1
|
Eisenlord ME, Agnew MV, Winningham M, Lobo OJ, Vompe AD, Wippel B, Friedman CS, Harvell CD, Burge CA. High infectivity and waterborne transmission of seagrass wasting disease. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240663. [PMID: 39113773 PMCID: PMC11303036 DOI: 10.1098/rsos.240663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Pathogen transmission pathways are fundamental to understanding the epidemiology of infectious diseases yet are challenging to estimate in nature, particularly in the ocean. Seagrass wasting disease (SWD), caused by Labyrinthula zosterae, impacts seagrass beds worldwide and is thought to be a contributing factor to declines; however, little is known about natural transmission of SWD. In this study, we used field and laboratory experiments to test SWD transmission pathways and temperature sensitivity. To test transmission modes in nature, we conducted three field experiments out-planting sentinel Zostera marina shoots within and adjacent to natural Z. marina beds (20 ± 5 and 110 ± 5 m from bed edge). Infection rates and severity did not differ among outplant locations, implicating waterborne transmission. The infectious dose of L. zosterae through waterborne exposure was assessed in a controlled laboratory experiment. The dose to 50% disease was 6 cells ml-1 and did not differ with the temperatures tested (7.5°C and 15°C). Our results show L. zosterae is transmissible through water without direct contact with infected plants. Understanding the transmission dynamics of this disease in the context of changing ocean conditions will improve Z. marina protection and restoration in critical coastal habitats worldwide.
Collapse
Affiliation(s)
- Morgan E. Eisenlord
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - M. Victoria Agnew
- Institute of Marine Environmental Technology, University of Maryland Baltimore County, Baltimore, MD21202, USA
| | - Miranda Winningham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - Olivia J. Lobo
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - Alex D. Vompe
- Department of Microbiology, Oregon State University, Corvallis, OR97331, USA
| | - Bryanda Wippel
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA98195, USA
| | - Carolyn S. Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA98195, USA
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA
| | - Colleen A. Burge
- Institute of Marine Environmental Technology, University of Maryland Baltimore County, Baltimore, MD21202, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD21201, USA
- California Department of Fish & Wildlife, University of California, Davis Bodega Marine Laboratory, Bodega Bay, CA94923, USA
| |
Collapse
|
2
|
Eads DA, Biggins DE, Ramakrishnan S, Goldberg AR, Eads SL, Rocke TE. Prairie dog responses to vector control and vaccination during an initial Yersinia pestis invasion. Int J Parasitol Parasites Wildl 2024; 23:100893. [PMID: 38179235 PMCID: PMC10762380 DOI: 10.1016/j.ijppaw.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024]
Abstract
We evaluated the invasion of plague bacteria Yersinia pestis into a population of black-tailed prairie dogs (Cynomys ludovicianus; BTPDs) in South Dakota. We aimed to ascertain if Y. pestis invaded slowly or rapidly, and to determine if vector (flea) control or vaccination of BTPDs assisted in increasing survival rates. We sampled BTPDs in 2007 (before Y. pestis documentation), 2008 (year of confirmed invasion), and 2009 (after invasion). We estimated annual BTPD re-encounter rates on three 9-ha plots treated annually with deltamethrin dust for flea control and three 9-ha plots lacking dust. In 2007 and 2008, approximately half the adult BTPDs live-trapped were injected subcutaneously with either an experimental plague vaccine (F1-V fusion protein) or placebo formulation; the remaining individuals were not inoculated. From 2007 to 2009, we sampled 1559 BTPDs on 2542 occasions. During 2007-2008, the prevalence and intensity of fleas on BTPDs were 69-97% lower on the dusted vs. no dust plots. From 2007 to 2008, the annual re-encounter rate of non-inoculated BTPDs was 150% higher on the dusted vs. no dust plots. During the same interval on the dusted plots, the re-encounter rate was 55% higher for vaccinated adult female BTPDs vs. nonvaccinated adult females, but the annual re-encounter rate was 19% lower for vaccinated adult males. By late August 2008, BTPDs were nearly extirpated from the no dust plots. During 2007-2008 and 2008-2009 on the dusted plots, which persisted, the BTPD re-encounter rate was 41% higher for vaccinated vs. non-vaccinated adult females but 35% lower for vaccinated adult males. Yersinia pestis erupted with vigor as it invaded. Flea control enhanced BTPD survival but did not offer full protection. Flea control and F1-V vaccination seemed to have additive, positive effects on adult females. Annual re-encounter rates were reduced for vaccinated adult males; additional experimentation is needed to further evaluate this trend.
Collapse
Affiliation(s)
- David A. Eads
- U. S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526, United States
| | - Dean E. Biggins
- U. S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526, United States
| | - Shantini Ramakrishnan
- U. S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526, United States
| | - Amanda R. Goldberg
- U. S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526, United States
| | - Samantha L. Eads
- U. S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526, United States
| | - Tonie E. Rocke
- U. S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, United States
| |
Collapse
|
3
|
Holmes IA, Durso AM, Myers CR, Hendry TA. Changes in capture availability due to infection can lead to detectable biases in population-level infectious disease parameters. PeerJ 2024; 12:e16910. [PMID: 38436008 PMCID: PMC10909344 DOI: 10.7717/peerj.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Correctly identifying the strength of selection that parasites impose on hosts is key to predicting epidemiological and evolutionary outcomes of host-parasite interactions. However, behavioral changes due to infection can alter the capture probability of infected hosts and thereby make selection difficult to estimate by standard sampling techniques. Mark-recapture approaches, which allow researchers to determine if some groups in a population are less likely to be captured than others, can be used to identify infection-driven capture biases. If a metric of interest directly compares infected and uninfected populations, calculated detection probabilities for both groups may be useful in identifying bias. Here, we use an individual-based simulation to test whether changes in capture rate due to infection can alter estimates of three key metrics: 1) reduction in the reproductive success of infected parents relative to uninfected parents, 2) the relative risk of infection for susceptible genotypes compared to resistant genotypes, and 3) changes in allele frequencies between generations. We explore the direction and underlying causes of the biases that emerge from these simulations. Finally, we argue that short series of mark-recapture sampling bouts, potentially implemented in under a week, can yield key data on detection bias due to infection while not adding a significantly higher burden to disease ecology studies.
Collapse
Affiliation(s)
- Iris A. Holmes
- Department of Microbiology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Andrew M. Durso
- Department of Biological Sciences, Florida Gulf Coast University, Ft. Myers, FL, USA
| | - Christopher R. Myers
- Center for Advanced Computing & Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States
| | - Tory A. Hendry
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Huang L, Chen RY, Xue W, Yu FH. Effects of scale and contrast of spatial heterogeneity in plant-soil feedbacks on plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163159. [PMID: 37003318 DOI: 10.1016/j.scitotenv.2023.163159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Spatial heterogeneity in plant-soil feedbacks (PSFs) has been evidenced to influence plant growth. However, it is unclear whether patch size and contrast of PSF heterogeneity influence plant growth. We first conditioned a background soil by seven species separately and then grew each of them in a homogeneous soil and three heterogeneous soils. The first heterogeneous soil (large patch and high contrast; LP-HC) consisted of two large patches, of which one was filled with the sterilized background soil and the other with the conditioned soil. The second heterogeneous soil (small patch and high contrast; SP-HC) consisted of four small patches, of which two were filled the sterilized background soil and the other two with the conditioned soil. The third heterogeneous soil (small patch and low contrast; SP-LC) also consisted of four patches, of which two were filled with a 1:3 (w:w) mixture and the other two with a 3:1 mixture of the sterilized background soil and the conditioned soil. In the homogeneous soil, all patches were filled with a 1:1 mixture of the two soils. Both shoot biomass and root biomass were equal in the homogeneous and heterogeneous soils. No significant growth difference was observed between the SP-HC and LP-HC heterogeneous soil. However, shoot biomass and root biomass of the legume Medicago sativa, and root biomass of the grass Lymus dahuricus were greater in the SP-HC heterogeneous soil than in the SP-LC heterogeneous soil, probably due to enhanced root growth in the conditioned soil. Moreover, plant growth in the heterogeneous soils was associated with plant growth but not soil nutrient availability at the end of the conditioning phase. Our results show for the first time that patch contrast of PSF heterogeneity can influence plant growth via changing root placement and highlight the importance of fundamentally different facets of PSF variability.
Collapse
Affiliation(s)
- Lin Huang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou 318000, China; Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Rong-Yi Chen
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou 318000, China; Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Wei Xue
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou 318000, China; Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China.
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou 318000, China; Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
5
|
Sallinen S, Susi H, Halliday F, Laine AL. Altered within- and between-host transmission under coinfection underpin parasite co-occurrence patterns in the wild. Evol Ecol 2022; 37:131-151. [PMID: 36785621 PMCID: PMC9911512 DOI: 10.1007/s10682-022-10182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Interactions among parasite species coinfecting the same host individual can have far reaching consequences for parasite ecology and evolution. How these within-host interactions affect epidemics may depend on two non-exclusive mechanisms: parasite growth and reproduction within hosts, and parasite transmission between hosts. Yet, how these two mechanisms operate under coinfection, and how sensitive they are to the composition of the coinfecting parasite community, remains poorly understood. Here, we test the hypothesis that the relationship between within- and between-host transmission of the fungal pathogen, Phomopsis subordinaria, is affected by co-occurring parasites infecting the host plant, Plantago lanceolata. We conducted a field experiment manipulating the parasite community of transmission source plants, then tracked P. subordinaria within-host transmission, as well as between-host transmission to naïve recipient plants. We find that coinfection with the powdery mildew pathogen, Podosphaera plantaginis, causes increased between-host transmission of P. subordinaria by affecting the number of infected flower stalks in the source plants, resulting from altered auto-infection. In contrast, coinfection with viruses did not have an effect on either within- or between-host transmission. We then analyzed data on the occurrence of P. subordinaria in 2018 and the powdery mildew in a multi-year survey data set from natural host populations to test whether the positive association predicted by our experimental results is evident in field epidemiological data. Consistent with our experimental findings, we observed a positive association in the occurrence of P. subordinaria and historical powdery mildew persistence. Jointly, our experimental and epidemiological results suggest that within- and between-host transmission of P. subordinaria depends on the identity of coinfecting parasites, with potentially far-reaching effects on disease dynamics and parasite co-occurrence patterns in wild populations. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10182-9.
Collapse
Affiliation(s)
- Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Fletcher Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| |
Collapse
|
6
|
Tepox-Vivar N, Stephenson JF, Guevara-Fiore P. Transmission dynamics of ectoparasitic gyrodactylids (Platyhelminthes, Monogenea): An integrative review. Parasitology 2022; 149:1-13. [PMID: 35481457 DOI: 10.1017/s0031182022000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied host–parasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.
Collapse
Affiliation(s)
- Natalia Tepox-Vivar
- Maestría en Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| |
Collapse
|
7
|
Eads DA, Biggins DE, Wimsatt J, Eisen RJ, Hinnebusch BJ, Matchett MR, Goldberg AR, Livieri TM, Hacker GM, Novak MG, Buttke DE, Grassel SM, Hughes JP, Atiku LA. Exploring and Mitigating Plague for One Health Purposes. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:169-184. [PMID: 39210935 PMCID: PMC11358858 DOI: 10.1007/s40475-022-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 10/14/2022]
Abstract
Purpose of Review In 2020, the Appropriations Committee for the U.S. House of Representatives directed the CDC to develop a national One Health framework to combat zoonotic diseases, including sylvatic plague, which is caused by the flea-borne bacterium Yersinia pestis. This review builds upon that multisectoral objective. We aim to increase awareness of Y. pestis and to highlight examples of plague mitigation for One Health purposes (i.e., to achieve optimal health outcomes for people, animals, plants, and their shared environment). We draw primarily upon examples from the USA, but also discuss research from Madagascar and Uganda where relevant, as Y. pestis has emerged as a zoonotic threat in those foci. Recent Findings Historically, the bulk of plague research has been directed at the disease in humans. This is not surprising, given that Y. pestis is a scourge of human history. Nevertheless, the ecology of Y. pestis is inextricably linked to other mammals and fleas under natural conditions. Accumulating evidence demonstrates Y. pestis is an unrelenting threat to multiple ecosystems, where the bacterium is capable of significantly reducing native species abundance and diversity while altering competitive and trophic relationships, food web connections, and nutrient cycles. In doing so, Y. pestis transforms ecosystems, causing "shifting baselines syndrome" in humans, where there is a gradual shift in the accepted norms for the condition of the natural environment. Eradication of Y. pestis in nature is difficult to impossible, but effective mitigation is achievable; we discuss flea vector control and One Health implications in this context. Summary There is an acute need to rapidly expand research on Y. pestis, across multiple host and flea species and varied ecosystems of the Western US and abroad, for human and environmental health purposes. The fate of many wildlife species hangs in the balance, and the implications for humans are profound in some regions. Collaborative multisectoral research is needed to define the scope of the problem in each epidemiological context and to identify, refine, and implement appropriate and effective mitigation practices.
Collapse
Affiliation(s)
- David A. Eads
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Building C, Fort Collins, CO 80526, USA
| | - Dean E. Biggins
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Building C, Fort Collins, CO 80526, USA
| | - Jeffrey Wimsatt
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Rebecca J. Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Marc R. Matchett
- U.S. Fish and Wildlife Service, Charles M. Russell National Wildlife Refuge, Lewistown, MT, USA
| | | | | | - Gregory M. Hacker
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, CA, USA
| | - Mark G. Novak
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, CA, USA
| | - Danielle E. Buttke
- National Park Service Biological Resources Division and Office of Public Health, Fort Collins, CO, USA
| | | | - John P. Hughes
- U.S. Fish and Wildlife Service, National Black-Footed Ferret Conservation Center, Carr, CO, USA
| | - Linda A. Atiku
- Plague Unit, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
8
|
Stewart Merrill TE, Rapti Z, Cáceres CE. Host Controls of Within-Host Disease Dynamics: Insight from an Invertebrate System. Am Nat 2021; 198:317-332. [PMID: 34403315 DOI: 10.1086/715355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWithin-host processes (representing the entry, establishment, growth, and development of a parasite inside its host) may play a key role in parasite transmission but remain challenging to observe and quantify. We develop a general model for measuring host defenses and within-host disease dynamics. Our stochastic model breaks the infection process down into the stages of parasite exposure, entry, and establishment and provides associated probabilities for a host's ability to resist infections with barriers and clear internal infections. We tested our model on Daphnia dentifera and the parasitic fungus Metschnikowia bicuspidata and found that when faced with identical levels of parasite exposure, Daphnia patent (transmitting) infections depended on the strength of internal clearance. Applying a Gillespie algorithm to the model-estimated probabilities allowed us to visualize within-host dynamics, within which signatures of host defense could be clearly observed. We also found that early within-host stages were the most vulnerable to internal clearance, suggesting that hosts have a limited window during which recovery can occur. Our study demonstrates how pairing longitudinal infection data with a simple model can reveal new insight into within-host dynamics and mechanisms of host defense. Our model and methodological approach may be a powerful tool for exploring these properties in understudied host-parasite interactions.
Collapse
|
9
|
Tadiri CP, Fussmann GF, Scott ME. Parasite spread in experimental metapopulations: resistance, tolerance and host competence. OIKOS 2021. [DOI: 10.1111/oik.07837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Marilyn E. Scott
- Inst. of Parasitology, McGill Univ. Ste. Anne‐de‐Bellevue QC Canada
| |
Collapse
|
10
|
McKay B, Ebell M, Dale AP, Shen Y, Handel A. Virulence-mediated infectiousness and activity trade-offs and their impact on transmission potential of influenza patients. Proc Biol Sci 2020; 287:20200496. [PMID: 32396798 DOI: 10.1098/rspb.2020.0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Communicable diseases are often virulent, i.e. they cause morbidity symptoms in those infected. While some symptoms may be transmission-enhancing, other symptoms are likely to reduce transmission potential. For human diseases, the reduction in transmission opportunities is commonly caused by reduced activity. There is limited data regarding the potential impact of virulence on transmission potential. We performed an exploratory data analysis of 324 influenza patients at a university health centre during the 2016/2017 influenza season. We classified symptoms as infectiousness-related or morbidity-related and calculated two scores. The scores were used to explore the relationship between infectiousness, morbidity (virulence), and activity level. We found a decrease in the activity level with increasing morbidity scores. There was no consistent pattern between an activity level and an infectiousness score. We also found a positive correlation between morbidity and infectiousness scores. Overall, we find that increasing virulence leads to increased infectiousness and reduced activity, suggesting a trade-off that can impact overall transmission potential. Our findings indicate that a reduction of systemic symptoms may increase host activity without reducing infectiousness. Therefore, interventions should target both systemic- and infectiousness-related symptoms to reduce overall transmission potential. Our findings can also inform simulation models that investigate the impact of different interventions on transmission.
Collapse
Affiliation(s)
- Brian McKay
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | - Mark Ebell
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | | | - Ye Shen
- Department of Epidemiology and Biostatistics, The University of Georgia, Athens, GA, USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics and Health Informatics Institute and Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Jara M, Frias-De-Diego A, Machado G. Phylogeography of Equine Infectious Anemia Virus. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Paluscio E, Watson ME, Caparon MG. CcpA Coordinates Growth/Damage Balance for Streptococcus pyogenes Pathogenesis. Sci Rep 2018; 8:14254. [PMID: 30250043 PMCID: PMC6155242 DOI: 10.1038/s41598-018-32558-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
To achieve maximum fitness, pathogens must balance growth with tissue damage, coordinating metabolism and virulence factor expression. In the gram-positive bacterium Streptococcus pyogenes, the DNA-binding transcriptional regulator Carbon Catabolite Protein A (CcpA) is a master regulator of both carbon catabolite repression and virulence, suggesting it coordinates growth/damage balance. To examine this, two murine models were used to compare the virulence of a mutant lacking CcpA with a mutant expressing CcpA locked into its high-affinity DNA-binding conformation (CcpAT307Y). In models of acute soft tissue infection and of long-term asymptomatic mucosal colonization, both CcpA mutants displayed altered virulence, albeit with distinct growth/damage profiles. Loss of CcpA resulted in a diminished ability to grow in tissue, leading to less damage and early clearance. In contrast, constitutive DNA-binding activity uncoupled the growth/damage relationship, such that high tissue burdens and extended time of carriage were achieved, despite reduced tissue damage. These data demonstrate that growth/damage balance can be actively controlled by the pathogen and implicate CcpA as a master regulator of this relationship. This suggests a model where the topology of the S. pyogenes virulence network has evolved to couple carbon source selection with growth/damage balance, which may differentially influence pathogenesis at distinct tissues.
Collapse
Affiliation(s)
- Elyse Paluscio
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, United States
| | - Michael E Watson
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109-5624, United States
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States.
| |
Collapse
|
13
|
Agha R, Gross A, Rohrlack T, Wolinska J. Adaptation of a Chytrid Parasite to Its Cyanobacterial Host Is Hampered by Host Intraspecific Diversity. Front Microbiol 2018; 9:921. [PMID: 29867832 PMCID: PMC5952108 DOI: 10.3389/fmicb.2018.00921] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Experimental evolution can be used to test for and characterize parasite and pathogen adaptation. We undertook a serial-passage experiment in which a single parasite population of the obligate fungal (chytrid) parasite Rhizophydium megarrhizum was maintained over a period of 200 days under different mono- and multiclonal compositions of its phytoplankton host, the bloom-forming cyanobacterium Planktothrix. Despite initially inferior performance, parasite populations under sustained exposure to novel monoclonal hosts experienced rapid fitness increases evidenced by increased transmission rates. This demonstrates rapid adaptation of chytrids to novel hosts and highlights their high evolutionary potential. In contrast, increased fitness was not detected in parasites exposed to multiclonal host mixtures, indicating that cyanobacterial intraspecific diversity hampers parasites adaptation. Significant increases in intensity of infection were observed in monoclonal and multiclonal treatments, suggesting high evolvability of traits involved in parasite attachment onto hosts (i.e., encystment). A comparison of the performance of evolved and unevolved (control) parasite populations against their common ancestral host did not reveal parasite attenuation. Our results exemplify the ability of chytrid parasites to adapt rapidly to new hosts, while providing experimental evidence that genetic diversity in host populations grants increased resistance to disease by hindering parasite adaptation.
Collapse
Affiliation(s)
- Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Alina Gross
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Rohrlack
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
14
|
Fitness and eco-physiological response of a chytrid fungal parasite infecting planktonic cyanobacteria to thermal and host genotype variation. Parasitology 2018; 145:1279-1286. [DOI: 10.1017/s0031182018000215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractUnderstanding how individual parasite traits contribute to overall fitness, and how they are modulated by both external and host environment, is crucial for predicting disease outcome. Fungal (chytrid) parasites of phytoplankton are important yet poorly studied pathogens with the potential to modulate the abundance and composition of phytoplankton communities and to drive their evolution. Here, we studied life-history traits of a chytrid parasite infecting the planktonic, bloom-forming cyanobacterium Planktothrix spp. under host genotype and thermal variation. When expressing parasite fitness in terms of transmission success, disease outcome was largely modulated by temperature alone. Yet, a closer examination of individual parasite traits linked to different infection phases, such as (i) the establishment of the infection (i.e. intensity of infection) and (ii) the exploitation of host resources (i.e. size of reproductive structures and propagules), revealed differential host genotype and temperature × host genotype modulation, respectively. This illustrates how parasite fitness results from the interplay of individual parasite traits that are differentially controlled by host and external environment, and stresses the importance of combining multiple traits to gain insights into underlying infection mechanisms.
Collapse
|
15
|
McCallum H, Fenton A, Hudson PJ, Lee B, Levick B, Norman R, Perkins SE, Viney M, Wilson AJ, Lello J. Breaking beta: deconstructing the parasite transmission function. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0084. [PMID: 28289252 PMCID: PMC5352811 DOI: 10.1098/rstb.2016.0084] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 01/29/2023] Open
Abstract
Transmission is a fundamental step in the life cycle of every parasite but it is also one of the most challenging processes to model and quantify. In most host–parasite models, the transmission process is encapsulated by a single parameter β. Many different biological processes and interactions, acting on both hosts and infectious organisms, are subsumed in this single term. There are, however, at least two undesirable consequences of this high level of abstraction. First, nonlinearities and heterogeneities that can be critical to the dynamic behaviour of infections are poorly represented; second, estimating the transmission coefficient β from field data is often very difficult. In this paper, we present a conceptual model, which breaks the transmission process into its component parts. This deconstruction enables us to identify circumstances that generate nonlinearities in transmission, with potential implications for emergent transmission behaviour at individual and population scales. Such behaviour cannot be explained by the traditional linear transmission frameworks. The deconstruction also provides a clearer link to the empirical estimation of key components of transmission and enables the construction of flexible models that produce a unified understanding of the spread of both micro- and macro-parasite infectious disease agents. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’.
Collapse
Affiliation(s)
- Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan 4111, Queensland, Australia
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Penn State University, University Park, PA 16802, USA
| | - Brian Lee
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Beth Levick
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rachel Norman
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sarah E Perkins
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Anthony J Wilson
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Joanne Lello
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK .,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trentino, Italy
| |
Collapse
|
16
|
Eads DA, Biggins DE. Paltry past-precipitation: Predisposing prairie dogs to plague? J Wildl Manage 2017. [DOI: 10.1002/jwmg.21281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- David A. Eads
- Department of Biology, Colorado State University; U.S. Geological Survey, Fort Collins Science Center; 2150 Centre Avenue, Building C Fort Collins CO 80526 USA
| | - Dean E. Biggins
- U.S. Geological Survey; Fort Collins Science Center; 2150 Centre Avenue, Building C Fort Collins CO 80526 USA
| |
Collapse
|
17
|
Eads DA, Biggins DE, Xu L, Liu Q. Plague cycles in two rodent species from China: dry years might provide context for epizootics in wet years. Ecosphere 2016. [DOI: 10.1002/ecs2.1495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- David A. Eads
- U. S. Geological Survey Fort Collins Science Center Fort Collins Colorado 80526 USA
- Department of Biology Colorado State University Fort Collins Colorado 80523 USA
| | - Dean E. Biggins
- U. S. Geological Survey Fort Collins Science Center Fort Collins Colorado 80526 USA
- Department of Biology Colorado State University Fort Collins Colorado 80523 USA
| | - Lei Xu
- State Key Laboratory for Infectious Disease Prevention and Control National Institute for Communicable Disease Control and Prevention Chinese Center for Disease Control and Prevention Changping Beijing 102206 China
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control National Institute for Communicable Disease Control and Prevention Chinese Center for Disease Control and Prevention Changping Beijing 102206 China
| |
Collapse
|
18
|
Eakin L, Wang M, Dwyer G. The effects of the avoidance of infectious hosts on infection risk in an insect-pathogen interaction. Am Nat 2014; 185:100-12. [PMID: 25560556 DOI: 10.1086/678989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In many animal host-pathogen interactions, uninfected hosts either avoid or are attracted to infected conspecifics, but understanding how such behaviors affect infection risk is difficult. In experiments, behaviors are often eliminated entirely, which allows demonstration that a behavior affects risk but makes it impossible to quantify effects of individual behaviors. In models, host behaviors have been studied using ordinary differential equations, which can be easily analyzed but cannot be used to relate individual behaviors to risk. For many insect baculoviruses, however, quantifying effects of behavior on risk is straightforward because transmission occurs when host larvae accidentally consume virus-contaminated foliage. Moreover, increases in computing power have made it possible to fit complex models to data. We therefore used experiments to quantify the behavior of gypsy moth larvae feeding on oak leaves contaminated with virus-infected cadavers, and we tested for effects of cadaver-avoidance behavior by fitting stochastic simulation models to our data. The models that best explain the data include cadaver avoidance, and comparison of models that do and do not include cadaver avoidance shows that this behavior substantially reduces infection risk. Our work demonstrates that host behaviors that affect exposure risk play a key role in baculovirus transmission and adds to the growing consensus that host behavior can strongly alter pathogen transmission rates.
Collapse
Affiliation(s)
- Libby Eakin
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| | | | | |
Collapse
|
19
|
Hussain KJ, Krishnan SM, Johny S, Whitman DW. Phenotypic Plasticity in a Gregarine Parasite (Apicomplexa: Eugregarinordia) Infecting Grasshoppers. COMP PARASITOL 2013. [DOI: 10.1654/4602.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 2012; 66:265-83. [PMID: 22726216 PMCID: PMC3525954 DOI: 10.1146/annurev-micro-092611-150107] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.
Collapse
Affiliation(s)
- James D. Bever
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Thomas G. Platt
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Elise R. Morton
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
21
|
Mideo N, Nelson WA, Reece SE, Bell AS, Read AF, Day T. Bridging scales in the evolution of infectious disease life histories: application. Evolution 2011; 65:3298-310. [PMID: 22023593 DOI: 10.1111/j.1558-5646.2011.01382.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Within- and between-host disease processes occur on the same timescales, therefore changes in the within-host dynamics of parasites, resources, and immunity can interact with changes in the epidemiological dynamics to affect evolutionary outcomes. Consequently, studies of the evolution of disease life histories, that is, infection-age-specific patterns of transmission and virulence, have been constrained by the need for a mechanistic understanding of within-host disease dynamics. In a companion paper (Day et al. 2011), we develop a novel approach that quantifies the relevant within-host aspects of disease through genetic covariance functions. Here, we demonstrate how to apply this theory to data. Using two previously published datasets from rodent malaria infections, we show how to translate experimental measures into disease life-history traits, and how to quantify the covariance in these traits. Our results show how patterns of covariance can interact with epidemiological dynamics to affect evolutionary predictions for disease life history. We also find that the selective constraints on disease life-history evolution can vary qualitatively, and that "simple" virulence-transmission trade-offs that are often the subject of experimental investigation can be obscured by trade-offs within one trait alone. Finally, we highlight the type and quality of data required for future applications.
Collapse
Affiliation(s)
- Nicole Mideo
- Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
22
|
LaDeau SL, Glass GE, Hobbs NT, Latimer A, Ostfeld RS. Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2011; 21:1443-60. [PMID: 21830694 PMCID: PMC7163730 DOI: 10.1890/09-1409.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 04/14/2010] [Accepted: 04/19/2010] [Indexed: 05/28/2023]
Abstract
Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.
Collapse
Affiliation(s)
- Shannon L LaDeau
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, USA.
| | | | | | | | | |
Collapse
|
23
|
Wargo AR, Kurath G. In vivo fitness associated with high virulence in a vertebrate virus is a complex trait regulated by host entry, replication, and shedding. J Virol 2011; 85:3959-67. [PMID: 21307204 PMCID: PMC3126118 DOI: 10.1128/jvi.01891-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/29/2011] [Indexed: 12/14/2022] Open
Abstract
The relationship between pathogen fitness and virulence is typically examined by quantifying only one or two pathogen fitness traits. More specifically, it is regularly assumed that within-host replication, as a precursor to transmission, is the driving force behind virulence. In reality, many traits contribute to pathogen fitness, and each trait could drive the evolution of virulence in different ways. Here, we independently quantified four viral infection cycle traits, namely, host entry, within-host replication, within-host coinfection fitness, and shedding, in vivo, in the vertebrate virus Infectious hematopoietic necrosis virus (IHNV). We examined how each of these stages of the viral infection cycle contributes to the fitness of IHNV genotypes that differ in virulence in rainbow trout. This enabled us to determine how infection cycle fitness traits are independently associated with virulence. We found that viral fitness was independently regulated by each of the traits examined, with the largest impact on fitness being provided by within-host replication. Furthermore, the more virulent of the two genotypes of IHNV we used had advantages in all of the traits quantified. Our results are thus congruent with the assumption that virulence and within-host replication are correlated but suggest that infection cycle fitness is complex and that replication is not the only trait associated with virulence.
Collapse
Affiliation(s)
- Andrew R Wargo
- Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115-5016, USA.
| | | |
Collapse
|
24
|
Modeling the epidemiological history of plague in Central Asia: palaeoclimatic forcing on a disease system over the past millennium. BMC Biol 2010; 8:112. [PMID: 20799946 PMCID: PMC2944127 DOI: 10.1186/1741-7007-8-112] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/27/2010] [Indexed: 01/14/2023] Open
Abstract
Background Human cases of plague (Yersinia pestis) infection originate, ultimately, in the bacterium's wildlife host populations. The epidemiological dynamics of the wildlife reservoir therefore determine the abundance, distribution and evolution of the pathogen, which in turn shape the frequency, distribution and virulence of human cases. Earlier studies have shown clear evidence of climatic forcing on contemporary plague abundance in rodents and humans. Results We find that high-resolution palaeoclimatic indices correlate with plague prevalence and population density in a major plague host species, the great gerbil (Rhombomys opimus), over 1949-1995. Climate-driven models trained on these data predict independent data on human plague cases in early 20th-century Kazakhstan from 1904-1948, suggesting a consistent impact of climate on large-scale wildlife reservoir dynamics influencing human epidemics. Extending the models further back in time, we also find correspondence between their predictions and qualitative records of plague epidemics over the past 1500 years. Conclusions Central Asian climate fluctuations appear to have had significant influences on regional human plague frequency in the first part of the 20th century, and probably over the past 1500 years. This first attempt at ecoepidemiological reconstruction of historical disease activity may shed some light on how long-term plague epidemiology interacts with human activity. As plague activity in Central Asia seems to have followed climate fluctuations over the past centuries, we may expect global warming to have an impact upon future plague epidemiology, probably sustaining or increasing plague activity in the region, at least in the rodent reservoirs, in the coming decades. See commentary: http://www.biomedcentral.com/1741-7007/8/108
Collapse
|
25
|
Abstract
Recent outbreaks of novel infectious diseases (e.g. SARS, influenza H1N1) have highlighted the threat of cross-species pathogen transmission. When first introduced to a population, a pathogen is often poorly adapted to its new host and must evolve in order to escape extinction. Theoretical arguments and empirical studies have suggested various factors to explain why some pathogens emerge and others do not, including host contact structure, pathogen adaptive pathways and mutation rates. Using a multi-type branching process, we model the spread of an introduced pathogen evolving through several strains. Extending previous models, we use a network-based approach to separate host contact patterns from pathogen transmissibility. We also allow for arbitrary adaptive pathways. These generalizations lead to novel predictions regarding the impact of hypothesized risk factors. Pathogen fitness depends on the host population in which it circulates, and the ‘riskiest’ contact distribution and adaptive pathway depend on initial transmissibility. Emergence probability is sensitive to mutation probabilities and number of adaptive steps required, with the possibility of large adaptive steps (e.g. simultaneous point mutations or recombination) having a dramatic effect. In most situations, increasing overall mutation probability increases the risk of emergence; however, notable exceptions arise when deleterious mutations are available.
Collapse
Affiliation(s)
- H K Alexander
- Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
26
|
Antolin MF, Biggins DE, Gober P. Symposium on the Ecology of Plague and its Effects on Wildlife: A Model for Translational Research. Vector Borne Zoonotic Dis 2010; 10:3-5. [DOI: 10.1089/vbz.2009.2010.pl.intro] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael F. Antolin
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Dean E. Biggins
- U.S. Geologic Survey, Fort Collins Science Center, Fort Collins, Colorado
| | - Pete Gober
- U.S. Fish and Wildlife Service, Pierre, South Dakota
| |
Collapse
|
27
|
Hellgren O, Pérez-Tris J, Bensch S. A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 2009; 90:2840-9. [PMID: 19886492 DOI: 10.1890/08-1059.1] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A parasite's ability to be a specialist vs. a generalist may have consequences for its prevalence within one or more if its host species. In this study we investigated the relationship between host specialization and prevalence in the highly species diverse avian blood parasites of the genera Plasmodium and Haemoproteus. Contrary to trade-off hypotheses that may explain host specialization, within both genera the parasites with the ability to complete their life cycles and be transmitted across a wide host range (broad compatibility) were also the most common parasites within their compatible host species. These patterns remained unchanged when the host species with the highest prevalence were excluded, which reduces the possibility that the observed pattern was caused by parasites reaching high prevalence in a single main host, and being "spilled over" to other host species. We hypothesize that a positive relationship between parasite host range and prevalence might be explained by an overall higher encounter rate for the parasites with broad host range, which compensates for possibly reduced performance of parasites in each host species. Overall, these results show that parasites with the ability to successfully infect a wide variety of host species of broad ancestry also can have the ability to be the most prevalent in single host species.
Collapse
Affiliation(s)
- Olof Hellgren
- Department of Animal Ecology, Ecology Building, Lund University, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
28
|
Beldomenico PM, Begon M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol 2009; 25:21-7. [PMID: 19782425 DOI: 10.1016/j.tree.2009.06.015] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/24/2009] [Accepted: 06/29/2009] [Indexed: 11/26/2022]
Abstract
Epidemiological models and studies of disease ecology typically ignore the role of host condition and immunocompetence when trying to explain the distribution and dynamics of infections and their impact on host dynamics. Recent research, however, indicates that host susceptibility should be considered carefully if we are to understand the mechanism by which parasite dynamics influence host dynamics and vice versa. Studies in insects, fish, amphibians and rodents show that infection occurrence and intensity are more probable and more severe in individuals with an underlying poor condition. Moreover, infection itself results in further deterioration of the host and a 'vicious circle' is created. We argue that this potential synergy between host susceptibility and infection should be more widely acknowledged in disease ecology research.
Collapse
Affiliation(s)
- Pablo M Beldomenico
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, RP Kreder 2805, 3080 Esperanza, Santa Fe, Argentina.
| | | |
Collapse
|