1
|
Lobato-Moreno S, Yildiz U, Claringbould A, Servaas NH, Vlachou EP, Arnold C, Bauersachs HG, Campos-Fornés V, Kim M, Berest I, Prummel KD, Noh KM, Marttinen M, Zaugg JB. Single-cell ultra-high-throughput multiplexed chromatin and RNA profiling reveals gene regulatory dynamics. Nat Methods 2025:10.1038/s41592-025-02700-8. [PMID: 40419657 DOI: 10.1038/s41592-025-02700-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/11/2025] [Indexed: 05/28/2025]
Abstract
Enhancers and transcription factors (TFs) are crucial in regulating cellular processes. Current multiomic technologies to study these elements in gene regulatory mechanisms lack multiplexing capability and scalability. Here we present single-cell ultra-high-throughput multiplexed sequencing (SUM-seq) for co-assaying chromatin accessibility and gene expression in single nuclei. SUM-seq enables profiling hundreds of samples at the million cell scale and outperforms current high-throughput single-cell methods. We demonstrate the capability of SUM-seq to (1) resolve temporal gene regulation of macrophage M1 and M2 polarization to bridge TF regulatory networks and immune disease genetic variants, (2) define the regulatory landscape of primary T helper cell subsets and (3) dissect the effect of perturbing lineage TFs via arrayed CRISPR screens in spontaneously differentiating human induced pluripotent stem cells. SUM-seq offers a cost-effective, scalable solution for ultra-high-throughput single-cell multiomic sequencing, accelerating the unraveling of complex gene regulatory networks in cell differentiation, responses to perturbations and disease studies.
Collapse
Affiliation(s)
- Sara Lobato-Moreno
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Umut Yildiz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Annique Claringbould
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Nila H Servaas
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Evi P Vlachou
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Christian Arnold
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | | | - Víctor Campos-Fornés
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Minyoung Kim
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Ivan Berest
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Karin D Prummel
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kyung-Min Noh
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Mikael Marttinen
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, Heidelberg, Germany.
- Department of Biomedicine, University of Basel, Basel University Hospital, Basel, Switzerland.
| |
Collapse
|
2
|
Ward TR, Qu PP, Leung LC, Zhou B, Muench KL, Khechaduri A, Plastini MJ, Charlton CA, Pattni R, Ho S, Ho M, Huang Y, Zhou P, Hallmayer JF, Mourrain P, Palmer TD, Zhang X, Urban AE. Cell-type specific global reprogramming of the transcriptome and epigenome in induced neurons with the 16p11.2 neuropsychiatric CNVs. Eur J Hum Genet 2025:10.1038/s41431-025-01856-3. [PMID: 40374944 DOI: 10.1038/s41431-025-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
Copy number variants (CNVs), either deletions or duplications, at the 16p11.2 locus in the human genome are known to increase the risk for autism spectrum disorders (ASD), schizophrenia, and several other developmental conditions. Here, we investigate the global effects on gene expression and DNA methylation using an induced pluripotent stem cell (iPSC) to induced neuron (iN) cell model system derived from 16p11.2 CNV patients and controls. This approach revealed genome-wide and cell-type specific alterations to both gene expression and DNA methylation patterns and also yielded specific leads on genes potentially contributing to some of the phenotypes in 16p11.2 patients. There is global reprogramming of both the transcriptome and the DNA methylome. We observe sets of differentially expressed genes and differentially methylated regions, respectively, that are localized genome wide and that are shared, and with changes in the same direction, between the deletion and duplication genotypes. The gene PCSK9 is identified as a possible contributing factor to symptoms seen in carriers of the 16p11.2 CNVs. The protocadherin (PCDH) gene family is found to have altered DNA methylation patterns in the CNV patient samples. The iPSC lines used for this study are available through a repository as a resource for research into the molecular etiology of the clinical phenotypes of 16p11.2 CNVs and into that of neuropsychiatric and neurodevelopmental disorders in general.
Collapse
Affiliation(s)
- Thomas R Ward
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ping-Ping Qu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kristin L Muench
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arineh Khechaduri
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Melanie J Plastini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carol A Charlton
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Steve Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Carmichael JS, Darland DC, Pedersen DE, Simmons RB. Bones, brains, and bias-neural crest cell contribution to craniofacial structure. Dev Biol 2025; 524:116-122. [PMID: 40349905 DOI: 10.1016/j.ydbio.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Implicit bias is a natural part of the human psyche and facial appearance is one of the first aspects that people notice when encountering new individuals. The cranial neural crest is key to formation of the facial structure as it is a developmentally transient and plastic cell population that contributes to the neural, muscular, cartilage and bone structures of the face and head. This remarkable cell population, within the context of genetic potential, can play a substantial role in determining how individuals' faces and heads form as well as contributing to anterior brain development. How humans interpret face and head features can lead to biased perceptions, including perceived cognitive ability associated with differences across craniofacial phenotypes. In this Opinion Article, we offer strategies to introduce students to an overview of cranial neural crest development linked to primary research in model organisms and in humans. We then bridge this knowledge with a follow-up activity to foster awareness of cognitive processes and implicit bias in human perception. We provide explicit Learning Goals and guided learning strategies to achieve clear Learning Outcomes. We have developed critical thinking assignments and self-reflection opportunities to engage students and shed light on misconceptions regarding craniofacial features. By introducing the generalized processes whereby neural crest cells contribute to head and face formation, we provide an opportunity to focus on bones, brains, and bias in development in order to encourage students to consider how implicit bias shapes human interaction and scientific work.
Collapse
Affiliation(s)
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Daphne E Pedersen
- Department of Sociology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Rebecca B Simmons
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| |
Collapse
|
4
|
Chen Z, Zhao C, Fu R, Yuan C, Zhang K, Zhang X. Wnt signaling pathway and retinoic acid signaling pathway involved in delamination and migration of chicken trunk NCCs and contributing to HVP phenotype. Poult Sci 2025; 104:105114. [PMID: 40209469 PMCID: PMC12005351 DOI: 10.1016/j.psj.2025.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025] Open
Abstract
Hyperpigmentation of the visceral peritoneum (HVP) is a hereditary trait that significantly affects the carcass quality in bearded chickens, yet its molecular mechanisms remain unclear. This study utilized data-independent acquisition proteomics to analyze the protein expression profiles of black peritoneum (B), faded peritoneum (F), and normal peritoneum (N) in bearded chickens at 40 and 120 d of age. Combined with histopathological and functional enrichment analyses, we revealed the regulatory network underlying HVP formation. Results indicated that the melanin content was significantly elevated in HVP samples, without accompanying inflammatory responses or tumor characteristics, suggesting that its formation is driven by developmental abnormalities. A total of 9,375 high-confidence proteins were identified through proteomics, with differentially abundant proteins at 40 d of age (219 proteins) primarily enriched in ribosomal function, tyrosine metabolism, and melanin synthesis pathways. In comparison, at 120 d of age (246 proteins), they were enriched in transcription regulation and chromatin remodeling pathways. The abnormal expression of key co-expressed proteins DHRS3 and DACT1 suggests that the dysregulation of retinoic acid (RA) and the Wnt signaling pathway may promote the directed differentiation of melanocytes by regulating neural crest cells (NCCs). The reduced abundance of the chondroitin sulfate proteoglycan, VCAN, weakened the peritoneal barrier function, whereas estradiol accelerated melanin synthesis via hormonal microenvironmental regulation. Furthermore, the formation of HVP led to a reprogramming of energy metabolism, reduced fat deposition, and a downregulation of immune-related molecules, implying that pigment deposition may weaken the chicken immune response. This study systematically elucidates the molecular mechanisms of HVP and provides potential targets for molecular breeding of HVP.
Collapse
Affiliation(s)
- Zhengyang Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Chengyue Yuan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Ke Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China.
| |
Collapse
|
5
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and developmental divergence in the neural crest programme between cichlid fish species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578004. [PMID: 38352436 PMCID: PMC10862805 DOI: 10.1101/2024.01.30.578004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | | | | | - Maxon J. Ngochera
- Senga Bay Fisheries Research Center, Malawi Fisheries Department, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Wu S, Huang J, Li Y, Zhao L. Involvement of miR-495 in the skin pigmentation of rainbow trout (Oncorhynchus mykiss) through the regulation of mc1r. Int J Biol Macromol 2024; 254:127638. [PMID: 37879576 DOI: 10.1016/j.ijbiomac.2023.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in skin pigmentation in animals. Rainbow trout (Oncorhynchus mykiss) is a key economic fish species worldwide, and skin color directly affects its economic value. However, the functions of miRNAs in rainbow trout skin pigmentation remain largely unknown. Herein, we overexpressed and silenced miR-495 in vitro and in vivo to investigate its functions. The analysis of spatial and temporal expression patterns suggested that miR-495 is a potential regulator during the process of skin pigmentation. In vitro, mc1r was validated as a direct target for miR-495 by dual-luciferase reporter assay, and overexpression of miR-495 significantly inhibited mc1r expression; in contrast, mc1r and its downstream gene mitf levels were markedly upregulated by decreased miR-495. In vivo, overexpressed miR-495 by injecting agomiR-495 led to a substantial decrease in the expression of mc1r and mitf in dorsal skin and liver, while the opposite results were obtained after miR-495 silencing by antagomiR-495. These findings suggested that miR-495 can target mc1r to regulate rainbow trout skin pigmentation, which provide a potential basis for using miRNAs as target drugs to treat pigmentation disorders and melanoma.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
9
|
Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep 2023; 42:113146. [PMID: 37725511 DOI: 10.1016/j.celrep.2023.113146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/β-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Morteza Jalali
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
10
|
Ray L, Medeiros D. Linking Vertebrate Gene Duplications to the New Head Hypothesis. BIOLOGY 2023; 12:1213. [PMID: 37759612 PMCID: PMC10525774 DOI: 10.3390/biology12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Vertebrates have diverse morphologies and various anatomical novelties that set them apart from their closest invertebrate relatives. A conspicuous head housing a large brain, paired sense organs, and protected by a skeleton of cartilage and bone is unique to vertebrates and is a defining feature of this taxon. Gans and Northcutt (1980s) proposed that the evolution of this "new head" was dependent on two key developmental innovations: neural crest cells (NCCs) and ectodermal placodes. NCCs are migratory embryonic cells that form bone, cartilage, and neurons in the new head. Based on genome size, Ohno (1970s) proposed a separate hypothesis, stating that vertebrate genome content was quadrupled via two rounds (2R) of whole genome duplications (WGDs), and the surplus of genetic material potentiated vertebrate morphological diversification. While both hypotheses offer explanations for vertebrate success, it is unclear if, and how, the "new head" and "2R" hypotheses are linked. Here, we consider both hypotheses and evaluate the experimental evidence connecting the two. Overall, evidence suggests that while the origin of the NC GRN predates the vertebrate WGDs, these genomic events may have potentiated the evolution of distinct genetic subnetworks in different neural crest subpopulations. We describe the general composition of the NC GRN and posit that its increased developmental modularity facilitated the independent evolution of NC derivatives and the diversification of the vertebrate head skeleton. Lastly, we discuss experimental strategies needed to test whether gene duplications drove the diversification of neural crest derivatives and the "new head".
Collapse
Affiliation(s)
- Lindsey Ray
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Daniel Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Selleri L, Rijli FM. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. Nat Rev Genet 2023; 24:610-626. [PMID: 37095271 DOI: 10.1038/s41576-023-00594-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Major differences in facial morphology distinguish vertebrate species. Variation of facial traits underlies the uniqueness of human individuals, and abnormal craniofacial morphogenesis during development leads to birth defects that significantly affect quality of life. Studies during the past 40 years have advanced our understanding of the molecular mechanisms that establish facial form during development, highlighting the crucial roles in this process of a multipotent cell type known as the cranial neural crest cell. In this Review, we discuss recent advances in multi-omics and single-cell technologies that enable genes, transcriptional regulatory networks and epigenetic landscapes to be closely linked to the establishment of facial patterning and its variation, with an emphasis on normal and abnormal craniofacial morphogenesis. Advancing our knowledge of these processes will support important developments in tissue engineering, as well as the repair and reconstruction of the abnormal craniofacial complex.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| | - Filippo M Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Sun J, Lin Y, Ha N, Zhang J, Wang W, Wang X, Bian Q. Single-cell RNA-Seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence. J Genet Genomics 2023; 50:676-687. [PMID: 36841529 DOI: 10.1016/j.jgg.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
During vertebrate embryonic development, neural crest-derived ectomesenchyme within the maxillary prominences undergoes precisely coordinated proliferation and differentiation to give rise to diverse craniofacial structures, such as tooth and palate. However, the transcriptional regulatory networks underpinning such an intricate process have not been fully elucidated. Here, we perform single-cell RNA-Seq to comprehensively characterize the transcriptional dynamics during mouse maxillary development from embryonic day (E) 10.5-E14.5. Our single-cell transcriptome atlas of ∼28,000 cells uncovers mesenchymal cell populations representing distinct differentiating states and reveals their developmental trajectory, suggesting that the segregation of dental from the palatal mesenchyme occurs at E11.5. Moreover, we identify a series of key transcription factors (TFs) associated with mesenchymal fate transitions and deduce the gene regulatory networks directed by these TFs. Collectively, our study provides important resources and insights for achieving a systems-level understanding of craniofacial morphogenesis and abnormality.
Collapse
Affiliation(s)
- Jian Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yijun Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Nayoung Ha
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianfei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiqi Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Qian Bian
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
14
|
Thiery AP, Buzzi AL, Hamrud E, Cheshire C, Luscombe NM, Briscoe J, Streit A. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border. eLife 2023; 12:e82717. [PMID: 37530410 PMCID: PMC10425176 DOI: 10.7554/elife.82717] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border 'specifiers' typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of 'border located undecided progenitors' (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor's daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Ailin Leticia Buzzi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Eva Hamrud
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Chris Cheshire
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Nicholas M Luscombe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - James Briscoe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
15
|
Gong Y, Bai B, Sun N, Ci B, Shao H, Zhang T, Yao H, Zhang Y, Niu Y, Liu L, Zhao H, Wu H, Zhang L, Wang T, Li S, Wei Y, Yu Y, Ribeiro Orsi AE, Liu B, Ji W, Wu J, Chen Y, Tan T. Ex utero monkey embryogenesis from blastocyst to early organogenesis. Cell 2023; 186:2092-2110.e23. [PMID: 37172563 DOI: 10.1016/j.cell.2023.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization. Morphological, histological, and single-cell RNA-sequencing analyses demonstrate that ex utero cultured monkey embryos largely recapitulated key events of in vivo development. With this platform, we were able to delineate lineage trajectories and genetic programs involved in neural induction, lateral plate mesoderm differentiation, yolk sac hematopoiesis, primitive gut, and primordial germ-cell-like cell development in monkeys. Our embedded 3D culture system provides a robust and reproducible platform for growing monkey embryos from blastocysts to early organogenesis and studying primate embryogenesis ex utero.
Collapse
Affiliation(s)
- Yandong Gong
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Honglian Shao
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Hui Yao
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Youyue Zhang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Hao Wu
- School of Information Science and Engineering, Yunnan University, Kunming, Yunnan 650504, China
| | - Lei Zhang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Tianxiang Wang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Yu
- Reproductive Medical Center and Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Ana Elisa Ribeiro Orsi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090, Brazil
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China.
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
16
|
Jeyaraman M, Verma T, Jeyaraman N, Patro BP, Nallakumarasamy A, Khanna M. Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells? World J Methodol 2023; 13:10-17. [PMID: 37035028 PMCID: PMC10080497 DOI: 10.5662/wjm.v13.i2.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation. Bone marrow (BM) is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings. MSCs can stimulate and promote osseous regeneration. Due to the difference in the development of long bones and craniofacial bones, the mandibular-derived MSCs (M-MSCs) have distinct differentiation characteristics as compared to that of long bones. Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73, -105, and -106, stage-specific embryonic antigen 4 and Octamer-4, and negative for hematopoietic markers such as CD-14, -34, and -45. As the M-MSCs are derived from neural crest cells, they have embryogenic cells which promote bone repair and high osteogenic potential. In vitro and in vivo animal-based studies demonstrate a higher rate of proliferation and high osteogenic potential for M-MSCs as compared to long-bones MSCs, but in vivo studies in human subjects are lacking. The BM-MSCs have their advantages and limitations. M-MSCs may be utilized as an alternative source of MSCs which can be utilized for tissue engineering and promoting the regeneration of bone. M-MSCs may have potential advantages in the repair of craniofacial or orofacial defects. Considering the utility of M-MSCs in the field of orthopaedics, we have discussed various unresolved questions, which need to be explored for their better utility in clinical practice.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| | - Tushar Verma
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Rathimed Speciality Hospital, Chennai 600040, Tamil Nadu, India
| | - Bishnu Prasad Patro
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Arulkumar Nallakumarasamy
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Fellow in Indian Orthopaedic Rheumatology Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Manish Khanna
- Department of Regenerative Medicine, Indian Stem Cell Study Group Association, Lucknow 226010, Uttar Pradesh, India
| |
Collapse
|
17
|
Ash2l, an obligatory component of H3K4 methylation complexes, regulates neural crest development. Dev Biol 2022; 492:14-24. [PMID: 36162552 DOI: 10.1016/j.ydbio.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
The vertebrate nervous system develops from embryonic neural plate and neural crest. Although genetic mechanisms governing vertebrate neural development have been investigated in depth, epigenetic regulation of this process remains less understood. Redundancy of epigenetic factors and early lethality of animals deficient in critical epigenetic components pose major challenges in characterization of epigenetic factors in vertebrate neural development. In this study, we use the amphibian model Xenopus laevis to investigate the roles of non-redundant, obligatory components of all histone H3K4 activating methylation complexes (COMPASS, also known as SET1/MLL complexes) in early neural development. The two genes that we focus on, Ash2l and Dpy30, regulate mesendodermal differentiation in mouse embryonic stem cells and cause early embryonic lethality when removed from mouse embryos. Using targeted knockdown of the genes in dorsal ectoderm of Xenopus that gives rise to future nervous system, we show here that ash2l and dpy30 are required for neural and neural crest marker expression in Xenopus late neurula embryos but are dispensable for early neural and neural plate border gene expression. Co-immunoprecipitation assays reveal that Dpy30 and Ash2L associate with the neural plate border transcription factors, such as Msx1 and Tfap2a. Chromatin immunoprecipitation (ChIP) assay further demonstrates that Ash2L and the H3K4me3 active histone mark accumulate at the promoter regions of the neural crest gene sox10 in a Tfap2a-dependent manner. Collectively, our data suggest that Ash2l and Dpy30 interact with specific transcription factors to recruit COMPASS complexes to the regulatory regions of neural crest specification genes to control their expression and influence development of the nervous system during vertebrate embryogenesis.
Collapse
|
18
|
Drouin-Ouellet J, Li D, Lu YR, Echegaray CV. The 2022 International Society for Stem Cell Research (ISSCR) Annual Meeting: Celebrating 20 Years of Achievements. Cell Reprogram 2022; 24:212-222. [DOI: 10.1089/cell.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Dan Li
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Yuancheng Ryan Lu
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Camila Vazquez Echegaray
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Lee JH, Massagué J. TGF-β in Developmental and Fibrogenic EMTs. Semin Cancer Biol 2022; 86:136-145. [PMID: 36183999 PMCID: PMC10155902 DOI: 10.1016/j.semcancer.2022.09.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
TGF-β plays a prominent role as an inducer of epithelial-mesenchymal transitions (EMTs) during development and wound healing and in disease conditions such as fibrosis and cancer. During these processes EMT occurs together with changes in cell proliferation, differentiation, communication, and extracellular matrix remodeling that are orchestrated by multiple signaling inputs besides TGF-β. Chief among these inputs is RAS-MAPK signaling, which is frequently required for EMT induction by TGF-β. Recent work elucidated the molecular basis for the cooperation between the TGF-β-SMAD and RAS-MAPK pathways in the induction of EMT in embryonic, adult and carcinoma epithelial cells. These studies also provided direct mechanistic links between EMT and progenitor cell differentiation during gastrulation or intra-tumoral fibrosis during cancer metastasis. These insights illuminate the nature of TGF-β driven EMTs as part of broader processes during development, fibrogenesis and metastasis.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho TV, Chai Y. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun 2022; 13:4803. [PMID: 35974052 PMCID: PMC9381504 DOI: 10.1038/s41467-022-32490-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cranial neural crest cells are an evolutionary innovation of vertebrates for craniofacial development and function, yet the mechanisms that govern the cell fate decisions of postmigratory cranial neural crest cells remain largely unknown. Using the mouse molar as a model, we perform single-cell transcriptome profiling to interrogate the cell fate diversification of postmigratory cranial neural crest cells. We reveal the landscape of transcriptional heterogeneity and define the specific cellular domains during the progression of cranial neural crest cell-derived dental lineage diversification, and find that each domain makes a specific contribution to distinct molar mesenchymal tissues. Furthermore, IGF signaling-mediated cell-cell interaction between the cellular domains highlights the pivotal role of autonomous regulation of the dental mesenchyme. Importantly, we reveal cell-type-specific gene regulatory networks in the dental mesenchyme and show that Foxp4 is indispensable for the differentiation of periodontal ligament. Our single-cell atlas provides comprehensive mechanistic insight into the cell fate diversification process of the cranial neural crest cell-derived odontogenic populations.
Collapse
Affiliation(s)
- Junjun Jing
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan 610041 China
| | - Jifan Feng
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yuan Yuan
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Tingwei Guo
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Jie Lei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Fei Pei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Thach-Vu Ho
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Candido-Ferreira IL, Lukoseviciute M, Sauka-Spengler T. Multi-layered transcriptional control of cranial neural crest development. Semin Cell Dev Biol 2022; 138:1-14. [PMID: 35941042 DOI: 10.1016/j.semcdb.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is an emblematic population of embryonic stem-like cells with remarkable migratory ability. These distinctive attributes have inspired the curiosity of developmental biologists for over 150 years, however only recently the regulatory mechanisms controlling the complex features of the NC have started to become elucidated at genomic scales. Regulatory control of NC development is achieved through combinatorial transcription factor binding and recruitment of associated transcriptional complexes to distal cis-regulatory elements. Together, they regulate when, where and to what extent transcriptional programmes are actively deployed, ultimately shaping ontogenetic processes. Here, we discuss how transcriptional networks control NC ontogeny, with a special emphasis on the molecular mechanisms underlying specification of the cephalic NC. We also cover emerging properties of transcriptional regulation revealed in diverse developmental systems, such as the role of three-dimensional conformation of chromatin, and how they are involved in the regulation of NC ontogeny. Finally, we highlight how advances in deciphering the NC transcriptional network have afforded new insights into the molecular basis of human diseases.
Collapse
Affiliation(s)
- Ivan L Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
22
|
Singh P, Irisarri I, Torres‐Dowdall J, Thallinger GG, Svardal H, Lemmon EM, Lemmon AR, Koblmüller S, Meyer A, Sturmbauer C. Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. Ecol Evol 2022; 12:e9077. [PMID: 35866021 PMCID: PMC9288888 DOI: 10.1002/ece3.9077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco-morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species. We resolved the Tropheini into seven monophyletic genera and discovered one to be polyphyletic. The polyphyletic genus, Petrochromis, represents three convergent origins of the algae grazing trophic specialization. This repeated evolution of grazing may have been facilitated by adaptive introgression as we found evidence for gene flow among algae grazing genera. We also found evidence of gene flow among algae browsing genera, but gene flow was restricted between herbivorous and carnivorous genera. Furthermore, we observed no evidence supporting a hybrid origin of this radiation. Our molecular evolutionary analyses suggest that opsin genes likely evolved in response to selection pressures associated with trophic ecology in the Tropheini. We found surprisingly little evidence of positive selection in coding regions of jaw-shaping genes in this trophically diverse lineage. This suggests low degrees of freedom for further change in these genes, and possibly a larger role for regulatory variation in driving jaw adaptations. Our study emphasizes Tropheini cichlids as an important model for studying the evolution of trophic specialization and its role in speciation.
Collapse
Affiliation(s)
- Pooja Singh
- Institute of BiologyUniversity of GrazGrazAustria
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Zoological Museum HamburgHamburgGermany
| | - Julián Torres‐Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | - Gerhard G. Thallinger
- Institute of Biomedical InformaticsGraz University of TechnologyGrazAustria
- OMICS Center Graz, BioTechMed GrazGrazAustria
| | - Hannes Svardal
- Department of BiologyUniversity of AntwerpAntwerpBelgium
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Emily Moriarty Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | - Alan R. Lemmon
- Department of Biological ScienceFlorida State University, Biomedical Research FacilityTallahasseeFloridaUSA
| | | | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzConstanceGermany
| | | |
Collapse
|
23
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Hennig SL, McNabb BR, Trott JF, Van Eenennaam AL, Murray JD. LincRNA#1 knockout alone does not affect polled phenotype in cattle heterozygous for the celtic POLLED allele. Sci Rep 2022; 12:7627. [PMID: 35538091 PMCID: PMC9090918 DOI: 10.1038/s41598-022-11669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
A long intergenic non-coding RNA (lincRNA#1) is overexpressed in the horn bud region of polled (hornless) bovine fetuses, suggesting a potential role in horn bud suppression. Genome editing was used to test whether the absence of this sequence was associated with the horned phenotype. Two gRNAs with high mutation efficiencies targeting the 5' and the 3' regions flanking the lincRNA#1 sequence were co-injected with Cas9 as ribonucleoprotein complexes into bovine zygotes (n = 121) 6 h post insemination. Of the resulting blastocysts (n = 31), 84% had the expected 3.7 kb deletion; of these embryos with the 3.7 kb deletions, 88% were biallelic knockouts. Thirty-nine presumptive edited 7-day blastocysts were transferred to 13 synchronized recipient cows resulting in ten pregnancies, five with embryos heterozygous for the dominant PC POLLED allele at the POLLED locus, and five with the recessive pp genotype. Eight (80%) of the resulting fetuses were biallelic lincRNA#1 knockouts, with the remaining two being mosaic. RT-qPCR analysis was used to confirm the absence of lincRNA#1 expression in knockout fetuses. Phenotypic and histological analysis of the genotypically (PCp) POLLED, lincRNA#1 knockout fetuses revealed similar morphology to non-edited, control polled fetuses, indicating the absence of lincRNA#1 alone does not result in a horned phenotype.
Collapse
Affiliation(s)
- Sadie L Hennig
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Bret R McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | | | - James D Murray
- Department of Animal Science, University of California-Davis, Davis, CA, USA. .,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Kenny C, Dilshat R, Seberg HE, Van Otterloo E, Bonde G, Helverson A, Franke CM, Steingrímsson E, Cornell RA. TFAP2 paralogs facilitate chromatin access for MITF at pigmentation and cell proliferation genes. PLoS Genet 2022; 18:e1010207. [PMID: 35580127 PMCID: PMC9159589 DOI: 10.1371/journal.pgen.1010207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/01/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
In developing melanocytes and in melanoma cells, multiple paralogs of the Activating-enhancer-binding Protein 2 family of transcription factors (TFAP2) contribute to expression of genes encoding pigmentation regulators, but their interaction with Microphthalmia transcription factor (MITF), a master regulator of these cells, is unclear. Supporting the model that TFAP2 facilitates MITF's ability to activate expression of pigmentation genes, single-cell seq analysis of zebrafish embryos revealed that pigmentation genes are only expressed in the subset of mitfa-expressing cells that also express tfap2 paralogs. To test this model in SK-MEL-28 melanoma cells we deleted the two TFAP2 paralogs with highest expression, TFAP2A and TFAP2C, creating TFAP2 knockout (TFAP2-KO) cells. We then assessed gene expression, chromatin accessibility, binding of TFAP2A and of MITF, and the chromatin marks H3K27Ac and H3K27Me3 which are characteristic of active enhancers and silenced chromatin, respectively. Integrated analyses of these datasets indicate TFAP2 paralogs directly activate enhancers near genes enriched for roles in pigmentation and proliferation, and directly repress enhancers near genes enriched for roles in cell adhesion. Consistently, compared to WT cells, TFAP2-KO cells proliferate less and adhere to one another more. TFAP2 paralogs and MITF co-operatively activate a subset of enhancers, with the former necessary for MITF binding and chromatin accessibility. By contrast, TFAP2 paralogs and MITF do not appear to co-operatively inhibit enhancers. These studies reveal a mechanism by which TFAP2 profoundly influences the set of genes activated by MITF, and thereby the phenotype of pigment cells and melanoma cells.
Collapse
Affiliation(s)
- Colin Kenny
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hannah E. Seberg
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric Van Otterloo
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gregory Bonde
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Annika Helverson
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher M. Franke
- Department of Surgery, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Robert A. Cornell
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
26
|
Lenti E, Genovese L, Bianchessi S, Maurizio A, Sain SB, di Lillo A, Mattavelli G, Harel I, Bernassola F, Hehlgans T, Pfeffer K, Crosti M, Abrignani S, Evans SM, Sitia G, Guimarães-Camboa N, Russo V, van de Pavert SA, Garcia-Manteiga JM, Brendolan A. Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity 2022; 55:606-622.e6. [PMID: 35358427 DOI: 10.1016/j.immuni.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
Abstract
Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.
Collapse
Affiliation(s)
- Elisa Lenti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Genovese
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bianchessi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Maurizio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Baghai Sain
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia di Lillo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Greta Mattavelli
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Itamar Harel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Thomas Hehlgans
- Leibniz Institute of Immunotherapy (LIT), Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Klaus Pfeffer
- Institute of Medical, Microbiology and Hospital Hygiene, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariacristina Crosti
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy; Department of Clinical Science and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California at San Diego, La Jolla, CA 92093, USA
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nuno Guimarães-Camboa
- Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt 60590, Germany; German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Germany
| | - Vincenzo Russo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
27
|
Khalil BD, Sanchez R, Rahman T, Rodriguez-Tirado C, Moritsch S, Martinez AR, Miles B, Farias E, Mezei M, Nobre AR, Singh D, Kale N, Sproll KC, Sosa MS, Aguirre-Ghiso JA. An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. J Exp Med 2022; 219:e20210836. [PMID: 34812843 PMCID: PMC8614154 DOI: 10.1084/jem.20210836] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
We describe the discovery of an agonist of the nuclear receptor NR2F1 that specifically activates dormancy programs in malignant cells. The agonist led to a self-regulated increase in NR2F1 mRNA and protein and downstream transcription of a novel dormancy program. This program led to growth arrest of an HNSCC PDX line, human cell lines, and patient-derived organoids in 3D cultures and in vivo. This effect was lost when NR2F1 was knocked out by CRISPR-Cas9. RNA sequencing revealed that agonist treatment induces transcriptional changes associated with inhibition of cell cycle progression and mTOR signaling, metastasis suppression, and induction of a neural crest lineage program. In mice, agonist treatment resulted in inhibition of lung HNSCC metastasis, even after cessation of the treatment, where disseminated tumor cells displayed an NR2F1hi/p27hi/Ki-67lo/p-S6lo phenotype and remained in a dormant single-cell state. Our work provides proof of principle supporting the use of NR2F1 agonists to induce dormancy as a therapeutic strategy to prevent metastasis.
Collapse
Affiliation(s)
- Bassem D. Khalil
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Western Atlantic University School of Medicine, Plantation, FL
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tasrina Rahman
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Stefan Moritsch
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alba Rodriguez Martinez
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brett Miles
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eduardo Farias
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deepak Singh
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Karl Christoph Sproll
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
28
|
Nie S. Quantitative Analysis of Directional Neural Crest Cell Migration. Methods Mol Biol 2022; 2438:517-526. [PMID: 35147961 DOI: 10.1007/978-1-0716-2035-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The neural crest is a highly migratory cell population that evolved in vertebrates. Born at the lateral borders of the neural plate, neural crest cells migrate long distances along defined paths and contribute to the development of many tissue and structures. Neural crest has become an important model for studying directional cell migration. Frog Xenopus laevis is particularly feasible in these studies. Both in vivo and in vitro analyses are performed to study frog neural crest cell migration. While in vivo analysis can provide direct knowledge of how neural crest cells interact with neighboring tissues during their migration, in vitro analysis can produce high-resolution results on cell morphological changes and cell motility. Here we provide a detailed protocol for performing quantitative analysis of Xenopus laevis neural crest cell migration in vitro.
Collapse
Affiliation(s)
- Shuyi Nie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
29
|
Tyagi A, Goyal A, Chaware P, Rathinam BA. Mutations of PHOX2B Gene in Patients of Obesity Hypoventilation Syndrome in Central India. J Lab Physicians 2021; 14:164-168. [PMID: 35982870 PMCID: PMC9381314 DOI: 10.1055/s-0041-1735582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Abstract
Background Paired-like homeobox 2B (PHOX2B) gene on chromosome 4p12 codes for a transcription factor having a role in the formation of noradrenergic neuronal circuits. Its mutations have been linked to congenital central hypoventilation syndrome (CCHS). The clinical presentation of both, obesity hypoventilation syndrome (OHS) and CCHS in adults (named late-onset central hypoventilation syndrome), is quite similar. Because of this symptomatic similarity, multifactorial causation of OHS, the mutation of PHOX2B gene was studied in patients with OHS in this study.
Methods A hospital-based cross-sectional study was performed on patients diagnosed with OHS. The deoxyribonucleic acid was extracted from 2 mL of venous blood and was further amplified, specific to exon 3. The amplified products were cast and run in 2% agarose gel and then subjected to Sanger sequencing.
Results Thirty patients of OHS (21 male; 9 female) were enrolled in the present study, average age being 51.7 years. The Sanger sequencing of the samples revealed no apparent areas of deletions and no apparent mutations.
Conclusion Primers for exon 3 were used for amplification in thermocycler, as exon 3 is the most frequently mutated exon for PHOX2B gene, as per existing literature. The entire gene needs to be studied for mutations and the sample size needs to be increased.
Collapse
Affiliation(s)
- Ankita Tyagi
- Department of Anatomy, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Abhishek Goyal
- Department of Pulmonary Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Prashant Chaware
- Department of Anatomy, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Bertha A.D. Rathinam
- Department of Anatomy, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
30
|
Abstract
Neural crest stem/progenitor cells arise early during vertebrate embryogenesis at the border of the forming central nervous system. They subsequently migrate throughout the body, eventually differentiating into diverse cell types ranging from neurons and glia of the peripheral nervous system to bones of the face, portions of the heart, and pigmentation of the skin. Along the body axis, the neural crest is heterogeneous, with different subpopulations arising in the head, neck, trunk, and tail regions, each characterized by distinct migratory patterns and developmental potential. Modern genomic approaches like single-cell RNA- and ATAC-sequencing (seq) have greatly enhanced our understanding of cell lineage trajectories and gene regulatory circuitry underlying the developmental progression of neural crest cells. Here, we discuss how genomic approaches have provided new insights into old questions in neural crest biology by elucidating transcriptional and posttranscriptional mechanisms that govern neural crest formation and the establishment of axial level identity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| |
Collapse
|
31
|
Stüssel LG, Hollstein R, Laugsch M, Hochfeld LM, Welzenbach J, Schröder J, Thieme F, Ishorst N, Romero RO, Weinhold L, Hess T, Gehlen J, Mostowska A, Heilmann-Heimbach S, Mangold E, Rada-Iglesias A, Knapp M, Schaaf CP, Ludwig KU. MiRNA-149 as a Candidate for Facial Clefting and Neural Crest Cell Migration. J Dent Res 2021; 101:323-330. [PMID: 34528480 DOI: 10.1177/00220345211038203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsyndromic cleft lip with or without palate (nsCL/P) ranks among the most common human birth defects and has a multifactorial etiology. Human neural crest cells (hNCC) make a substantial contribution to the formation of facial bone and cartilage and are a key cell type in terms of nsCL/P etiology. Based on increasing evidence for the role of noncoding regulatory mechanisms in nsCL/P, we investigated the role of hNCC-expressed microRNAs (miRNA) in cleft development. First, we conducted a systematic analysis of miRNAs expressed in human-induced pluripotent stem cell-derived hNCC using Affymetrix microarrays on cell lines established from 4 unaffected donors. These analyses identified 152 candidate miRNAs. Based on the hypothesis that candidate miRNA loci harbor genetic variation associated with nsCL/P risk, the genomic locations of these candidates were cross-referenced with data from a previous genome-wide association study of nsCL/P. Associated variants were reanalyzed in independent nsCL/P study populations. Jointly, the results suggest that miR-149 is implicated in nsCL/P etiology. Second, functional follow-up included in vitro overexpression and inhibition of miR-149 in hNCC and subsequent analyses at the molecular and phenotypic level. Using 3'RNA-Seq, we identified 604 differentially expressed (DE) genes in hNCC overexpressing miR-149 compared with untreated cells. These included TLR4 and JUNB, which are established targets of miR-149, and NOG, BMP4, and PAX6, which are reported nsCL/P candidate genes. Pathway analyses revealed that DE genes were enriched in pathways including regulation of cartilage development and NCC differentiation. At the cellular level, distinct hNCC migration patterns were observed in response to miR-149 overexpression. Our data suggest that miR-149 is involved in the etiology of nsCL/P via its role in hNCC migration.
Collapse
Affiliation(s)
- L G Stüssel
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - R Hollstein
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - M Laugsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - L M Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - J Welzenbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - J Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - F Thieme
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - N Ishorst
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - R Olmos Romero
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - L Weinhold
- Institute of Medical Biometry Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - T Hess
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.,Center of Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - J Gehlen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.,Center of Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - A Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - S Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - E Mangold
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - A Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Biomedicine and Biotechnology, University of Cantabria, Santander, Spain
| | - M Knapp
- Institute of Medical Biometry Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - C P Schaaf
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - K U Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
32
|
Kochat V, Raman AT, Landers SM, Tang M, Schulz J, Terranova C, Landry JP, Bhalla AD, Beird HC, Wu CC, Jiang Y, Mao X, Lazcano R, Gite S, Ingram DR, Yi M, Zhang J, Keung EZ, Scally CP, Roland CL, Hunt KK, Feig BW, Futreal PA, Hwu P, Wang WL, Lazar AJ, Slopis JM, Wilson-Robles H, Wiener DJ, McCutcheon IE, Wustefeld-Janssens B, Rai K, Torres KE. Enhancer reprogramming in PRC2-deficient malignant peripheral nerve sheath tumors induces a targetable de-differentiated state. Acta Neuropathol 2021; 142:565-590. [PMID: 34283254 DOI: 10.1007/s00401-021-02341-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that frequently harbor genetic alterations in polycomb repressor complex 2 (PRC2) components-SUZ12 and EED. Here, we show that PRC2 loss confers a dedifferentiated early neural-crest phenotype which is exclusive to PRC2-mutant MPNSTs and not a feature of neurofibromas. Neural crest phenotype in PRC2 mutant MPNSTs was validated via cross-species comparative analysis using spontaneous and transgenic MPNST models. Systematic chromatin state profiling of the MPNST cells showed extensive epigenomic reprogramming or chromatin states associated with PRC2 loss and identified gains of active enhancer states/super-enhancers on early neural crest regulators in PRC2-mutant conditions around genomic loci that harbored repressed/poised states in PRC2-WT MPNST cells. Consistently, inverse correlation between H3K27me3 loss and H3K27Ac gain was noted in MPNSTs. Epigenetic editing experiments established functional roles for enhancer gains on DLX5-a key regulator of neural crest phenotype. Consistently, blockade of enhancer activity by bromodomain inhibitors specifically suppressed this neural crest phenotype and tumor burden in PRC2-mutant PDXs. Together, these findings reveal accumulation of dedifferentiated neural crest like state in PRC2-mutant MPNSTs that can be targeted by enhancer blockade.
Collapse
Affiliation(s)
- Veena Kochat
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayush T Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sharon M Landers
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jace P Landry
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Angela D Bhalla
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingda Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swati Gite
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Yi
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Scally
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina L Roland
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barry W Feig
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology and Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wei-Lien Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Wilson-Robles
- Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dominique J Wiener
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandan Wustefeld-Janssens
- Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Surgical Oncology, Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
| | - Keila E Torres
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Johnsson M, Henriksen R, Wright D. The neural crest cell hypothesis: no unified explanation for domestication. Genetics 2021; 219:iyab097. [PMID: 34849908 PMCID: PMC8633120 DOI: 10.1093/genetics/iyab097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Rie Henriksen
- IFM Biology, Linköping University, Linköping 58183, Sweden
| | - Dominic Wright
- IFM Biology, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
34
|
Congenital Malformations in Sea Turtles: Puzzling Interplay between Genes and Environment. Animals (Basel) 2021; 11:ani11020444. [PMID: 33567785 PMCID: PMC7915190 DOI: 10.3390/ani11020444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Congenital malformations can lead to embryonic mortality in many species, and sea turtles are no exception. Genetic and/or environmental alterations occur during early development in the embryo, and may produce aberrant phenotypes, many of which are incompatible with life. Causes of malformations are multifactorial; genetic factors may include mutations, chromosomal aberrations, and inbreeding effects, whereas non-genetic factors may include nutrition, hyperthermia, low moisture, radiation, and contamination. It is possible to monitor and control some of these factors (such as temperature and humidity) in nesting beaches, and toxic compounds in feeding areas, which can be transferred to the embryo through their lipophilic properties. In this review, we describe possible causes of different types of malformations observed in sea turtle embryos, as well as some actions that may help reduce embryonic mortality. Abstract The completion of embryonic development depends, in part, on the interplay between genetic factors and environmental conditions, and any alteration during development may affect embryonic genetic and epigenetic regulatory pathways leading to congenital malformations, which are mostly incompatible with life. Oviparous reptiles, such as sea turtles, that produce numerous eggs in a clutch that is buried on the beach provide an opportunity to study embryonic mortality associated with malformations that occur at different times during development, or that prevent the hatchling from emerging from the nest. In sea turtles, the presence of congenital malformations frequently leads to mortality. A few years ago, a detailed study was performed on external congenital malformations in three species of sea turtles from the Mexican Pacific and Caribbean coasts, the hawksbill turtle, Eretmochelys imbricata (n = 23,559 eggs), the green turtle, Chelonia mydas (n = 17,690 eggs), and the olive ridley, Lepidochelys olivacea (n = 20,257 eggs), finding 63 types of congenital malformations, of which 38 were new reports. Of the three species, the olive ridley showed a higher incidence of severe anomalies in the craniofacial region (49%), indicating alterations of early developmental pathways; however, several malformations were also observed in the body, including defects in the carapace (45%) and limbs (33%), as well as pigmentation disorders (20%), indicating that deviations occurred during the middle and later stages of development. Although intrinsic factors (i.e., genetic mutations or epigenetic modifications) are difficult to monitor in the field, some environmental factors (such as the incubation temperature, humidity, and probably the status of feeding areas) are, to some extent, less difficult to monitor and/or control. In this review, we describe the aetiology of different malformations observed in sea turtle embryos, and provide some actions that can reduce embryonic mortality.
Collapse
|
35
|
Hutchins EJ, Piacentino ML, Bronner ME. Transcriptomic Identification of Draxin-Responsive Targets During Cranial Neural Crest EMT. Front Physiol 2021; 12:624037. [PMID: 33613313 PMCID: PMC7886793 DOI: 10.3389/fphys.2021.624037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
Canonical Wnt signaling plays an essential role in proper craniofacial morphogenesis, at least partially due to regulation of various aspects of cranial neural crest development. In an effort to gain insight into the etiology of craniofacial abnormalities resulting from Wnt signaling and/or cranial neural crest dysfunction, we sought to identify Wnt-responsive targets during chick cranial neural crest development. To this end, we leveraged overexpression of a canonical Wnt antagonist, Draxin, in conjunction with RNA-sequencing of cranial neural crest cells that have just activated their epithelial-mesenchymal transition (EMT) program. Through differential expression analysis, gene list functional annotation, hybridization chain reaction (HCR), and quantitative reverse transcription polymerase chain reaction (RT-qPCR), we validated a novel downstream target of canonical Wnt signaling in cranial neural crest - RHOB - and identified possible signaling pathway crosstalk underlying cranial neural crest migration. The results reveal novel putative targets of canonical Wnt signaling during cranial neural crest EMT and highlight important intersections across signaling pathways involved in craniofacial development.
Collapse
Affiliation(s)
| | | | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
36
|
Fazio M, van Rooijen E, Dang M, van de Hoek G, Ablain J, Mito JK, Yang S, Thomas A, Michael J, Fabo T, Modhurima R, Pessina P, Kaufman CK, Zhou Y, White RM, Zon LI. SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. eLife 2021; 10:64370. [PMID: 33527896 PMCID: PMC7880683 DOI: 10.7554/elife.64370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent genomic and scRNA-seq analyses of melanoma demonstrated a lack of recurrent genetic drivers of metastasis, while identifying common transcriptional states correlating with invasion or drug resistance. To test whether transcriptional adaptation can drive melanoma progression, we made use of a zebrafish mitfa:BRAFV600E;tp53-/- model, in which malignant progression is characterized by minimal genetic evolution. We undertook an overexpression-screen of 80 epigenetic/transcriptional regulators and found neural crest-mesenchyme developmental regulator SATB2 to accelerate aggressive melanoma development. Its overexpression induces invadopodia formation and invasion in zebrafish tumors and human melanoma cell lines. SATB2 binds and activates neural crest-regulators, including pdgfab and snai2. The transcriptional program induced by SATB2 overlaps with known MITFlowAXLhigh and AQP1+NGFR1high drug-resistant states and functionally drives enhanced tumor propagation and resistance to Vemurafenib in vivo. In summary, we show that melanoma transcriptional rewiring by SATB2 to a neural crest mesenchyme-like program can drive invasion and drug resistance in autochthonous tumors.
Collapse
Affiliation(s)
- Maurizio Fazio
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Michelle Dang
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Glenn van de Hoek
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Julien Ablain
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Jeffrey K Mito
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Brigham and Women's Hospital, Department of Pathology, Boston, United States
| | - Song Yang
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Andrew Thomas
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Jonathan Michael
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Tania Fabo
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Rodsy Modhurima
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Patrizia Pessina
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, United States.,Department of Developmental Biology, Washington University in Saint Louis, St. Louis, United States
| | - Yi Zhou
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Richard M White
- Memorial Sloan Kettering Cancer Center and Weill-Cornell Medical College, New York, United States
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
37
|
Wyatt BH, Raymond TO, Lansdon LA, Darbro BW, Murray JC, Manak JR, Dickinson AJG. Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders. Genesis 2021; 59:e23394. [PMID: 32918369 PMCID: PMC10701884 DOI: 10.1002/dvg.23394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
The chromodomain family member chromodomain 1 (CHD1) has been shown to have numerous critical molecular functions including transcriptional regulation, splicing, and DNA repair. Complete loss of function of this gene is not compatible with life. On the other hand, missense and copy number variants of CHD1 can result in intellectual disabilities and craniofacial malformations in human patients including cleft palate and Pilarowski-Bjornsson Syndrome. We have used the aquatic developmental model organism Xenopus laevis, to determine a specific role for Chd1 in such cranioafcial disorders. Protein and gene knockdown techniques in Xenopus, including antisense oligos and mosaic Crispr/Cas9-mediated mutagenesis, recapitulated the craniofacial defects observed in humans. Further analysis indicated that embryos deficient in Chd1 had defects in cranial neural crest development and jaw cartilage morphology. Additionally, flow cytometry and immunohistochemistry revealed that decreased Chd1 resulted in increased in apoptosis in the developing head. Together, these experiments demonstrate that Chd1 is critical for fundamental processes and cell survival in craniofacial development. We also presented evidence that Chd1 is regulated by retinoic acid signaling during craniofacial development. Expression levels of chd1 mRNA, specifically in the head, were increased by RAR agonist exposure and decreased upon antagonist treatment. Subphenotypic levels of an RAR antagonist and Chd1 morpholinos synergized to result in orofacial defects. Further, RAR DNA binding sequences (RAREs) were detected in chd1 regulatory regions by bioinformatic analysis. In summary, by combining human genetics and experiments in an aquatic model we now have a better understanding of the role of CHD1 in craniofacial disorders.
Collapse
Affiliation(s)
- Brent H. Wyatt
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Thomas O. Raymond
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lisa A. Lansdon
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri
| | | | | | - John Robert Manak
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
38
|
A globin-family protein, Cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish. Dev Biol 2021; 472:1-17. [PMID: 33358912 DOI: 10.1016/j.ydbio.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
Abstract
The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.
Collapse
|
39
|
Feleke M, Bennett S, Chen J, Hu X, Williams D, Xu J. New physiological insights into the phenomena of deer antler: A unique model for skeletal tissue regeneration. J Orthop Translat 2020; 27:57-66. [PMID: 33437638 PMCID: PMC7773678 DOI: 10.1016/j.jot.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Generally, mammals are unable to regenerate complex tissues and organs however the deer antler provides a rare anomaly to this rule. This osseous cranial appendage which is located on the frontal bone of male deer is capable of stem cell-based organogenesis, annual casting, and cyclic de novo regeneration. A series of recent studies have classified this form of regeneration as epimorphic stem cell based. Antler renewal is initiated by the activation of neural crest derived pedicle periosteal cells (PPCs) found residing within the pedicle periosteum (PP), these PPCs have the potential to differentiate into multiple lineages. Other antler stem cells (ASCs) are the reserve mesenchymal cells (RMCs) located in the antlers tip, which develop into cartilage tissue. Antlerogenic periosteal cells (APCs) found within the antlerogenic periosteum (AP) form the tissues of both the pedicle and first set of antlers. Antler stem cells (ASCs) further appear to progress through various stages of activation, this coordinated transition is considered imperative for stem cell-based mammalian regeneration. The latest developments have shown that the rapid elongation of the main beam and antler branches are a controlled form of tumour growth, regulated by the tumour suppressing genes TP73 and ADAMTS18. Both osteoclastogenesis, as well as osteogenic and chondrogenic differentiation are also involved. While there remains much to uncover this review both summarises and comprehensively evaluates our existing knowledge of tissue regeneration in the deer antler. This will assist in achieving the goal of in vitro organ regeneration in humans by furthering the field of modern regenerative medicine. The Translational potential of this article As a unique stem cell-based organ regeneration process in mammals, the deer antler represents a prime model system for investigating mechanisms of regeneration in mammalian tissues. Novel ASCs could provide cell-based therapies for regenerative medicine and bone remodelling for clinical application. A greater understanding of this process and a more in-depth defining of ASCs will potentiate improved clinical outcomes.
Collapse
Affiliation(s)
- Mesalie Feleke
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Jiazhi Chen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, China
| | - Desmond Williams
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
40
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
41
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
42
|
Wakamatsu Y, Uchikawa M. The many faces of Sox2 function in neural crest development. Dev Growth Differ 2020; 63:93-99. [PMID: 33326593 DOI: 10.1111/dgd.12705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Neural crest (NC) cells give rise to a wide variety of cell types and tissues, such as neurons and glial cells in the peripheral nervous system. Sox2, which encodes an HMG-box transcription factor, is known to mediate pluripotency of primordial germ cells and embryonic stem (ES)/induced pluripotent stem (iPS) cells, and to regulate central nervous system development. Previous studies have revealed that Sox2 is also an important regulator of NC development. This review summarizes the well-established inhibitory roles of Sox2 in NC formation and subsequent neuronal differentiation of NC-derived cells. This review also covers recent studies suggesting additional roles for Sox2 in early NC development, neurogenesis, and glial differentiation of NC-derived cells.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Center for Translational and Advanced Animal Research on Human Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masanori Uchikawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
43
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
44
|
Diener J, Sommer L. Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl Med 2020; 10:522-533. [PMID: 33258291 PMCID: PMC7980219 DOI: 10.1002/sctm.20-0351] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest of all skin cancers due to its high metastatic potential. In recent years, advances in targeted therapy and immunotherapy have contributed to a remarkable progress in the treatment of metastatic disease. However, intrinsic or acquired resistance to such therapies remains a major obstacle in melanoma treatment. Melanoma disease progression, beginning from tumor initiation and growth to acquisition of invasive phenotypes and metastatic spread and acquisition of treatment resistance, has been associated with cellular dedifferentiation and the hijacking of gene regulatory networks reminiscent of the neural crest (NC)—the developmental structure which gives rise to melanocytes and hence melanoma. This review summarizes the experimental evidence for the involvement of NC stem cell (NCSC)‐like cell states during melanoma progression and addresses novel approaches to combat the emergence of stemness characteristics that have shown to be linked with aggressive disease outcome and drug resistance.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| | - Lukas Sommer
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| |
Collapse
|
45
|
Seal S, Monsoro-Burq AH. Insights Into the Early Gene Regulatory Network Controlling Neural Crest and Placode Fate Choices at the Neural Border. Front Physiol 2020; 11:608812. [PMID: 33324244 PMCID: PMC7726110 DOI: 10.3389/fphys.2020.608812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The neural crest (NC) cells and cranial placodes are two ectoderm-derived innovations in vertebrates that led to the acquisition of a complex head structure required for a predatory lifestyle. They both originate from the neural border (NB), a portion of the ectoderm located between the neural plate (NP), and the lateral non-neural ectoderm. The NC gives rise to a vast array of tissues and cell types such as peripheral neurons and glial cells, melanocytes, secretory cells, and cranial skeletal and connective cells. Together with cells derived from the cranial placodes, which contribute to sensory organs in the head, the NC also forms the cranial sensory ganglia. Multiple in vivo studies in different model systems have uncovered the signaling pathways and genetic factors that govern the positioning, development, and differentiation of these tissues. In this literature review, we give an overview of NC and placode development, focusing on the early gene regulatory network that controls the formation of the NB during early embryonic stages, and later dictates the choice between the NC and placode progenitor fates.
Collapse
Affiliation(s)
- Subham Seal
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, Orsay Cedex, France
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, Orsay Cedex, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
46
|
Weigele J, Bohnsack BL. Genetics Underlying the Interactions between Neural Crest Cells and Eye Development. J Dev Biol 2020; 8:jdb8040026. [PMID: 33182738 PMCID: PMC7712190 DOI: 10.3390/jdb8040026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases.
Collapse
Affiliation(s)
- Jochen Weigele
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-227-6180; Fax: +1-312-227-9411
| |
Collapse
|
47
|
Pini J, Kueper J, Hu YD, Kawasaki K, Yeung P, Tsimbal C, Yoon B, Carmichael N, Maas RL, Cotney J, Grinblat Y, Liao EC. ALX1-related frontonasal dysplasia results from defective neural crest cell development and migration. EMBO Mol Med 2020; 12:e12013. [PMID: 32914578 PMCID: PMC7539331 DOI: 10.15252/emmm.202012013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
A pedigree of subjects presented with frontonasal dysplasia (FND). Genome sequencing and analysis identified a p.L165F missense variant in the homeodomain of the transcription factor ALX1 which was imputed to be pathogenic. Induced pluripotent stem cells (iPSC) were derived from the subjects and differentiated to neural crest cells (NCC). NCC derived from ALX1L165F/L165F iPSC were more sensitive to apoptosis, showed an elevated expression of several neural crest progenitor state markers, and exhibited impaired migration compared to wild-type controls. NCC migration was evaluated in vivo using lineage tracing in a zebrafish model, which revealed defective migration of the anterior NCC stream that contributes to the median portion of the anterior neurocranium, phenocopying the clinical presentation. Analysis of human NCC culture media revealed a change in the level of bone morphogenic proteins (BMP), with a low level of BMP2 and a high level of BMP9. Soluble BMP2 and BMP9 antagonist treatments were able to rescue the defective migration phenotype. Taken together, these results demonstrate a mechanistic requirement of ALX1 in NCC development and migration.
Collapse
Affiliation(s)
- Jonathan Pini
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Janina Kueper
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
- Life and Brain CenterUniversity of BonnBonnGermany
| | - Yiyuan David Hu
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Kenta Kawasaki
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Pan Yeung
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Casey Tsimbal
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Baul Yoon
- Departments of Integrative Biology, Neuroscience, and Genetics Ph.D. Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Nikkola Carmichael
- Department of GeneticsBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Richard L Maas
- Department of GeneticsBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Justin Cotney
- Genetics and Genome SciencesUConn HealthFarmingtonCTUSA
| | - Yevgenya Grinblat
- Departments of Integrative Biology, Neuroscience, and Genetics Ph.D. Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Eric C Liao
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| |
Collapse
|
48
|
Chu D, Nguyen A, Smith SS, Vavrušová Z, Schneider RA. Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development. Biol Open 2020; 9:bio055343. [PMID: 32917762 PMCID: PMC7561481 DOI: 10.1242/bio.055343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Collapse
Affiliation(s)
- Daniel Chu
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - An Nguyen
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Spenser S Smith
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| |
Collapse
|
49
|
Abstract
Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
50
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|