genetic architecture of vessel traits affecting hydraulic physiology and resilience to water stress. Vessel traits were measured for clonally replicated genotypes of a unique Populus deltoides x nigra population carrying genomically defined insertions and deletions that create gene dosage variation. We found significant phenotypic variation for all traits measured (mean vessel diameter, height-corrected mean vessel diameter, vessel frequency, height-corrected vessel frequency, vessel grouping index, and mean vessel circularity), and that all traits were under genetic control and showed moderate heritability values, ranging from 0.32 to 0.53. Whole-genome scans of correlations between gene dosage and phenotypic traits identified quantitative trait loci for tree height, mean vessel diameter, height-corrected mean vessel diameter, height-corrected vessel frequency, and vessel grouping index. Our results demonstrate that vessel traits affecting hydraulic physiology are under genetic control, and both pleiotropic and trait-specific quantitative trait loci are found for these traits.
Collapse
Affiliation(s)
- F. Daniela Rodriguez-Zaccaro
- US Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Isabelle M. Henry
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Andrew Groover
- US Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Schneider R, Klooster KV, Picard KL, van der Gucht J, Demura T, Janson M, Sampathkumar A, Deinum EE, Ketelaar T, Persson S. Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development. Nat Commun 2021; 12:669. [PMID: 33510146 PMCID: PMC7843992 DOI: 10.1038/s41467-021-20894-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023] Open
Abstract
Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning. Plant cell wall formation is directed by cortical microtubules, which produce complex patterns needed to support xylem vessels. Here, the authors perform live-cell imaging and simulations of Arabidopsis cells during proto-xylem differentiation to show how local microtubule dynamics control pattern formation.
Collapse
Affiliation(s)
- René Schneider
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Kris Van't Klooster
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.,Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Kelsey L Picard
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Natural Sciences, University of Tasmania, Hobart, 7001, TAS, Australia
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Marcel Janson
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Wageningen University, Wageningen, The Netherlands.
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Kunieda T, Kishida K, Kawamura J, Demura T. Influence of osmotic condition on secondary cell wall formation of xylem vessel cells induced by the master transcription factor VND7. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:465-469. [PMID: 33850435 PMCID: PMC8034666 DOI: 10.5511/plantbiotechnology.20.1127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Xylem vessels, which conduct water from roots to aboveground tissues in vascular plants, are stiffened by secondary cell walls (SCWs). Protoxylem vessel cells deposit cellulose, hemicellulose, and lignin as SCW components in helical and/or annular patterns. The mechanisms underlying SCW patterning in the protoxylem vessel cells are not fully understood, although VASCULAR-RERATED NAC-DOMAIN 7 (VND7) has been identified as a master transcription factor in protoxylem vessel cell differentiation in Arabidopsis thaliana. Here, we investigated deposition patterns of SCWs throughout the tissues of Arabidopsis seedlings using an inducible transdifferentiation system that utilizes a chimeric protein in which VND7 is fused with the activation domain of VP16 and the glucocorticoid receptor (GR) (VND7-VP16-GR). In slender- and cylinder-shaped cells, such as petiole and hypocotyl cells, SCWs that were ectopically induced by the VND7-VP16-GR system were deposited linearly, resulting in helical and annular patterns similar to the endogenous patterns in protoxylem vessel cells. By contrast, concentrated linear SCW deposition was associated with unevenness on the surface of pavement cells in cotyledon leaf blades, suggesting the involvement of cell morphology in SCW patterning. When we exposed the seedlings to hypertonic conditions that induced plasmolysis, we observed aberrant deposition patterns in SCW formation. Because the turgor pressure becomes zero at the point when cells reach limiting plasmolysis, this result implies that proper turgor pressure is required for normal SCW patterning. Taken together, our results suggest that the deposition pattern of SCWs is affected by mechanical stimuli that are related to cell morphogenesis and turgor pressure.
Collapse
Affiliation(s)
- Tadashi Kunieda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Keisuke Kishida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Jumpei Kawamura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- E-mail: Tel: +81-743-72-5460 Fax: +81-743-72-5469
| |
Collapse
|
36
|
Jacobs B, Molenaar J, Deinum EE. Robust banded protoxylem pattern formation through microtubule-based directional ROP diffusion restriction. J Theor Biol 2020; 502:110351. [PMID: 32505828 DOI: 10.1016/j.jtbi.2020.110351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
In plant vascular tissue development, different cell wall patterns are formed, offering different mechanical properties optimised for different growth stages. Critical in these patterning processes are Rho of Plants (ROP) proteins, a class of evolutionarily conserved small GTPase proteins responsible for local membrane domain formation in many organisms. While te spotted metaxylem pattern can easily be understood as a result of a Turing-style reaction-diffusion mechanism, it remains an open question how the consistent orientation of evenly spaced bands and spirals as found in protoxylem is achieved. We hypothesise that this orientation results from an interaction between ROPs and an array of transversely oriented cortical microtubules that acts as a directional diffusion barrier. Here, we explore this hypothesis using partial differential equation models with anisotropic ROP diffusion and show that a horizontal microtubule array acting as a vertical diffusion barrier to active ROP can yield a horizontally banded ROP pattern. We then study the underlying mechanism in more detail, finding that it can only orient curved pattern features but not straight lines. This implies that, once formed, banded and spiral patterns cannot be reoriented by this mechanism. Finally, we observe that ROPs and microtubules together only form ultimately static patterns if the interaction is implemented with sufficient biological realism.
Collapse
Affiliation(s)
- Bas Jacobs
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| | - Jaap Molenaar
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| | - Eva E Deinum
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
37
|
Offler CE, Patrick JW. Transfer cells: what regulates the development of their intricate wall labyrinths? THE NEW PHYTOLOGIST 2020; 228:427-444. [PMID: 32463520 DOI: 10.1111/nph.16707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Transfer cells (TCs) support high nutrient rates into, or at symplasmic discontinuities within, the plant body. Their transport capacity is conferred by an amplified plasma membrane surface area, enriched in nutrient transporters, supported on an intricately invaginated wall labyrinth (WL). Thus, development of the WL is at the heart of TC function. Enquiry has shifted from describing WL architecture and formation to discovering mechanisms regulating WL assembly. Experimental systems used to examine these phenomena are critiqued. Considerable progress has been made in identifying master regulators that commit stem cells to a TC fate (e.g. the maize Myeloblastosis (MYB)-related R1-type transcription factor) and signals that induce differentiated cells to undergo trans-differentiation to a TC phenotype (e.g. sugar, auxin and ethylene). In addition, signals that provide positional information for assembly of the WL include apoplasmic hydrogen peroxide and cytosolic Ca2+ plumes. The former switches on, and specifies the intracellular site for WL construction, while the latter creates subdomains to direct assembly of WL invaginations. Less is known about macromolecule species and their spatial organization essential for WL assembly. Emerging evidence points to a dependency on methyl-esterified homogalacturonan accumulation, unique patterns of cellulose and callose deposition and spatial positioning of arabinogalactan proteins.
Collapse
Affiliation(s)
- Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
38
|
Pawittra P, Suzuki T, Kawabe H, Takebayashi A, Demura T, Ohtani M. Isolation of dominant Arabidopsis seiv mutants defective in VND7-induced xylem vessel cell differentiation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:311-318. [PMID: 33088194 PMCID: PMC7557666 DOI: 10.5511/plantbiotechnology.20.0427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The plant-specific NAC transcription factor VASCULAR-RELATED NAC-DOMAIN 7 (VND7) functions in xylem vessel cell differentiation in Arabidopsis thaliana. To identify novel factors regulating xylem vessel cell differentiation, we previously performed ethyl methanesulfonate mutagenesis of a transgenic 35S::VND7-VP16-GR line in which VND7 activity can be induced post-translationally by glucocorticoid treatment. We successfully isolated mutants that fail to form ectopic xylem vessel cells named seiv (suppressor of ectopic vessel cell differentiation induced by VND7) mutants. Here, we isolated eight novel dominant seiv mutants: seiv2 to seiv9. In these seiv mutants, ectopic xylem vessel cell differentiation was inhibited in aboveground but not underground tissues. Specifically, the shoot apices of the mutants, containing shoot apical meristems and leaf primordia, completely lacked ectopic xylem vessel cells. In these mutants, the VND7-induced upregulation of downstream genes was reduced, especially in shoots compared to roots. However, endogenous xylem vessel cell formation was not affected in the seiv mutants. Therefore, the seiv mutations identified in this study have repressive effects on cell differentiation in shoot meristematic regions, resulting in inhibited ectopic xylem vessel cell differentiation.
Collapse
Affiliation(s)
- Phookaew Pawittra
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takaomi Suzuki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Harunori Kawabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Arika Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
39
|
Sousa AO, Camillo LR, Assis ETCM, Lima NS, Silva GO, Kirch RP, Silva DC, Ferraz A, Pasquali G, Costa MGC. EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties. PLANTA 2020; 252:45. [PMID: 32880001 DOI: 10.1007/s00425-020-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/27/2020] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION EgPHI-1 is a member of PHI-1/EXO/EXL protein family. Its overexpression in tobacco resulted in changes in biomass partitioning, xylem fiber length, secondary cell wall thickening and composition, and lignification. Here, we report the functional characterization of a PHOSPHATE-INDUCED PROTEIN 1 homologue showing differential expression in xylem cells from Eucalyptus species of contrasting phenotypes for wood quality and growth traits. Our results indicated that this gene is a member of the PHI-1/EXO/EXL family. Analysis of the promoter cis-acting regulatory elements and expression responses to different treatments revealed that the Eucalyptus globulus PHI-1 (EgPHI-1) is transcriptionally regulated by auxin, cytokinin, wounding and drought. EgPHI-1 overexpression in transgenic tobacco changed the partitioning of biomass, favoring its allocation to shoots in detriment of roots. The stem of the transgenic plants showed longer xylem fibers and reduced cellulose content, while the leaf xylem had enhanced secondary cell wall thickness. UV microspectrophotometry of individual cell wall layers of fibers and vessels has shown that the transgenic plants exhibit differences in the lignification of S2 layer in both cell types. Taken together, the results suggest that EgPHI-1 mediates the elongation of secondary xylem fibers, secondary cell wall thickening and composition, and lignification, making it an attractive target for biotechnological applications in forestry and biofuel crops.
Collapse
Affiliation(s)
- Aurizangela O Sousa
- Centro Multidisciplinar do Campus de Luís Eduardo Magalhães, Universidade Federal do Oeste da Bahia, Luís Eduardo Magalhães, Bahia, 47850-000, Brazil
| | - Luciana R Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Elza Thaynara C M Assis
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Nathália S Lima
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Genilson O Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Rochele P Kirch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Delmira C Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo- USP, Lorena, São Paulo, 12602-810, Brazil
| | - Giancarlo Pasquali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Marcio G C Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil.
| |
Collapse
|
40
|
Ogden AJ, Bhatt JJ, Brewer HM, Kintigh J, Kariuki SM, Rudrabhatla S, Adkins JN, Curtis WR. Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature. Int J Mol Sci 2020; 21:E4461. [PMID: 32586033 PMCID: PMC7352395 DOI: 10.3390/ijms21124461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link between water deficit and phloem protein contents is relatively unexplored. Here we collected phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem. Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all samples suggests that the protein content of phloem sap is complex, and includes proteins that function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA silencing. We observed 169 proteins whose abundance changed significantly within the phloem sap, either during drought or recovery. Proteins that became significantly more abundant during drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely, proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery that supports previous findings and provides new evidence that multiple biological processes are involved in drought adaptation.
Collapse
Affiliation(s)
- Aaron J. Ogden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jishnu J. Bhatt
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Heather M. Brewer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jack Kintigh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Samwel M. Kariuki
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Sairam Rudrabhatla
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg Campus, 777 W Harrisburg Pike, Middletown, PA 17057, USA;
| | - Joshua N. Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Wayne R. Curtis
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| |
Collapse
|
41
|
Lin W, Sun L, Huang RZ, Liang W, Liu X, He H, Fukuda H, He XQ, Qian W. Active DNA demethylation regulates tracheary element differentiation in Arabidopsis. SCIENCE ADVANCES 2020; 6:eaaz2963. [PMID: 32637594 PMCID: PMC7319731 DOI: 10.1126/sciadv.aaz2963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/13/2020] [Indexed: 05/16/2023]
Abstract
DNA demethylation is important for the erasure of DNA methylation. The role of DNA demethylation in plant development remains poorly understood. Here, we found extensive DNA demethylation in the CHH context around pericentromeric regions and DNA demethylation in the CG, CHG, and CHH contexts at discrete genomic regions during ectopic xylem tracheary element (TE) differentiation. While loss of pericentromeric methylation occurs passively, DNA demethylation at a subset of regions relies on active DNA demethylation initiated by DNA glycosylases ROS1, DML2, and DML3. The ros1 and rdd mutations impair ectopic TE differentiation and xylem development in the young roots of Arabidopsis seedlings. Active DNA demethylation targets and regulates many genes for TE differentiation. The defect of xylem development in rdd is proposed to be caused by dysregulation of multiple genes. Our study identifies a role of active DNA demethylation in vascular development and reveals an epigenetic mechanism for TE differentiation.
Collapse
Affiliation(s)
- Wei Lin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Linhua Sun
- Academy for Advanced Interdisciplinary Studies, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Run-Zhou Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Liang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xinyu Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Corresponding author. (X.-Q.H.); (W.Q.)
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Corresponding author. (X.-Q.H.); (W.Q.)
| |
Collapse
|
42
|
Gong X, Xie Z, Qi K, Zhao L, Yuan Y, Xu J, Rui W, Shiratake K, Bao J, Khanizadeh S, Zhang S, Tao S. PbMC1a/1b regulates lignification during stone cell development in pear ( Pyrus bretschneideri) fruit. HORTICULTURE RESEARCH 2020; 7:59. [PMID: 32377350 PMCID: PMC7193627 DOI: 10.1038/s41438-020-0280-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 05/16/2023]
Abstract
Programmed cell death (PCD) and secondary cell wall (SCW) thickening in pear fruit are accompanied by the deposition of cellulose and lignin to form stone cells. Metacaspase is an important protease for development, tissue renewal and PCD. The understanding of the molecular mechanism whereby pear (Pyrus) metacaspase promotes PCD and cell wall lignification is still limited. In this study, the Metacaspases gene family (PbMCs) from P. bretschneideri was identified. PbMC1a/1b was associated with lignin deposition and stone cell formation by physiological data, semiquantitative real-time polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR). Relative to wild-type (WT) Arabidopsis, the overexpression of PbMC1a/1b increased lignin deposition and delayed growth, thickened the cell walls of vessels, xylary fibers and interfascicular fibers, and increased the expression of lignin biosynthetic genes. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC) and GST pull-down assays indicated that the PbMC1a/1b protein physically interacted with PbRD21. Simultaneously, the transient expression of PbMC1a/1b and PbRD21 led to significant changes in the expression of genes and lignin contents in pear fruits and flesh calli. These results indicate that PbMC1a/1b plays an important role in cell wall lignification, possibly by interacting with PbRD21 to increase the mRNA levels of some lignin synthesis-associated genes and promote the formation of stone cells in pear fruit.
Collapse
Affiliation(s)
- Xin Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yazhou Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weikang Rui
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | - Jianping Bao
- College of Plant Science, Tarim University, Ala’er City, China
| | - Shahrokh Khanizadeh
- ELM Consulting Inc., St-Lazare, Canada
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Iqbal T, Shah SK, Ullah F, Mehmood S, Zeb MA. Analysis of deformable distortion in the architecture of leaf xylary vessel elements of Carthamus oxycantha caused by heavy metals stress using image registration. Microsc Res Tech 2020; 83:843-849. [PMID: 32233100 DOI: 10.1002/jemt.23476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 11/05/2022]
Abstract
Anatomical study of leaf xylary vessel elements of Carthamus oxycantha under various intensities of lead (Pb) and nickel (Ni) stress (200, 400, 600, and 800 mg Pb(NO3 )2 , NiCl2 ·6H2 O/kg of the soil) was conducted. The deformations caused due to metal stress were detected using point-based image registration technique. Initially, a set of corresponding feature points called landmarks was selected for warping of two-dimensional microscopic images of deformed/source vessel (stressed) to its normal/target (unstressed) counterpart. The results show that the target registration error is less than 3 mm using real plant image datasets. The stress caused alterations mainly in diameter, size, and shape of the cells. Average cell diameter and average wall diameter of vessels were measured with "Image J." The range of decrease in average cell diameter from 18.566 to 13.1 μm and the range of increase in average wall diameter was from 5.166 to 10.1 μm, with increase in stress factor through 200, 400, 600, and 800 mg Pb(NO3 )2 , NiCl2 ·6H2 O/kg of the soil. We noted large deformation in the form of shrinkage in cell size and diminution in its diameter. The diminution in diameter and the shrinkage in cell size of vessel cells may be due to the deposition of wall materials. It can be a possible strategy to limit the water flow to overcome the rapid mobility and transportation of the excess amount of metals to safeguard the cellular components from unpleasant consequences of metallic stress.
Collapse
Affiliation(s)
- Tahir Iqbal
- Department of Botany, University of Science and Technology Bannu, KP, Pakistan
| | - Said K Shah
- Department of Computer Sciences, University of Science and Technology Bannu, KP, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology Bannu, KP, Pakistan
| | - Sultan Mehmood
- Department of Botany, University of Science and Technology Bannu, KP, Pakistan
| | - Muhammad A Zeb
- Department of Botany, University of Science and Technology Bannu, KP, Pakistan
| |
Collapse
|
44
|
Kunieda T, Hara-Nishimura I, Demura T, Haughn GW. Arabidopsis FLYING SAUCER 2 Functions Redundantly with FLY1 to Establish Normal Seed Coat Mucilage. PLANT & CELL PHYSIOLOGY 2020; 61:308-317. [PMID: 31626281 DOI: 10.1093/pcp/pcz195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Following exposure to water, mature Arabidopsis seeds are surrounded by a gelatinous capsule, termed mucilage. The mucilage consists of pectin-rich polysaccharides, which are produced in epidermal cells of the seed coat. Although pectin is a major component of plant cell walls, its biosynthesis and biological functions are not fully understood. Previously, we reported that a transmembrane RING E3 ubiquitin ligase, FLYING SAUCER 1 (FLY1) regulates the degree of pectin methyl esterification for mucilage capsule formation. The Arabidopsis thaliana genome has a single FLY1 homolog, FLY2. In this study, we show that the FLY2 protein functions in mucilage modification together with FLY1. FLY2 was expressed in seed coat epidermal cells during mucilage synthesis, but its expression level was much lower than that of FLY1. While fly2 showed no obvious difference in mucilage capsule formation from wild type, the fly1 fly2 double mutants showed more severe defects in mucilage than fly1 alone. FLY2-EYFP that was expressed under the control of the FLY1 promoter rescued fly1 mucilage, showing that FLY2 has the same molecular function as FLY1. FLY2-EYFP colocalized with marker proteins of Golgi apparatus (sialyltransferase-mRFP) and late endosome (mRFP-ARA7), indicating that as FLY1, FLY2 controls pectin modification by functioning in these endomembrane organelles. Furthermore, phylogenetic analysis suggests that FLY1 and FLY2 originated from a common ancestral gene by gene duplication prior to the emergence of Brassicaceae. Taken together, our findings suggest that FLY2 functions in the Golgi apparatus and/or the late endosome of seed coat epidermal cells in a manner similar to FLY1.
Collapse
Affiliation(s)
- Tadashi Kunieda
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculty of Science and Engineering, Konan University, Kobe, 658-8501 Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | | | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - George W Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
45
|
Hirai R, Higaki T, Takenaka Y, Sakamoto Y, Hasegawa J, Matsunaga S, Demura T, Ohtani M. The Progression of Xylem Vessel Cell Differentiation is Dependent on the Activity Level of VND7 in Arabidopsis thaliana. PLANTS 2019; 9:plants9010039. [PMID: 31881731 PMCID: PMC7020236 DOI: 10.3390/plants9010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Xylem vessels are important for water conduction in vascular plants. The VASCULAR-RELATED NAC-DOMAIN (VND) family proteins, master regulators of xylem vessel cell differentiation in Arabidopsis thaliana, can upregulate a set of genes required for xylem vessel cell differentiation, including those involved in secondary cell wall (SCW) formation and programmed cell death (PCD); however, it is not fully understood how VND activity levels influence these processes. Here, we examined the Arabidopsis VND7-VP16-GR line, in which VND7 activity is post-translationally activated by treatments with different concentrations of dexamethasone (DEX), a synthetic glucocorticoid. Our observations showed that 1 nM DEX induced weak SCW deposition, but not PCD, whereas 10 or 100 nM DEX induced both SCW deposition and PCD. The decreased chlorophyll contents and SCW deposition were apparent after 24 h of 100 nM DEX treatment, but became evident only after 48 h of 10 nM DEX treatment. Moreover, the lower DEX concentrations delayed the upregulation of VND7 downstream genes, and decreased their induction levels. They collectively suggest that the regulation of VND activity is important not only to initiate xylem vessel cell differentiation, but also regulate the quality of the xylem vessels through VND-activity-dependent upregulation of the PCD- and SCW-related genes.
Collapse
Affiliation(s)
- Risaku Hirai
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Yuto Takenaka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
| | - Yuki Sakamoto
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Junko Hasegawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Sachihiro Matsunaga
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan; (Y.S.); (J.H.); (S.M.)
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
- Correspondence: (T.D.); (M.O.); Tel.: +81-743-72-5460 (T.D.); +81-4-7136-3673 (M.O.)
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; (R.H.); (Y.T.)
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Correspondence: (T.D.); (M.O.); Tel.: +81-743-72-5460 (T.D.); +81-4-7136-3673 (M.O.)
| |
Collapse
|
46
|
Tamura T, Endo H, Suzuki A, Sato Y, Kato K, Ohtani M, Yamaguchi M, Demura T. Affinity-based high-resolution analysis of DNA binding by VASCULAR-RELATED NAC-DOMAIN7 via fluorescence correlation spectroscopy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:298-313. [PMID: 31313414 DOI: 10.1111/tpj.14443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
VASCULAR-RELATED NAC-DOMAIN7 (VND7) is the master transcription factor for vessel element differentiation in Arabidopsis thaliana. To identify the cis-acting sequence(s) bound by VND7, we employed fluorescence correlation spectroscopy (FCS) to find VND7-DNA interactions quantitatively. This identified an 18-bp sequence from the promoter of XYLEM CYSTEINE PEPTIDASE1 (XCP1), a direct target of VND7. A quantitative assay for binding affinity between VND7 and the 18-bp sequence revealed the core nucleotides contributing to specific binding between VND7 and the 18-bp sequence. Moreover, by combining the systematic evolution of ligands by exponential enrichment (SELEX) technique with known consensus sequences, we defined a motif termed the Ideal Core Structure for binding by VND7 (ICSV). We also used FCS to search for VND7 binding sequences in the promoter regions of other direct targets. Taking these data together, we proposed that VND7 preferentially binds to the ICSV sequence. Additionally, we found that substitutions among the core nucleotides affected transcriptional regulation by VND7 in vivo, indicating that the core nucleotides contribute to vessel-element-specific gene expression. Furthermore, our results demonstrate that FCS is a powerful tool for unveiling the DNA-binding properties of transcription factors.
Collapse
Affiliation(s)
- Taizo Tamura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Atsunobu Suzuki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Ko Kato
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
47
|
Cheng Z, Zhang J, Yin B, Liu Y, Wang B, Li H, Lu H. γVPE plays an important role in programmed cell death for xylem fiber cells by activating protease CEP1 maturation in Arabidopsis thaliana. Int J Biol Macromol 2019; 137:703-711. [PMID: 31279878 DOI: 10.1016/j.ijbiomac.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/28/2022]
Abstract
The vacuolar processing enzyme (VPE) plays an important role in PCD and was originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants. We found that γVPE is involved in PCD of xylem fiber cells through the activation of CEP1 proproteases into mature protease in Arabidopsis. The γVPE protein was expressed specifically in cambium cells cambium, the primary phloem and the primary xylem during stem development. The recombinant γVPE appearing as a proenzyme at pH 7.0, and then transforming into a 40-kD mature enzyme at pH 5.5 in vitro by self-cleaving. The mature γVPE protein activated CEP1 maturation in vitro, whereas this activity was inhibited in the γvpe mutant. Transmission electron microscopy showed delayed PCD in fiber cells and thickening of secondary fiber cell walls in the γvpe mutant. Transcriptome analysis showed that the expression of 2001 genes was significantly altered expression in the γvpe mutants, and most of them are important for secondary cell wall formation and PCD. Our results demonstrate that γVPE is a crucial processing enzyme for xylem fiber cells PCD during stem development.
Collapse
Affiliation(s)
- Ziyi Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
48
|
Xu C, Shen Y, He F, Fu X, Yu H, Lu W, Li Y, Li C, Fan D, Wang HC, Luo K. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. THE NEW PHYTOLOGIST 2019; 222:752-767. [PMID: 30582614 DOI: 10.1111/nph.15658] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/14/2018] [Indexed: 05/21/2023]
Abstract
Wood development is strictly regulated by various phytohormones and auxin plays a central regulatory role in this process. However, how the auxin signaling is transducted in developing secondary xylem during wood formation in tree species remains unclear. Here, we identified an Aux/INDOLE-3-ACETIC ACID 9 (IAA9)-AUXIN RESPONSE FACTOR 5 (ARF5) module in Populus tomentosa as a key mediator of auxin signaling to control early developing xylem development. PtoIAA9, a canonical Aux/IAA gene, is predominantly expressed in vascular cambium and developing secondary xylem and induced by exogenous auxin. Overexpression of PtoIAA9m encoding a stabilized IAA9 protein significantly represses secondary xylem development in transgenic poplar. We further showed that PtoIAA9 interacts with PtoARF5 homologs via the C-terminal III/IV domains. The truncated PtoARF5.1 protein without the III/IV domains rescued defective phenotypes caused by PtoIAA9m. Expression analysis showed that the PtoIAA9-PtoARF5 module regulated the expression of genes associated with secondary vascular development in PtoIAA9m- and PtoARF5.1-overexpressing plants. Furthermore, PtoARF5.1 could bind to the promoters of two Class III homeodomain-leucine zipper (HD-ZIP III) genes, PtoHB7 and PtoHB8, to modulate secondary xylem formation. Taken together, our results suggest that the Aux/IAA9-ARF5 module is required for auxin signaling to regulate wood formation via orchestrating the expression of HD-ZIP III transcription factors in poplar.
Collapse
Affiliation(s)
- Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yun Shen
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fu He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hong Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wanxiang Lu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yongli Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hua Cassan Wang
- UMR5546, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III Paul Sabatier, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
49
|
Tikhomirova LI, Bazarnova NG, Sinitsyna AA. Histochemical Study of Xylem Cells in In Vitro Culture of Iris sibirica L. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018070129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Gao X, Ruan X, Sun Y, Wang X, Feng B. BAKing up to Survive a Battle: Functional Dynamics of BAK1 in Plant Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2019; 9:1913. [PMID: 30671069 PMCID: PMC6331536 DOI: 10.3389/fpls.2018.01913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 05/12/2023]
Abstract
In plants, programmed cell death (PCD) has diverse, essential roles in vegetative and reproductive development, and in the responses to abiotic and biotic stresses. Despite the rapid progress in understanding the occurrence and functions of the diverse forms of PCD in plants, the signaling components and molecular mechanisms underlying the core PCD machinery remain a mystery. The roles of BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1), an essential co-receptor of multiple receptor complexes, in the regulation of immunity and development- and defense-related PCD have been well characterized. However, the ways in which BAK1 functions in mediating PCD need to be further explored. In this review, different forms of PCD in both plants and mammals are discussed. Moreover, we mainly summarize recent advances in elucidating the functions and possible mechanisms of BAK1 in controlling diverse forms of PCD. We also highlight the involvement of post-translational modifications (PTMs) of multiple signaling component proteins in BAK1-mediated PCD.
Collapse
Affiliation(s)
- Xiquan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xinsen Ruan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Baomin Feng
- Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|