1
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Ježek J, Smethurst DGJ, Stieg DC, Kiss ZAC, Hanley SE, Ganesan V, Chang KT, Cooper KF, Strich R. Cyclin C: The Story of a Non-Cycling Cyclin. BIOLOGY 2019; 8:biology8010003. [PMID: 30621145 PMCID: PMC6466611 DOI: 10.3390/biology8010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
The class I cyclin family is a well-studied group of structurally conserved proteins that interact with their associated cyclin-dependent kinases (Cdks) to regulate different stages of cell cycle progression depending on their oscillating expression levels. However, the role of class II cyclins, which primarily act as transcription factors and whose expression remains constant throughout the cell cycle, is less well understood. As a classic example of a transcriptional cyclin, cyclin C forms a regulatory sub-complex with its partner kinase Cdk8 and two accessory subunits Med12 and Med13 called the Cdk8-dependent kinase module (CKM). The CKM reversibly associates with the multi-subunit transcriptional coactivator complex, the Mediator, to modulate RNA polymerase II-dependent transcription. Apart from its transcriptional regulatory function, recent research has revealed a novel signaling role for cyclin C at the mitochondria. Upon oxidative stress, cyclin C leaves the nucleus and directly activates the guanosine 5’-triphosphatase (GTPase) Drp1, or Dnm1 in yeast, to induce mitochondrial fragmentation. Importantly, cyclin C-induced mitochondrial fission was found to increase sensitivity of both mammalian and yeast cells to apoptosis. Here, we review and discuss the biology of cyclin C, focusing mainly on its transcriptional and non-transcriptional roles in tumor promotion or suppression.
Collapse
Affiliation(s)
- Jan Ježek
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Daniel G J Smethurst
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - David C Stieg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Z A C Kiss
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Sara E Hanley
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Vidyaramanan Ganesan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Kai-Ti Chang
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Katrina F Cooper
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| | - Randy Strich
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
3
|
Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types. Oncotarget 2018; 7:23043-23055. [PMID: 27050271 PMCID: PMC5029609 DOI: 10.18632/oncotarget.8469] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/04/2016] [Indexed: 01/08/2023] Open
Abstract
The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.
Collapse
|
4
|
Garavís M, González-Polo N, Allepuz-Fuster P, Louro JA, Fernández-Tornero C, Calvo O. Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis. Nucleic Acids Res 2017; 45:2458-2471. [PMID: 27924005 PMCID: PMC5389574 DOI: 10.1093/nar/gkw1206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Biogenesis of messenger RNA is critically influenced by the phosphorylation state of the carboxy-terminal domain (CTD) in the largest RNA polymerase II (RNAPII) subunit. Several kinases and phosphatases are required to maintain proper CTD phosphorylation levels and, additionally, several other proteins modulate them, including Rpb4/7 and Sub1. The Rpb4/7 heterodimer, constituting the RNAPII stalk, promote phosphatase functions and Sub1 globally influences CTD phosphorylation, though its mechanism remains mostly unknown. Here, we show that Sub1 physically interacts with the RNAPII stalk domain, Rpb4/7, likely through its C-terminal region, and associates with Fcp1. While Rpb4 is not required for Sub1 interaction with RNAPII complex, a fully functional heterodimer is required for Sub1 association to promoters. We also demonstrate that a complete CTD is necessary for proper association of Sub1 to chromatin and to the RNAPII. Finally, genetic data show a functional relationship between Sub1 and the RNAPII clamp domain. Altogether, our results indicate that Sub1, Rpb4/7 and Fcp1 interaction modulates CTD phosphorylation. In addition, Sub1 interaction with Rpb4/7 can also modulate transcription start site selection and transcription elongation rate likely by influencing the clamp function.
Collapse
Affiliation(s)
- Miguel Garavís
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Noelia González-Polo
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Paula Allepuz-Fuster
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| | - Jaime Alegrio Louro
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Olga Calvo
- Instituto de Biología Funcional y Genómica. CSIC/Universidad de Salamanca, C/ Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
5
|
Robinson PJ, Trnka MJ, Bushnell DA, Davis RE, Mattei PJ, Burlingame AL, Kornberg RD. Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex. Cell 2016; 166:1411-1422.e16. [PMID: 27610567 DOI: 10.1016/j.cell.2016.08.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 08/19/2016] [Indexed: 12/23/2022]
Abstract
A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.
Collapse
Affiliation(s)
- Philip J Robinson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ralph E Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pierre-Jean Mattei
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Abstract
The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development.
Collapse
|
7
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
8
|
Kikuchi Y, Umemura H, Nishitani S, Iida S, Fukasawa R, Hayashi H, Hirose Y, Tanaka A, Sugasawa K, Ohkuma Y. Human mediator MED17 subunit plays essential roles in gene regulation by associating with the transcription and DNA repair machineries. Genes Cells 2014; 20:191-202. [DOI: 10.1111/gtc.12210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/02/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Yuko Kikuchi
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Hiroyasu Umemura
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Saori Nishitani
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Satoshi Iida
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Rikiya Fukasawa
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Hiroto Hayashi
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Yutaka Hirose
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Aki Tanaka
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Kaoru Sugasawa
- Biosignal Research Center; Organization of Advanced Science and Technology; Kobe University; Kobe Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| |
Collapse
|
9
|
Fine-tuning of histone H3 Lys4 methylation during pseudohyphal differentiation by the CDK submodule of RNA polymerase II. Genetics 2014; 199:435-53. [PMID: 25467068 DOI: 10.1534/genetics.114.172841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcriptional regulation is dependent upon the interactions between the RNA pol II holoenzyme complex and chromatin. RNA pol II is part of a highly conserved multiprotein complex that includes the core mediator and CDK8 subcomplex. In Saccharomyces cerevisiae, the CDK8 subcomplex, composed of Ssn2p, Ssn3p, Ssn8p, and Srb8p, is thought to play important roles in mediating transcriptional control of stress-responsive genes. Also central to transcriptional control are histone post-translational modifications. Lysine methylation, dynamically balanced by lysine methyltransferases and demethylases, has been intensively studied, uncovering significant functions in transcriptional control. A key question remains in understanding how these enzymes are targeted during stress response. To determine the relationship between lysine methylation, the CDK8 complex, and transcriptional control, we performed phenotype analyses of yeast lacking known lysine methyltransferases or demethylases in isolation or in tandem with SSN8 deletions. We show that the RNA pol II CDK8 submodule components SSN8/SSN3 and the histone demethylase JHD2 are required to inhibit pseudohyphal growth-a differentiation pathway induced during nutrient limitation-under rich conditions. Yeast lacking both SSN8 and JHD2 constitutively express FLO11, a major regulator of pseudohyphal growth. Interestingly, deleting known FLO11 activators including FLO8, MSS11, MFG1, TEC1, SNF1, KSS1, and GCN4 results in a range of phenotypic suppression. Using chromatin immunoprecipitation, we found that SSN8 inhibits H3 Lys4 trimethylation independently of JHD2 at the FLO11 locus, suggesting that H3 Lys4 hypermethylation is locking FLO11 into a transcriptionally active state. These studies implicate the CDK8 subcomplex in fine-tuning H3 Lys4 methylation levels during pseudohyphal differentiation.
Collapse
|
10
|
Lindsay AK, Morales DK, Liu Z, Grahl N, Zhang A, Willger SD, Myers LC, Hogan DA. Analysis of Candida albicans mutants defective in the Cdk8 module of mediator reveal links between metabolism and biofilm formation. PLoS Genet 2014; 10:e1004567. [PMID: 25275466 PMCID: PMC4183431 DOI: 10.1371/journal.pgen.1004567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/30/2014] [Indexed: 12/29/2022] Open
Abstract
Candida albicans biofilm formation is a key virulence trait that involves hyphal growth and adhesin expression. Pyocyanin (PYO), a phenazine secreted by Pseudomonas aeruginosa, inhibits both C. albicans biofilm formation and development of wrinkled colonies. Using a genetic screen, we identified two mutants, ssn3Δ/Δ and ssn8Δ/Δ, which continued to wrinkle in the presence of PYO. Ssn8 is a cyclin-like protein and Ssn3 is similar to cyclin-dependent kinases; both proteins are part of the heterotetrameric Cdk8 module that forms a complex with the transcriptional co-regulator, Mediator. Ssn3 kinase activity was also required for PYO sensitivity as a kinase dead mutant maintained a wrinkled colony morphology in the presence of PYO. Furthermore, similar phenotypes were observed in mutants lacking the other two components of the Cdk8 module-Srb8 and Srb9. Through metabolomics analyses and biochemical assays, we showed that a compromised Cdk8 module led to increases in glucose consumption, glycolysis-related transcripts, oxidative metabolism and ATP levels even in the presence of PYO. In the mutant, inhibition of respiration to levels comparable to the PYO-treated wild type inhibited wrinkled colony development. Several lines of evidence suggest that PYO does not act through Cdk8. Lastly, the ssn3 mutant was a hyperbiofilm former, and maintained higher biofilm formation in the presence of PYO than the wild type. Together these data provide novel insights into the role of the Cdk8 module of Mediator in regulation of C. albicans physiology and the links between respiratory activity and both wrinkled colony and biofilm development.
Collapse
Affiliation(s)
- Allia K. Lindsay
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Diana K. Morales
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zhongle Liu
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nora Grahl
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Anda Zhang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Sven D. Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Lawrence C. Myers
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
11
|
Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. THE PLANT CELL 2014; 26:4149-70. [PMID: 25281690 PMCID: PMC4247566 DOI: 10.1105/tpc.114.128611] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 09/17/2014] [Indexed: 05/18/2023]
Abstract
CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8's positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea.
Collapse
Affiliation(s)
- Yingfang Zhu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Dae-Jin Yun
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
12
|
Strich R, Cooper KF. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics. MICROBIAL CELL 2014; 1:318-324. [PMID: 28357211 PMCID: PMC5349174 DOI: 10.15698/mic2014.10.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following exposure to cytotoxic agents, cellular damage is first recognized by a
variety of sensor mechanisms. Thenceforth, the damage signal is transduced to
the nucleus to install the correct gene expression program including the
induction of genes whose products either detoxify destructive compounds or
repair the damage they cause. Next, the stress signal is disseminated throughout
the cell to effect the appropriate changes at organelles including the
mitochondria. The mitochondria represent an important signaling platform for the
stress response. An initial stress response of the mitochondria is extensive
fragmentation. If the damage is prodigious, the mitochondria fragment (fission)
and lose their outer membrane integrity leading to the release of pro-apoptotic
factors necessary for programmed cell death (PCD) execution. As this complex
biological process contains many moving parts, it must be exquisitely
coordinated as the ultimate decision is life or death. The conserved C-type
cyclin plays an important role in executing this molecular Rubicon by coupling
changes in gene expression to mitochondrial fission and PCD. Cyclin C, along
with its cyclin dependent kinase partner Cdk8, associates with the RNA
polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8
repress many stress responsive genes. To relieve this repression, cyclin C is
destroyed in cells exposed to pro-oxidants and other stressors. However, prior
to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor
(Med13), translocates from the nucleus to the cytoplasm where it interacts with
the fission machinery and is both necessary and sufficient to induce extensive
mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD
indicating that it mediates both mitochondrial fission and cell death pathways.
This review will summarize the role cyclin C plays in regulating
stress-responsive transcription. In addition, we will detail this new function
mediating mitochondrial fission and PCD. Although both these roles of cyclin C
are conserved, this review will concentrate on cyclin C's dual role in the
budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| |
Collapse
|
13
|
Mao F, Yang X, Fu L, Lv X, Zhang Z, Wu W, Yang S, Zhou Z, Zhang L, Zhao Y. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway. J Biol Chem 2014; 289:22333-41. [PMID: 24962581 DOI: 10.1074/jbc.m114.560995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression.
Collapse
Affiliation(s)
- Feifei Mao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiaofeng Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Lin Fu
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiangdong Lv
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhao Zhang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Siqi Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhaocai Zhou
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
14
|
Karagiannis J. On the computational ability of the RNA polymerase II carboxy terminal domain. Commun Integr Biol 2014; 7:e28303. [PMID: 25371772 PMCID: PMC4217226 DOI: 10.4161/cib.28303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
The RNA polymerase II carboxy terminal domain has long been known to play an important role in the control of eukaryotic transcription. This role is mediated, at least in part, through complex post-translational modifications that take place on specific residues within the heptad repeats of the domain. In this addendum, a speculative, but formal mathematical conceptualization of this biological phenomenon (in the form of a semi-Thue string rewriting system) is presented. Since the semi-Thue formalism is known to be Turing complete, this raises the possibility that the CTD – in association with the regulatory pathways controlling its post-translational modification – functions as a biological incarnation of a universal computing machine.
Collapse
|
15
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
16
|
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins. PLoS One 2013; 8:e53405. [PMID: 23308214 PMCID: PMC3537633 DOI: 10.1371/journal.pone.0053405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022] Open
Abstract
The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication.
Collapse
|
17
|
Karagiannis J. Decoding the informational properties of the RNA polymerase II Carboxy Terminal Domain. BMC Res Notes 2012; 5:241. [PMID: 22591782 PMCID: PMC3490803 DOI: 10.1186/1756-0500-5-241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The largest sub-unit of RNA polymerase II, Rpb1p, has long been known to be subject to post-translational modifications that influence various aspects of pre-mRNA processing. However, the portion of the Rpb1p molecule subject to these modifications - the carboxy-terminal domain or CTD - remains the subject of much fascination. Intriguingly, the CTD possesses a unique repetitive structure consisting of multiple repeats of the heptapeptide sequence, Y(1)S(2)P(3)T(4)S(5)P(6)S(7). While these repeats are critical for viability, they are not required for basal transcriptional activity in vitro. This suggests that - even though the CTD is not catalytically essential - it must perform other critical functions in eukaryotes. PRESENTATION OF THE HYPOTHESIS By formally applying the long-standing mathematical principles of information theory, I explore the hypothesis that complex post-translational modifications of the CTD represent a means for the dynamic "programming" of Rpb1p and thus for the discrete modulation of the expression of specific gene subsets in eukaryotes. TESTING THE HYPOTHESIS Empirical means for testing the informational capacity and regulatory potential of the CTD - based on simple genetic analysis in yeast model systems - are put forward and discussed. IMPLICATIONS OF THE HYPOTHESIS These ideas imply that the controlled manipulation of CTD effectors could be used to "program" the CTD and thus to manipulate biological processes in eukaryotes in a definable manner.
Collapse
Affiliation(s)
- Jim Karagiannis
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
18
|
Cooper KF, Scarnati MS, Krasley E, Mallory MJ, Jin C, Law MJ, Strich R. Oxidative-stress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction. J Cell Sci 2012; 125:1015-26. [PMID: 22421358 DOI: 10.1242/jcs.096479] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast cyclin-C-Cdk8p kinase complex represses the transcription of a subset of genes involved in the stress response. To relieve this repression, cyclin C is destroyed in cells exposed to H(2)O(2) by the 26S proteasome. This report identifies Not4p as the ubiquitin ligase mediating H(2)O(2)-induced cyclin C destruction. Not4p is required for H(2)O(2)-induced cyclin C destruction in vivo and polyubiquitylates cyclin C in vitro by utilizing Lys48, a ubiquitin linkage associated with directing substrates to the 26S proteasome. Before its degradation, cyclin C, but not Cdk8p, translocates from the nucleus to the cytoplasm. This translocation requires both the cell-wall-integrity MAPK module and phospholipase C, and these signaling pathways are also required for cyclin C destruction. In addition, blocking cytoplasmic translocation slows the mRNA induction kinetics of two stress response genes repressed by cyclin C. Finally, a cyclin C derivative restricted to the cytoplasm is still subject to Not4p-dependent destruction, indicating that the degradation signal does not occur in the nucleus. These results identify a stress-induced proteolytic pathway regulating cyclin C that requires nuclear to cytoplasmic relocalization and Not4p-mediated ubiquitylation.
Collapse
Affiliation(s)
- Katrina F Cooper
- Department of Molecular Biology, University of Medicine and Dentistry New Jersey, Two Medical Center Drive, Stratford, NJ 08055, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Galdieri L, Desai P, Vancura A. Facilitated assembly of the preinitiation complex by separated tail and head/middle modules of the mediator. J Mol Biol 2011; 415:464-74. [PMID: 22137896 DOI: 10.1016/j.jmb.2011.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 02/06/2023]
Abstract
Mediator is a general coactivator of RNA polymerase II (RNA pol II) bridging enhancer-bound transcriptional factors with RNA pol II. Mediator is organized in three distinct subcomplexes: head, middle, and tail modules. The head and middle modules interact with RNA pol II, and the tail module interacts with transcriptional activators. Deletion of one of the tail subunits SIN4 results in derepression of a subset of genes, including FLR1, by a largely unknown mechanism. Here we show that derepression of FLR1 transcription in sin4Δ cells occurs by enhanced recruitment of the mediator as well as Swi/Snf and SAGA complexes. The tail and head/middle modules of the mediator behave as separate complexes at the induced FLR1 promoter. While the tail module remains anchored to the promoter, the head/middle modules are also found in the coding region. The separation of the tail and head/middle modules in sin4Δ cells is also supported by the altered stoichiometry of the tail and head/middle modules at several tested promoters. Deletion of another subunit of the tail module MED2 in sin4Δ cells results in significantly decreased transcription of FLR1, pointing to the importance of the integrity of the separated tail module in derepression. All tested genes exhibited increased recruitment of the tail domain; however, only genes with increased occupancy of the head/middle modules also displayed increased transcription. The separated tail module thus represents a promiscuous transcriptional factor that binds to many different promoters and is necessary for derepression of FLR1 in sin4Δ cells.
Collapse
Affiliation(s)
- Luciano Galdieri
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | |
Collapse
|
21
|
Xu W, Ji JY. Dysregulation of CDK8 and Cyclin C in tumorigenesis. J Genet Genomics 2011; 38:439-52. [PMID: 22035865 PMCID: PMC9792140 DOI: 10.1016/j.jgg.2011.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 01/23/2023]
Abstract
Appropriately controlled gene expression is fundamental for normal growth and survival of all living organisms. In eukaryotes, the transcription of protein-coding mRNAs is dependent on RNA polymerase II (Pol II). The multi-subunit transcription cofactor Mediator complex is proposed to regulate most, if not all, of the Pol II-dependent transcription. Here we focus our discussion on two subunits of the Mediator complex, cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC), because they are either mutated or amplified in a variety of human cancers. CDK8 functions as an oncoprotein in melanoma and colorectal cancers, thus there are considerable interests in developing drugs specifically targeting the CDK8 kinase activity. However, to evaluate the feasibility of targeting CDK8 for cancer therapy and to understand how their dysregulation contributes to tumorigenesis, it is essential to elucidate the in vivo function and regulation of CDK8-CycC, which are still poorly understood in multi-cellular organisms. We summarize the evidence linking their dysregulation to various cancers and present our bioinformatics and computational analyses on the structure and evolution of CDK8. We also discuss the implications of these observations in tumorigenesis. Because most of the Mediator subunits, including CDK8 and CycC, are highly conserved during eukaryotic evolution, we expect that investigations using model organisms such as Drosophila will provide important insights into the function and regulation of CDK8 and CycC in different cellular and developmental contexts.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
- Corresponding author: Tel: +1 979 845 6389, fax: +1 979 847 9481. (J.-Y. Ji)
| |
Collapse
|
22
|
Saberianfar R, Cunningham-Dunlop S, Karagiannis J. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain. PLoS One 2011; 6:e24694. [PMID: 21931816 PMCID: PMC3171476 DOI: 10.1371/journal.pone.0024694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 12/29/2022] Open
Abstract
In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants – just like lsk1Δ and lsc1Δ strains – are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis – including the actin interacting protein gene, aip1 – as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.
Collapse
Affiliation(s)
- Reza Saberianfar
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
23
|
Hentges KE. Mediator complex proteins are required for diverse developmental processes. Semin Cell Dev Biol 2011; 22:769-75. [PMID: 21854862 DOI: 10.1016/j.semcdb.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
The Mediator complex serves a crucial function in gene regulation, forming a link between gene-specific transcription factors and RNA polymerase II. Most protein-coding genes therefore require Mediator complex activity for transcriptional regulation. Given the essential functions performed by Mediator complex proteins in gene regulation, it is not surprising that mutations in Mediator complex genes disrupt animal and plant development. What is more intriguing is that the phenotypes of individual Mediator complex mutants are distinct from each other, demonstrating that certain developmental processes have a greater requirement for specific Mediator complex genes. Additionally, the range of developmental processes that are altered in Mediator complex mutants is broad, affecting a variety of cell types and physiological systems. Gene expression defects in Mediator complex mutants reveal distinct roles for individual Mediator proteins in transcriptional regulation, suggesting that the deletion of one Mediator complex protein does not interfere with transcription in general, but instead alters the expression of specific target genes. Mediator complex proteins may have diverse roles in different organisms as well, as mutants in the same Mediator gene in different species can display dissimilar phenotypes.
Collapse
Affiliation(s)
- Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
24
|
Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010; 11:761-72. [PMID: 20940737 DOI: 10.1038/nrg2901] [Citation(s) in RCA: 557] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | | |
Collapse
|
25
|
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation. Mol Cell Biol 2010; 30:5180-93. [PMID: 20823273 DOI: 10.1128/mcb.00819-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3'-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.
Collapse
|
26
|
Shahi P, Gulshan K, Näär AM, Moye-Rowley WS. Differential roles of transcriptional mediator subunits in regulation of multidrug resistance gene expression in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:2469-82. [PMID: 20505076 PMCID: PMC2903675 DOI: 10.1091/mbc.e09-10-0899] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Med12 is a transcriptional Mediator subunit most typically associated with negative control of gene expression. Here Med12 is demonstrated to serve as a positive regulator required for activation of multidrug resistance gene expression in yeast cells lacking their mitochondrial genome. The multiprotein transcriptional Mediator complex provides a key link between RNA polymerase II and upstream transcriptional activator proteins. Previous work has established that the multidrug resistance transcription factors Pdr1 and Pdr3 interact with the Mediator component Med15/Gal11 to drive normal levels of expression of the ATP-binding cassette transporter-encoding gene PDR5 in Saccharomyces cerevisiae. PDR5 transcription is induced upon loss of the mitochondrial genome (ρ0 cells) and here we provide evidence that this ρ0 induction is Med15 independent. A search through other known Mediator components determined that Med12/Srb8, a member of the CDK8 Mediator submodule, is required for ρ0 activation of PDR5 transcription. The CDK8 submodule contains the cyclin C homologue (CycC/Srb11), cyclin-dependent kinase Cdk8/Srb10, and the large Med13/Srb9 protein. Loss of these other proteins did not lead to the same block in PDR5 induction. Chromatin immunoprecipitation analyses demonstrated that Med15 is associated with the PDR5 promoter in both ρ+ and ρ0, whereas Med12 recruitment to this target promoter is highly responsive to loss of the mitochondrial genome. Coimmunoprecipitation experiments revealed that association of Pdr3 with Med12 can only be detected in ρ0 cells. These experiments uncover the unique importance of Med12 in activated transcription of PDR5 seen in ρ0 cells.
Collapse
Affiliation(s)
- Puja Shahi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
27
|
Abstract
A growing number of promoters have key components of the transcription machinery, such as TATA-binding protein (TBP) and RNA polymerase II (RNAPII), present at the promoter prior to activation of transcription. Thus, while transcriptional output undergoes a dramatic increase between uninduced and induced conditions, occupancy of a large portion of the transcription machinery does not. As such, activation of these poised promoters depends on rate-limiting steps after recruitment of TBP and RNAPII for regulated expression. Little is known about the transcription components required in these latter steps of transcription in vivo. To identify components with critical roles in transcription after recruitment of TBP in Saccharomyces cerevisiae, we screened for loss of gene expression activity from promoter-tethered TBP in >100 mutant strains deleted for a transcription-related gene. The assay revealed a dramatic enrichment for strains containing deletions in genes encoding subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and Mediator. Analysis of an authentic postrecruitment-regulated gene (CYC1) reveals that SAGA occupies the promoter under both uninduced and induced conditions. In contrast, Mediator is recruited only after transfer to inducing conditions and correlates with activation of the preloaded polymerase at CYC1. These studies indicate the critical functions of SAGA and Mediator in the mechanism of activation of genes with rate-limiting steps after recruitment of TBP.
Collapse
|
28
|
Young ET, Yen K, Dombek KM, Law GL, Chang E, Arms E. Snf1-independent, glucose-resistant transcription of Adr1-dependent genes in a mediator mutant of Saccharomyces cerevisiae. Mol Microbiol 2009; 74:364-83. [PMID: 19732343 DOI: 10.1111/j.1365-2958.2009.06866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucose represses transcription of a network of co-regulated genes in Saccharomyces cerevisiae, ensuring that it is utilized before poorer carbon sources are metabolized. Adr1 is a glucose-regulated transcription factor whose promoter binding and activity require Snf1, the yeast homologue of the AMP-activated protein kinase in higher eukaryotes. In this study we found that a temperature-sensitive allele of MED14, a Mediator middle subunit that tethers the tail to the body, allowed a low level of Adr1-independent ADH2 expression that can be enhanced by Adr1 in a dose-dependent manner. A low level of TATA-independent ADH2 expression was observed in the med14-truncated strain and transcription of ADH2 and other Adr1-dependent genes occurred in the absence of Snf1 and chromatin remodeling coactivators. Loss of ADH2 promoter nucleosomes had occurred in the med14 strain in repressing conditions and did not require ADR1. A global analysis of transcription revealed that loss of Med14 function was associated with both up- and down- regulation of several groups of co-regulated genes, with ADR1-dependent genes being the most highly represented in the upregulated class. Expression of most genes was not significantly affected by the loss of Med14 function.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 2009; 23:439-51. [PMID: 19240132 DOI: 10.1101/gad.1767009] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human CDK8 subcomplex (CDK8, cyclin C, Med12, and Med13) negatively regulates transcription in ways not completely defined; past studies suggested CDK8 kinase activity was required for its repressive function. Using a reconstituted transcription system together with recombinant or endogenous CDK8 subcomplexes, we demonstrate that, in fact, Med12 and Med13 are critical for subcomplex-dependent repression, whereas CDK8 kinase activity is not. A hallmark of activated transcription is efficient reinitiation from promoter-bound scaffold complexes that recruit a series of pol II enzymes to the gene. Notably, the CDK8 submodule strongly represses even reinitiation events, suggesting a means to fine tune transcript levels. Structural and biochemical studies confirm the CDK8 submodule binds the Mediator leg/tail domain via the Med13 subunit, and this submodule-Mediator association precludes pol II recruitment. Collectively, these results reveal the CDK8 subcomplex functions as a simple switch that controls the Mediator-pol II interaction to help regulate transcription initiation and reinitiation events. As Mediator is generally required for expression of protein-coding genes, this may reflect a common mechanism by which activated transcription is shut down in human cells.
Collapse
Affiliation(s)
- Matthew T Knuesel
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
30
|
The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 2008; 29:650-61. [PMID: 19047373 DOI: 10.1128/mcb.00993-08] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four proteins CDK8, cyclin C, Med12, and Med13 can associate with Mediator and are presumed to form a stable "CDK8 subcomplex" in cells. We describe here the isolation and enzymatic activity of the 600-kDa CDK8 subcomplex purified directly from human cells and also via recombinant expression in insect cells. Biochemical analysis of the recombinant CDK8 subcomplex identifies predicted (TFIIH and RNA polymerase II C-terminal domain [Pol II CTD]) and novel (histone H3, Med13, and CDK8 itself) substrates for the CDK8 kinase. Notably, these novel substrates appear to be metazoan-specific. Such diverse targets imply strict regulation of CDK8 kinase activity. Along these lines, we observe that Mediator itself enables CDK8 kinase activity on chromatin, and we identify Med12--but not Med13--to be essential for activating the CDK8 kinase. Moreover, mass spectrometry analysis of the endogenous CDK8 subcomplex reveals several associated factors, including GCN1L1 and the TRiC chaperonin, that may help control its biological function. In support of this, electron microscopy analysis suggests TRiC sequesters the CDK8 subcomplex and kinase assays reveal the endogenous CDK8 subcomplex--unlike the recombinant submodule--is unable to phosphorylate the Pol II CTD.
Collapse
|
31
|
Clayton JE, van den Heuvel SJL, Saito RM. Transcriptional control of cell-cycle quiescence during C. elegans development. Dev Biol 2008; 313:603-13. [PMID: 18082681 PMCID: PMC2386670 DOI: 10.1016/j.ydbio.2007.10.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 11/27/2022]
Abstract
During the development of the C. elegans reproductive system, cells that give rise to the vulva, the vulval precursor cells (VPCs), remain quiescent for two larval stages before resuming cell division in the third larval stage. We have identified several transcriptional regulators that contribute to this temporary cell-cycle arrest. Mutation of lin-1 or lin-31, two downstream targets of the Receptor Tyrosine kinase (RTK)/Ras/MAP kinase cascade that controls VPC cell fate, disrupts the temporary VPC quiescence. We found that the LIN-1/Ets and LIN-31/FoxB transcription factors promote expression of CKI-1, a member of the p27 family of cyclin-dependent kinase inhibitors (CKIs). LIN-1 and LIN-31 promote cki-1/Kip-1 transcription prior to their inhibition through RTK/Ras/MAPK activation. Another mutation identified in the screen defined the mdt-13 TRAP240 Mediator subunit. Further analysis of the multi-subunit Mediator complex revealed that a specific subset of its components act in VPC quiescence. These components substantially overlap with the CDK-8 module implicated in transcriptional repression. Taken together, strict control of cell-cycle quiescence during VPC development involves transcriptional induction of CKI-1 and transcriptional regulation through the Mediator complex. These transcriptional regulators represent potential molecular connections between development and the basic cell-cycle machinery.
Collapse
Affiliation(s)
- Joseph E Clayton
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
32
|
Abstract
The Ccr4-Not complex is a multifunctional regulatory platform composed of nine subunits that controls diverse cellular events including mRNA degradation, protein ubiquitination, and transcription. In this study, we identified the yeast Saccharomyces cerevisiae osmotic and oxidative stress transcription factor Skn7 as a new target for regulation by the Ccr4-Not complex. Skn7 interacts with Not1 in a two-hybrid assay and coimmunoprecipitates with Not5 in a Not4-dependent manner. Skn7-dependent expression of OCH1 and Skn7 binding to the OCH1 promoter are increased in not4Delta or not5Delta mutants. Skn7 purified from wild-type cells but not from not4Delta cells is associated with the Srb10 kinase. This kinase plays a central role in the regulation of Skn7 by Not4, since increased OCH1 expression in not4Delta cells requires Srb10. These results reveal a critical role for the Ccr4-Not complex in the mechanism of activation of Skn7 that is dependent upon the Srb10 kinase.
Collapse
|
33
|
Gaytán de Ayala Alonso A, Gutiérrez L, Fritsch C, Papp B, Beuchle D, Müller J. A genetic screen identifies novel polycomb group genes in Drosophila. Genetics 2007; 176:2099-108. [PMID: 17717194 PMCID: PMC1950617 DOI: 10.1534/genetics.107.075739] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/31/2007] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) genes encode evolutionarily conserved transcriptional repressors that are required for the long-term silencing of particular developmental control genes in animals and plants. PcG genes were first identified in Drosophila as regulators that keep HOX genes inactive in cells where these genes must remain silent during development. Here, we report the results of a genetic screen aimed at isolating novel PcG mutants in Drosophila. In an EMS mutagenesis, we isolated 82 mutants that show Polycomb-like phenotypes in clones in the adult epidermis and misexpression of the HOX gene Ubx in clones in the imaginal wing disc. Analysis of these mutants revealed that we isolated multiple new alleles in most of the already- known PcG genes. In addition, we isolated multiple mutant alleles in each of ten different genes that previously had not been known to function in PcG repression. We show that the newly identified PcG gene calypso is required for the long-term repression of multiple HOX genes in embryos and larvae. In addition, our studies reveal that the Kto/Med12 and Skd/Med13 subunits of the Med12.Med13.Cdk8.CycC repressor subcomplex of Mediator are needed for repression of the HOX gene Ubx. The results of the mutant screen reported here suggest that the majority of nonredundant Drosophila genes with strong classic PcG phenotypes have been identified.
Collapse
|
34
|
Affiliation(s)
- Jenifer K Lum
- Department of Medicinal Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
35
|
Karagiannis J, Balasubramanian MK. A cyclin-dependent kinase that promotes cytokinesis through modulating phosphorylation of the carboxy terminal domain of the RNA Pol II Rpb1p sub-unit. PLoS One 2007; 2:e433. [PMID: 17502918 PMCID: PMC1855991 DOI: 10.1371/journal.pone.0000433] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/16/2007] [Indexed: 11/19/2022] Open
Abstract
In Schizosaccharomyces pombe, the nuclear-localized kinase, Lsk1p, promotes cytokinesis by positively regulating the Septation Initiation Network (SIN). Although a member of the cyclin-dependent kinase (CDK) family, neither a cyclin partner nor a physiological target has been identified. In this report we identify a cyclin, Lsc1p, that physically interacts and co-localizes with Lsk1p. Furthermore, lsk1Δ, lsc1Δ, as well as kinase-dead lsk1-K306R mutants, display highly similar cytokinesis defects. Lsk1p is related to CDKs that phosphorylate the carboxy-terminal domain (CTD) of the largest sub-unit of RNA polymerase II (Rpb1p). Interestingly, we find that Lsk1p and Lsc1p are required for phosphorylation of Ser-2 residues found in the heptad repeats of the CTD. To determine if Rpb1p could be a physiological target, we replaced the native rpb1 gene with a synthetic gene encoding a Rpb1p protein in which Ser-2 was substituted with the non-phosphorylatable amino-acid alanine in all heptads. Cells carrying this allele were similar to lsk1Δ mutants: They were viable, displayed genetic interactions with the SIN, and were unable to complete cytokinesis upon perturbation of the cell division machinery. We conclude that Ser-2 phosphorylation of the CTD heptads plays a novel physiological role in the regulation of cytokinesis.
Collapse
Affiliation(s)
- Jim Karagiannis
- cLaboratory of Cell Division, Temasek Life Sciences Laboratory, Singapore, Singapore.
| | | |
Collapse
|
36
|
Loncle N, Boube M, Joulia L, Boschiero C, Werner M, Cribbs DL, Bourbon HM. Distinct roles for Mediator Cdk8 module subunits in Drosophila development. EMBO J 2007; 26:1045-54. [PMID: 17290221 PMCID: PMC1852830 DOI: 10.1038/sj.emboj.7601566] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/22/2006] [Indexed: 02/01/2023] Open
Abstract
Mediator (MED) is a conserved multisubunit complex bridging transcriptional activators and repressors to the general RNA polymerase II initiation machinery. In yeast, MED is organized in three core modules and a separable 'Cdk8 module' consisting of the cyclin-dependent kinase Cdk8, its partner CycC, Med12 and Med13. This regulatory module, specifically required for cellular adaptation to environmental cues, is thought to act through the Cdk8 kinase activity. Here we have investigated the functions of the four Cdk8 module subunits in the metazoan model Drosophila. Physical interactions detected among the four fly subunits provide support for a structurally conserved Cdk8 module. We analyzed the in vivo functions of this module using null mutants for Cdk8, CycC, Med12 and Med13. Each gene is required for the viability of the organism but not of the cell. Cdk8-CycC and Med12-Med13 act as pairs, which share some functions but also have distinct roles in developmental gene regulation. These data reveal functional attributes of the Cdk8 module, apart from its regulated kinase activity, that may contribute to the diversification of genetic programs.
Collapse
Affiliation(s)
- Nicolas Loncle
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
| | - Muriel Boube
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Bâtiment IVR3, 118 Route de Narbonne, 31062 Toulouse, France. Tel.: +33 0561558288; Fax: +33 0561556507; E-mails: or
| | - Laurent Joulia
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
| | - Claire Boschiero
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette Cedex, France
| | - Michel Werner
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette Cedex, France
| | - David L Cribbs
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Bâtiment IVR3, 118 Route de Narbonne, 31062 Toulouse, France. Tel.: +33 0561558288; Fax: +33 0561556507; E-mails: or
| |
Collapse
|
37
|
Needham PG, Trumbly RJ. In vitro characterization of the Mig1 repressor from Saccharomyces cerevisiae reveals evidence for monomeric and higher molecular weight forms. Yeast 2007; 23:1151-66. [PMID: 17133623 DOI: 10.1002/yea.1429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Mig1 DNA-binding protein of Saccharomyces cerevisiae was expressed and purified from yeast and the physical properties were characterized by several methods, including gel filtration, sucrose gradient sedimentation and native gel electrophoresis. Purified Mig1 exists as a monomer with a Stokes' radius of 48 A and a sedimentation coefficient of 3.55 S. Mig1 has an elongated shape with a frictional coefficient of 1.83. The K(d) of purified Mig1 for the SUC2 A site is 2.8 nM and for SUC2 B site 25.8 nM; these values were similar for Mig1 purified from repressed and derepressed cells. Full-length Mig1 expressed in yeast binds more tightly to SUC2 B than bacterially expressed GST-Mig1. Sucrose gradient sedimentation resolved a larger molecular weight form of Mig1 in whole-cell extracts that was not seen in purified samples and may represent a complex with another protein. This complex is found within the nucleus and is seen only in repressed cells. Mig1 exists in multiple phosphorylation states and only less phosphorylated forms of Mig1 are associated with this complex.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|
38
|
Sukiennicki TL, Fowell DJ. Distinct molecular program imposed on CD4+ T cell targets by CD4+CD25+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2007; 177:6952-61. [PMID: 17082610 DOI: 10.4049/jimmunol.177.10.6952] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are key modulators of immunity, but their mechanism of action is unclear. To elucidate the molecular consequences of Treg encounter, we analyzed changes in gene expression in CD4+ T cell targets activated in the presence or absence of CD4+CD25+ Tregs. Tregs did not alter the early activation program of CD4+ T cells, but had reversed many of the activation-induced changes by 36 h. It is not known whether Tregs simply induce a set of transcriptional changes common to other nonproliferative states or whether instead Tregs mediate a distinct biological activity. Therefore, we compared the gene profile of T cells following Treg encounter with that of T cells made anergic, TGF-beta-treated, or IL-2-deprived; all possible modes of Treg action. Strikingly, all genes down-regulated in suppressed cells were indeed common to these nonproliferative states. In contrast, Treg encounter led to elevated expression of a unique set of genes in the target T cells. Although different from the nonproliferative states tested, the Treg-imposed gene program is exemplified by expression of many genes associated with growth arrest or inhibition of proliferation. We suggest that Tregs function by the induction of a distinct set of negative regulatory factors that initiate or maintain target T cells in a nonproliferative state.
Collapse
Affiliation(s)
- Teresa L Sukiennicki
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
39
|
Uhlmann T, Boeing S, Lehmbacher M, Meisterernst M. The VP16 activation domain establishes an active mediator lacking CDK8 in vivo. J Biol Chem 2006; 282:2163-73. [PMID: 17135252 DOI: 10.1074/jbc.m608451200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VP16 has been widely used to unravel the mechanisms underlying gene transcription. Much of the previous work has been conducted in reconstituted in vitro systems. Here we study the formation of transcription complexes at stable reporters under the control of an inducible Tet-VP16 activator in living cells. In this simplified model for gene activation VP16 recruits the general factors and the cofactors Mediator, GCN5, CBP, and PC4, within minutes to the promoter region. Activation is accompanied by only minor changes in histone acetylation and H3K4 methylation but induces a marked promoter-specific increase in H3K79 methylation. Mediated through contacts with VP16 several subunits of the cleavage and polyadenylation factor (CPSF/CstF) are concentrated at the promoter region. We provide in vitro and in vivo evidence that VP16 activates transcription through a specific MED25-associated Mediator, which is deficient in CDK8.
Collapse
Affiliation(s)
- Thomas Uhlmann
- Gene Expression, National Research Center for Environment and Health, Marchionini-Strasse 25, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
40
|
Malavé TM, Dent SYR. Transcriptional repression by Tup1–Ssn6This paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:437-43. [PMID: 16936817 DOI: 10.1139/o06-073] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Tup1–Ssn6 complex from budding yeast is one of the best studied corepressors and has served as a model for the study of similar corepressor complexes in higher eukaryotes. Tup1–Ssn6 represses multiple subsets of genes when recruited to promoters by sequence-specific DNA binding repressors. Tup1–Ssn6 mediated repression involves interactions among the corepressor and hypoacetylated histones, histone deacetylases, and the RNA transcriptional machinery. Nucleosome positioning is also involved in repression of a subset of Tup1–Ssn6 regulated genes. These findings highlight the importance of chromatin modification states in Tup1–Ssn6 mediated repression. Here we review the multiple mechanisms involved in repression and discuss Tup1–Ssn6 homolog functions in higher organisms. We also present a model for how repression by Tup1–Ssn6 may be established.
Collapse
Affiliation(s)
- Tania M Malavé
- Department of Biochemistry and Molecular Biology, U.T. M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Belakavadi M, Fondell JD. Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol 2006; 156:23-43. [PMID: 16634145 DOI: 10.1007/s10254-005-0002-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mediator is an evolutionarily conserved multisubunit protein complex that plays a key role in regulating transcription by RNA polymerase II. The complex functions by serving as a molecular bridge between DNA-bound transcriptional activators and the basal transcription apparatus. In humans, Mediator was first characterized as a thyroid hormone receptor (TR)-associated protein (TRAP) complex that facilitates ligand-dependent transcriptional activation by TR. More recently, Mediator has been established as an essential coactivator for a broad range of nuclear hormone receptors (NRs) as well as several other types of gene-specific transcriptional activators. A single subunit of the complex, MED1/TRAP220, is required for direct ligand-dependent interactions with NRs. Mediator coactivates NR-regulated gene expression by facilitating the recruitment and activation of the RNA polymerase II-associated basal transcription apparatus. Importantly, Mediator acts in concert with other NR coactivators involved in chromatin remodeling to initiate transcription of NR target genes in a multistep manner. In this review, we summarize the functional role of Mediator in NR signaling pathways with an emphasis on the underlying molecular mechanisms by which the complex interacts with NRs and subsequently facilitates their action. We also focus on recent advances in our understanding of TRAP/Mediator's pathophysiological role in mammalian disease and development.
Collapse
Affiliation(s)
- M Belakavadi
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | | |
Collapse
|
42
|
Singh H, Erkine AM, Kremer SB, Duttweiler HM, Davis DA, Iqbal J, Gross RR, Gross DS. A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics 2006; 172:2169-84. [PMID: 16452140 PMCID: PMC1456402 DOI: 10.1534/genetics.105.052738] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/20/2006] [Indexed: 11/18/2022] Open
Abstract
We report the results of a genetic screen designed to identify transcriptional coregulators of yeast heat-shock factor (HSF). This sequence-specific activator is required to stimulate both basal and induced transcription; however, the identity of factors that collaborate with HSF in governing noninduced heat-shock gene expression is unknown. In an effort to identify these factors, we isolated spontaneous extragenic suppressors of hsp82-deltaHSE1, an allele of HSP82 that bears a 32-bp deletion of its high-affinity HSF-binding site, yet retains its two low-affinity HSF sites. Nearly 200 suppressors of the null phenotype of hsp82-deltaHSE1 were isolated and characterized, and they sorted into six expression without heat-shock element (EWE) complementation groups. Strikingly, all six groups contain alleles of genes that encode subunits of Mediator. Three of the six subunits, Med7, Med10/Nut2, and Med21/Srb7, map to Mediator's middle domain; two subunits, Med14/Rgr1 and Med16/Sin4, to its tail domain; and one subunit, Med19/Rox3, to its head domain. Mutations in genes encoding these factors enhance not only the basal transcription of hsp82-deltaHSE1, but also that of wild-type heat-shock genes. In contrast to their effect on basal transcription, the more severe ewe mutations strongly reduce activated transcription, drastically diminishing the dynamic range of heat-shock gene expression. Notably, targeted deletion of other Mediator subunits, including the negative regulators Cdk8/Srb10, Med5/Nut1, and Med15/Gal11 fail to derepress hsp82-deltaHSE1. Taken together, our data suggest that the Ewe subunits constitute a distinct functional module within Mediator that modulates both basal and induced heat-shock gene transcription.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins. Intermediate steps involve cAMP-dependent stimulation of protein kinase A (PKA) as well as one or more redundant PKA-independent pathways. The final steps are mediated by a relatively small collection of transcriptional regulators that collaborate closely to maximize the cellular rates of energy generation and growth. Understanding the nuclear events in this process may necessitate the further elaboration of a new model for eukaryotic gene regulation, called "reverse recruitment." An essential feature of this idea is that fine-structure mapping of nuclear architecture will be required to understand the reception of regulatory signals that emanate from the plasma membrane and cytoplasm. Completion of this task should result in a much improved understanding of eukaryotic growth, differentiation, and carcinogenesis.
Collapse
Affiliation(s)
- George M Santangelo
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406-5018, USA.
| |
Collapse
|
44
|
|
45
|
|
46
|
van Oevelen CJC, van Teeffelen HAAM, van Werven FJ, Timmers HTM. Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem 2005; 281:4523-31. [PMID: 16368692 DOI: 10.1074/jbc.m509330200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is recruited to the activated HXT2 and HXT4 genes and plays a role in the association of TBP-associated factors. Using the HXT2 and HXT4 genes, we now present evidence for a functional link between Snf1p-dependent activation, recruitment of the SAGA complex, histone H3 removal, and H3 acetylation. Recruitment of the SAGA complex is dependent on the release of Ssn6p-Tup1p repression by Snf1p. In addition, we found that the Gcn5p subunit of the SAGA complex preferentially acetylates histone H3K18 on the HXT2 and HXT4 promoters and that Gcn5p activity is required for removal of histone H3 from the HXT4 promoter TATA region. In contrast, histone H3 removal from the HXT2 promoter does not require Gcn5p. In conclusion, although similar protein complexes are involved, induction of HXT2 and HXT4 displays important mechanistic differences.
Collapse
Affiliation(s)
- Chris J C van Oevelen
- Department of Physiological Chemistry, Division of Biomedical Genetics, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Hong SK, Haldin CE, Lawson ND, Weinstein BM, Dawid IB, Hukriede NA. The zebrafish kohtalo/trap230 gene is required for the development of the brain, neural crest, and pronephric kidney. Proc Natl Acad Sci U S A 2005; 102:18473-8. [PMID: 16344459 PMCID: PMC1311743 DOI: 10.1073/pnas.0509457102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation of the gene encoding the Mediator component thyroid hormone receptor-associated protein (TRAP)230/MED12 affects the development of multiple systems in zebrafish embryogenesis. We isolated two ethylnitrosourea-induced alleles in the gene encoding this protein and named the locus kohtalo (kto) after the homologous locus in Drosophila. Homozygous kto mutant zebrafish embryos show defects in brain, neural crest, and kidney development and die at approximately 6 days postfertilization. In the affected tissues, differentiation is initiated and many cell type-specific genes are expressed, but there is a failure of morphogenesis and failure to complete differentiation. These results suggest that critical targets of TRAP230 function may include proteins important for cell mobility, cell sorting, and tissue assembly.
Collapse
Affiliation(s)
- Sung-Kook Hong
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
48
|
Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, Lagrange T. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 2005; 19:2030-40. [PMID: 16140984 PMCID: PMC1199573 DOI: 10.1101/gad.348405] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/29/2005] [Indexed: 11/25/2022]
Abstract
Recent genetic and biochemical studies have revealed the existence in plants of a fourth RNA polymerase, RNAPIV, which mediates siRNA accumulation and DNA methylation-dependent silencing of endogenous repeated sequences. Here, we show that Arabidopsis expresses, in fact, two evolutionarily related forms of RNAPIV, hereafter referred to as RNAPIVa and RNAPIVb. These two forms contain the same second-largest subunit (NRPD2), but differ at least by their largest subunit, termed NRPD1a and NRPD1b. Unlike NRPD1a, NRPD1b possesses a reiterated CTD, a feature that also characterizes the largest subunit of RNAPII. Our data indicate that RNAPIVb is the most abundant form of RNAPIV in Arabidopsis. Selective disruption of either form of RNAPIV indicates that RNAPIVa-dependent siRNA accumulation is not sufficient per se to drive robust silencing at endogenous loci and that high levels of DNA methylation and silencing depend on siRNA that are accumulated through a pathway involving the concerted action of both RNAPIV forms. Taken together, our results imply the existence of a novel two-step mechanism in siRNA synthesis at highly methylated loci, with RNAPIVb being an essential component of a self-reinforcing loop coupling de novo DNA methylation to siRNA production.
Collapse
Affiliation(s)
- Dominique Pontier
- LGDP, UMR 5096, Université de Perpignan, 66860 Perpignan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nair D, Kim Y, Myers LC. Mediator and TFIIH govern carboxyl-terminal domain-dependent transcription in yeast extracts. J Biol Chem 2005; 280:33739-48. [PMID: 16076843 DOI: 10.1074/jbc.m506067200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, the RNA polymerase II (RNA Pol II) carboxyl-terminal domain (CTD) is required for viability, and truncation of the CTD results in promoter dependent transcriptional defects. A CTD-less RNA Pol II is unable to support transcription in yeast extracts, but basal transcription reactions reconstituted from highly purified general transcription factors are CTD-independent. To reconcile these two findings, we have taken a biochemical approach using yeast extracts and asked whether there is a factor in the cell that confers CTD-dependence upon transcription. By placing a cleavage site for the tobacco etch virus protease prior to the CTD, we have created a highly specific method for removing the CTD from RNA Pol II in yeast whole cell extracts. Using derivatives of this strain, we have analyzed the role of the Srb8-11 complex, Mediator, and TFIIH, in CTD-dependent basal transcription by either mutation or immunodepletion of their function. We have found that Mediator is a direct intermediary of CTD-dependent basal transcription in extracts and that the requirement for Mediator and the CTD in basal transcription originates from their ability to compensate for a limiting amount of TFIIH activity in extracts.
Collapse
Affiliation(s)
- Dhanalakshmi Nair
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
50
|
Katsarou ME, Papakyriakou A, Katsaros N, Scorilas A. Expression of the C-terminal domain of novel human SR-A1 protein: Interaction with the CTD domain of RNA polymerase II. Biochem Biophys Res Commun 2005; 334:61-8. [PMID: 15992770 DOI: 10.1016/j.bbrc.2005.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 06/13/2005] [Indexed: 11/21/2022]
Abstract
We have recently cloned a new member of the human Ser/Arg-rich superfamily (SR) of pre-mRNA splicing factors, SR-A1. Members of the SR family of proteins have been shown to interact with the C-terminal domain (CTD) of the large subunit of RNA polymerase II, and participate in pre-mRNA splicing. The largest subunit of RNA polymerase II contains at the carboxy-terminus a peculiar repetitive sequence that consists of 52 tandem repeats of the consensus motif Tyr-Ser-Pro-Thr-Ser-Pro-Ser, referred to as the CTD. There is evidence that SR protein splicing factors are involved in cancer pathobiology through their involvement in alternative processing events. The CTD of human SR-A1 protein (aa 1187-1312), containing a conserved CTD-interaction domain and bearing a decahistidine (His10) tag was produced by DNA recombinant overexpression techniques in Escherichia coli from the vector pET16b and it was localized in the periplasmic space. The protein was further purified using a HiTrap chelating column and its circular dichroism spectra indicate that it assumes a defined structure in solution. Performing a pull-down assay we proved that the novel SR-A1 [1187-1312 His10] protein interacts with the CTD domain of RNA polymerase II.
Collapse
Affiliation(s)
- Maria E Katsarou
- Institute of Physical Chemistry, NCSR Demokritos, 153 10 Ag. Paraskevi Attikis, Greece
| | | | | | | |
Collapse
|