1
|
Xu Z, Asakawa S. Release and degradation of dissolved environmental RNAs from zebrafish cells. RNA Biol 2025; 22:1-12. [PMID: 40167163 PMCID: PMC12026185 DOI: 10.1080/15476286.2025.2486281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The sources and degradation profiles of dissolved environmental RNAs from fish in water remain unknown. In this study, laboratory experiments and mathematical modelling were conducted to investigate the permeability of RNA extracted from zebrafish cells through filters, the release of dissolved environmental RNAs from live and dying zebrafish cells, and the degradation of RNA extracted from zebrafish cells in a non-sterile aqueous environment. This research aimed to provide biological and ecological insights into fish RNAs dissolved in water. The results showed that most of the RNA extracted from zebrafish cells was detected in the filtrates after passage through 0.45 µm filters. Over the course of the 6-day experiment, dynamic levels of the RNAs in the liquid environment containing live or dying zebrafish cells were determined. The release and degradation rates of dissolved environmental RNA from zebrafish cells were calculated using mathematical modelling. RNA extracted from zebrafish cells degraded in non-sterile water in the tubes, and after 2 months, more than 15% of the RNAs in the water remained detectable. The half-life of the RNA in the tubes was approximately 20 ~ 43 days. The modelling results suggest that the levels of the dissolved environmental fish RNAs in natural waters or aquariums could be so low that it would be difficult to detect them using current techniques. The results obtained in this study will help develop new methods for measuring the dynamics of dissolved environmental fish RNAs in water and determining their significance.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Ooi YJ, Huang C, Lau K, Chew SY, Park JG, Chan-Park MB. Nontoxic, Biodegradable Hyperbranched Poly(β-amino ester)s for Efficient siRNA Delivery and Gene Silencing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14093-14112. [PMID: 38449351 DOI: 10.1021/acsami.3c10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
RNA interference (RNAi)-mediated gene silencing is a promising therapeutic approach to treat various diseases, but safe and efficient delivery remains a major challenge to its clinical application. Non-viral gene vectors, such as poly(β-amino esters) (pBAEs), have emerged as a potential candidate due to their biodegradability, low toxicity profile, ease of synthesis, and high gene transfection efficiency for both DNA and siRNA delivery. However, achieving significant gene silencing using pBAEs often requires a large amount of polymer carrier (with polymer/siRNA weight ratio >100) or high siRNA dose (>100 nM), which might potentially exacerbate toxicity concerns during delivery. To overcome these barriers, we designed and optimized a series of hyperbranched pBAEs capable of efficiently condensing siRNA and achieving excellent silencing efficiency at a lower polymer/siRNA weight ratio (w/w) and siRNA dose. Through modulation of monomer combinations and branching density, we identified the top-performing hyperbranched pBAEs, named as h(A2B3)-1, which possess good siRNA condensation ability, low cytotoxicity, and high cellular uptake efficiency. Compared with Lipofectamine 2000, h(A2B3)-1 achieved lower cytotoxicity and higher siRNA silencing efficiency in HeLa cells at a polymer/siRNA weight ratio of 30 and 30 nM siRNA dose. Notably, h(A2B3)-1 enhanced the gene uptake in primary neural cells and effectively silenced the target gene in hard-to-transfect primary cortical neurons and oligodendrocyte progenitor cells, with gene knockdown efficiencies of 34.8 and 53.4% respectively. By incorporating a bioreducible disulfide compartment into the polymer backbone, the cytocompatibility of the h(A2B3)-1 was greatly enhanced while maintaining their good transfection efficiency. Together, the low cytotoxicity and high siRNA transfection efficiency of hyperbranched h(A2B3)-1 in this study demonstrated their great potential as a non-viral gene vector for efficient siRNA delivery and RNAi-mediated gene silencing. This provides valuable insight into the future development of safe and efficient non-viral siRNA delivery systems as well as their translation into clinical applications.
Collapse
Affiliation(s)
- Ying Jie Ooi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Chongquan Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Neuroscience@NTU, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 637459, Singapore
| | - Kieran Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jong Gu Park
- Welgene Inc, 693, Namcheon-ro, Namcheon-myeon, Gyeongsan-si, Gyeongsangbuk-do 38695, Republic of Korea
| | - Mary B Chan-Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
3
|
Egorova A, Maretina M, Krylova I, Kiselev A. Polycondensed Peptide-Based Polymers for Targeted Delivery of Anti-Angiogenic siRNA to Treat Endometriosis. Int J Mol Sci 2023; 25:13. [PMID: 38203184 PMCID: PMC10778610 DOI: 10.3390/ijms25010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Endometriosis (EM) is a prevalent gynecological disease characterized by the abnormal growth of tissue similar to the endometrium outside of the uterus. This condition is accompanied by the development of new blood vessels in endometriotic lesions. While surgical intervention is effective in removing endometriotic lesions, some patients require multiple surgeries. Therefore, finding non-surgical treatments for EM is of great interest. One of the promising approaches is anti-angiogenic therapy using siRNA-therapeutics to target the expression of the VEGFA gene. Peptide-based polymers have shown promise as siRNA delivery systems due to their biocompatibility and ease of modification. We conducted a study to evaluate the effectiveness of the R6p-cRGD peptide carrier as a non-viral vehicle for delivering siRNA to endothelial cells in vitro and endometrial implants in vivo. We investigated the physicochemical properties of the siRNA-complexes, assessed cellular toxicity, and examined the efficiency of GFP and VEGFA genes silencing. Furthermore, we tested the anti-angiogenic effects of these complexes in cellular and animal models. The transfection with siRNA complexes led to a significant increase in VEGFA gene knockdown efficiency and a decrease in the migration of endothelial cells. For the animal model, we induced endometriosis in rats by transplanting endometrial tissue subcutaneously. We evaluated the efficiency of anti-angiogenic therapy for EM in vivo using anti-VEGF siRNA/R6p-RGD complexes. During this assessment, we measured the volume of the implants, analyzed VEGFA gene expression, and conducted CD34 immunohistochemical staining. The results showed a significant decrease in the growth of endometriotic implants and in VEGFA gene expression. Overall, our findings demonstrate the potential of the R6p-cRGD peptide carrier as a delivery system for anti-angiogenic therapy of EM.
Collapse
Affiliation(s)
- Anna Egorova
- Laboratory of Molecular Genetics and Gene Therapy, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.)
| | - Marianna Maretina
- Laboratory of Molecular Genetics and Gene Therapy, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.)
| | - Iuliia Krylova
- Department of Pathology, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo Street 6-8, 197022 Saint-Petersburg, Russia;
| | - Anton Kiselev
- Laboratory of Molecular Genetics and Gene Therapy, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (M.M.)
| |
Collapse
|
4
|
Battistini F, Sala A, Hospital A, Orozco M. Sequence-Dependent Properties of the RNA Duplex. J Chem Inf Model 2023; 63:5259-5271. [PMID: 37577978 DOI: 10.1021/acs.jcim.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sequence-dependent properties of the DNA duplex have been accurately described using extensive molecular dynamics simulations. The RNA duplex meanwhile─which is typically represented as a sequence-averaged rigid rod─does not benefit from having equivalent molecular dynamics simulations. In this paper, we present a massive simulation effort using a set of ABC-optimized duplexes from which we derived tetramer-resolution properties of the RNA duplex and a simple mesoscopic model that can represent elastic properties of long RNA duplexes. Despite the extreme chemical similarity between DNA and RNA, the local and global elastic properties of the duplexes are very different. DNA duplexes show a complex and nonelastic pattern of flexibility, for instance, while RNA duplexes behave as an elastic system whose deformations can be represented by simple harmonic potentials. In RNA duplexes (RNA2), not only are intra- and interbase pair parameters (equilibrium and mechanical) different from those in the equivalent DNA duplex sequences (DNA2) but the correlations between movements also differ. Simple statements on the relative flexibility or stability of both polymers are meaningless and should be substituted by a more detailed description depending on the sequence and the type of deformation considered.
Collapse
Affiliation(s)
- Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain
| | - Alba Sala
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
5
|
Gillet N, Dumont E. Dynamics and energetics of PCBP1 binding to severely oxidized RNA. Front Mol Biosci 2022; 9:994915. [PMID: 36406269 PMCID: PMC9671708 DOI: 10.3389/fmolb.2022.994915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 10/20/2023] Open
Abstract
Oxidatively generated lesions such as 8-oxo-7, 8-dihydroguanine (8-oxoG) on RNA strands constitute a hallmark marker of the oxidative stress in the cell. Poly-C binding protein 1 (PCBP1) is able to specifically recognize severely damaged RNA strands containing two 8-oxoG lesions separated by five nucleobases, which trigger a signaling pathway leading to cell apoptosis. We apply an in silico protocol based on microsecond timescale all-atom classical molecular dynamics simulations associated with conformational and energy analyses to unveil the specific recognition mechanism at a molecular level. By comparing the RNA and protein behavior for sequences with six different damage profiles, our results highlight an allosteric mechanism, allowing a stronger binding of the oxidized guanine at position 9 only if another 8-oxoG lesion is present at position 15, in full agreement with experiments. We assess the role of lysine K23 and the additional ketone group of the oxidized guanine, thanks to computational site-directed mutagenesis.
Collapse
Affiliation(s)
- Natacha Gillet
- Laboratoire de Chimie, ENS de Lyon, CNRS UMR 5182, Lyon, France
| | - Elise Dumont
- CNRS, Institut de Chimie de Nice, Université Côte d’Azur, Nice, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Chhetri KB, Naskar S, Maiti PK. Probing the microscopic structure and flexibility of oxidized DNA by molecular simulations. INDIAN JOURNAL OF PHYSICS 2022; 96:2597-2611. [DOI: 10.1007/s12648-022-02299-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/17/2022] [Indexed: 01/17/2025]
|
7
|
Chhetri KB, Sharma A, Naskar S, Maiti PK. Nanoscale structures and mechanics of peptide nucleic acids. NANOSCALE 2022; 14:6620-6635. [PMID: 35421892 DOI: 10.1039/d1nr04239d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide nucleic acids (PNAs) are charge-neutral polyamide oligomers having extremely favorable thermal stability and high affinity to cell membranes when coupled with cationic cell-penetrating peptides (CPPs), as well as the encouraging antisense and antigene activity in cell-free systems. The study of the mechanical properties of short PNA molecules is rare both in experiments and theoretical calculations. Here, we studied the microscopic structures and elastic properties; namely, persistence length, stretch modulus, twist-stretch coupling, and structural crookedness of double-stranded PNA (dsPNA) and their hybrid derivatives using all-atom MD simulation and compared them with those of double-stranded DNA (dsDNA) and double-stranded RNA (dsRNA). The stretch modulus of the dsPNA is found to be ∼160 pN, an order of magnitude lower than that of dsDNA and smaller than dsRNA, respectively. Similarly, the persistence length of dsPNA is found to be ∼35 nm, significantly smaller than those of dsDNA and dsRNA. The PNA-DNA and PNA-RNA hybrid duplexes have elastic properties lying between that of dsPNA and dsDNA/dsRNA. We argue that the neutral backbones of the PNA make it less stiff than dsDNA and dsRNA molecules. Measurement of structural crookedness and principal component analysis additionally support the bending flexibility of dsPNA. Detailed analysis of the helical-rise coupled to helical-twist indicates that the PNA-DNA hybrid over-winds like dsDNA, while PNA-PNA and PNA-RNA unwind like dsRNA upon stretching. Because of the highly flexible nature of PNA, it can bind other biomolecules by adopting a wide range of conformations and is believed to be crucial for future nanobiotechnology research studies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
| | - Akshara Sharma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
8
|
Chhetri KB, Dasgupta C, Maiti PK. Diameter Dependent Melting and Softening of dsDNA Under Cylindrical Confinement. Front Chem 2022; 10:879746. [PMID: 35586267 PMCID: PMC9108266 DOI: 10.3389/fchem.2022.879746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are considered promising candidates for biomolecular confinement, including DNA encapsulation for gene delivery. Threshold values of diameters have been reported for double-stranded DNA (dsDNA) encapsulation inside CNTs. We have performed all-atom molecular dynamics (MD) simulations of dsDNAs confined inside single-walled CNTs (SWCNTs) at the physiologically relevant temperature of 300 K. We found that the dsDNA can be confined without being denatured only when the diameter of the SWCNT exceeds a threshold value. Below this threshold diameter, the dsDNA gets denatured and melts even at the temperature of 300 K. Our simulations using SWCNTs with chirality indices (20,20) to (30,30) at 300 K found the critical diameter to be 3.25 nm (corresponding to (24,24) chirality). Analyses of the hydrogen bonds (H-bonds), Van der Walls (VdW) energy, and other inter-base interactions show drastic reduction in the number of H-bonds, VdW energy, and electrostatic energies between the bases of dsDNA when it is confined in narrower SWCNTs (up to diameter of 3.12 nm). On the other hand, the higher interaction energy between the dsDNA and the SWCNT surface in narrower SWCNTs assists in the melting of the dsDNA. Electrostatic mapping and hydration status analyses show that the dsDNA is not adequately hydrated and the counter ion distribution is not uniform below the critical diameter of the SWCNT. As properly hydrated counter ions provide stability to the dsDNA, we infer that the inappropriate hydration of counter ions and their non-uniform distribution around the dsDNA cause the melting of the dsDNA inside SWCNTs of diameter below the critical value of 3.25 nm. For confined dsDNAs that do not get denatured, we computed their elastic properties. The persistence length of dsDNA was found to increase by a factor of about two and the torsional stiffness by a factor of 1.5 for confinement inside SWCNTs of diameters up to 3.79 nm, the stretch modulus also following nearly the same trend. Interestingly, for higher diameters of SWCNT, 3.79 nm and above, the dsDNA becomes more flexible, demonstrating that the mechanical properties of the dsDNA under cylindrical confinement depend non-monotonically on the confinement diameter.
Collapse
Affiliation(s)
- Khadka B. Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Chandan Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Chhetri KB, Sharma A, Naskar S, Maiti PK. Nanoscale structures and mechanics of peptide nucleic acids. NANOSCALE 2022; 14:6620-6635. [DOI: https:/doi.org/10.1039/d1nr04239d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Peptide nucleic acids are charge-neutral polyamide oligomers with extremely flexible backbones that have a strong affinity for hybridization with complementary DNA or RNA, as well as encouraging antisense and antigene activity in cell-free systems.
Collapse
Affiliation(s)
- Khadka B. Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
| | - Akshara Sharma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Fairman CW, Lever AML, Kenyon JC. Evaluating RNA Structural Flexibility: Viruses Lead the Way. Viruses 2021; 13:v13112130. [PMID: 34834937 PMCID: PMC8624864 DOI: 10.3390/v13112130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Our understanding of RNA structure has lagged behind that of proteins and most other biological polymers, largely because of its ability to adopt multiple, and often very different, functional conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks. Conventional biochemical and biophysical techniques all have limitations in solving RNA structure and to address this in recent years we have seen the emergence of a wide diversity of techniques applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility. Viral RNA is a particularly productive area to study in that this economy of function within a single molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques that are being used to elucidate RNA conformational flexibility and exemplify how the structure and function are, as in all biology, tightly linked.
Collapse
Affiliation(s)
| | - Andrew M. L. Lever
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| | - Julia C. Kenyon
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK;
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| |
Collapse
|
11
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 463] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Abstract
DNA dynamics can only be understood by taking into account its complex mechanical behavior at different length scales. At the micrometer level, the mechanical properties of single DNA molecules have been well-characterized by polymer models and are commonly quantified by a persistence length of 50 nm (~150 bp). However, at the base pair level (~3.4 Å), the dynamics of DNA involves complex molecular mechanisms that are still being deciphered. Here, we review recent single-molecule experiments and molecular dynamics simulations that are providing novel insights into DNA mechanics from such a molecular perspective. We first discuss recent findings on sequence-dependent DNA mechanical properties, including sequences that resist mechanical stress and sequences that can accommodate strong deformations. We then comment on the intricate effects of cytosine methylation and DNA mismatches on DNA mechanics. Finally, we review recently reported differences in the mechanical properties of DNA and double-stranded RNA, the other double-helical carrier of genetic information. A thorough examination of the recent single-molecule literature permits establishing a set of general 'rules' that reasonably explain the mechanics of nucleic acids at the base pair level. These simple rules offer an improved description of certain biological systems and might serve as valuable guidelines for future design of DNA and RNA nanostructures.
Collapse
|
13
|
Hyun J, Eom J, Song J, Seo I, Um SH, Park KM, Bhang SH. Poly(amino ester)-Based Polymers for Gene and Drug Delivery Systems and Further Application toward Cell Culture System. Macromol Biosci 2021; 21:e2100106. [PMID: 34117832 DOI: 10.1002/mabi.202100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Indexed: 11/10/2022]
Abstract
Various synthetic polymers based on poly(amino ester) (PAE) are suggested as candidates for gene and drug delivery owing to their pH-responsiveness, which contributes to efficient delivery performance. PAE-based pH-responsive polymers are more biodegradable and hydrophilic than other types of pH-responsive polymers. The functionality of PAE-based polymers can be reinforced by using different chemical modifications to improve the efficiency of gene and drug delivery. Additionally, PAE-based polymers are used in many ways in the biomedical field, such as in transdermal delivery and stem cell culture systems. Here, the recent novel PAE-based polymers designed for gene and drug delivery systems along with their further applications toward adult stem cell culture systems are reviewed. The synthetic tactics are contemplated and pros and cons of each type of polymer are analyzed, and detailed examples of the different types are analyzed.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiin Eom
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihun Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
14
|
Park G, Cho MK, Jung Y. Sequence-Dependent Kink Formation in Short DNA Loops: Theory and Molecular Dynamics Simulations. J Chem Theory Comput 2021; 17:1308-1317. [PMID: 33570937 DOI: 10.1021/acs.jctc.0c01116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kink formation is essential in highly bent DNA complexed with gene regulatory proteins such as histones to release the bending stress stored within the DNA duplex. Local opening of the double-stranded DNA creates a sharp turn along the specific sequence, which leads to the global bending of the DNA strand. Despite the critical role of kink formation, it is still challenging to predict the position of kink formation for a given DNA sequence. In this study, we propose a theoretical model and perform molecular dynamics simulations to quantify the sequence-dependent kink probability of a strongly bent DNA. By incorporating the elastic bending energy and the sequence-specific thermodynamic parameters, we investigate the importance of the DNA sequence on kink formation. We find that the sequence with TA dinucleotide repeats flanked by GC steps increases the kink propensity by more than an order of magnitude under the same bending stress. The number of base pairs involved in the local opening is found to be coupled with the sequence-specific bubble formation free energy. Our study elucidates the molecular origin of the sequence heterogeneity on kink formation, which is fundamental to understanding protein-DNA recognition.
Collapse
Affiliation(s)
- Gyehyun Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Myung Keun Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Oner E, Kotmakci M, Kantarci AG. A promising approach to develop nanostructured lipid carriers from solid lipid nanoparticles: preparation, characterization, cytotoxicity and nucleic acid binding ability. Pharm Dev Technol 2020; 25:936-948. [PMID: 32315242 DOI: 10.1080/10837450.2020.1759630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We aimed to develop nanostructured lipid carriers (NLCs) displaying similar characteristics - particle size, polydispersity index, and zeta potential - with the model solid lipid nanoparticles (SLNs) for better comparability. By considering the hydrophilic-lipophilic balance values of solid and liquid lipids, five out of six NLCs and eight out of eight cationic NLCs (cNLCs) were successfully prepared with similar characteristics to their precursor SLN and cationic SLNs (cSLNs), respectively. Among cationic formulations, two cSLNs containing different surfactant/co-surfactant concentrations (4% and 8% S/CoS; w/w) and their cNLC versions prepared with Labrafac lipophile WL 1349 (LWL) or Labrafac PG were selected to compare cytotoxicity, stability, and nucleic acid binding ability. All formulations are well-tolerated by L-929 cells, cSLNs being least toxic. The formulations containing 4% S/CoS had higher stability after 24-months. All nanoparticles formed complexes with pDNA (Binding ability: cNLCs > cSLNs). cSLN and LWL-cNLC containing 4% S/CoS showed the highest pDNA binding capacity in each group, and their spherical/oval shape was revealed by electron microscopy. However, they did not form complexes with siRNA. The developed approach has the potential to simplify the production of (c)NLCs having similar physicochemical properties with the optimum (c)SLN and may provide better insight for (c)SLN vs.
Collapse
Affiliation(s)
- Ezgi Oner
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| | - Mustafa Kotmakci
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| | - Ayse Gulten Kantarci
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Spokoini-Stern R, Stamov D, Jessel H, Aharoni L, Haschke H, Giron J, Unger R, Segal E, Abu-Horowitz A, Bachelet I. Visualizing the structure and motion of the long noncoding RNA HOTAIR. RNA (NEW YORK, N.Y.) 2020; 26:629-636. [PMID: 32115425 PMCID: PMC7161352 DOI: 10.1261/rna.074633.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Long noncoding RNA molecules (lncRNAs) are estimated to account for the majority of eukaryotic genomic transcripts, and have been associated with multiple diseases in humans. However, our understanding of their structure-function relationships is scarce, with structural evidence coming mostly from indirect biochemical approaches or computational predictions. Here we describe direct visualization of the lncRNA HOTAIR (HOx Transcript AntIsense RNA) using atomic force microscopy (AFM) in nucleus-like conditions at 37°. Our observations reveal that HOTAIR has a discernible, although flexible, shape. Fast AFM scanning enabled the quantification of the motion of HOTAIR, and provided visual evidence of physical interactions with genomic DNA segments. Our report provides a biologically plausible description of the anatomy and intrinsic properties of HOTAIR, and presents a framework for studying the structural biology of lncRNAs.
Collapse
Affiliation(s)
- Rachel Spokoini-Stern
- Augmanity, Rehovot 7670308, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | | | | | | | | | - Ron Unger
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eran Segal
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | |
Collapse
|
17
|
Chen YT, Yang H, Chu JW. Structure-mechanics statistical learning unravels the linkage between local rigidity and global flexibility in nucleic acids. Chem Sci 2020; 11:4969-4979. [PMID: 34122953 PMCID: PMC8159235 DOI: 10.1039/d0sc00480d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mechanical properties of nucleic acids underlie biological processes ranging from genome packaging to gene expression, but tracing their molecular origin has been difficult due to the structural and chemical complexity. We posit that concepts from machine learning can help to tackle this long-standing challenge. Here, we demonstrate the feasibility and advantage of this strategy through developing a structure-mechanics statistical learning scheme to elucidate how local rigidity in double-stranded (ds)DNA and dsRNA may lead to their global flexibility in bend, stretch, and twist. Specifically, the mechanical parameters in a heavy-atom elastic network model are computed from the trajectory data of all-atom molecular dynamics simulation. The results show that the inter-atomic springs for backbone and ribose puckering in dsRNA are stronger than those in dsDNA, but are similar in strengths for base-stacking and base-pairing. Our analysis shows that the experimental observation of dsDNA being easier to bend but harder to stretch than dsRNA comes mostly from the respective B- and A-form topologies. The computationally resolved composition of local rigidity indicates that the flexibility of both nucleic acids is mostly due to base-stacking. But for properties like twist-stretch coupling, backbone springs are shown to play a major role instead. The quantitative connection between local rigidity and global flexibility sets foundation for understanding how local binding and chemical modification of genetic materials effectuate longer-ranged regulatory signals. The mechanical properties of nucleic acids underlie biological processes ranging from genome packaging to gene expression. We devise structural mechanics statistical learning method to reveal their molecular origin in terms of chemical interactions.![]()
Collapse
Affiliation(s)
- Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University Hsinchu Taiwan 30068 Republic of China
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University Hsinchu Taiwan 30068 Republic of China +886 3 5712121 ext. 56996
| |
Collapse
|
18
|
Complex Size and Surface Charge Determine Nucleic Acid Transfer by Fusogenic Liposomes. Int J Mol Sci 2020; 21:ijms21062244. [PMID: 32213928 PMCID: PMC7139958 DOI: 10.3390/ijms21062244] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022] Open
Abstract
Highly efficient, biocompatible, and fast nucleic acid delivery methods are essential for biomedical applications and research. At present, two main strategies are used to this end. In non-viral transfection liposome- or polymer-based formulations are used to transfer cargo into cells via endocytosis, whereas viral carriers enable direct nucleic acid delivery into the cell cytoplasm. Here, we introduce a new generation of liposomes for nucleic acid delivery, which immediately fuse with the cellular plasma membrane upon contact to transfer the functional nucleic acid directly into the cell cytoplasm. For maximum fusion efficiency combined with high cargo transfer, nucleic acids had to be complexed and partially neutralized before incorporation into fusogenic liposomes. Among the various neutralization agents tested, small, linear, and positively charged polymers yielded the best complex properties. Systematic variation of liposomal composition and nucleic acid complexation identified surface charge as well as particle size as essential parameters for cargo-liposome interaction and subsequent fusion induction. Optimized protocols were tested for the efficient transfer of different kinds of nucleic acids like plasmid DNA, messenger RNA, and short-interfering RNA into various mammalian cells in culture and into primary tissues.
Collapse
|
19
|
Tabujew I, Heidari M, Freidel C, Helm M, Tebbe L, Wolfrum U, Nagel-Wolfrum K, Koynov K, Biehl P, Schacher FH, Potestio R, Peneva K. Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules 2019; 20:4389-4406. [DOI: 10.1021/acs.biomac.9b01061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Maziar Heidari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Freidel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lars Tebbe
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Zoology, Johannes Gutenberg University Mainz, Muellerweg 6, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Raffaello Potestio
- Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
20
|
Yu J, Li J, Zhai S, Lin L, Wang K, Tang B, Meng H, Tian L. Enzymatically Synthesized DNA Polymer as Co-carrier for Enhanced RNA Interference. ACS APPLIED BIO MATERIALS 2019; 2:5204-5215. [DOI: 10.1021/acsabm.9b00862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Kui Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
21
|
Liu JH, Xi K, Zhang X, Bao L, Zhang X, Tan ZJ. Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling. Biophys J 2019; 117:74-86. [PMID: 31164196 PMCID: PMC6626833 DOI: 10.1016/j.bpj.2019.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
DNA-RNA hybrid (DRH) duplexes play essential roles during the replication of DNA and the reverse transcription of RNA viruses, and their flexibility is important for their biological functions. Recent experiments indicated that A-form RNA and B-form DNA have a strikingly different flexibility in stretching and twist-stretch coupling, and the structural flexibility of DRH duplex is of great interest, especially in stretching and twist-stretch coupling. In this work, we performed microsecond all-atom molecular dynamics simulations with new AMBER force fields to characterize the structural flexibility of DRH duplex in stretching and twist-stretch coupling. We have calculated all the helical parameters, stretch modulus, and twist-stretch coupling parameters for the DRH duplex. First, our analyses on structure suggest that the DRH duplex exhibits an intermediate conformation between A- and B-forms and closer to A-form, which can be attributed to the stronger rigidity of the RNA strand than the DNA strand. Second, our calculations show that the DRH duplex has the stretch modulus of 834 ± 34 pN and a very weak twist-stretch coupling. Our quantitative analyses indicate that, compared with DNA and RNA duplexes, the different flexibility of the DRH duplex in stretching and twist-stretch coupling is mainly attributed to its apparently different basepair inclination in the helical structure.
Collapse
Affiliation(s)
- Ju-Hui Liu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- College of Life Science, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Correa S, Boehnke N, Deiss-Yehiely E, Hammond PT. Solution Conditions Tune and Optimize Loading of Therapeutic Polyelectrolytes into Layer-by-Layer Functionalized Liposomes. ACS NANO 2019; 13:5623-5634. [PMID: 30986034 PMCID: PMC6980385 DOI: 10.1021/acsnano.9b00792] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Layer-by-layer (LbL) nanoparticles offer great potential to the field of drug delivery, where these nanocomposites have been studied for their ability to deliver chemotherapeutic agents, small molecule inhibitors, and nucleic acids. Most exciting is their ability to encapsulate multiple functional elements, which allow nanocarriers to deliver complex combination therapies with staged release. However, relative to planar LbL constructs, colloidal LbL systems have not undergone extensive systematic studies that outline critical synthetic solution conditions needed for robust and efficient assembly. The multistaged process of adsorbing a series of materials onto a nanoscopic template is inherently complex, and facilitating the self-assembly of these materials depends on identifying proper solution conditions for each synthetic step and adsorbed material. Here, we focus on addressing some of the fundamental questions that must be answered in order to obtain a reliable and robust synthesis of nucleic acid-containing LbL liposomes. This includes a study of solution conditions, such as pH, ionic strength, salt composition, and valency, and their impact on the preparation of LbL nanoparticles. Our results provide insight into the selection of solution conditions to control the degree of ionization and the electrostatic screening length to suit the adsorption of nucleic acids and synthetic polypeptides. The optimization of these parameters led to a roughly 8-fold improvement in nucleic acid loading in LbL liposomes, indicating the importance of optimizing solution conditions in the preparation of therapeutic LbL nanoparticles. These results highlight the benefits of defining principles for constructing highly effective nanoparticle systems.
Collapse
Affiliation(s)
- Santiago Correa
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Natalie Boehnke
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Elad Deiss-Yehiely
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 183 Memorial Drive, Cambridge, Massachusetts 02142, United States
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, Massachusetts 02142, United States
- Corresponding Author:
| |
Collapse
|
23
|
Rui Y, Wilson DR, Sanders K, Green JJ. Reducible Branched Ester-Amine Quadpolymers (rBEAQs) Codelivering Plasmid DNA and RNA Oligonucleotides Enable CRISPR/Cas9 Genome Editing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10472-10480. [PMID: 30794383 PMCID: PMC7309334 DOI: 10.1021/acsami.8b20206] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Functional codelivery of plasmid DNA and RNA oligonucleotides in the same nanoparticle system is challenging due to differences in their physical properties as well as their intracellular locations of function. In this study, we synthesized a series of reducible branched ester-amine quadpolymers (rBEAQs) and investigated their ability to coencapsulate and deliver DNA plasmids and RNA oligos. The rBEAQs are designed to leverage polymer branching, reducibility, and hydrophobicity to successfully cocomplex DNA and RNA in nanoparticles at low polymer to nucleic acid w/w ratios and enable high delivery efficiency. We validate the synthesis of this new class of biodegradable polymers, characterize the self-assembled nanoparticles that these polymers form with diverse nucleic acids, and demonstrate that the nanoparticles enable safe, effective, and efficient DNA-siRNA codelivery as well as nonviral CRISPR-mediated gene editing utilizing Cas9 DNA and sgRNA codelivery.
Collapse
Affiliation(s)
- Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine
| | - David R. Wilson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine
| | - Katie Sanders
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine
- Departments of Ophthalmology, Oncology, Materials Science & Engineering, Chemical & Biomolecular Engineering, and Neurosurgery, Johns Hopkins University School of Medicine
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine
- Corresponding author to whom correspondence should be addressed:
| |
Collapse
|
24
|
Physical-chemical measurement method development for self-assembled, core-shell nanoparticles. Sci Rep 2019; 9:1655. [PMID: 30733537 PMCID: PMC6367485 DOI: 10.1038/s41598-018-38194-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022] Open
Abstract
Improvements in dimensional metrology and innovations in physical-chemical characterization of functionalized nanoparticles are critically important for the realization of enhanced performance and benefits of nanomaterials. Toward this goal, we propose a multi-technique measurement approach, in which correlated atomic force microscopy, dynamic light scattering, high performance liquid chromatography and mass spectroscopy measurements are used to assess molecular and structural properties of self-assembled polyplex nanoparticles with a core-shell structure. In this approach, measurement methods are first validated with a model system consisting of gold nanoparticles functionalized with synthetic polycationic branched polyethylenimine macromolecules. Shell thickness is measured by atomic force microscopy and dynamic light scattering, and the polyelectrolyte uptake determined by chromatographic separation and mass spectrometric analysis. Statistical correlation between size, structure and stability provide a basis for extending the methods to more complex self-assembly of nucleic acids and macromolecules via a condensation reaction. From these size and analytical chemical measurements, we obtain a comprehensive spatial description of these assemblies, obtain a detailed interpretation of the core-shell evolution, and identify regions of the parameter space where stable, discrete particle formation occurs.
Collapse
|
25
|
Jin L, Shi YZ, Feng CJ, Tan YL, Tan ZJ. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys J 2018; 115:1403-1416. [PMID: 30236782 DOI: 10.1016/j.bpj.2018.08.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Cruz-León S, Vázquez-Mayagoitia A, Melchionna S, Schwierz N, Fyta M. Coarse-Grained Double-Stranded RNA Model from Quantum-Mechanical Calculations. J Phys Chem B 2018; 122:7915-7928. [PMID: 30044622 DOI: 10.1021/acs.jpcb.8b03566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A coarse-grained model for simulating structural properties of double-stranded RNA is developed with parameters obtained from quantum-mechanical calculations. This model follows previous parametrization for double-stranded DNA, which is based on mapping the all-atom picture to a coarse-grained four-bead scheme. Chemical and structural differences between RNA and DNA have been taken into account for the model development. The parametrization is based on simulations using density functional theory (DFT) on separate units of the RNA molecule without implementing experimental data. The total energy is decomposed into four terms of physical significance: hydrogen bonding interaction, stacking interactions, backbone interactions, and electrostatic interactions. The first three interactions are treated within DFT, whereas the last one is included within a mean field approximation. Our double-stranded RNA coarse-grained model predicts stable helical structures for RNA. Other characteristics, such as structural or mechanical properties are reproduced with a very good accuracy. The development of the coarse-grained model for RNA allows extending the spatial and temporal length scales accessed by computer simulations and being able to model RNA-related biophysical processes, as well as novel RNA nanostructures.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Institute for Computational Physics , Universität Stuttgart , Allmandring 3 , 70569 Stuttgart , Germany.,Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue-Str. 3 , 60438 Frankfurt , Germany
| | - Alvaro Vázquez-Mayagoitia
- Argonne National Laboratory , 9700 S. Cass Avenue, Building 240 , Argonne , Illinois , United States
| | - Simone Melchionna
- Dipartimento di Fisica, ISC-CNR, Istituto Sistemi Complessi , Università Sapienza , P.le A. Moro 2 , 00185 Rome , Italy
| | - Nadine Schwierz
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue-Str. 3 , 60438 Frankfurt , Germany
| | - Maria Fyta
- Institute for Computational Physics , Universität Stuttgart , Allmandring 3 , 70569 Stuttgart , Germany
| |
Collapse
|
27
|
Lopez-Bertoni H, Kozielski KL, Rui Y, Lal B, Vaughan H, Wilson DR, Mihelson N, Eberhart CG, Laterra J, Green JJ. Bioreducible Polymeric Nanoparticles Containing Multiplexed Cancer Stem Cell Regulating miRNAs Inhibit Glioblastoma Growth and Prolong Survival. NANO LETTERS 2018; 18:4086-4094. [PMID: 29927251 PMCID: PMC6197883 DOI: 10.1021/acs.nanolett.8b00390] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite our growing molecular-level understanding of glioblastoma (GBM), treatment modalities remain limited. Recent developments in the mechanisms of cell fate regulation and nanomedicine provide new avenues by which to treat and manage brain tumors via the delivery of molecular therapeutics. Here, we have developed bioreducible poly(β-amino ester) nanoparticles that demonstrate high intracellular delivery efficacy, low cytotoxicity, escape from endosomes, and promotion of cytosol-targeted environmentally triggered cargo release for miRNA delivery to tumor-propagating human cancer stem cells. In this report, we combined this nanobiotechnology with newly discovered cancer stem cell inhibiting miRNAs to develop self-assembled miRNA-containing polymeric nanoparticles (nano-miRs) to treat gliomas. We show that these nano-miRs effectively intracellularly deliver single and combination miRNA mimics that inhibit the stem cell phenotype of human GBM cells in vitro. Following direct intratumoral infusion, these nano-miRs were found to distribute through the tumors, inhibit the growth of established orthotopic human GBM xenografts, and cooperatively enhance the response to standard-of-care γ radiation. Co-delivery of two miRNAs, miR-148a and miR-296-5p, within the bioreducible nano-miR particles enabled long-term survival from GBM in mice.
Collapse
Affiliation(s)
- Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Kristen L. Kozielski
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hannah Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David R. Wilson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Nicole Mihelson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
28
|
Zhang X, Bao L, Wu YY, Zhu XL, Tan ZJ. Radial distribution function of semiflexible oligomers with stretching flexibility. J Chem Phys 2018; 147:054901. [PMID: 28789545 DOI: 10.1063/1.4991689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The radial distribution of the end-to-end distance Ree is crucial for quantifying the global size and flexibility of a linear polymer. For semiflexible polymers, several analytical formulas have been derived for the radial distribution of Ree ignoring the stretching flexibility. However, for semiflexible oligomers, such as DNA or RNA, the stretching flexibility can be rather pronounced and can significantly affect the radial distribution of Ree. In this study, we obtained an extended formula that includes the stretch modulus to describe the distribution of Ree for semiflexible oligomers on the basis of previous formulas for semiflexible polymers without stretching flexibility. The extended formula was validated by extensive Monte Carlo simulations over wide ranges of the stretch modulus and persistence length, as well as all-atom molecular dynamics simulations of short DNAs and RNAs. Additionally, our analyses showed that the effect of stretching flexibility on the distribution of Ree becomes negligible for DNAs longer than ∼130 base pairs and RNAs longer than ∼240 base pairs.
Collapse
Affiliation(s)
- Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Piatkowski P, Jablonska J, Zyla A, Niedzialek D, Matelska D, Jankowska E, Walen T, Dawson WK, Bujnicki JM. SupeRNAlign: a new tool for flexible superposition of homologous RNA structures and inference of accurate structure-based sequence alignments. Nucleic Acids Res 2017; 45:e150. [PMID: 28934487 PMCID: PMC5766185 DOI: 10.1093/nar/gkx631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 07/12/2017] [Indexed: 01/28/2023] Open
Abstract
RNA has been found to play an ever-increasing role in a variety of biological processes. The function of most non-coding RNA molecules depends on their structure. Comparing and classifying macromolecular 3D structures is of crucial importance for structure-based function inference and it is used in the characterization of functional motifs and in structure prediction by comparative modeling. However, compared to the numerous methods for protein structure superposition, there are few tools dedicated to the superimposing of RNA 3D structures. Here, we present SupeRNAlign (v1.3.1), a new method for flexible superposition of RNA 3D structures, and SupeRNAlign-Coffee—a workflow that combines SupeRNAlign with T-Coffee for inferring structure-based sequence alignments. The methods have been benchmarked with eight other methods for RNA structural superposition and alignment. The benchmark included 151 structures from 32 RNA families (with a total of 1734 pairwise superpositions). The accuracy of superpositions was assessed by comparing structure-based sequence alignments to the reference alignments from the Rfam database. SupeRNAlign and SupeRNAlign-Coffee achieved significantly higher scores than most of the benchmarked methods: SupeRNAlign generated the most accurate sequence alignments among the structure superposition methods, and SupeRNAlign-Coffee performed best among the sequence alignment methods.
Collapse
Affiliation(s)
- Pawel Piatkowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Jagoda Jablonska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Adriana Zyla
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota Niedzialek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Elzbieta Jankowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Tomasz Walen
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland.,Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland.,Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
30
|
Bao L, Zhang X, Shi YZ, Wu YY, Tan ZJ. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling. Biophys J 2017; 112:1094-1104. [PMID: 28355538 DOI: 10.1016/j.bpj.2017.02.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 01/16/2023] Open
Abstract
The flexibility of double-stranded (ds) RNA and dsDNA is crucial for their biological functions. Recent experiments have shown that the flexibility of dsRNA and dsDNA can be distinctively different in the aspects of stretching and twist-stretch coupling. Although various studies have been performed to understand the flexibility of dsRNA and dsDNA, there is still a lack of deep understanding of the distinctive differences in the flexibility of dsRNA and dsDNA helices as pertains to their stretching and twist-stretch coupling. In this work, we have explored the relative flexibility in stretching and twist-stretch coupling between dsRNA and dsDNA by all-atom molecular dynamics simulations. The calculated stretch modulus and twist-stretch coupling are in good accordance with the existing experiments. Our analyses show that the differences in stretching and twist-stretch coupling between dsRNA and dsDNA helices are mainly attributed to their different (A- and B-form) helical structures. Stronger basepair inclination and slide in dsRNA is responsible for the apparently weaker stretching rigidity versus that of dsDNA, and the opposite twist-stretch coupling for dsRNA and dsDNA is also attributed to the stronger basepair inclination in dsRNA than in dsDNA. Our calculated macroscopic elastic parameters and microscopic analyses are tested and validated by different force fields for both dsRNA and dsDNA.
Collapse
Affiliation(s)
- Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; College of Physical Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Uusitalo JJ, Ingólfsson HI, Marrink SJ, Faustino I. Martini Coarse-Grained Force Field: Extension to RNA. Biophys J 2017. [PMID: 28633759 DOI: 10.1016/j.bpj.2017.05.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain molecular dynamics simulations are a key tool to that end. Here, we have extended the coarse-grain Martini force field to include RNA after our recent extension to DNA. In the same way DNA was modeled, the tertiary structure of RNA is constrained using an elastic network. This model, therefore, is not designed for applications involving RNA folding but rather offers a stable RNA structure for studying RNA interactions with other (bio)molecules. The RNA model is compatible with all other Martini models and opens the way to large-scale explicit-solvent molecular dynamics simulations of complex systems involving RNA.
Collapse
Affiliation(s)
- Jaakko J Uusitalo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| | - Ignacio Faustino
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Recurring RNA structural motifs underlie the mechanics of L1 stalk movement. Nat Commun 2017; 8:14285. [PMID: 28176782 PMCID: PMC5309774 DOI: 10.1038/ncomms14285] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023] Open
Abstract
The L1 stalk of the large ribosomal subunit undergoes large-scale movements coupled to the translocation of deacylated tRNA during protein synthesis. We use quantitative comparative structural analysis to localize the origins of L1 stalk movement and to understand its dynamic interactions with tRNA and other structural elements of the ribosome. Besides its stacking interactions with the tRNA elbow, stalk movement is directly linked to intersubunit rotation, rotation of the 30S head domain and contact of the acceptor arm of deacylated tRNA with helix 68 of 23S rRNA. Movement originates from pivoting at stacked non-canonical base pairs in a Family A three-way junction and bending in an internal G-U-rich zone. Use of these same motifs as hinge points to enable such dynamic events as rotation of the 30S subunit head domain and in flexing of the anticodon arm of tRNA suggests that they represent general strategies for movement of functional RNAs. Translocation of the tRNA on the ribosome is associated with large-scale molecular movements of the ribosomal L1 stalk. Here the authors identify the key determinants that allow these dramatic movements, and suggest they represent general strategies used to enable large-scale motions in functional RNAs.
Collapse
|
33
|
Kim D, Ku SH, Kim H, Jeong JH, Lee M, Kwon IC, Choi D, Kim SH. Simultaneous regulation of apoptotic gene silencing and angiogenic gene expression for myocardial infarction therapy: Single-carrier delivery of SHP-1 siRNA and VEGF-expressing pDNA. J Control Release 2016; 243:182-194. [DOI: 10.1016/j.jconrel.2016.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/23/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023]
|
34
|
Shi YZ, Jin L, Wang FH, Zhu XL, Tan ZJ. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions. Biophys J 2016; 109:2654-2665. [PMID: 26682822 DOI: 10.1016/j.bpj.2015.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 10/24/2022] Open
Abstract
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (<77 nucleotides) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy compared to the experimental data; the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Kozielski KL, Rui Y, Green JJ. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv 2016; 13:1475-87. [PMID: 27248202 DOI: 10.1080/17425247.2016.1190707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The delivery of nucleic acids such as DNA and short interfering RNA (siRNA) is promising for the treatment of many diseases, including cancer, by enabling novel biological mechanisms of action. Non-viral nanoparticles are a promising class of nucleic acid carriers that can be designed to be safer and more versatile than traditional viral vectors. AREAS COVERED In this review, recent advances in the intracellular delivery of DNA and siRNA are described with a focus on non-viral nanoparticle-based delivery methods. Material properties that have enabled successful delivery are discussed as well as applications that have directly been applied to cancer therapy. Strategies to co-deliver different nucleic acids are highlighted, as are novel targets for nucleic acid co-delivery. EXPERT OPINION The treatment of complex genetically-based diseases such as cancer can be enabled by safe and effective intracellular delivery of multiple nucleic acids. Non-viral nanoparticles can be fabricated to deliver multiple nucleic acids to the same cell simultaneously to prevent tumor cells from easily compensating for the knockdown or overexpression of one genetic target. The continued innovation of new therapeutic modalities and non-viral nanotechnologies to provide target-specific and personalized forms of gene therapy hold promise for genetic medicine to treat diseases like cancer in the clinic.
Collapse
Affiliation(s)
- Kristen L Kozielski
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Yuan Rui
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jordan J Green
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Departments of Ophthalmology, Oncology, Neurosurgery, and Materials Science & Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
36
|
Kwok A, McCarthy D, Hart SL, Tagalakis AD. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA. Chem Biol Drug Des 2016; 87:747-63. [PMID: 26684657 PMCID: PMC4991294 DOI: 10.1111/cbdd.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023]
Abstract
The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved.
Collapse
Affiliation(s)
- Albert Kwok
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address: Department of Clinical Biochemistry University of CambridgeBox 289, Addenbrooke's HospitalCambridgeCB2 0QQUK
| | - David McCarthy
- UCL School of Pharmacy29‐39 Brunswick SquareLondonWC1N 1AXUK
| | - Stephen L. Hart
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Aristides D. Tagalakis
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
37
|
Henke PS, Mak CH. An implicit divalent counterion force field for RNA molecular dynamics. J Chem Phys 2016; 144:105104. [DOI: 10.1063/1.4943387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paul S. Henke
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Chi H. Mak
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
38
|
Kozielski KL, Green JJ. Bioreducible Poly(Beta-Amino Ester)s for Intracellular Delivery of SiRNA. Methods Mol Biol 2016; 1364:79-87. [PMID: 26472444 PMCID: PMC4745093 DOI: 10.1007/978-1-4939-3112-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
RNA interference (RNAi) is a powerful tool to target and knockdown gene expression in a sequence-specific manner. RNAi can be achieved by the intracellular introduction of SiRNA; however, intracellular SiRNA delivery remains a challenging obstacle. Herein we describe the use of bioreducible nanoparticles formed using poly(beta-amino ester)s (PBAEs) for safe and efficient SiRNA delivery. Methods for polymer synthesis, nanoparticle formation, and SiRNA delivery using these particles are described. A template protocol for nanoparticle screening is presented and can be used to quickly optimize SiRNA delivery for novel applications.
Collapse
Affiliation(s)
- Kristen L. Kozielski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine
| | - Jordan J. Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine.,Departments of Materials Science and Engineering, Ophthalmology, and Neuroscience, Johns Hopkins University School of Medicine
| |
Collapse
|
39
|
Benítez AA, Hernández Cifre JG, Díaz Baños FG, de la Torre JG. Prediction of solution properties and dynamics of RNAs by means of Brownian dynamics simulation of coarse-grained models: Ribosomal 5S RNA and phenylalanine transfer RNA. BMC BIOPHYSICS 2015; 8:11. [PMID: 26629336 PMCID: PMC4666080 DOI: 10.1186/s13628-015-0025-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/18/2015] [Indexed: 12/02/2022]
Abstract
Background The possibility of validating biological macromolecules with locally disordered domains like RNA against solution properties is helpful to understand their function. In this work, we present a computational scheme for predicting global properties and mimicking the internal dynamics of RNA molecules in solution. A simple coarse-grained model with one bead per nucleotide and two types of intra-molecular interactions (elastic interactions and excluded volume interactions) is used to represent the RNA chain. The elastic interactions are modeled by a set of Hooke springs that form a minimalist elastic network. The Brownian dynamics technique is employed to simulate the time evolution of the RNA conformations. Results That scheme is applied to the 5S ribosomal RNA of E. Coli and the yeast phenylalanine transfer RNA. From the Brownian trajectory, several solution properties (radius of gyration, translational diffusion coefficient, and a rotational relaxation time) are calculated. For the case of yeast phenylalanine transfer RNA, the time evolution and the probability distribution of the inter-arm angle is also computed. Conclusions The general good agreement between our results and some experimental data indicates that the model is able to capture the tertiary structure of RNA in solution. Our simulation results also compare quite well with other numerical data. An advantage of the scheme described here is the possibility of visualizing the real time macromolecular dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s13628-015-0025-7) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Roh JH. Dynamics of Biopolymers: Role of Hydration and Electrostatic Interactions. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joon Ho Roh
- Institute for Basic Science; Center for Self-Assembly and Complexity; 77 Cheongam-Ro Nam-gu Pohang 790-784 South Korea
- Biomolecular Science; University of Science and Technology; 217 Gajeong-ro Yuseong-gu Daejeon 305-350 South Korea
| |
Collapse
|
41
|
Bishop CJ, Kozielski KL, Green JJ. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J Control Release 2015; 219:488-499. [PMID: 26433125 DOI: 10.1016/j.jconrel.2015.09.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/08/2022]
Abstract
Intracellular nucleic acid delivery has the potential to treat many genetically-based diseases, however, gene delivery safety and efficacy remains a challenging obstacle. One promising approach is the use of polymers to form polymeric nanoparticles with nucleic acids that have led to exciting advances in non-viral gene delivery. Understanding the successes and failures of gene delivery polymers and structures is the key to engineering optimal polymers for gene delivery in the future. This article discusses the polymer structural features that enable effective intracellular delivery of DNA and RNA, including protection of nucleic acid cargo, cellular uptake, endosomal escape, vector unpacking, and delivery to the intracellular site of activity. The chemical properties that aid in each step of intracellular nucleic acid delivery are described and specific structures of note are highlighted. Understanding the chemical design parameters of polymeric nucleic acid delivery nanoparticles is important to achieving the goal of safe and effective non-viral genetic nanomedicine.
Collapse
Affiliation(s)
- Corey J Bishop
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen L Kozielski
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
42
|
Arias-Gonzalez JR. Single-molecule portrait of DNA and RNA double helices. Integr Biol (Camb) 2015; 6:904-25. [PMID: 25174412 DOI: 10.1039/c4ib00163j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar-phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday no. 9, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
43
|
Šulc P, Romano F, Ouldridge TE, Doye JPK, Louis AA. A nucleotide-level coarse-grained model of RNA. J Chem Phys 2015; 140:235102. [PMID: 24952569 DOI: 10.1063/1.4881424] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.
Collapse
Affiliation(s)
- Petr Šulc
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas E Ouldridge
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
44
|
Kozielski KL, Tzeng SY, Hurtado De Mendoza BA, Green JJ. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS NANO 2014; 8:3232-41. [PMID: 24673565 PMCID: PMC4004313 DOI: 10.1021/nn500704t] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
siRNA nanomedicines can potentially treat many human diseases, but safe and effective delivery remains a challenge. DNA delivery polymers such as poly(β-amino ester)s (PBAEs) generally cannot effectively deliver siRNA and require chemical modification to enable siRNA encapsulation and delivery. An optimal siRNA delivery nanomaterial needs to be able to bind and self-assemble with siRNA molecules that are shorter and stiffer than plasmid DNA in order to form stable nanoparticles, and needs to promote efficient siRNA release upon entry to the cytoplasm. To address these concerns, we designed, synthesized, and characterized an array of bioreducible PBAEs that self-assemble with siRNA in aqueous conditions to form nanoparticles of approximately 100 nm and that exhibit environmentally triggered siRNA release upon entering the reducing environment of the cytosol. By tuning polymer properties, including bioreducibility and hydrophobicity, we were able to fabricate polymeric nanoparticles capable of efficient gene knockdown (91 ± 1%) in primary human glioblastoma cells without significant cytotoxicity (6 ± 12%). We were also able to achieve significantly higher knockdown using these polymers with a low dose of 5 nM siRNA (76 ± 14%) compared to commercially available reagent Lipofectamine 2000 with a 4-fold higher dose of 20 nM siRNA (40 ± 7%). These bioreducible PBAEs also enabled 63 ± 16% gene knockdown using an extremely low 1 nM siRNA dose and showed preferential transfection of glioblastoma cells versus noncancer neural progenitor cells, highlighting their potential as efficient and tumor-specific carriers for siRNA-based nanomedicine.
Collapse
Affiliation(s)
- Kristen L. Kozielski
- Department of Biomedical Engineering, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, 400 North Broadway/Smith Building Room 5017, Baltimore, Maryland 21231, United States
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, 400 North Broadway/Smith Building Room 5017, Baltimore, Maryland 21231, United States
| | - Bolivia A. Hurtado De Mendoza
- Department of Biomedical Engineering, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, 400 North Broadway/Smith Building Room 5017, Baltimore, Maryland 21231, United States
| | - Jordan J. Green
- Department of Biomedical Engineering, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, 400 North Broadway/Smith Building Room 5017, Baltimore, Maryland 21231, United States
- Department of Ophthalmology and Neurosurgery, The Johns Hopkins University School of Medicine, 400 North Broadway/Smith Building Room 5017, Baltimore, Maryland 21231, United States
- Address correspondence to
| |
Collapse
|
45
|
Hepatitis delta antigen requires a flexible quasi-double-stranded RNA structure to bind and condense hepatitis delta virus RNA in a ribonucleoprotein complex. J Virol 2014; 88:7402-11. [PMID: 24741096 DOI: 10.1128/jvi.00443-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2'OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex.
Collapse
|
46
|
Stephenson W, Keller S, Santiago R, Albrecht JE, Asare-Okai PN, Tenenbaum SA, Zuker M, Li PTX. Combining temperature and force to study folding of an RNA hairpin. Phys Chem Chem Phys 2014; 16:906-17. [DOI: 10.1039/c3cp52042k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Dohno C, Kohyama I, Kimura M, Hagihara M, Nakatani K. A Synthetic Riboswitch that Operates using a Rationally Designed Ligand-RNA Pair. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Dohno C, Kohyama I, Kimura M, Hagihara M, Nakatani K. A Synthetic Riboswitch that Operates using a Rationally Designed Ligand-RNA Pair. Angew Chem Int Ed Engl 2013; 52:9976-9. [DOI: 10.1002/anie.201303370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/04/2013] [Indexed: 01/02/2023]
|
49
|
Vater A, Sell S, Kaczmarek P, Maasch C, Buchner K, Pruszynska-Oszmalek E, Kolodziejski P, Purschke WG, Nowak KW, Strowski MZ, Klussmann S. A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J Biol Chem 2013; 288:21136-21147. [PMID: 23744070 PMCID: PMC3774380 DOI: 10.1074/jbc.m112.444414] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/04/2013] [Indexed: 11/23/2022] Open
Abstract
Excessive secretion of glucagon, a functional insulin antagonist, significantly contributes to hyperglycemia in type 1 and type 2 diabetes. Accordingly, immunoneutralization of glucagon or genetic deletion of the glucagon receptor improved glucose homeostasis in animal models of diabetes. Despite this strong evidence, agents that selectively interfere with endogenous glucagon have not been implemented in clinical practice yet. We report the discovery of mirror-image DNA-aptamers (Spiegelmer®) that bind and inhibit glucagon. The affinity of the best binding DNA oligonucleotide was remarkably increased (>25-fold) by the introduction of oxygen atoms at selected 2'-positions through deoxyribo- to ribonucleotide exchanges resulting in a mixed DNA/RNA-Spiegelmer (NOX-G15) that binds glucagon with a Kd of 3 nm. NOX-G15 shows no cross-reactivity with related peptides such as glucagon-like peptide-1, glucagon-like peptide-2, gastric-inhibitory peptide, and prepro-vasoactive intestinal peptide. In vitro, NOX-G15 inhibits glucagon-stimulated cAMP production in CHO cells overexpressing the human glucagon receptor with an IC50 of 3.4 nm. A single injection of NOX-G15 ameliorated glucose excursions in intraperitoneal glucose tolerance tests in mice with streptozotocin-induced (type 1) diabetes and in a non-genetic mouse model of type 2 diabetes. In conclusion, the data suggest NOX-G15 as a therapeutic candidate with the potential to acutely attenuate hyperglycemia in type 1 and type 2 diabetes.
Collapse
MESH Headings
- Animals
- Aptamers, Nucleotide/blood
- Aptamers, Nucleotide/pharmacokinetics
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Blood Glucose/metabolism
- Body Weight/drug effects
- CHO Cells
- Cricetinae
- Cricetulus
- Cyclic AMP/biosynthesis
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Disease Models, Animal
- Fasting/blood
- Glucagon/antagonists & inhibitors
- Glucagon/metabolism
- Glucose Tolerance Test
- Humans
- Kinetics
- Male
- Mice
- Mice, Inbred BALB C
- RNA/metabolism
Collapse
Affiliation(s)
- Axel Vater
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Simone Sell
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Przemyslaw Kaczmarek
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Christian Maasch
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Klaus Buchner
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ewa Pruszynska-Oszmalek
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Pawel Kolodziejski
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Werner G Purschke
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Krzysztof W Nowak
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Mathias Z Strowski
- the Department of Hepatology and Gastroenterology and Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Klussmann
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany,.
| |
Collapse
|
50
|
Kozielski KL, Tzeng SY, Green JJ. Bioengineered nanoparticles for siRNA delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:449-68. [PMID: 23821336 DOI: 10.1002/wnan.1233] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of nonprotein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery.
Collapse
Affiliation(s)
- Kristen L Kozielski
- Department of Biomedical Engineering, The Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|