1
|
Weeks AM. PEARLs of wisdom for ribosome-independent peptide bond synthesis. Proc Natl Acad Sci U S A 2025; 122:e2504930122. [PMID: 40258159 PMCID: PMC12054794 DOI: 10.1073/pnas.2504930122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Affiliation(s)
- Amy M. Weeks
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI53706
| |
Collapse
|
2
|
Byju S, Whitford PC. tRNA kinetics on the ribosome depends nonmonotonically on intersubunit rotation. Biophys J 2025:S0006-3495(25)00245-0. [PMID: 40253588 DOI: 10.1016/j.bpj.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
To translate messenger RNA into proteins, the ribosome must coordinate a wide range of conformational rearrangements. Some steps involve individual molecules, whereas others require synchronization of multiple collective motions. For example, the ribosomal "small" subunit (∼1 MDa) is known to undergo rotational motion (∼10°) that is correlated with large-scale displacements of tRNA molecules (∼50 Å). While decades of biochemical, single-molecule, and structural analysis have provided many insights into the timing of these motions, little is known about how these dynamical processes influence each other. To address this, we use molecular simulations to isolate specific interactions that allow tRNA kinetics to be controlled by subunit rotation. Specifically, we applied an all-atom structure-based model to simulate movement of tRNA between ribosomal binding sites (P/E hybrid formation). These calculations reveal a pronounced nonmonotonic dependence of tRNA kinetics on subunit rotation, where the rate of P/E formation initially increases and then decreases as the subunit rotates. In addition, there was a sharp increase in rate for low degrees of rotation, suggesting that adoption of P/E tRNA conformations may occur early in the rotation process. Together, these calculations demonstrate how molecular structure gives rise to an intricate relationship between these complex rearrangements.
Collapse
Affiliation(s)
- Sandra Byju
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts; Department of Physics, Northeastern University, Dana Research Center 111, Boston, Massachusetts
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts; Department of Physics, Northeastern University, Dana Research Center 111, Boston, Massachusetts.
| |
Collapse
|
3
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
4
|
Kraemer S, Schneider DJ, Paterson C, Perry D, Westacott MJ, Hagar Y, Katilius E, Lynch S, Russell TM, Johnson T, Astling DP, DeLisle RK, Cleveland J, Gold L, Drolet DW, Janjic N. Crossing the Halfway Point: Aptamer-Based, Highly Multiplexed Assay for the Assessment of the Proteome. J Proteome Res 2024; 23:4771-4788. [PMID: 39038188 PMCID: PMC11536431 DOI: 10.1021/acs.jproteome.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties. As hybrid affinity reagents, modified aptamers are fully comparable to antibodies in terms of binding characteristics toward proteins, including epitope size, shape complementarity, affinity and specificity. Our assay combines these intrinsic binding properties with serial kinetic proofreading steps to allow highly effective partitioning of stable specific complexes from unstable nonspecific complexes. The use of these orthogonal methods to enhance specificity effectively overcomes the severe limitation to multiplexing inherent to the use of sandwich-based methods. Our assay currently measures half of the unique proteins encoded in the human genome with femtomolar sensitivity, broad dynamic range and exceptionally high reproducibility. Using machine learning to identify patterns of change, we have developed tests based on measurement of multiple proteins predictive of current health states and future disease risk to guide a holistic approach to precision medicine.
Collapse
Affiliation(s)
- Stephan Kraemer
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel J. Schneider
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Clare Paterson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Darryl Perry
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Matthew J. Westacott
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Yolanda Hagar
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Evaldas Katilius
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Sean Lynch
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Theresa M. Russell
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Ted Johnson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - David P. Astling
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Robert Kirk DeLisle
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Jason Cleveland
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Larry Gold
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel W. Drolet
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Nebojsa Janjic
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| |
Collapse
|
5
|
Mattingly JM, Nguyen HA, Roy B, Fredrick K, Dunham CM. Structural analysis of noncanonical translation initiation complexes. J Biol Chem 2024; 300:107743. [PMID: 39222680 PMCID: PMC11497404 DOI: 10.1016/j.jbc.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.
Collapse
MESH Headings
- Escherichia coli/metabolism
- Escherichia coli/genetics
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- Peptide Chain Initiation, Translational
- Cryoelectron Microscopy
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Anticodon/metabolism
- Anticodon/chemistry
- Codon, Initiator/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Jacob M Mattingly
- Department of Chemistry, Emory University, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Bappaditya Roy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
6
|
Puglisi JD. Taming the ribosome. Biophys J 2024; 123:2964-2965. [PMID: 39097772 PMCID: PMC11427767 DOI: 10.1016/j.bpj.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Joseph Daniel Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
7
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
8
|
Baines C, Sargeant J, Fage CD, Pugh H, Alkhalaf LM, Challis GL, Oldham NJ. Native ESI-MS and Collision-Induced Unfolding (CIU) of the Complex between Bacterial Elongation Factor-Tu and the Antibiotic Enacyloxin IIa. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1490-1496. [PMID: 38830009 PMCID: PMC11228974 DOI: 10.1021/jasms.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Collision-induced unfolding (CIU) of protein ions, monitored by ion mobility-mass spectrometry, can be used to assess the stability of their compact gas-phase fold and hence provide structural information. The bacterial elongation factor EF-Tu, a key protein for mRNA translation in prokaryotes and hence a promising antibiotic target, has been studied by CIU. The major [M + 12H]12+ ion of EF-Tu unfolded in collision with Ar atoms between 40 and 50 V, corresponding to an Elab energy of 480-500 eV. Binding of the cofactor analogue GDPNP and the antibiotic enacyloxin IIa stabilized the compact fold of EF-Tu, although dissociation of the latter from the complex diminished its stabilizing effect at higher collision energies. Molecular dynamics simulations of the [M + 12H]12+ EF-Tu ion showed similar qualitative behavior to the experimental results.
Collapse
Affiliation(s)
- Cameron Baines
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United
Kingdom
| | - Jacob Sargeant
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher D. Fage
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hannah Pugh
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Lona M. Alkhalaf
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gregory L. Challis
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Biochemistry and Molecular Biology, Biomedicine Discovery Institute,
Monash University, Clayton, Victoria 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Neil J. Oldham
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United
Kingdom
| |
Collapse
|
9
|
Downs SR, Grace B, Pleiss JA. Decoding branch points and unlocking splicing secrets. Nat Struct Mol Biol 2024; 31:732-734. [PMID: 38740946 DOI: 10.1038/s41594-024-01308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Sara R Downs
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Bec Grace
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Byju S, Hassan A, Whitford PC. The energy landscape of the ribosome. Biopolymers 2024; 115:e23570. [PMID: 38051695 DOI: 10.1002/bip.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ribosome is a prototypical assembly that can be used to establish general principles and techniques for the study of biological molecular machines. Motivated by the fact that the dynamics of every biomolecule is governed by an underlying energy landscape, there has been great interest to understand and quantify ribosome energetics. In the present review, we will focus on theoretical and computational strategies for probing the interactions that shape the energy landscape of the ribosome, with an emphasis on more recent studies of the elongation cycle. These efforts include the application of quantum mechanical methods for describing chemical kinetics, as well as classical descriptions to characterize slower (microsecond to millisecond) large-scale (10-100 Å) rearrangements, where motion is described in terms of diffusion across an energy landscape. Together, these studies provide broad insights into the factors that control a diverse range of dynamical processes in this assembly.
Collapse
Affiliation(s)
- Sandra Byju
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Asem Hassan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Bahena-Ceron R, Teixeira C, Ponce JRJ, Wolff P, Couzon F, François P, Klaholz BP, Vandenesch F, Romby P, Moreau K, Marzi S. RlmQ: a newly discovered rRNA modification enzyme bridging RNA modification and virulence traits in Staphylococcus aureus. RNA (NEW YORK, N.Y.) 2024; 30:200-212. [PMID: 38164596 PMCID: PMC10870370 DOI: 10.1261/rna.079850.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
rRNA modifications play crucial roles in fine-tuning the delicate balance between translation speed and accuracy, yet the underlying mechanisms remain elusive. Comparative analyses of the rRNA modifications in taxonomically distant bacteria could help define their general, as well as species-specific, roles. In this study, we identified a new methyltransferase, RlmQ, in Staphylococcus aureus responsible for the Gram-positive specific m7G2601, which is not modified in Escherichia coli (G2574). We also demonstrate the absence of methylation on C1989, equivalent to E. coli C1962, which is methylated at position 5 by the Gram-negative specific RlmI methyltransferase, a paralog of RlmQ. Both modifications (S. aureus m7G2601 and E. coli m5C1962) are situated within the same tRNA accommodation corridor, hinting at a potential shared function in translation. Inactivation of S. aureus rlmQ causes the loss of methylation at G2601 and significantly impacts growth, cytotoxicity, and biofilm formation. These findings unravel the intricate connections between rRNA modifications, translation, and virulence in pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
- Roberto Bahena-Ceron
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Chloé Teixeira
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Jose R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Florence Couzon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Pauline François
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC, 67400 Illkirch, France
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U964, 67400 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des agents infectieux, Hospices Civils de Lyon, 69004 Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69317 Lyon, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| |
Collapse
|
12
|
Cuevas-Zuviría B, Adam ZR, Goldman AD, Kaçar B. Informatic Capabilities of Translation and Its Implications for the Origins of Life. J Mol Evol 2023; 91:567-569. [PMID: 37526692 DOI: 10.1007/s00239-023-10125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
The ability to encode and convert heritable information into molecular function is a defining feature of life as we know it. The conversion of information into molecular function is performed by the translation process, in which triplets of nucleotides in a nucleic acid polymer (mRNA) encode specific amino acids in a protein polymer that folds into a three-dimensional structure. The folded protein then performs one or more molecular activities, often as one part of a complex and coordinated physiological network. Prebiotic systems, lacking the ability to explicitly translate information between genotype and phenotype, would have depended upon either chemosynthetic pathways to generate its components-constraining its complexity and evolvability- or on the ambivalence of RNA as both carrier of information and of catalytic functions-a possibility which is still supported by a very limited set of catalytic RNAs. Thus, the emergence of translation during early evolutionary history may have allowed life to unmoor from the setting of its origin. The origin of translation machinery also represents an entirely novel and distinct threshold of behavior for which there is no abiotic counterpart-it could be the only known example of computing that emerged naturally at the chemical level. Here we describe translation machinery's decoding system as the basis of cellular translation's information-processing capabilities, and the four operation types that find parallels in computer systems engineering that this biological machinery exhibits.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Zachary R Adam
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Geosciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
14
|
Joiret M, Kerff F, Rapino F, Close P, Geris L. A simple geometrical model of the electrostatic environment around the catalytic center of the ribosome and its significance for the elongation cycle kinetics. Comput Struct Biotechnol J 2023; 21:3768-3795. [PMID: 37560126 PMCID: PMC10407619 DOI: 10.1016/j.csbj.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
The central function of the large subunit of the ribosome is to catalyze peptide bond formation. This biochemical reaction is conducted at the peptidyl transferase center (PTC). Experimental evidence shows that the catalytic activity is affected by the electrostatic environment around the peptidyl transferase center. Here, we set up a minimal geometrical model fitting the available x-ray solved structures of the ribonucleic cavity around the catalytic center of the large subunit of the ribosome. The purpose of this phenomenological model is to estimate quantitatively the electrostatic potential and electric field that are experienced during the peptidyl transfer reaction. At least two reasons motivate the need for developing this quantification. First, we inquire whether the electric field in this particular catalytic environment, made only of nucleic acids, is of the same order of magnitude as the one prevailing in catalytic centers of the proteic enzymes counterparts. Second, the protein synthesis rate is dependent on the nature of the amino acid sequentially incorporated in the nascent chain. The activation energy of the catalytic reaction and its detailed kinetics are shown to be dependent on the mechanical work exerted on the amino acids by the electric field, especially when one of the four charged amino acid residues (R, K, E, D) has previously been incorporated at the carboxy-terminal end of the peptidyl-tRNA. Physical values of the electric field provide quantitative knowledge of mechanical work, activation energy and rate of the peptide bond formation catalyzed by the ribosome. We show that our theoretical calculations are consistent with two independent sets of previously published experimental results. Experimental results for E.coli in the minimal case of the dipeptide bond formation when puromycin is used as the final amino acid acceptor strongly support our theoretically derived reaction time courses. Experimental Ribo-Seq results on E. coli and S. cerevisiae comparing the residence time distribution of ribosomes upon specific codons are also well accounted for by our theoretical calculations. The statistical queueing time theory was used to model the ribosome residence time per codon during nascent protein elongation and applied for the interpretation of the Ribo-Seq data. The hypo-exponential distribution fits the residence time observed distribution of the ribosome on a codon. An educated deconvolution of this distribution is used to estimate the rates of each elongation step in a codon specific manner. Our interpretation of all these results sheds light on the functional role of the electrostatic profile around the PTC and its impact on the ribosome elongation cycle.
Collapse
Affiliation(s)
- Marc Joiret
- Biomechanics Research Unit, GIGA in silico medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
| | - Frederic Kerff
- UR InBios Centre d'Ingénierie des Protéines, Liège University, Bât B6a, Allèe du 6 Août, 19, B-4000 Liège, Belgium
| | - Francesca Rapino
- Cancer Signaling, GIGA Stem Cells, Liège University, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Pierre Close
- Cancer Signaling, GIGA Stem Cells, Liège University, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA in silico medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, ON I Herestraat 49 - box 813, 3000 Leuven, Belgium
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C box 2419, B-3001 Heverlee, Belgium
| |
Collapse
|
15
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
16
|
Nagao A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. Quality control of protein synthesis in the early elongation stage. Nat Commun 2023; 14:2704. [PMID: 37198183 PMCID: PMC10192219 DOI: 10.1038/s41467-023-38077-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yui Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshifumi Mishina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minami Karoji
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Toya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
17
|
D'Urso G, Guyomar C, Chat S, Giudice E, Gillet R. Insights into the ribosomal trans-translation rescue system: lessons from recent structural studies. FEBS J 2023; 290:1461-1472. [PMID: 35015931 DOI: 10.1111/febs.16349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
The arrest of protein synthesis caused when ribosomes stall on an mRNA lacking a stop codon is a deadly risk for all cells. In bacteria, this situation is remedied by the trans-translation quality control system. Trans-translation occurs because of the synergistic action of two main partners, transfer-messenger RNA (tmRNA) and small protein B (SmpB). These act in complex to monitor protein synthesis, intervening when necessary to rescue stalled ribosomes. During this process, incomplete nascent peptides are tagged for destruction, problematic mRNAs are degraded and the previously stalled ribosomes are recycled. In this 'Structural Snapshot' article, we describe the mechanism at the molecular level, a view updated after the most recent structural studies using cryo-electron microscopy.
Collapse
Affiliation(s)
- Gaetano D'Urso
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Charlotte Guyomar
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Sophie Chat
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Emmanuel Giudice
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Reynald Gillet
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| |
Collapse
|
18
|
Le LQ, Zhu K, Su H. Bridging ribosomal synthesis to cell growth through the lens of kinetics. Biophys J 2023; 122:544-553. [PMID: 36564946 PMCID: PMC9941725 DOI: 10.1016/j.bpj.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding prokaryotic cell growth requires a multiscale modeling framework from the kinetics perspective. The detailed kinetics pathway of ribosomes exhibits features beyond the scope of the classical Hopfield kinetics model. The complexity of the molecular responses to various nutrient conditions poses additional challenge to elucidate the cell growth. Herein, a kinetics framework is developed to bridge ribosomal synthesis to cell growth. For the ribosomal synthesis kinetics, the competitive binding between cognate and near-cognate tRNAs for ribosomes can be modulated by Mg2+. This results in distinct patterns of the speed - accuracy relation comprising "trade-off" and "competition" regimes. Furthermore, the cell growth rate is optimized by varying the characteristics of ribosomal synthesis through cellular responses to different nutrient conditions. In this scenario, cellular responses to nutrient conditions manifest by two quadratic scaling relations: one for nutrient flux versus cell mass, the other for ribosomal number versus growth rate. Both are in quantitative agreement with experimental measurements.
Collapse
Affiliation(s)
- Luan Quang Le
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kaicheng Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
19
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
20
|
Pacesa M, Lin CH, Cléry A, Saha A, Arantes PR, Bargsten K, Irby MJ, Allain FHT, Palermo G, Cameron P, Donohoue PD, Jinek M. Structural basis for Cas9 off-target activity. Cell 2022; 185:4067-4081.e21. [PMID: 36306733 PMCID: PMC10103147 DOI: 10.1016/j.cell.2022.09.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/01/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by complementarity to a 20-nucleotide segment in its guide RNA. However, Cas9 can bind and cleave partially complementary off-target sequences, which raises safety concerns for its use in clinical applications. Here, we report crystallographic structures of Cas9 bound to bona fide off-target substrates, revealing that off-target binding is enabled by a range of noncanonical base-pairing interactions within the guide:off-target heteroduplex. Off-target substrates containing single-nucleotide deletions relative to the guide RNA are accommodated by base skipping or multiple noncanonical base pairs rather than RNA bulge formation. Finally, PAM-distal mismatches result in duplex unpairing and induce a conformational change in the Cas9 REC lobe that perturbs its conformational activation. Together, these insights provide a structural rationale for the off-target activity of Cas9 and contribute to the improved rational design of guide RNAs and off-target prediction algorithms.
Collapse
Affiliation(s)
- Martin Pacesa
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Chun-Han Lin
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Antoine Cléry
- Institute of Biochemistry, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Katja Bargsten
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthew J Irby
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Peter Cameron
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Paul D Donohoue
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
21
|
Wang Y, Wang A, Mohanty U, Whitford PC. Precise Steric Features Control Aminoacyl-tRNA Accommodation on the Ribosome. J Phys Chem B 2022; 126:8447-8459. [PMID: 36251478 DOI: 10.1021/acs.jpcb.2c05513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein synthesis involves a complex series of large-scale conformational changes in the ribosome. While long-lived intermediate states of these processes can be characterized by experiments, computational methods can be used to identify the interactions that contribute to the rate-limiting free-energy barriers. To this end, we use a simplified energetic model to perform molecular dynamics (MD) simulations of aminoacyl-tRNA (aa-tRNA) accommodation on the ribosome. While numerous studies have probed the energetics of the early stages of accommodation, we focus on the final stage of accommodation, where the 3'-CCA tail of aa-tRNA enters the peptidyl transferase center (PTC). These simulations show how a distinct intermediate is induced by steric confinement of the tail, immediately before it completes accommodation. Multiple pathways for 3'-CCA tail accommodation can be quantitatively distinguished, where the tail enters the PTC by moving past a pocket enclosed by Helix 89, 90, and 92, or through an alternate route formed by Helix 93 and the P-site tRNA. C2573, located within Helix 90, is shown to provide the largest contribution to this late-accommodation steric barrier, such that sub-Å perturbations to this residue can alter the time scale of tail accommodation by nearly an order of magnitude. In terms of biological function, these calculations suggest how this late-stage sterically induced barrier may contribute to tRNA proofreading by the ribosome.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts02467, United States
| | - Ailun Wang
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts02467, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States.,Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| |
Collapse
|
22
|
Tittle JM, Schwark DG, Biddle W, Schmitt MA, Fisk JD. Impact of queuosine modification of endogenous E. coli tRNAs on sense codon reassignment. Front Mol Biosci 2022; 9:938114. [PMID: 36120552 PMCID: PMC9471426 DOI: 10.3389/fmolb.2022.938114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
The extent to which alteration of endogenous tRNA modifications may be exploited to improve genetic code expansion efforts has not been broadly investigated. Modifications of tRNAs are strongly conserved evolutionarily, but the vast majority of E. coli tRNA modifications are not essential. We identified queuosine (Q), a non-essential, hypermodified guanosine nucleoside found in position 34 of the anticodons of four E. coli tRNAs as a modification that could potentially be utilized to improve sense codon reassignment. One suggested purpose of queuosine modification is to reduce the preference of tRNAs with guanosine (G) at position 34 of the anticodon for decoding cytosine (C) ending codons over uridine (U) ending codons. We hypothesized that introduced orthogonal translation machinery with adenine (A) at position 34 would reassign U-ending codons more effectively in queuosine-deficient E. coli. We evaluated the ability of introduced orthogonal tRNAs with AUN anticodons to reassign three of the four U-ending codons normally decoded by Q34 endogenous tRNAs: histidine CAU, asparagine AAU, and aspartic acid GAU in the presence and absence of queuosine modification. We found that sense codon reassignment efficiencies in queuosine-deficient strains are slightly improved at Asn AAU, equivalent at His CAU, and less efficient at Asp GAU codons. Utilization of orthogonal pair-directed sense codon reassignment to evaluate competition events that do not occur in the standard genetic code suggests that tRNAs with inosine (I, 6-deaminated A) at position 34 compete much more favorably against G34 tRNAs than Q34 tRNAs. Continued evaluation of sense codon reassignment following targeted alterations to endogenous tRNA modifications has the potential to shed new light on the web of interactions that combine to preserve the fidelity of the genetic code as well as identify opportunities for exploitation in systems with expanded genetic codes.
Collapse
|
23
|
Wang A, Levi M, Mohanty U, Whitford PC. Diffuse Ions Coordinate Dynamics in a Ribonucleoprotein Assembly. J Am Chem Soc 2022; 144:9510-9522. [PMID: 35593477 DOI: 10.1021/jacs.2c04082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proper ionic concentrations are required for the functional dynamics of RNA and ribonucleoprotein (RNP) assemblies. While experimental and computational techniques have provided many insights into the properties of chelated ions, less is known about the energetic contributions of diffuse ions to large-scale conformational rearrangements. To address this, we present a model that is designed to quantify the influence of diffuse monovalent and divalent ions on the dynamics of biomolecular assemblies. This model employs all-atom (non-H) resolution and explicit ions, where effective potentials account for hydration effects. We first show that the model accurately predicts the number of excess Mg2+ ions for prototypical RNA systems, at a level comparable to modern coarse-grained models. We then apply the model to a complete ribosome and show how the balance between diffuse Mg2+ and K+ ions can control the dynamics of tRNA molecules during translation. The model predicts differential effects of diffuse ions on the free-energy barrier associated with tRNA entry and the energy of tRNA binding to the ribosome. Together, this analysis reveals the direct impact of diffuse ions on the dynamics of an RNP assembly.
Collapse
Affiliation(s)
- Ailun Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mariana Levi
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.,Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
Abstract
Biochemistry and molecular biology rely on the recognition of structural complementarity between molecules. Molecular interactions must be both quickly reversible, i.e., tenuous, and specific. How the cell reconciles these conflicting demands is the subject of this article. The problem and its theoretical solution are discussed within the wider theoretical context of the thermodynamics of stochastic processes (stochastic thermodynamics). The solution-an irreversible reaction cycle that decreases internal error at the expense of entropy export into the environment-is shown to be widely employed by biological processes that transmit genetic and regulatory information. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California;
| |
Collapse
|
25
|
Yu Q, Kolomeisky AB, Igoshin OA. The energy cost and optimal design of networks for biological discrimination. J R Soc Interface 2022; 19:20210883. [PMID: 35259959 PMCID: PMC8905179 DOI: 10.1098/rsif.2021.0883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many biological processes discriminate between correct and incorrect substrates through the kinetic proofreading mechanism that enables lower error at the cost of higher energy dissipation. Elucidating physico-chemical constraints for global minimization of dissipation and error is important for understanding enzyme evolution. Here, we identify theoretically a fundamental error-cost bound that tightly constrains the performance of proofreading networks under any parameter variations preserving the rate discrimination between substrates. The bound is kinetically controlled, i.e. completely determined by the difference between the transition state energies on the underlying free energy landscape. The importance of the bound is analysed for three biological processes. DNA replication by T7 DNA polymerase is shown to be nearly optimized, i.e. its kinetic parameters place it in the immediate proximity of the error-cost bound. The isoleucyl-tRNA synthetase (IleRS) of E. coli also operates close to the bound, but further optimization is prevented by the need for reaction speed. In contrast, E. coli ribosome operates in a high-dissipation regime, potentially in order to speed up protein production. Together, these findings establish a fundamental error-dissipation relation in biological proofreading networks and provide a theoretical framework for studying error-dissipation trade-off in other systems with biological discrimination.
Collapse
Affiliation(s)
- Qiwei Yu
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
26
|
Cui Z, Li X, Shin J, Gamper H, Hou YM, Sacchettini JC, Zhang J. Interplay between an ATP-binding cassette F protein and the ribosome from Mycobacterium tuberculosis. Nat Commun 2022; 13:432. [PMID: 35064151 PMCID: PMC8782954 DOI: 10.1038/s41467-022-28078-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the P-site tRNA and the ribosomal intersubunit bridge B7a during the ribosomal ratcheting. In return, the rotation of the 30S causes conformational changes in MtbEttA, forcing the two nucleotide-binding sites (NBSs) to alternate to engage each ADPNP in the pre-hydrolysis states, followed by complete engagements of both ADP-VO4 molecules in the ATP-hydrolysis transition states. In the post-hydrolysis state, the conserved ATP-hydrolysis motifs of MtbEttA dissociate from both ADP molecules, leaving two nucleotide-binding domains (NBDs) in an open conformation. These structures reveal a dynamic interplay between MtbEttA and the Mtb ribosome, providing insights into the mechanism of translational regulation by EttA-like proteins.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaojun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Joonyoung Shin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
27
|
Joiret M, Kerff F, Rapino F, Close P, Geris L. Ribosome exit tunnel electrostatics. Phys Rev E 2022; 105:014409. [PMID: 35193250 DOI: 10.1103/physreve.105.014409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The impact of ribosome exit tunnel electrostatics on the protein elongation rate or on forces acting upon the nascent polypeptide chain are currently not fully elucidated. In the past, researchers have measured the electrostatic potential inside the ribosome polypeptide exit tunnel at a limited number of spatial points, at least in rabbit reticulocytes. Here we present a basic electrostatic model of the exit tunnel of the ribosome, providing a quantitative physical description of the tunnel interaction with the nascent proteins at all centro-axial points inside the tunnel. We show that a strong electrostatic screening is due to water molecules (not mobile ions) attracted to the ribosomal nucleic acid phosphate moieties buried in the immediate vicinity of the tunnel wall. We also show how the tunnel wall components and local ribosomal protein protrusions impact on the electrostatic potential profile and impede charged amino acid residues from progressing through the tunnel, affecting the elongation rate in a range of -40% to +85% when compared to the average elongation rate. The time spent by the ribosome to decode the genetic encrypted message is constrained accordingly. We quantitatively derive, at single-residue resolution, the axial forces acting on the nascent peptide from its particular sequence embedded in the tunnel. The model sheds light on how the experimental data point measurements of the potential are linked to the local structural chemistry of the inner wall, shape, and size of the tunnel. The model consistently connects experimental observations coming from different fields in molecular biology, x-ray crystallography, physical chemistry, biomechanics, and synthetic and multiomics biology. Our model should be a valuable tool to gain insight into protein synthesis dynamics, translational control, and the role of the ribosome's mechanochemistry in the cotranslational protein folding.
Collapse
Affiliation(s)
- Marc Joiret
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
| | - Frederic Kerff
- UR InBios, Centre d'Ingénierie des Protéines, Bât B6a, Allée du 6 Août, 19, B-4000 Liège, Belgium
| | - Francesca Rapino
- Cancer Signaling, GIGA Stem Cells, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Pierre Close
- Cancer Signaling, GIGA Stem Cells, CHU-B34(+2) 1 Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, Liège University, CHU-B34(+5) 1 Avenue de l'Hôpital, 4000 Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, ON I Herestraat 49 - box 813, 3000 Leuven, Belgium
- Biomechanics Section, KU Leuven, Celestijnenlaan 300C box 2419, B-3001 Heverlee, Belgium
| |
Collapse
|
28
|
Abstract
Protein synthesis in eukaryotes is carried out by 80S ribosomes with the help of many specific translation factors. Translation comprises four major steps: initiation, elongation, termination, and ribosome recycling. In this review, we provide a comprehensive list of translation factors required for protein synthesis in yeast and higher eukaryotes and summarize the mechanisms of each individual phase of eukaryotic translation.
Collapse
Affiliation(s)
- Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|
29
|
Chadani Y, Sugata N, Niwa T, Ito Y, Iwasaki S, Taguchi H. Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation. EMBO J 2021; 40:e108299. [PMID: 34672004 PMCID: PMC8634131 DOI: 10.15252/embj.2021108299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/26/2023] Open
Abstract
Continuous translation elongation, irrespective of amino acid sequences, is a prerequisite for living organisms to produce their proteomes. However, nascent polypeptide products bear an inherent risk of elongation abortion. For example, negatively charged sequences with occasional intermittent prolines, termed intrinsic ribosome destabilization (IRD) sequences, weaken the translating ribosomal complex, causing certain nascent chain sequences to prematurely terminate translation. Here, we show that most potential IRD sequences in the middle of open reading frames remain cryptic and do not interrupt translation, due to two features of the nascent polypeptide. Firstly, the nascent polypeptide itself spans the exit tunnel, and secondly, its bulky amino acid residues occupy the tunnel entrance region, thereby serving as a bridge and protecting the large and small ribosomal subunits from dissociation. Thus, nascent polypeptide products have an inbuilt ability to ensure elongation continuity.
Collapse
Affiliation(s)
- Yuhei Chadani
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Nobuyuki Sugata
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Tatsuya Niwa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yosuke Ito
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Hideki Taguchi
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
30
|
Hassan A, Byju S, Whitford PC. The energetics of subunit rotation in the ribosome. Biophys Rev 2021; 13:1029-1037. [PMID: 35059025 PMCID: PMC8724491 DOI: 10.1007/s12551-021-00877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis in the cell is controlled by an elaborate sequence of conformational rearrangements in the ribosome. The composition of a ribosome varies by species, though they typically contain ∼ 50-100 RNA and protein molecules. While advances in structural techniques have revolutionized our understanding of long-lived conformational states, a vast range of transiently visited configurations can not be directly observed. In these cases, computational/simulation methods can be used to understand the mechanical properties of the ribosome. Insights from these approaches can then help guide next-generation experimental measurements. In this short review, we discuss theoretical strategies that have been deployed to quantitatively describe the energetics of collective rearrangements in the ribosome. We focus on efforts to probe large-scale subunit rotation events, which involve the coordinated displacement of large numbers of atoms (tens of thousands). These investigations are revealing how the molecular structure of the ribosome encodes the mechanical properties that control large-scale dynamics.
Collapse
Affiliation(s)
- Asem Hassan
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Sandra Byju
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| |
Collapse
|
31
|
Bharmal MHM, Gega A, Schrader JM. A combination of mRNA features influence the efficiency of leaderless mRNA translation initiation. NAR Genom Bioinform 2021; 3:lqab081. [PMID: 34568822 PMCID: PMC8459731 DOI: 10.1093/nargab/lqab081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial translation is thought to initiate by base pairing of the 16S rRNA and the Shine-Dalgarno sequence in the mRNA's 5' untranslated region (UTR). However, transcriptomics has revealed that leaderless mRNAs, which completely lack any 5' UTR, are broadly distributed across bacteria and can initiate translation in the absence of the Shine-Dalgarno sequence. To investigate the mechanism of leaderless mRNA translation initiation, synthetic in vivo translation reporters were designed that systematically tested the effects of start codon accessibility, leader length, and start codon identity on leaderless mRNA translation initiation. Using these data, a simple computational model was built based on the combinatorial relationship of these mRNA features that can accurately classify leaderless mRNAs and predict the translation initiation efficiency of leaderless mRNAs. Thus, start codon accessibility, leader length, and start codon identity combine to define leaderless mRNA translation initiation in bacteria.
Collapse
Affiliation(s)
| | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
32
|
Monroe JG, Smith TJ, Koutmou KS. Investigating the consequences of mRNA modifications on protein synthesis using in vitro translation assays. Methods Enzymol 2021; 658:379-406. [PMID: 34517955 DOI: 10.1016/bs.mie.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ribosome translates the information stored in the genetic code into functional proteins. In this process messenger RNAs (mRNAs) serve as templates for the ribosome, ensuring that amino acids are linked together in the correct order. Chemical modifications to mRNA nucleosides have the potential to influence the rate and accuracy of protein synthesis. Here, we present an in vitro Escherichia coli translation system utilizing highly purified components to directly investigate the impact of mRNA modifications on the speed and accuracy of the ribosome. This system can be used to gain insights into how individual chemical modifications influence translation on the molecular level. While the fully reconstituted system described in this chapter requires a lengthy time investment to prepare experimental materials, it is highly verstaile and enables the systematic assessment of how single variables influence protein synthesis by the ribosome.
Collapse
Affiliation(s)
- Jeremy G Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
33
|
Chang KC, Wen JD. Programmed -1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Comput Struct Biotechnol J 2021; 19:3580-3588. [PMID: 34257837 PMCID: PMC8246090 DOI: 10.1016/j.csbj.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/01/2022] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is a translation mechanism that regulates the relative expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is commonly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding the molecular mechanism of -1 PRF is one step toward this goal. Minus-one PRF occurs with a certain efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome. The impeded ribosome can still undergo profound conformational changes to proceed with translocation; however, some of these changes may be unique and essential to frameshifting. In addition, most stimulatory structures exhibit conformational dynamics and sufficient mechanical strength, which, when under the action of ribosomes, may in turn further promote -1 PRF efficiency. In this review, we discuss how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence of -1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational dynamics.
Collapse
Affiliation(s)
- Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, CA 94158, United States
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Bhaskar V, Graff-Meyer A, Schenk AD, Cavadini S, von Loeffelholz O, Natchiar SK, Artus-Revel CG, Hotz HR, Bretones G, Klaholz BP, Chao JA. Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes. Cell Rep 2021; 31:107473. [PMID: 32268098 DOI: 10.1016/j.celrep.2020.03.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Ribosomes undergo multiple conformational transitions during translation elongation. Here, we report the high-resolution cryoelectron microscopy (cryo-EM) structure of the human 80S ribosome in the post-decoding pre-translocation state (classical-PRE) at 3.3-Å resolution along with the rotated (hybrid-PRE) and the post-translocation states (POST). The classical-PRE state ribosome structure reveals a previously unobserved interaction between the C-terminal region of the conserved ribosomal protein uS19 and the A- and P-site tRNAs and the mRNA in the decoding site. In addition to changes in the inter-subunit bridges, analysis of different ribosomal conformations reveals the dynamic nature of this domain and suggests a role in tRNA accommodation and translocation during elongation. Furthermore, we show that disease-associated mutations in uS19 result in increased frameshifting. Together, this structure-function analysis provides mechanistic insights into the role of the uS19 C-terminal tail in the context of mammalian ribosomes.
Collapse
Affiliation(s)
- Varun Bhaskar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
35
|
Schwark DG, Schmitt MA, Fisk JD. Directed Evolution of the Methanosarcina barkeri Pyrrolysyl tRNA/aminoacyl tRNA Synthetase Pair for Rapid Evaluation of Sense Codon Reassignment Potential. Int J Mol Sci 2021; 22:E895. [PMID: 33477414 PMCID: PMC7830368 DOI: 10.3390/ijms22020895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic code expansion has largely focused on the reassignment of amber stop codons to insert single copies of non-canonical amino acids (ncAAs) into proteins. Increasing effort has been directed at employing the set of aminoacyl tRNA synthetase (aaRS) variants previously evolved for amber suppression to incorporate multiple copies of ncAAs in response to sense codons in Escherichia coli. Predicting which sense codons are most amenable to reassignment and which orthogonal translation machinery is best suited to each codon is challenging. This manuscript describes the directed evolution of a new, highly efficient variant of the Methanosarcina barkeri pyrrolysyl orthogonal tRNA/aaRS pair that activates and incorporates tyrosine. The evolved M. barkeri tRNA/aaRS pair reprograms the amber stop codon with 98.1 ± 3.6% efficiency in E. coli DH10B, rivaling the efficiency of the wild-type tyrosine-incorporating Methanocaldococcus jannaschii orthogonal pair. The new orthogonal pair is deployed for the rapid evaluation of sense codon reassignment potential using our previously developed fluorescence-based screen. Measurements of sense codon reassignment efficiencies with the evolved M. barkeri machinery are compared with related measurements employing the M. jannaschii orthogonal pair system. Importantly, we observe different patterns of sense codon reassignment efficiency for the M. jannaschii tyrosyl and M. barkeri pyrrolysyl systems, suggesting that particular codons will be better suited to reassignment by different orthogonal pairs. A broad evaluation of sense codon reassignment efficiencies to tyrosine with the M. barkeri system will highlight the most promising positions at which the M. barkeri orthogonal pair may infiltrate the E. coli genetic code.
Collapse
Affiliation(s)
| | | | - John D. Fisk
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA; (D.G.S.); (M.A.S.)
| |
Collapse
|
36
|
Galstyan V, Husain K, Xiao F, Murugan A, Phillips R. Proofreading through spatial gradients. eLife 2020; 9:60415. [PMID: 33357378 PMCID: PMC7813546 DOI: 10.7554/elife.60415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022] Open
Abstract
Key enzymatic processes use the nonequilibrium error correction mechanism called kinetic proofreading to enhance their specificity. The applicability of traditional proofreading schemes, however, is limited because they typically require dedicated structural features in the enzyme, such as a nucleotide hydrolysis site or multiple intermediate conformations. Here, we explore an alternative conceptual mechanism that achieves error correction by having substrate binding and subsequent product formation occur at distinct physical locations. The time taken by the enzyme–substrate complex to diffuse from one location to another is leveraged to discard wrong substrates. This mechanism does not have the typical structural requirements, making it easier to overlook in experiments. We discuss how the length scales of molecular gradients dictate proofreading performance, and quantify the limitations imposed by realistic diffusion and reaction rates. Our work broadens the applicability of kinetic proofreading and sets the stage for studying spatial gradients as a possible route to specificity.
Collapse
Affiliation(s)
- Vahe Galstyan
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, United States
| | - Kabir Husain
- Department of Physics and the James Franck Institute, University of Chicago, Chicago, United States
| | - Fangzhou Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Arvind Murugan
- Department of Physics and the James Franck Institute, University of Chicago, Chicago, United States
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Physics, California Institute of Technology, Pasadena, United States
| |
Collapse
|
37
|
Wachino JI, Doi Y, Arakawa Y. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Methyltransferases. Infect Dis Clin North Am 2020; 34:887-902. [PMID: 33011054 PMCID: PMC10927307 DOI: 10.1016/j.idc.2020.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The clinical usefulness of aminoglycosides has been revisited as an effective choice against β-lactam-resistant and fluoroquinolone-resistant gram-negative bacterial infections. Plazomicin, a next-generation aminoglycoside, was introduced for the treatment of complicated urinary tract infections and acute pyelonephritis. In contrast, bacteria have resisted aminoglycosides, including plazomicin, by producing 16S ribosomal RNA (rRNA) methyltransferases (MTases) that confer high-level and broad-range aminoglycoside resistance. Aminoglycoside-resistant 16S rRNA MTase-producing gram-negative pathogens are widespread in various settings and are becoming a grave concern. This article provides up-to-date information with a focus on aminoglycoside-resistant 16S rRNA MTases.
Collapse
Affiliation(s)
- Jun-Ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, S829 Scaife Hall, 3350 Terrace Street, Pittsburgh, PA 15261, USA; Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan; Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Medical Technology, Shubun University, Japan
| |
Collapse
|
38
|
A steric gate controls P/E hybrid-state formation of tRNA on the ribosome. Nat Commun 2020; 11:5706. [PMID: 33177497 PMCID: PMC7658246 DOI: 10.1038/s41467-020-19450-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The ribosome is a biomolecular machine that undergoes multiple large-scale structural rearrangements during protein elongation. Here, we focus on a conformational rearrangement during translocation, known as P/E hybrid-state formation. Using a model that explicitly represents all non-hydrogen atoms, we simulated more than 120 spontaneous transitions, where the tRNA molecule is displaced between the P and E sites of the large subunit. In addition to predicting a free-energy landscape that is consistent with previous experimental observations, the simulations reveal how a six-residue gate-like region can limit P/E formation, where sub-angstrom structural perturbations lead to an order-of-magnitude change in kinetics. Thus, this precisely defined set of residues represents a novel target that may be used to control functional dynamics in bacterial ribosomes. This theoretical analysis establishes a direct relationship between ribosome structure and large-scale dynamics, and it suggests how next-generation experiments may precisely dissect the energetics of hybrid formation on the ribosome. The ribosome undergoes multiple large-scale structural rearrangements during protein elongation. Here the authors present an all-atom model of the ribosome to study the energetics of P/E hybrid-state formation, an early conformational rearrangement occurring during translocation.
Collapse
|
39
|
Kurita D, Abo T, Himeno H. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue. J Biol Chem 2020; 295:13326-13337. [PMID: 32727848 DOI: 10.1074/jbc.ra120.014664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Translation termination in bacteria requires that the stop codon be recognized by release factor RF1 or RF2, leading to hydrolysis of the ester bond between the peptide and tRNA on the ribosome. As a consequence, normal termination cannot proceed if the translated mRNA lacks a stop codon. In Escherichia coli, the ribosome rescue factor ArfA releases the nascent polypeptide from the stalled ribosome with the help of RF2 in a stop codon-independent manner. Interestingly, the reaction does not proceed if RF1 is instead provided, even though the structures of RF1 and RF2 are very similar. Here, we identified the regions of RF2 required for the ArfA-dependent ribosome rescue system. Introduction of hydrophobic residues from RF2 found at the interface between RF2 and ArfA into RF1 allowed RF1 to associate with the ArfA-ribosome complex to a certain extent but failed to promote peptidyl-tRNA hydrolysis, whereas WT RF1 did not associate with the complex. We also identified the key residues required for the process after ribosome binding. Our findings provide a basis for understanding how the ArfA-ribosome complex is specifically recognized by RF2 and how RF2 undergoes a conformational change upon binding to the ArfA-ribosome complex.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| |
Collapse
|
40
|
Bao C, Loerch S, Ling C, Korostelev AA, Grigorieff N, Ermolenko DN. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. eLife 2020; 9:e55799. [PMID: 32427100 PMCID: PMC7282821 DOI: 10.7554/elife.55799] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022] Open
Abstract
Although the elongating ribosome is an efficient helicase, certain mRNA stem-loop structures are known to impede ribosome movement along mRNA and stimulate programmed ribosome frameshifting via mechanisms that are not well understood. Using biochemical and single-molecule Förster resonance energy transfer (smFRET) experiments, we studied how frameshift-inducing stem-loops from E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) perturb translation elongation. We find that upon encountering the ribosome, the stem-loops strongly inhibit A-site tRNA binding and ribosome intersubunit rotation that accompanies translation elongation. Electron cryo-microscopy (cryo-EM) reveals that the HIV stem-loop docks into the A site of the ribosome. Our results suggest that mRNA stem-loops can transiently escape the ribosome helicase by binding to the A site. Thus, the stem-loops can modulate gene expression by sterically hindering tRNA binding and inhibiting translation elongation.
Collapse
Affiliation(s)
- Chen Bao
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| | - Sarah Loerch
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Clarence Ling
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| | - Andrei A Korostelev
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
41
|
Schwark DG, Schmitt MA, Biddle W, Fisk JD. The Influence of Competing tRNA Abundance on Translation: Quantifying the Efficiency of Sense Codon Reassignment at Rarely Used Codons. Chembiochem 2020; 21:2274-2286. [PMID: 32203635 DOI: 10.1002/cbic.202000052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Indexed: 11/07/2022]
Abstract
A quantitative understanding of how system composition and molecular properties conspire to determine the fidelity of translation is lacking. Our strategy directs an orthogonal tRNA to directly compete against endogenous tRNAs to decode individual targeted codons in a GFP reporter. Sets of directed sense codon reassignment measurements allow the isolation of particular factors contributing to translational fidelity. In this work, we isolated the effect of tRNA concentration on translational fidelity by evaluating reassignment of the 15 least commonly employed E. coli sense codons. Eight of the rarely used codons are reassigned with greater than 20 % efficiency. Both tRNA abundance and codon demand moderately inversely correlate with reassignment efficiency. Furthermore, the reassignment of rarely used codons does not appear to confer a fitness advantage relative to reassignment of other codons. These direct competition experiments also map potential targets for genetic code expansion. The isoleucine AUA codon is particularly attractive for the incorporation of noncanonical amino acids, with a nonoptimized reassignment efficiency of nearly 70 %.
Collapse
Affiliation(s)
- David G Schwark
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Margaret A Schmitt
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - Wil Biddle
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| | - John D Fisk
- Department of Chemistry, University of Colorado Denver Campus Box 194, P.O. Box 173364, Denver, CO 80217-3364, USA
| |
Collapse
|
42
|
Rodnina MV, Korniy N, Klimova M, Karki P, Peng BZ, Senyushkina T, Belardinelli R, Maracci C, Wohlgemuth I, Samatova E, Peske F. Translational recoding: canonical translation mechanisms reinterpreted. Nucleic Acids Res 2020; 48:1056-1067. [PMID: 31511883 PMCID: PMC7026636 DOI: 10.1093/nar/gkz783] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, –1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
43
|
Abstract
Kinetic proofreading is an error correction mechanism present in the processes of the central dogma and beyond and typically requires the free energy of nucleotide hydrolysis for its operation. Though the molecular players of many biological proofreading schemes are known, our understanding of how energy consumption is managed to promote fidelity remains incomplete. In our work, we introduce an alternative conceptual scheme called "the piston model of proofreading" in which enzyme activation through hydrolysis is replaced with allosteric activation achieved through mechanical work performed by a piston on regulatory ligands. Inspired by Feynman's ratchet and pawl mechanism, we consider a mechanical engine designed to drive the piston actions powered by a lowering weight, whose function is analogous to that of ATP synthase in cells. Thanks to its mechanical design, the piston model allows us to tune the "knobs" of the driving engine and probe the graded changes and trade-offs between speed, fidelity, and energy dissipation. It provides an intuitive explanation of the conditions necessary for optimal proofreading and reveals the unexpected capability of allosteric molecules to beat the Hopfield limit of fidelity by leveraging the diversity of states available to them. The framework that we have built for the piston model can also serve as a basis for additional studies of driven biochemical systems.
Collapse
Affiliation(s)
- Vahe Galstyan
- Biochemistry and Molecular Biophysics Option , California Institute of Technology , Pasadena , California 91125 , United States
| | - Rob Phillips
- Department of Physics , California Institute of Technology , Pasadena , California 91125 , United States.,Department of Applied Physics , California Institute of Technology , Pasadena , California 91125 , United States.,Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
44
|
Chiuchiù D, Ferrare J, Pigolotti S. Assembly of heteropolymers via a network of reaction coordinates. Phys Rev E 2019; 100:062502. [PMID: 31962425 DOI: 10.1103/physreve.100.062502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 06/10/2023]
Abstract
In biochemistry, heteropolymers encoding biological information are assembled out of equilibrium by sequentially incorporating available monomers found in the environment. Current models of polymerization treat monomer incorporation as a sequence of discrete chemical reactions between intermediate metastable states. In this paper, we use ideas from reaction rate theory and describe nonequilibrium assembly of a heteropolymer via a continuous reaction coordinate. Our approach allows for estimating the copy error and incorporation speed from the Gibbs free energy landscape of the process. We apply our theory to several examples from a simple reaction characterized by a free energy barrier to more complex cases incorporating error correction mechanisms, such as kinetic proofreading.
Collapse
Affiliation(s)
- Davide Chiuchiù
- Biological Complexity Unit, Okinawa Institute for Science and Technology, 1919-1 Tancha, Onna, Kunigami-gun, Okinawa 904-0412, Japan
| | - James Ferrare
- Biological Complexity Unit, Okinawa Institute for Science and Technology, 1919-1 Tancha, Onna, Kunigami-gun, Okinawa 904-0412, Japan
- Tulane University, 6823 St. Charles Avenue, New Orleans, Lousiana 70118, USA
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute for Science and Technology, 1919-1 Tancha, Onna, Kunigami-gun, Okinawa 904-0412, Japan
| |
Collapse
|
45
|
Lee J, Schwieter KE, Watkins AM, Kim DS, Yu H, Schwarz KJ, Lim J, Coronado J, Byrom M, Anslyn EV, Ellington AD, Moore JS, Jewett MC. Expanding the limits of the second genetic code with ribozymes. Nat Commun 2019; 10:5097. [PMID: 31704912 PMCID: PMC6841967 DOI: 10.1038/s41467-019-12916-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The site-specific incorporation of noncanonical monomers into polypeptides through genetic code reprogramming permits synthesis of bio-based products that extend beyond natural limits. To better enable such efforts, flexizymes (transfer RNA (tRNA) synthetase-like ribozymes that recognize synthetic leaving groups) have been used to expand the scope of chemical substrates for ribosome-directed polymerization. The development of design rules for flexizyme-catalyzed acylation should allow scalable and rational expansion of genetic code reprogramming. Here we report the systematic synthesis of 37 substrates based on 4 chemically diverse scaffolds (phenylalanine, benzoic acid, heteroaromatic, and aliphatic monomers) with different electronic and steric factors. Of these substrates, 32 were acylated onto tRNA and incorporated into peptides by in vitro translation. Based on the design rules derived from this expanded alphabet, we successfully predicted the acylation of 6 additional monomers that could uniquely be incorporated into peptides and direct N-terminal incorporation of an aldehyde group for orthogonal bioconjugation reactions.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Kenneth E Schwieter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew M Watkins
- Departments of Biochemistry and Physics, Stanford University, Stanford, 94305, CA, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Hao Yu
- Departments of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Jongdoo Lim
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jaime Coronado
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Michelle Byrom
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
| |
Collapse
|
46
|
Halfon Y, Jimenez-Fernandez A, La Rosa R, Espinosa Portero R, Krogh Johansen H, Matzov D, Eyal Z, Bashan A, Zimmerman E, Belousoff M, Molin S, Yonath A. Structure of Pseudomonas aeruginosa ribosomes from an aminoglycoside-resistant clinical isolate. Proc Natl Acad Sci U S A 2019; 116:22275-22281. [PMID: 31611393 PMCID: PMC6825255 DOI: 10.1073/pnas.1909831116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resistance to antibiotics has become a major threat to modern medicine. The ribosome plays a fundamental role in cell vitality by the translation of the genetic code into proteins; hence, it is a major target for clinically useful antibiotics. We report here the cryo-electron microscopy structures of the ribosome of a pathogenic aminoglycoside (AG)-resistant Pseudomonas aeruginosa strain, as well as of a nonresistance strain isolated from a cystic fibrosis patient. The structural studies disclosed defective ribosome complex formation due to a conformational change of rRNA helix H69, an essential intersubunit bridge, and a secondary binding site of the AGs. In addition, a stable conformation of nucleotides A1486 and A1487, pointing into helix h44, is created compared to a non-AG-bound ribosome. We suggest that altering the conformations of ribosomal protein uL6 and rRNA helix H69, which interact with initiation-factor IF2, interferes with proper protein synthesis initiation.
Collapse
Affiliation(s)
- Yehuda Halfon
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Alicia Jimenez-Fernandez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Rocio Espinosa Portero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Donna Matzov
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Zohar Eyal
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ella Zimmerman
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Matthew Belousoff
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, 3800 Clayton, VIC, Australia
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel;
| |
Collapse
|
47
|
Oliveira AB, Yang H, Whitford PC, Leite VBP. Distinguishing Biomolecular Pathways and Metastable States. J Chem Theory Comput 2019; 15:6482-6490. [DOI: 10.1021/acs.jctc.9b00704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Antonio B. Oliveira
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Huan Yang
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paul C. Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
48
|
A tRNA-mimic Strategy to Explore the Role of G34 of tRNA Gly in Translation and Codon Frameshifting. Int J Mol Sci 2019; 20:ijms20163911. [PMID: 31405256 PMCID: PMC6720975 DOI: 10.3390/ijms20163911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Decoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance. Interestingly, although the 61 anticodons should exist in tRNAs, a strict absence of some tRNAs decoders is found in several codon families. For instance, in Eukaryotes, G34-containing tRNAs translating 3-, 4- and 6-codon boxes are absent. This includes tRNA specific for Ala, Arg, Ile, Leu, Pro, Ser, Thr, and Val. tRNAGly is the only exception for which in the three kingdoms, a G34-containing tRNA exists to decode C3 and U3-ending codons. To understand why G34-tRNAGly exists, we analysed at the genome wide level the codon distribution in codon +1 relative to the four GGN Gly codons. When considering codon GGU, a bias was found towards an unusual high usage of codons starting with a G whatever the amino acid at +1 codon. It is expected that GGU codons are decoded by G34-containing tRNAGly, decoding also GGC codons. Translation studies revealed that the presence of a G at the first position of the downstream codon reduces the +1 frameshift by stabilizing the G34•U3 wobble interaction. This result partially explains why G34-containing tRNAGly exists in Eukaryotes whereas all the other G34-containing tRNAs for multiple codon boxes are absent.
Collapse
|
49
|
Peng S, Yang M, Sun RN, Liu Y, Wang W, Xi Q, Gong H, Chen C. Mechanism of actions of Oncocin, a proline-rich antimicrobial peptide, in early elongation revealed by single-molecule FRET. Protein Cell 2019; 9:890-895. [PMID: 29256010 PMCID: PMC6160386 DOI: 10.1007/s13238-017-0495-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Mengyi Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Rui Ning Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.,MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjuan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Technology Center for Protein Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haipeng Gong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.,MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
50
|
Chiuchiú D, Tu Y, Pigolotti S. Error-Speed Correlations in Biopolymer Synthesis. PHYSICAL REVIEW LETTERS 2019; 123:038101. [PMID: 31386470 PMCID: PMC7402413 DOI: 10.1103/physrevlett.123.038101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 06/10/2023]
Abstract
Synthesis of biopolymers such as DNA, RNA, and proteins are biophysical processes aided by enzymes. The performance of these enzymes is usually characterized in terms of their average error rate and speed. However, because of thermal fluctuations in these single-molecule processes, both error and speed are inherently stochastic quantities. In this Letter, we study fluctuations of error and speed in biopolymer synthesis and show that they are in general correlated. This means that, under equal conditions, polymers that are synthesized faster due to a fluctuation tend to have either better or worse errors than the average. The error-correction mechanism implemented by the enzyme determines which of the two cases holds. For example, discrimination in the forward reaction rates tends to grant smaller errors to polymers with faster synthesis. The opposite occurs for discrimination in monomer rejection rates. Our results provide an experimentally feasible way to identify error-correction mechanisms by measuring the error-speed correlations.
Collapse
Affiliation(s)
- Davide Chiuchiú
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yuhai Tu
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|