1
|
Halliday FW, Everingham SE, Bröcher M, Ebeling A, Kempel A, Mundim FM, Strauss AT, Xirocostas ZA, Kohli M. Towards an integrative mechanistic framework for biodiversity-consumer relationships. Trends Ecol Evol 2025:S0169-5347(25)00060-6. [PMID: 40268643 DOI: 10.1016/j.tree.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Terrestrial plant diversity plays a pivotal role in influencing the abundance, diversity, and impacts of herbivores and pathogens (collectively, plant consumers). However, it is unclear whether the relationships between biodiversity and herbivory reflect the same underlying ecological mechanisms as the relationships between biodiversity and disease. This uncertainty results in part from decades of independent, siloed research on each consumer group. We propose that, across herbivores and pathogens, plant diversity-consumer relationships arise from five fundamental factors: (1) density of a focal plant, (2) total plant biomass, (3) plant neighborhood quality, (4) resource diversity, and (5) structural complexity. By matching established hypotheses to these five fundamental factors, we highlight opportunities for growth in the rapidly developing field of plant-consumer interactions.
Collapse
Affiliation(s)
- Fletcher W Halliday
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Susan E Everingham
- Institute of Plant Sciences, University of Bern, Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | | | - Anne Ebeling
- Institute of Ecology and Evolution, University of Jena, Jena, Germany
| | - Anne Kempel
- WSL (Wald, Schnee, und Landschaft) Institute for Snow and Avalanche Research (SLF), Davos, Switzerland; Climate Change, Extremes, and Natural Hazards in Alpine Regions Research Centre (CERC), Davos, Switzerland
| | | | - Alexander T Strauss
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Zoe A Xirocostas
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mayank Kohli
- Biodiversity and Ecosystem Ecology Research Laboratory, National Center for Biological Sciences, Bangalore, India
| |
Collapse
|
2
|
Xiao L, Chen L, Labandeira CC, Azevedo-Schmidt L, Wang Y, Ren D. The modern pattern of insect herbivory predates the advent of angiosperms by 60 My. Proc Natl Acad Sci U S A 2025; 122:e2412036122. [PMID: 39964701 DOI: 10.1073/pnas.2412036122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/06/2025] [Indexed: 03/12/2025] Open
Abstract
Modern ecosystems display complex associations of plants-insects that underwent a long evolutionary process since the appearance of mid-Paleozoic vascular plants. Although several major hypotheses explain the evolution of these plant-insect associations, the initial pattern of modern insect herbivory is poorly understood. To understand the antiquity of modern patterns of terrestrial arthropod herbivory, functional feeding group-damage type (FFG-DT) data were used to analyze a 305 My interval from Late Pennsylvanian to present, in which 134 plant assemblages were used to assess turnover (replacement of some species by other species between sites) and nestedness (difference in composition when no species are replaced between sites) in pairwise comparisons of DTs. Results of beta diversity analyses indicate that the prototype pattern for modern insect herbivory was established on gymnosperm-dominated plant assemblages by late Middle Jurassic, antedating angiosperm dominance by 60 My. Turnover among plant groups and FFGs declined in earlier late Paleozoic, whereas during the later Cenozoic, nestedness generally increased. Insect feeding on gymnosperms showed one pattern of change with low turnover and high nestedness, whereas a bimodal pattern characterized angiosperms. Ferns and angiosperms exhibited less DT functional breadth (host-plant "specificity" by herbivores) than gymnosperms, reflecting major differences in links between insect herbivores and their host plants. This fundamental trophic shift is consistent with the Mid-Mesozoic Parasitoid Revolution, implying top-down control of herbivores by their consumers rather than bottom-up regulation of food sources that shaped the modern herbivory pattern. These findings provide a data-rich account of the ecological origins of modern herbivory.
Collapse
Affiliation(s)
- Lifang Xiao
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, People's Republic of China
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013
| | - Liang Chen
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013
| | - Conrad C Labandeira
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013
- Department of Entomology, University of Maryland, College Park, MD 20742
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742
| | - Lauren Azevedo-Schmidt
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616
| | - Yongjie Wang
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| | - Dong Ren
- College of Life Science, Capital Normal University, Beijing 100048, People's Republic of China
| |
Collapse
|
3
|
Zhu Z, Feng T. The power of Allee effects: inducing multistability and oscillations in a stoichiometric producer-herbivore system. J Math Biol 2025; 90:35. [PMID: 40014146 DOI: 10.1007/s00285-025-02197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Understanding producer-herbivore dynamics is fundamental for maintaining ecosystem stability and biodiversity. This study proposes a novel stoichiometric producer-herbivore model that incorporates positive density dependence induced by demographic factors. We conduct a rigorous mathematical analysis of the proposed model, covering well-posedness, nullcline analysis, and system stability. This analysis is expanded through numerical bifurcation analysis to explore the effects of critical biological parameters, including light intensity, on producer-herbivore interactions. Our findings reveal that variations in the severity of the Allee effect significantly influence these interactions, driving multistability and periodic oscillations. Severe Allee effects lead to complex dynamics, including four forms of bistability and three forms of tristability. Severe Allee effects can also lead to the extinction of both producer and herbivore populations due to positive density dependence. Intermediate levels of parameters such as light intensity, producer growth rate, herbivore loss rate, saturation levels of the Allee effect, total phosphorus, and sufficiently high production efficiency can lead to system instability and oscillations. Conversely, in scenarios with low-severity Allee effects, the system shows relatively simpler dynamics, with three types of bistability. Low producer growth rate and herbivore loss rate, moderate saturation levels of the Allee effect, light intensity, and sufficiently high herbivore production efficiency and total phosphorus levels can induce periodic oscillations. These findings emphasize the importance of managing Allee effect severity in conservation efforts to sustain biodiversity and prevent undesirable state transitions.
Collapse
Affiliation(s)
- Zhiwei Zhu
- School of Mathematical Science, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Tao Feng
- School of Mathematical Science, Yangzhou University, Yangzhou, 225002, People's Republic of China.
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
| |
Collapse
|
4
|
Munsterman KS, Hesselbarth MHK, Allgeier JE. Smaller and bolder fish enhance ecosystem-scale primary production around artificial reefs in seagrass beds. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3055. [PMID: 39575845 PMCID: PMC11733711 DOI: 10.1002/eap.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 08/26/2024] [Indexed: 01/16/2025]
Abstract
Effective management of wild animals requires understanding how predation and harvest alter the composition of populations. These top-down processes can alter consumer body size and behavior and thus should also have consequences for bottom-up processes because (1) body size is a critical determinant of the amount of nutrients excreted and (2) variation in foraging behavior, which is strongly influenced by predation, can determine the amount and spatial distribution of nutrients. Changes to either are known to affect ecosystem-scale nutrient dynamics, but the consequences of these dynamics on ecosystem processes are poorly understood. We used an individual-based model of an artificial reef (AR) and reef fish in a subtropical seagrass bed to test how fish body size can interact with variation in foraging behavior at the population and individual levels to affect seagrass production in a nutrient-limited system. Seagrass production dynamics can be driven by both belowground (BGPP) and aboveground primary production (AGPP); thus, we quantified ecosystem-scale production via these different mechanistic pathways. We found that (1) populations of small fish generated greater total primary production (TLPP = BGPP + AGPP) than large fish, (2) fish that foraged more increased TLPP more than those that spent time sheltering on ARs, and (3) small fish that foraged more led to greatest increases in TLPP. The mechanism by which this occurred was primarily through increased BGPP, highlighting the importance of cryptic belowground dynamics in seagrass ecosystems. Populations of extremely bold individuals (i.e., foraged significantly more) slightly increased TLPP but strongly affected the distribution of production, whereby bold individuals increased BGPP, while populations of shy individuals increased AGPP. Taken together, these results provide a link between consumer body size, variation in consumer behavior, and primary production-which, in turn, will support secondary production for fisheries. Our study suggests that human-induced changes-such as fishing-that alter consumer body size and behavior will fundamentally change ecosystem-scale production dynamics. Understanding the ecosystem effects of harvest on consumer populations is critical for ecosystem-based management, including the development of ARs for fisheries.
Collapse
Affiliation(s)
- Katrina S. Munsterman
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Maximilian H. K. Hesselbarth
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Biodiversity, Ecology, & Conservation GroupInternational Institute for Applied Systems AnalysisLaxenburgAustria
| | - Jacob E. Allgeier
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
5
|
Kaspari M, Welti EAR. Nutrient dilution and the future of herbivore populations. Trends Ecol Evol 2024; 39:809-820. [PMID: 38876933 DOI: 10.1016/j.tree.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
Nutrient dilution (ND) - the decrease in the concentration of nutritional elements in plant tissue - arises from an increase in the mass of carbohydrates and/or a decrease in the 20+ essential elements. Increasing CO2 levels and its promotion of biomass are linked to nutrient dilution. We build a case for nutrient dilution as a key driver in global declines in herbivore abundance. Herbivores must build element-rich animal tissue from nutrient-poor plant tissue, and their abundance commonly increases with fertilization of both macro- and micronutrients. We predict the global impacts of nutrient dilution will be magnified in some of Earth's most biodiverse, highly productive, and/or nutrient-poor ecosystems and should favor specific traits of herbivores, including sap-feeding and ruminant microbiomes.
Collapse
Affiliation(s)
- Michael Kaspari
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA
| |
Collapse
|
6
|
Ferraro KM, Albrecht D, Hendrix JG, Wal EV, Schmitz OJ, Webber QMR, Bradford MA. The biogeochemical boomerang: Site fidelity creates nutritional hotspots that may promote recurrent calving site reuse. Ecol Lett 2024; 27:e14491. [PMID: 39132693 DOI: 10.1111/ele.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Animals interact with nutrient cycles by consuming and depositing nutrients, interactions studied separately in nutritional ecology and zoogeochemistry. Recent theoretical work bridges these disciplines, highlighting that animal-driven nutrient recycling could be crucial in helping animals meet their nutritional needs. When animals exhibit site fidelity, they consistently deposit nutrients, potentially improving vegetation quality. We investigated this potential feedback by analysing changes in forage nitrogen stocks following simulated caribou calving. We found that forage nitrogen stocks increased after 2 weeks and remained elevated after 1 year, a change due to increased forage quality, not quantity. We also developed a nutrient budget within calving grounds, demonstrating that natal fluid and calf carcasses contribute substantial nitrogen subsidies. We, thus, highlight a positive zoogeochemical feedback whereby nutrients deposited during calving become bioavailable during lactation and provide evidence that site fidelity creates a biogeochemical boomerang in which animals deposit nutrients that can be reused later.
Collapse
Affiliation(s)
- Kristy M Ferraro
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | | | - Jack G Hendrix
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University, St. John's, Newfoundland, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, Newfoundland, Canada
| | - Oswald J Schmitz
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Quinn M R Webber
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mark A Bradford
- School of the Environment, Yale University, New Haven, Connecticut, USA
- The Forest School, Yale University School of the Environment, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Schnedler‐Meyer NA, Andersen TK. Dining in danger: Resolving adaptive fish behavior increases realism of modeled ecosystem dynamics. Ecol Evol 2024; 14:e70020. [PMID: 39114166 PMCID: PMC11303985 DOI: 10.1002/ece3.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Animals occupying higher trophic levels can have disproportionately large influence on ecosystem structure and functioning, owning to intricate behavioral responses to their environment, but the effects of behavioral adaptations on aquatic ecosystem dynamics are underrepresented, especially in model studies. Here, we explore how adaptive behavior of fish can affect the dynamics of aquatics ecosystems. We frame fish behavior in the context of the central trade-off between feeding and predation, calculating the optimal level of feeding determined by ambient food availability and predation risk. To explore whole-ecosystem consequences of fish behavior, we embed our behavioral model within the Water Ecosystems Tool (WET), a contemporary end-to-end aquatic ecosystem model. The principle of optimality provides a robust and mechanistic framework for representing animal behavior that is relevant for complex models, and can provide a stabilizing effect on model dynamics. The model predicts an emergent functional response similar to Holling type III, but with richer dynamics and a more rigorous theoretical foundation. We show how adaptive fish behavior works to stabilize food web dynamics compared to a control model with no optimal behavior, and how changing the strength of the underlying trade-off has profound effects on trophic control and food web structure. Furthermore, we demonstrate how including fish behavior allows for an overall more realistic response of the model system to environmental perturbation in the form of nutrient enhancement. We discuss the structuring effects of behavioral adaptations in real ecosystems, and how approaches like this one may benefit aquatic ecological modeling. Our study further highlights how a mechanistic approach based on concepts from theoretical ecology can be successfully implemented in complex operational models resulting in improved dynamics and descriptive power.
Collapse
Affiliation(s)
| | - Tobias K. Andersen
- National Institute for Aquatic ResourcesTechnical University of DenmarkLyngbyDenmark
- Institute for EcoscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
8
|
Andrade JF, Calixto ES, Demetrio GR, Venâncio H, Meiado MV, de Santana DG, Cuevas-Reyes P, de Almeida WR, Santos JC. Tolerance Mitigates Gall Effects When Susceptible Plants Fail to Elicit Induced Defense. PLANTS (BASEL, SWITZERLAND) 2024; 13:1472. [PMID: 38891281 PMCID: PMC11174803 DOI: 10.3390/plants13111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Variations in plant genotypes and phenotypes are expressed in ways that lead to the development of defensive abilities against herbivory. Induced defenses are mechanisms that affect herbivore insect preferences and performance. We evaluated the performance of resistant and susceptible phenotypes of Bauhinia brevipes (Fabaceae) against attacks by the gall-inducing insect Schizomyia macrocapillata (Diptera). We hypothesized that there is a positive relationship between resistance to S. macrocapillata and host plant performance because resistance can have a high adaptive value. We evaluated plant architecture, nutritional leaf quality, leaf fluctuating asymmetry, and reproductive capacity between phenotypes. Plant performance was evaluated at three ontogenetic stages: seed, seedling, and juvenile. Overall, there were no differences in vegetative and reproductive performance or asymmetry between the resistant and susceptible mature plants. We found no relationship between leaf nutritional quality and resistance to S. macrocapillata. Plant performance was consistent across ontogeny for both phenotypes, except for five variables. Contrary to our expectations, the susceptible plants performed equally well or better than the resistant plants, suggesting that tolerance and overcompensation to herbivory in B. brevipes may be mediated by induced defense. Our study highlights the importance of multiple layers of plant defense against herbivory, where plant tolerance acts as a secondary barrier in plants susceptible to gall-inducing insects.
Collapse
Affiliation(s)
- Janete Ferreira Andrade
- Department of Systematics and Ecology, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil;
| | - Eduardo Soares Calixto
- Entomology and Nematology Department, West Florida Research and Education Center, University of Florida, Jay, FL 32565, USA;
| | - Guilherme Ramos Demetrio
- Laboratory of Plant Ecology, U. E. Penedo, Campus Arapiraca, Federal University of Alagoas, Penedo 57200-000, Alagoas, Brazil;
| | - Henrique Venâncio
- Graduate Program in Entomology, Faculty of Philosophy, Sciences, and Literature, and Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Marcos Vinicius Meiado
- Laboratory of Seed Physiology, Biosciences Department, Federal University of Sergipe, Itabaiana 49107-230, Sergipe, Brazil;
| | - Denise Garcia de Santana
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia 38400-902, Minas Gerais, Brazil;
| | - Pablo Cuevas-Reyes
- Laboratorio de Ecología de Interacciones Bióticas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58004, Michoacán, Mexico;
| | - Wanessa Rejane de Almeida
- Graduate Program in Ecology and Conservation, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Jean Carlos Santos
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil
| |
Collapse
|
9
|
Monk J. Diverse impacts of large herbivores. Nat Ecol Evol 2024; 8:602-603. [PMID: 38337047 DOI: 10.1038/s41559-023-02317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Affiliation(s)
- Julia Monk
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Zaguri M, Mogilevsky I, Raubenheimer D, Hawlena D. 'Dust you shall eat': The complex nutritional and functional considerations underlying a simple diet. Ecol Lett 2024; 27:e14414. [PMID: 38622965 DOI: 10.1111/ele.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/17/2024]
Abstract
Animals assimilate macronutrients and mineral nutrients in specific quantities and ratios to maximise fitness. To achieve this, animals must ingest different foods that contain the needed nutrients or facilitate the digestion of those nutrients. We explored how these multidimensional considerations affect the desert isopods (Hemilepistus reaumuri) curious food selection, using field and laboratory experiments. Wild isopods consumed three-fold more macronutrient-poor biological soil crust (BSC) than plant litter. Isopods tightly regulated macronutrient and calcium intake, but not phosphorus when eating the two natural foods and when artificial calcium and phosphorus sources substituted the BSC. Despite the equivalent calcium ingestion, isopods performed better when eating BSC compared to artificial foods. Isopods that consumed BSC sterilised by gamma-radiation ate more but grew slower than isopods that ate live BSC, implying that ingested microorganisms facilitate litter digestion. Our work highlights the need to reveal the multifaceted considerations that affect food-selection when exploring trophic-interactions.
Collapse
Affiliation(s)
- Moshe Zaguri
- Department of Entomology, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute), Ramat Yishay, Israel
- Risk-Management Ecology Lab, Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Mogilevsky
- Risk-Management Ecology Lab, Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Dror Hawlena
- Risk-Management Ecology Lab, Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Feng Z, Marsland R, Rocks JW, Mehta P. Emergent competition shapes top-down versus bottom-up control in multi-trophic ecosystems. PLoS Comput Biol 2024; 20:e1011675. [PMID: 38330086 PMCID: PMC10852287 DOI: 10.1371/journal.pcbi.1011675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/10/2023] [Indexed: 02/10/2024] Open
Abstract
Ecosystems are commonly organized into trophic levels-organisms that occupy the same level in a food chain (e.g., plants, herbivores, carnivores). A fundamental question in theoretical ecology is how the interplay between trophic structure, diversity, and competition shapes the properties of ecosystems. To address this problem, we analyze a generalized Consumer Resource Model with three trophic levels using the zero-temperature cavity method and numerical simulations. We derive the corresponding mean-field cavity equations and show that intra-trophic diversity gives rise to an effective "emergent competition" term between species within a trophic level due to feedbacks mediated by other trophic levels. This emergent competition gives rise to a crossover from a regime of top-down control (populations are limited by predators) to a regime of bottom-up control (populations are limited by primary producers) and is captured by a simple order parameter related to the ratio of surviving species in different trophic levels. We show that our theoretical results agree with empirical observations, suggesting that the theoretical approach outlined here can be used to understand complex ecosystems with multiple trophic levels.
Collapse
Affiliation(s)
- Zhijie Feng
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Robert Marsland
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Jason W. Rocks
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
- Biological Design Center, Boston University, Boston, Massachusetts, United States of America
- Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Shan L, Oduor AMO, Liu Y. Herbivory and elevated levels of CO 2 and nutrients separately, rather than synergistically, impacted biomass production and allocation in invasive and native plant species. GLOBAL CHANGE BIOLOGY 2023; 29:6741-6755. [PMID: 37815486 DOI: 10.1111/gcb.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Large parts of the Earth are experiencing environmental change caused by alien plant invasions, rising atmospheric concentration of carbon dioxide (CO2 ), and nutrient enrichments. Elevated CO2 and nutrient concentrations can separately favour growth of invasive plants over that of natives but how herbivory may modulate the magnitude and direction of net responses by the two groups of plants to simultaneous CO2 and nutrient enrichments remains unknown. In line with the enemy release hypothesis, invasive plant species should reallocate metabolites from costly anti-herbivore defences into greater growth following escape from intense herbivory in the native range. Therefore, invasive plants should have greater growth than native plants under simultaneous CO2 and nutrient enrichments in the absence of herbivory. To test this prediction, we grew nine congeneric pairs of invasive and native plant species that naturally co-occurred in grasslands in China under two levels each of nutrient enrichment (low-nutrient vs. high-nutrient), herbivory (with herbivory vs. without herbivory) and under ambient (412.9 ± 0.6 ppm) and elevated (790.1 ± 6.2 ppm) levels of CO2 concentrations in open top chambers in a common garden. Elevated CO2 and nutrient enrichment separately increased total plant biomass, while herbivory reduced it regardless of the plant invasive status. High-nutrient treatment caused the plants to allocate a significantly lower proportion of total biomass to roots, while herbivory induced an opposite pattern. Herbivory suppressed total biomass production more strongly in native plants than invasive plants. The plants exhibited significant interspecific and intergeneric variation in their responses to the various treatment combinations. Overall, these results suggest that elevated CO2 and nutrients and herbivory may separately, rather than synergistically, impact productivity of the invasive and co-occurring native plant species in our study system. Moreover, interspecific variation in resource-use strategies was more important than invasive status in determining plant responses to the various treatment combinations.
Collapse
Affiliation(s)
- Liping Shan
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ayub M O Oduor
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Applied Biology, Technical University of Kenya, Nairobi, Kenya
| | - Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
13
|
Robinson ML, Hahn PG, Inouye BD, Underwood N, Whitehead SR, Abbott KC, Bruna EM, Cacho NI, Dyer LA, Abdala-Roberts L, Allen WJ, Andrade JF, Angulo DF, Anjos D, Anstett DN, Bagchi R, Bagchi S, Barbosa M, Barrett S, Baskett CA, Ben-Simchon E, Bloodworth KJ, Bronstein JL, Buckley YM, Burghardt KT, Bustos-Segura C, Calixto ES, Carvalho RL, Castagneyrol B, Chiuffo MC, Cinoğlu D, Cinto Mejía E, Cock MC, Cogni R, Cope OL, Cornelissen T, Cortez DR, Crowder DW, Dallstream C, Dáttilo W, Davis JK, Dimarco RD, Dole HE, Egbon IN, Eisenring M, Ejomah A, Elderd BD, Endara MJ, Eubanks MD, Everingham SE, Farah KN, Farias RP, Fernandes AP, Fernandes GW, Ferrante M, Finn A, Florjancic GA, Forister ML, Fox QN, Frago E, França FM, Getman-Pickering AS, Getman-Pickering Z, Gianoli E, Gooden B, Gossner MM, Greig KA, Gripenberg S, Groenteman R, Grof-Tisza P, Haack N, Hahn L, Haq SM, Helms AM, Hennecke J, Hermann SL, Holeski LM, Holm S, Hutchinson MC, Jackson EE, Kagiya S, Kalske A, Kalwajtys M, Karban R, Kariyat R, Keasar T, Kersch-Becker MF, Kharouba HM, Kim TN, Kimuyu DM, Kluse J, Koerner SE, Komatsu KJ, Krishnan S, Laihonen M, Lamelas-López L, LaScaleia MC, Lecomte N, Lehn CR, Li X, et alRobinson ML, Hahn PG, Inouye BD, Underwood N, Whitehead SR, Abbott KC, Bruna EM, Cacho NI, Dyer LA, Abdala-Roberts L, Allen WJ, Andrade JF, Angulo DF, Anjos D, Anstett DN, Bagchi R, Bagchi S, Barbosa M, Barrett S, Baskett CA, Ben-Simchon E, Bloodworth KJ, Bronstein JL, Buckley YM, Burghardt KT, Bustos-Segura C, Calixto ES, Carvalho RL, Castagneyrol B, Chiuffo MC, Cinoğlu D, Cinto Mejía E, Cock MC, Cogni R, Cope OL, Cornelissen T, Cortez DR, Crowder DW, Dallstream C, Dáttilo W, Davis JK, Dimarco RD, Dole HE, Egbon IN, Eisenring M, Ejomah A, Elderd BD, Endara MJ, Eubanks MD, Everingham SE, Farah KN, Farias RP, Fernandes AP, Fernandes GW, Ferrante M, Finn A, Florjancic GA, Forister ML, Fox QN, Frago E, França FM, Getman-Pickering AS, Getman-Pickering Z, Gianoli E, Gooden B, Gossner MM, Greig KA, Gripenberg S, Groenteman R, Grof-Tisza P, Haack N, Hahn L, Haq SM, Helms AM, Hennecke J, Hermann SL, Holeski LM, Holm S, Hutchinson MC, Jackson EE, Kagiya S, Kalske A, Kalwajtys M, Karban R, Kariyat R, Keasar T, Kersch-Becker MF, Kharouba HM, Kim TN, Kimuyu DM, Kluse J, Koerner SE, Komatsu KJ, Krishnan S, Laihonen M, Lamelas-López L, LaScaleia MC, Lecomte N, Lehn CR, Li X, Lindroth RL, LoPresti EF, Losada M, Louthan AM, Luizzi VJ, Lynch SC, Lynn JS, Lyon NJ, Maia LF, Maia RA, Mannall TL, Martin BS, Massad TJ, McCall AC, McGurrin K, Merwin AC, Mijango-Ramos Z, Mills CH, Moles AT, Moore CM, Moreira X, Morrison CR, Moshobane MC, Muola A, Nakadai R, Nakajima K, Novais S, Ogbebor CO, Ohsaki H, Pan VS, Pardikes NA, Pareja M, Parthasarathy N, Pawar RR, Paynter Q, Pearse IS, Penczykowski RM, Pepi AA, Pereira CC, Phartyal SS, Piper FI, Poveda K, Pringle EG, Puy J, Quijano T, Quintero C, Rasmann S, Rosche C, Rosenheim LY, Rosenheim JA, Runyon JB, Sadeh A, Sakata Y, Salcido DM, Salgado-Luarte C, Santos BA, Sapir Y, Sasal Y, Sato Y, Sawant M, Schroeder H, Schumann I, Segoli M, Segre H, Shelef O, Shinohara N, Singh RP, Smith DS, Sobral M, Stotz GC, Tack AJM, Tayal M, Tooker JF, Torrico-Bazoberry D, Tougeron K, Trowbridge AM, Utsumi S, Uyi O, Vaca-Uribe JL, Valtonen A, van Dijk LJA, Vandvik V, Villellas J, Waller LP, Weber MG, Yamawo A, Yim S, Zarnetske PL, Zehr LN, Zhong Z, Wetzel WC. Plant size, latitude, and phylogeny explain within-population variability in herbivory. Science 2023; 382:679-683. [PMID: 37943897 DOI: 10.1126/science.adh8830] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.
Collapse
Affiliation(s)
- M L Robinson
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Biology, Utah State University, Logan, UT, USA
| | - P G Hahn
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - B D Inouye
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - N Underwood
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - S R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - K C Abbott
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - E M Bruna
- Center for Latin American Studies, University of Florida, Gainesville, FL, USA
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - N I Cacho
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - L A Dyer
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - L Abdala-Roberts
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - W J Allen
- Bio-Protection Research Centre, University of Canterbury, Christchurch, New Zealand
| | - J F Andrade
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba, João Pessoa, Brazil
| | - D F Angulo
- Centro de Investigación Científica de Yucatán, Departamento de Recursos Naturales, Mérida, Yucatán, México
| | - D Anjos
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - D N Anstett
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - R Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - S Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - M Barbosa
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - S Barrett
- Department of Biodiversity Conservation & Attractions Western Australia, Albany, Western Australia, Australia
| | - C A Baskett
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - E Ben-Simchon
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon Le Tzion, Israel
- Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - K J Bloodworth
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - J L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Y M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - K T Burghardt
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - C Bustos-Segura
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - E S Calixto
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - R L Carvalho
- Institute of Advanced Studies, University of São Paulo, São Paulo, Brazil
| | | | - M C Chiuffo
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - D Cinoğlu
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - E Cinto Mejía
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - M C Cock
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Santa Rosa, La Pampa, Argentina
| | - R Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | - O L Cope
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Biology, Whitworth University, Spokane, WA, USA
| | - T Cornelissen
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - D R Cortez
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA
| | - D W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - C Dallstream
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - W Dáttilo
- Red de Ecoetología, Instituto de Ecología AC, Xalapa, Veracruz, Mexico
| | - J K Davis
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - R D Dimarco
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
- Grupo de Ecología de Poblaciones de Insectos, IFAB, San Carlos de Bariloche, Río Negro, Argentina
| | - H E Dole
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - I N Egbon
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - M Eisenring
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - A Ejomah
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - B D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - M-J Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETROP, Universidad de las Américas, Quito, Ecuador
| | - M D Eubanks
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - S E Everingham
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Evolution & Ecology Research Centre, University of New South Wales Sydney, Sydney, Australia
| | - K N Farah
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - R P Farias
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - A P Fernandes
- Department of Botany, Ganpat Parsekar College of Education Harmal, Pernem, Goa, India
| | - G W Fernandes
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Knowledge Center for Biodiversity, Brazil
| | - M Ferrante
- Faculty of Agricultural Sciences and Environment, University of the Azores, Ponta Delgada, Portugal
- Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - A Finn
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
| | - G A Florjancic
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M L Forister
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - Q N Fox
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - E Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, Montpellier, France
| | - F M França
- School of Biological Sciences, University of Bristol, Bristol, UK
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Pará, Belém, Pará, Brasil
| | | | - Z Getman-Pickering
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - E Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - B Gooden
- CSIRO Black Mountain Laboratories, CSIRO Health and Biosecurity, Canberra, Australia
| | - M M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - K A Greig
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - S Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK
| | - R Groenteman
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - P Grof-Tisza
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - N Haack
- Independent Institute for Environmental Issues, Halle, Germany
| | - L Hahn
- Molecular Evolution and Systematics of Animals, University of Leipzig, Leipzig, Germany
| | - S M Haq
- Wildlife Crime Control Division, Wildlife Trust of India, Noida, Uttar Pradesh, India
| | - A M Helms
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - J Hennecke
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - S L Hermann
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - L M Holeski
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - S Holm
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - M C Hutchinson
- Department of Life and Environmental Sciences, University of California, Merced, Merced, CA, USA
| | - E E Jackson
- School of Biological Sciences, University of Reading, Reading, UK
| | - S Kagiya
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - A Kalske
- Department of Biology, University of Turku, Turku, Finland
| | - M Kalwajtys
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - R Karban
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - R Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - T Keasar
- Department of Biology and the Environment, University of Haifa - Oranim, Oranim, Tivon, Israel
| | - M F Kersch-Becker
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - H M Kharouba
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - T N Kim
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - D M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - J Kluse
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - S E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - K J Komatsu
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - S Krishnan
- Center for Sustainable Future, Amrita University and EIACP RP, Amrita Viswa Vidyapeetham, Coimbatore, India
| | - M Laihonen
- Biodiversity Unit, University of Turku, Turku, Finland
| | - L Lamelas-López
- Faculty of Agricultural Sciences and Environment, University of the Azores, Ponta Delgada, Portugal
| | - M C LaScaleia
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - N Lecomte
- Canada Research Chair in Polar and Boreal Ecology, Department of Biology and Centre d'Études Nordiques, Université de Moncton, Moncton, Canada
| | - C R Lehn
- Biological Sciences Course, Instituto Federal Farroupilha, Panambi, RS, Brazil
| | - X Li
- College of Resources and Environmental sciences, Jilin Agricultural University, Changchun, China
| | - R L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - E F LoPresti
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - M Losada
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - A M Louthan
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - V J Luizzi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - S C Lynch
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - J S Lynn
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - N J Lyon
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - L F Maia
- Bio-Protection Research Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - R A Maia
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - T L Mannall
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - B S Martin
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - T J Massad
- Department of Scientific Services, Gorongosa National Park, Sofala, Mozambique
| | - A C McCall
- Biology Department, Denison University, Granville, OH, USA
| | - K McGurrin
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - A C Merwin
- Department of Biology and Geology, Baldwin Wallace University, Berea, OH, USA
| | - Z Mijango-Ramos
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - C H Mills
- Evolution & Ecology Research Centre, University of New South Wales Sydney, Sydney, Australia
| | - A T Moles
- Evolution & Ecology Research Centre, University of New South Wales Sydney, Sydney, Australia
| | - C M Moore
- Department of Biology, Colby College, Waterville, ME, USA
| | - X Moreira
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Galicia, Spain
| | - C R Morrison
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - M C Moshobane
- South African National Biodiversity Institute, Pretoria National Botanical Garden, Brummeria, Silverton, South Africa
- Centre for Functional Biodiversity, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - A Muola
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Tromsø, Norway
| | - R Nakadai
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - K Nakajima
- Insitute of Science and Engineering, Chuo University, Tokyo, Japan
- Institute of Cave Research, Shimohei-guun, Iwate Prefecture, Japan
| | - S Novais
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - C O Ogbebor
- Nigerian Institute for Oil Palm Research, Benin City, Edo State, Nigeria
| | - H Ohsaki
- Department of Biological Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - V S Pan
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - N A Pardikes
- Department of Biology, Utah State University, Logan, UT, USA
| | - M Pareja
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, Brazil
| | - N Parthasarathy
- Department of Ecology and Evironmental Sciences, Pondicherry University, Puducherry, India
| | | | - Q Paynter
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - I S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - R M Penczykowski
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - A A Pepi
- Department of Biology, Tufts University, Medford, MA, USA
| | - C C Pereira
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - S S Phartyal
- School of Ecology & Environment Studies, Nalanda University, Rajgir, India
| | - F I Piper
- Millennium Nucleus of Patagonian Limit of Life and Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Institute of Ecology and Biodiversity, Ñuñoa, Santiago
| | - K Poveda
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - E G Pringle
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - J Puy
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - T Quijano
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - C Quintero
- INIBIOMA, CONICET - Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - S Rasmann
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - C Rosche
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - L Y Rosenheim
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - J A Rosenheim
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - J B Runyon
- Rocky Mountain Research Station, USDA Forest Service, Bozeman, MT, USA
| | - A Sadeh
- Department of Natural Resources, Newe Ya'ar Research Center, Volcani Institute, Ramat Yishay, Israel
| | - Y Sakata
- Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita, Japan
| | - D M Salcido
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - C Salgado-Luarte
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - B A Santos
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Y Sapir
- The Botanic Garden, School of Plant Sciences and Food Security, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Y Sasal
- INIBIOMA, CONICET - Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - Y Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - M Sawant
- Department of Ecology, University of Pune, Maharashtra, India
| | - H Schroeder
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - I Schumann
- Department of Human Genetics, University of Leipzig, Leipzig, Germany
| | - M Segoli
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - H Segre
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon Le Tzion, Israel
- Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Natural Resources, Newe Ya'ar Research Center, Volcani Institute, Ramat Yishay, Israel
| | - O Shelef
- Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, Rishon Le Tzion, Israel
| | - N Shinohara
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - R P Singh
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - D S Smith
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA
| | - M Sobral
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - G C Stotz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - A J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - M Tayal
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - J F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - D Torrico-Bazoberry
- Laboratorio de Comportamiento Animal y Humano, Centro de Investigación en Complejidad Social, Universidad del Desarrollo, Las Condes, Chile
| | - K Tougeron
- Écologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, UMR 7058 CNRS, Amiens, France
- Ecology of Interactions and Global Change, Institut de Recherche en Biosciences, Université de Mons, Mons, Belgium
| | - A M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - S Utsumi
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - O Uyi
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
- Department of Entomology, University of Georgia, Tifton, GA, USA
| | - J L Vaca-Uribe
- Programa de ingeniría agroecológica, Corporación Universitaria Minuto de Dios, Bogotá, Colombia
| | - A Valtonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - L J A van Dijk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - V Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - J Villellas
- Department of Life Sciences, University of Alcalá, Madrid, Spain
| | - L P Waller
- Bioprotection Aotearoa, Lincoln University, Lincoln, New Zealand
| | - M G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - A Yamawo
- Department of Biological Sciences, Hirosaki University, Hirosaki, Aomori, Japan
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - S Yim
- Biology Department, University of Nevada, Reno, Reno, NV, USA
| | - P L Zarnetske
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - L N Zehr
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Z Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin Province, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
| | - W C Wetzel
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
14
|
Sarran C, Harvey E. Ecology: Experimental enclosures reveal effects of invertebrate biodiversity decline. Curr Biol 2023; 33:R1054-R1057. [PMID: 37875080 DOI: 10.1016/j.cub.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Terrestrial invertebrates are declining globally, yet we still have a poor understanding of how this will influence ecosystem functioning. A new study suggests that the effect might disrupt connections among ecosystem compartments, leading to loss of important ecosystem services.
Collapse
Affiliation(s)
- Charlie Sarran
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Université de Montréal, Montréal, QC H2V 2S9, Canada
| | - Eric Harvey
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Université de Montréal, Montréal, QC H2V 2S9, Canada; Centre de Recherche sur les Interactions bassins-Versants - Écosystèmes aquatiques (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
15
|
Martin EC. The response of stream ecosystem properties to two size classes of herbivorous minnow species. Ecol Evol 2023; 13:e10637. [PMID: 37869425 PMCID: PMC10585056 DOI: 10.1002/ece3.10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Losses in freshwater fish diversity might produce a loss in important ecological services provided by fishes in particular habitats. An important gap in our understanding of ecosystem services by fishes is the influence of individuals from different size classes, which is predicted based on known ontogenetic shifts in metabolic demand and diet. I used 20 experimental stream mesocosms located at Konza Prairie Biological Station (KPBS), KS, USA, to assess the influence of fish size on ecosystem properties. Mesocosms included two macrohabitats: one riffle upstream from one pool filled with consistent pebble and gravel substrate. There were four experimental and one control treatment, each replicated four times (N = 20). I used two size classes of central stonerollers (Campostoma anomalum) and southern redbelly dace (Chrosomus erythrogaster). Five ecosystem properties were assessed: algal filament length (cm), benthic chlorophyll a (μg/cm2), benthic organic matter (g/m2), macroinvertebrate biomass (g/m2), and stream metabolism (g O2/m2/day-1). Size structure of fish populations affected some, but not all, ecosystem properties, and these effects were dependent upon species identity. Size structure of both species had effects on algal filament lengths where stonerollers of both size classes reduced algal filaments, but only small redbelly dace kept filaments short. A better understanding of the relationship between these prairie stream minnows and their small stream habitats could be useful to both predict changes in stream properties if species are lost (redbelly dace are a Species In Need of Conservation) or size structure shifts.
Collapse
Affiliation(s)
- Erika C. Martin
- Department of Biological SciencesEmporia State UniversityEmporiaKansasUSA
| |
Collapse
|
16
|
de Melo Teles E Gomes IJ, Neves MO, Paolucci LN. Trees harbouring ants are better defended than con-generic and sympatric ant-free trees. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:31. [PMID: 37389663 DOI: 10.1007/s00114-023-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Plant strategies against herbivores are classically divided into chemical, physical, biotic defences. However, little is known about the relative importance of each type of plant defence, especially in the same species. Using the myrmecophyte Triplaris americana (both with and without ants), and the congeneric non-myrmecophyte T. gardneriana, we tested whether ant defence is more effective than other defences of naturally ant-free myrmecophytes and the non-myrmecophyte congeneric species, all spatially co-occurring. In addition, we investigated how plant traits vary among plant groups, and how these traits modulate herbivory. We sampled data on leaf area loss and plant traits from these tree groups in the Brazilian Pantanal floodplain, and found that herbivory is sixfold lower in plants with ants than in ant-free plants, supporting a major role of biotic defences against herbivory. Whereas ant-free plants had more physical defences (sclerophylly and trichomes), they had little effect on herbivory-only sclerophylly modulated herbivory, but with opposite effects depending on ants' presence and species identity. Despite little variation in the chemicals among plant groups, tannin concentrations and δ13C signatures negatively affected herbivory in T. americana plants with ants and in T. gardneriana, respectively. We showed that ant defence in myrmecophytic systems is the most effective against herbivory, as the studied plants could not fully compensate the lack of this biotic defence. We highlight the importance of positive insect-plant interactions in limiting herbivory, and therefore potentially plant fitness.
Collapse
Affiliation(s)
- Inácio José de Melo Teles E Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
- Programa de Pós-Graduação Em Ecologia, Conservação E Manejo da Fauna Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Programa de Pós-Graduação em Ecologia, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - Matheus Oliveira Neves
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso. Cuiabá, Cuiabá, MT, 78060-900, Brazil
| | - Lucas Navarro Paolucci
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
17
|
Queiroz EA, Schoereder JH, Cornelissen TG, Brando PM, Maracahipes L, Paolucci LN. Reduced predation by arthropods and higher herbivory in burned Amazonian forests. Biotropica 2022. [DOI: 10.1111/btp.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Elenir Aparecida Queiroz
- Programa de Pós‐Graduação em Ecologia, Departamento de Biologia Geral Universidade Federal de Viçosa Viçosa MG Brazil
| | | | - Tatiana Garabini Cornelissen
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais Instituto de Ciências Biológicas Belo Horizonte MG Brazil
| | - Paulo Monteiro Brando
- Instituto de Pesquisa Ambiental da Amazônia Brasília DF Brazil
- Department of Earth System University of California Irvine California USA
| | - Leandro Maracahipes
- Instituto de Pesquisa Ambiental da Amazônia Brasília DF Brazil
- Instituto de Biologia Universidade Estadual de Campinas Campinas SP Brazil
| | | |
Collapse
|
18
|
Branson DH. Grasshopper feeding preference affects cascading effects of predators on plant biomass in a mixed-grass prairie. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Pérez-Méndez N, Fernández MM, van Doorn L, Català-Forner MM, Martínez L, Garibaldi LA. Bottom-up effects of woodland eutrophication: Interacting limiting nutrients determine herbivory frequency in northwestern Patagonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151608. [PMID: 34774949 DOI: 10.1016/j.scitotenv.2021.151608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Nutrient enrichment disrupts plant-animal interactions and ecosystem functioning globally. In woodland systems, the mechanisms of bottom-up turnover on plant-herbivore interactions remain understudied. Here, we performed a full-factorial field experiment to evaluate the interactive effects of nutrient addition (nitrogen, phosphorus, and/or potassium) on the assemblage of foliar herbivores and the interaction frequency with Berberis microphylla, a dominant shrub species in Patagonian woodlands. Additionally, we assessed whether these effects could be mediated by changes in vegetative traits and microhabitat characteristics (i.e., canopy cover) that may ultimately influence the foraging behavior of herbivores. The addition of nitrogen reduced the herbivory frequency by 41%, yet this effect was diluted in the presence of potassium. We found no effects of phosphorus addition. Our results suggest that the impact of multiple nutrient additions (N and K) on herbivory patterns could be mediated by changes in two important foliar traits, leaf size and leaf density. This study shows how multiple nutrient addition can change the magnitude of antagonistic plant-animal interactions in woodlands. Since herbivory by arthropods has a relevant role in net primary productivity, our results highlight the importance of buffering human-driven woodland eutrophication to maintain important ecological functions (e.g., herbivory) associated with antagonistic plant-animal interactions and avoiding ecosystem dysfunction.
Collapse
Affiliation(s)
- N Pérez-Méndez
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Amposta, Carretera de Balada, Km1, 43870 Amposta, Tarragona, Spain.
| | - M M Fernández
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina; Dept. of Ecosystem Sciences and Management, The Pennsylvania State University, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - L van Doorn
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina; Wageningen University & Research, Plant Ecology and Nature Conservation Group, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - M M Català-Forner
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Amposta, Carretera de Balada, Km1, 43870 Amposta, Tarragona, Spain
| | - L Martínez
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
| | - L A Garibaldi
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
| |
Collapse
|
20
|
Lima JS, Leite GLD, Guanabens PFS, Soares MA, Silva JL, Mota MVS, Lemes PG, Zanuncio JC. Insects and spiders on Acacia mangium (Fabaceae) saplings as bioindicators for the recovery of tropical degraded areas. BRAZ J BIOL 2021; 84:e252088. [PMID: 34755814 DOI: 10.1590/1519-6984.252088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Acacia mangium is a pioneer species with fast growth and frequently used in the recovery of degraded areas. The objectives were to evaluate insects and spiders, their ecological indices and interactions on A. mangium saplings in a tropical degraded area in recovering process. The experimental design was completely randomized with 24 replications, with treatments represented by the first and second years after A. mangium seedling planted. Numbers of leaves/branch, branches/sapling, and ground cover by A. mangium saplings, Hemiptera: Phenacoccus sp. and Pachycoris torridus; Hymenoptera: Tetragonisca angustula and Trigona spinipes, Brachymyrmex sp., Camponotus sp. and Cephalotes sp.; Blattodea: Nasutitermes sp. and Neuroptera: Chrysoperla sp.; abundance, species richness of pollinating insects, tending ants, and the abundance of Sternorrhyncha predators were greatest in the second year after planting. Numbers of Hemiptera: Aethalium reticulatum, Hymenoptera: Camponotus sp., Cephalotes sp., Polybia sp., T. angustula, T. spinipes, tending ants, pollinating insects, Sternorrhyncha predators and species richness of tending ants were highest on A. mangium saplings with greatest numbers of leaves or branches. The increase in the population of arthropods with ground cover by A. mangium saplings age increase indicates the positive impact by this plant on the recovery process of degraded areas.
Collapse
Affiliation(s)
- J S Lima
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - G L D Leite
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - P F S Guanabens
- Instituto Federal de Minas Gerais - IFMG, Campus de São João Evangelista, São João Evangelista, MG, Brasil
| | - M A Soares
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Diamantina, MG, Brasil
| | - J L Silva
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - M V S Mota
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - P G Lemes
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - J C Zanuncio
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/BIOAGRO, Viçosa, MG, Brasil
| |
Collapse
|
21
|
Kamali S, Javadmanesh A, Stelinski LL, Kyndt T, Seifi A, Cheniany M, Zaki-Aghl M, Hosseini M, Heydarpour M, Asili J, Karimi J. Beneficial worm allies warn plants of parasite attack below-ground and reduce above-ground herbivore preference and performance. Mol Ecol 2021; 31:691-712. [PMID: 34706125 DOI: 10.1111/mec.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Antagonistic interactions among different functional guilds of nematodes have been recognized for quite some time, but the underlying explanatory mechanisms are unclear. We investigated responses of tomato (Solanum lycopersicum) to two functional guilds of nematodes-plant parasite (Meloidogyne javanica) and entomopathogens (Heterorhabditis bacteriophora, Steinernema feltiae below-ground, and S. carpocapsae)-as well as a leaf mining insect (Tuta absoluta) above-ground. Our results indicate that entomopathogenic nematodes (EPNs): (1) reduced root knot nematode (RKN) infestation below-ground, (2) reduced herbivore (T. absoluta) host preference and performance above-ground, and (3) induced overlapping plant defence responses by rapidly activating polyphenol oxidase and guaiacol peroxidase activity in roots, but simultaneously suppressing this activity in above-ground tissues. Concurrently, we investigated potential plant signalling mechanisms underlying these interactions using transcriptome analyses. We found that both entomopathogens and plant parasites triggered immune responses in plant roots with shared gene expression. Secondary metabolite transcripts induced in response to the two nematode functional guilds were generally overlapping and showed an analogous profile of regulation. Likewise, we show that EPNs modulate plant defence against RKN invasion, in part, by suppressing active expression of antioxidant enzymes. Inoculations of roots with EPN triggered an immune response in tomato via upregulated phenylpropanoid metabolism and synthesis of protease inhibitors in plant tissues, which may explain decreased egg laying and developmental performance exhibited by herbivores on EPN-inoculated plants. Furthermore, changes induced in the volatile organic compound-related transcriptome indicated that M. javanica and/or S. carpocapsae inoculation of plants triggered both direct and indirect defences. Our results support the hypothesis that plants "mistake" subterranean EPNs for parasites, and these otherwise beneficial worms activate a battery of plant defences associated with systemic acquired resistance and/or induced systemic resistance with concomitant antagonistic effects on temporally co-occurring subterranean plant pathogenic nematodes and terrestrial herbivores.
Collapse
Affiliation(s)
- Shokoofeh Kamali
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaki-Aghl
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Hosseini
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Siewert MB, Olofsson J. UAV reveals substantial but heterogeneous effects of herbivores on Arctic vegetation. Sci Rep 2021; 11:19468. [PMID: 34593844 PMCID: PMC8484448 DOI: 10.1038/s41598-021-98497-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Understanding how herbivores shape plant biomass and distribution is a core challenge in ecology. Yet, the lack of suitable remote sensing technology limits our knowledge of temporal and spatial impacts of mammal herbivores in the Earth system. The regular interannual density fluctuations of voles and lemmings are exceptional with their large reduction of plant biomass in Arctic landscapes during peak years (12-24%) as previously shown at large spatial scales using satellites. This provides evidence that herbivores are important drivers of observed global changes in vegetation productivity. Here, we use a novel approach with repeated unmanned aerial vehicle (UAV) flights, to map vegetation impact by rodents, indicating that many important aspects of vegetation dynamics otherwise hidden by the coarse resolution of satellite images, including plant-herbivore interactions, can be revealed using UAVs. We quantify areas impacted by rodents at four complex Arctic landscapes with very high spatial resolution UAV imagery to get a new perspective on how herbivores shape Arctic ecosystems. The area impacted by voles and lemmings is indeed substantial, larger at higher altitude tundra environments, varies between habitats depending on local snow cover and plant community composition, and is heterogeneous even within habitats at submeter scales. Coupling this with spectral reflectance of vegetation (NDVI), we can show that the impact on central ecosystem properties like GPP and biomass is stronger than currently accounted for in Arctic ecosystems. As an emerging technology, UAVs will allow us to better disentangle important information on how herbivores maintain spatial heterogeneity, function and diversity in natural ecosystems.
Collapse
Affiliation(s)
- Matthias B. Siewert
- grid.12650.300000 0001 1034 3451Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Johan Olofsson
- grid.12650.300000 0001 1034 3451Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
McCary MA, Schmitz OJ. Invertebrate functional traits and terrestrial nutrient cycling: Insights from a global meta-analysis. J Anim Ecol 2021; 90:1714-1726. [PMID: 33782983 DOI: 10.1111/1365-2656.13489] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
Abstract
Functional traits are useful for characterizing variation in community and ecosystem dynamics. Most advances in trait-based ecology to date centre on plant functional traits, although there is an increasing recognition that animal traits are also key contributors to processes operating at the community or ecosystem scale. Terrestrial invertebrates are incredibly diverse and ubiquitous animals with important roles in nutrient cycling. Despite their widespread influence on ecosystem processes, we currently lack a synthetic understanding of how invertebrate functional traits affect terrestrial nutrient cycling. We present a meta-analysis of 511 paired observations from 122 papers that examined how invertebrate functional traits affected litter decomposition rates, nitrogen pools and litter C:N ratios. Based on the available data, we specifically assessed the effects of feeding mode (bioturbation, detritus shredding, detritus grazing, leaf chewing, leaf piercing, ambush predators, active hunting predators) and body size (macro- and micro-invertebrates) on nutrient cycling. The effects of invertebrates on terrestrial nutrient cycling varied according to functional trait. The inclusion of both macro- (≥2 mm) and micro-invertebrates (<2 mm) increased litter decomposition by 20% and 19%, respectively. All detritivorous feeding modes enhanced litter decomposition rates, with bioturbators, detritus shredders and detritus grazers increasing decomposition by 28%, 22% and 15%, respectively. Neither herbivore feeding mode (e.g. leaf chewers and leaf piercers) nor predator hunting mode (ambush and active hunting) affected decomposition. We also revealed that bioturbators and detritus grazers increased soil nitrogen availability by 99% and 70%, respectively, and that leaf-chewing herbivores had a weak effect on litterfall stoichiometry via reducing C:N ratios by 11%. Although functional traits might be useful predictors of ecosystem processes, our findings suggest context-dependent effects of invertebrate traits on terrestrial nutrient cycling. Detritivore functional traits (i.e. bioturbators, detritus shredders and detritus grazers) are more consistent with increased rates of nutrient cycling, whereas our currently characterized predator and herbivore traits are less predictive. Future research is needed to identify, standardize and deliberately study the impacts of invertebrate functional traits on nutrient cycling in hopes of revealing the key functional traits governing ecosystem functioning worldwide.
Collapse
|
24
|
Martínez-Crego B, Prado P, Marco-Méndez C, Fernández-Torquemada Y, Espino F, Sánchez-Lizaso JL, de la Ossa JA, Vilella DM, Machado M, Tuya F. Driving factors of biogeographical variation in seagrass herbivory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143756. [PMID: 33333301 DOI: 10.1016/j.scitotenv.2020.143756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Despite the crucial role of herbivory in shaping community assembly, our understanding on biogeographical patterns of herbivory on seagrasses is limited compared to that on terrestrial plants. In particular, the drivers of such patterns remain largely unexplored. Here, we used a comparative-experimental approach in Cymodocea nodosa meadows, across all possible climate types within the seagrass distribution, 2000 km and 13° of latitude in two ocean basins, to investigate biogeographical variation in seagrass herbivory intensity and their drivers during July 2014. Particularly, the density and richness of herbivores and their food resources, seagrass size, carbon and nitrogen content, as well as latitude, sea surface temperature, salinity, chlorophyll, and sediment grain size, were tested as potential drivers. We found that shallow meadows can be subjected to intense herbivory, with variation in herbivory largely explained by fish density, seagrass size, and annual sea temperature range. The herbivorous fish density was the most important determinant of such variation, with the dominant seagrass consumer, the fish Sarpa salpa, absent at meadows from regions with low herbivory. In temperate regions where herbivorous fish are present, annual temperature ranges drive an intense summer herbivory, which is likely mediated not only by increased herbivore metabolic demands at higher temperatures, but also by higher fish densities. Invertebrate grazing (mainly by sea urchins, isopods, amphipods, and/or gastropods) was the dominant leaf herbivory in some temperate meadows, with grazing variation mainly influenced by seagrass shoot size. At the subtropical region (under reduced annual temperature range), lower shoot densities and seagrass nitrogen contents contributed to explain the almost null herbivory. We evidenced the combined influence of drivers acting at geographic (region) and local (meadow) scales, the understanding of which is critical for a clear prediction of variation in seagrass herbivory intensity across biogeographical regions.
Collapse
Affiliation(s)
| | - Patricia Prado
- IRTA-Institute of Research and Technology in Food and Agriculture, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Candela Marco-Méndez
- Center for Advanced Studies of Blanes (CEAB, CSIC), Carrer Accés Cala Sant Francesc, 14, 17300 Blanes, Girona, Spain
| | - Yolanda Fernández-Torquemada
- Department of Marine Science and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Fernando Espino
- Grupo en Biodiversidad y Conservación, IU-Ecoaqua, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose Luis Sánchez-Lizaso
- Department of Marine Science and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Jose Antonio de la Ossa
- Department of Marine Science and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - David Mateu Vilella
- IRTA-Institute of Research and Technology in Food and Agriculture, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Margarida Machado
- University of Algarve (UAlg-CCMAR), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-Ecoaqua, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
25
|
Wang D, Nkurunziza V, Barber NA, Zhu H, Wang J. Introduced ecological engineers drive behavioral changes of grasshoppers, consequently linking to its abundance in two grassland plant communities. Oecologia 2021; 195:1007-1018. [PMID: 33625579 DOI: 10.1007/s00442-021-04880-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
Introduced ecosystem engineers are expected to have extensive ecological impacts on a broad range of resident biota by altering the physical-chemical structure of ecosystems. Livestock that are potentially important introduced ecosystem engineers in grassland systems could create and/or modify habitats for native plant-dwelling insects. Yet, there is little knowledge of how insects respond to engineering effects of introduced livestock. To bridge this gap, we tested how domestic sheep affects the behavior and abundance of a native grasshopper Euchorthippus unicolor at both low (11.8 ± 0.4 plant species per plot) and high (19.8 ± 0.5 plant species per plot) diversity sites. Results found grasshoppers shifted their resting and feeding locations from the upper to the intermediate or low layers of vegetation, and fed on more plants species following livestock engineering effects. In the low plant diversity habitats, grazing caused grasshoppers to increase switching frequency, spend more time searching for host plants, and reduce time spent feeding, but had opposite effects on all the three behaviors in the high-diversity habitats. Moreover, grazing engineering effects on behavioral changes of grasshoppers were potentially related to their abundance. Overall, this study highlights native insect species' behavior and abundance in responses to introduced ecological engineers, and suggests that ecosystem engineers of non-native species have strong and important impacts extending beyond their often most obvious and frequently documented direct ecological effects.
Collapse
Affiliation(s)
- Deli Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Venuste Nkurunziza
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Hui Zhu
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China. .,School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Jingting Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| |
Collapse
|
26
|
Nopp-Mayr U, Reimoser S, Reimoser F, Sachser F, Obermair L, Gratzer G. Analyzing long-term impacts of ungulate herbivory on forest-recruitment dynamics at community and species level contrasting tree densities versus maximum heights. Sci Rep 2020; 10:20274. [PMID: 33219306 PMCID: PMC7679395 DOI: 10.1038/s41598-020-76843-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
Herbivores are constitutive elements of most terrestrial ecosystems. Understanding effects of herbivory on ecosystem dynamics is thus a major, albeit challenging task in community ecology. Effects of mammals on plant communities are typically explored by comparing plant densities or diversity in exclosure experiments. This might over-estimate long-term herbivore effects at community levels as early life stage mortality is driven by a multitude of factors. Addressing these challenges, we established a set of 100 pairs of ungulate exclosures and unfenced control plots (25 m2) in mixed montane forests in the Alps in 1989 covering a forest area of 90 km2. Investigations ran until 2013. Analogous to the gap-maker–gap-filler approach, dynamically recording the height of the largest trees per tree species in paired plots with and without exclosures might allow for assessing herbivore impacts on those individuals with a high probability of attaining reproductive stages. We thus tested if recording maximum heights of regenerating trees would better reflect effects of ungulate herbivory on long-term dynamics of tree regeneration than recording of stem density, and if species dominance patterns would shift over time. For quantifying the effects of ungulate herbivory simultaneously at community and species level we used principle response curves (PRC). PRCs yielded traceable results both at community and species level. Trajectories of maximum heights yielded significant results contrary to trajectories of total stem density. Response patterns of tree species were not uniform over time: e.g., both Norway spruce and European larch switched in their response to fencing. Fencing explained about 3% of the variance of maximum tree heights after nine years but increased to about 10% after 24 years thus confirming the importance of long-term surveys. Maximum height dynamics of tree species, addressed in our study, can thus reflect local dominance of tree species via asymmetric plant competition. Such effects, both within and among forest patches, can accrue over time shaping forest structure and composition.
Collapse
Affiliation(s)
- Ursula Nopp-Mayr
- Department of Integrative Biology and Biodiversity Research, Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180, Vienna, Austria.
| | - Susanne Reimoser
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Friedrich Reimoser
- Department of Integrative Biology and Biodiversity Research, Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180, Vienna, Austria.,Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Frederik Sachser
- Department of Integrative Biology and Biodiversity Research, Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Leopold Obermair
- Department of Integrative Biology and Biodiversity Research, Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180, Vienna, Austria.,Hunting Association of Lower Austria, Wickenburggasse 3, 1080, Vienna, Austria
| | - Georg Gratzer
- Department of Forest- and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Peter Jordan-Straße 82, 1190, Vienna, Austria
| |
Collapse
|
27
|
Aboveground Biomass Distribution in a Multi-Use Savannah Landscape in Southeastern Kenya: Impact of Land Use and Fences. LAND 2020. [DOI: 10.3390/land9100381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Savannahs provide valuable ecosystem services and contribute to continental and global carbon budgets. In addition, savannahs exhibit multiple land uses, e.g., wildlife conservation, pastoralism, and crop farming. Despite their importance, the effect of land use on woody aboveground biomass (AGB) in savannahs is understudied. Furthermore, fences used to reduce human–wildlife conflicts may affect AGB patterns. We assessed AGB densities and patterns, and the effect of land use and fences on AGB in a multi-use savannah landscape in southeastern Kenya. AGB was assessed with field survey and airborne laser scanning (ALS) data, and a land cover map was developed using Sentinel-2 satellite images in Google Earth Engine. The highest woody AGB was found in riverine forest in a conservation area and in bushland outside the conservation area. The highest mean AGB density occurred in the non-conservation area with mixed bushland and cropland (8.9 Mg·ha−1), while the lowest AGB density (2.6 Mg·ha−1) occurred in overgrazed grassland in the conservation area. The largest differences in AGB distributions were observed in the fenced boundaries between the conservation and other land-use types. Our results provide evidence that conservation and fences can create sharp AGB transitions and lead to reduced AGB stocks, which is a vital role of savannahs as part of carbon sequestration.
Collapse
|
28
|
Start D. Phenotypic plasticity and community composition interactively shape trophic interactions. OIKOS 2020. [DOI: 10.1111/oik.07194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Denon Start
- Center for Population Biology, Univ. of California Davis 1 Shields Avenue Davis CA 95616 USA
| |
Collapse
|
29
|
Below-ground herbivory mitigates biomass loss from above-ground herbivory of nitrogen fertilized plants. Sci Rep 2020; 10:12752. [PMID: 32728034 PMCID: PMC7391681 DOI: 10.1038/s41598-020-69696-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Herbivorous insects can influence grassland ecosystem functions in several ways, notably by altering primary production and nutrient turnover. Interactions between above- and belowground herbivory could affect these functions; an effect that might be modified by nitrogen (N) addition, an important global change driver. To explore this, we added above- (grasshoppers) and belowground (wireworms) insect herbivores and N into enclosed, equally composed, grassland plant communities in a fully factorial field experiment. N addition substantially altered the impact of above- and belowground herbivory on ecosystem functioning. Herbivory and N interacted such that biomass was reduced under above ground herbivory and high N input, while plant biomass remained stable under simultaneous above- and belowground herbivory. Aboveground herbivory lowered nutrient turnover rate in the soil, while belowground herbivory mitigated the effect of aboveground herbivory. Soil decomposition potential and N mineralization rate were faster under belowground herbivory at ambient N, but at elevated N this effect was only observed when aboveground herbivores were also present. We found that N addition does not only influence productivity directly (repeatedly shown by others), but also appears to influence productivity by herbivory mediated effects on nutrient dynamics, which highlights the importance of a better understanding of complex biotic interactions.
Collapse
|
30
|
Guiliano SM, Karr CM, Sommer NR, Buchkowski RW. Woodlice change the habitat use of spiders in a different food chain. PeerJ 2020; 8:e9184. [PMID: 32547862 PMCID: PMC7271883 DOI: 10.7717/peerj.9184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background In old field systems, the common woodlouse may have an indirect effect on a nursery web spider. Woodlice and nursery web spiders feed in different food chains, yet previous work demonstrated that the presence of woodlice is correlated with higher predation success by nursery web spiders upon their grasshopper prey. This finding suggested a new hypothesis which links two seemingly disparate food chains: when woodlice are present, the spider predator or the grasshopper prey changes their location in the vegetative canopy in a way that increases their spatial overlap and therefore predation rate. However, warming temperatures may complicate this phenomenon. The spider cannot tolerate thermal stress, meaning warming temperatures may cause the spider to move downwards in the vegetative canopy or otherwise alter its response to woodlice. Therefore, we would expect warming and woodlice presence to have an interactive effect on predation rate. Methods We conducted behavioral experiments in 2015, 2017, and 2018 to track habitat domains-the use of the vegetative canopy space by grasshoppers and spiders-in experimental cages. Then, we used three models of spider movement to try to explain the response of spiders to woodlice: expected net energy gain, signal detection theory, and individual-based modelling. Results Habitat domain observations revealed that spiders shift upward in the canopy when woodlice are present, but the corresponding effect on grasshopper prey survival was variable over the different years of study. Under warming conditions, spiders remained lower in the canopy regardless of the presence of woodlice, suggesting that thermal stress is more important than the effect of woodlice. Our modelling results suggest that spiders do not need to move away from woodlice to maximize net energy gain (expected net energy gain and signal detection theory models). Instead spider behavior is consistent with the null hypothesis that they move away from unsuccessful encounters with woodlice (individual-based simulation). We conclude that mapping how predator behavior changes across biotic (e.g. woodlouse presence) and abiotic conditions (e.g. temperature) may be critical to anticipate changes in ecosystem dynamics.
Collapse
Affiliation(s)
| | - Cerina M Karr
- Northeastern University, Boston, MA, United States of America
| | - Nathalie R Sommer
- School of Forestry & Environmental Studies, Yale University, New Haven, CT, United States of America
| | - Robert W Buchkowski
- School of Forestry & Environmental Studies, Yale University, New Haven, CT, United States of America.,Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
31
|
Scott JJ, Adam TC, Duran A, Burkepile DE, Rasher DB. Intestinal microbes: an axis of functional diversity among large marine consumers. Proc Biol Sci 2020; 287:20192367. [PMID: 32228407 PMCID: PMC7209056 DOI: 10.1098/rspb.2019.2367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microbes are ubiquitous throughout the world's oceans, yet the manner and extent of their influence on the ecology and evolution of large, mobile fauna remains poorly understood. Here, we establish the intestinal microbiome as a hidden, and potentially important, 'functional trait' of tropical herbivorous fishes-a group of large consumers critical to coral reef resilience. Using field observations, we demonstrate that five common Caribbean fish species display marked differences in where they feed and what they feed on. However, in addition to space use and feeding behaviour-two commonly measured functional traits-we find that interspecific trait differences are even more pronounced when considering the herbivore intestinal microbiome. Microbiome composition was highly species specific. Phylogenetic comparison of the dominant microbiome members to all known microbial taxa suggest that microbiomes are comprised of putative environmental generalists, animal-associates and fish specialists (resident symbionts), the latter of which mapped onto host phylogeny. These putative symbionts are most similar to-among all known microbes-those that occupy the intestines of ecologically and evolutionarily related herbivorous fishes in more distant ocean basins. Our findings therefore suggest that the intestinal microbiome may be an important functional trait among these large-bodied consumers.
Collapse
Affiliation(s)
- Jarrod J Scott
- Smithsonian Tropical Research Institute, Balboa, República de Panamá, University of California, Santa Barbara, CA 93106, USA
| | - Thomas C Adam
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Alain Duran
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| |
Collapse
|
32
|
Pan D, Li X, De K, Wang L, Wang D, Guo Q, Gao C, Zhong Z, Zhu H, Shen Z, Seastedt TR. Food and habitat provisions jointly determine competitive and facilitative interactions among distantly related herbivores. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Duofeng Pan
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Environment Northeast Normal University Changchun China
- Institute of Forage and Grassland Sciences Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Xincheng Li
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Environment Northeast Normal University Changchun China
| | - Kejia De
- Qinghai Academy of Animal Science and Veterinary Medicine Qinghai University Xining China
| | - Ling Wang
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Environment Northeast Normal University Changchun China
| | - Deli Wang
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Environment Northeast Normal University Changchun China
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center US Department of Agriculture Forest ServiceResearch Triangle Park NC USA
| | - Chao Gao
- Institute of Forage and Grassland Sciences Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Zhiwei Zhong
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Environment Northeast Normal University Changchun China
| | - Hui Zhu
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Environment Northeast Normal University Changchun China
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences Heilongjiang Academy of Agricultural Sciences Harbin China
| | - Timothy R. Seastedt
- Department of Ecology and Evolutionary Biology Institute of Arctic and Alpine Research University of Colorado Boulder CO USA
| |
Collapse
|
33
|
Bubnicki JW, Churski M, Schmidt K, Diserens TA, Kuijper DPJ. Linking spatial patterns of terrestrial herbivore community structure to trophic interactions. eLife 2019; 8:e44937. [PMID: 31577225 PMCID: PMC6805123 DOI: 10.7554/elife.44937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/13/2019] [Indexed: 01/05/2023] Open
Abstract
Large herbivores influence ecosystem functioning via their effects on vegetation at different spatial scales. It is often overlooked that the spatial distribution of large herbivores results from their responses to interacting top-down and bottom-up ecological gradients that create landscape-scale variation in the structure of the entire community. We studied the complexity of these cascading interactions using high-resolution camera trapping and remote sensing data in the best-preserved European lowland forest, Białowieża Forest, Poland. We showed that the variation in spatial distribution of an entire community of large herbivores is explained by species-specific responses to both environmental bottom-up and biotic top-down factors in combination with human-induced (cascading) effects. We decomposed the spatial variation in herbivore community structure and identified functionally distinct landscape-scale herbivory regimes ('herbiscapes'), which are predicted to occur in a variety of ecosystems and could be an important mechanism creating spatial variation in herbivory maintaining vegetation heterogeneity.
Collapse
Affiliation(s)
| | - Marcin Churski
- Mammal Research Institute, Polish Academy of SciencesBiałowieżaPoland
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of SciencesBiałowieżaPoland
| | - Tom A Diserens
- Mammal Research Institute, Polish Academy of SciencesBiałowieżaPoland
| | - Dries PJ Kuijper
- Mammal Research Institute, Polish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
34
|
Njovu HK, Peters MK, Schellenberger Costa D, Brandl R, Kleyer M, Steffan-Dewenter I. Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro, Tanzania. J Anim Ecol 2019; 88:1777-1788. [PMID: 31294458 DOI: 10.1111/1365-2656.13058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/03/2019] [Indexed: 11/27/2022]
Abstract
Temperature, primary productivity, plant functional traits, and herbivore abundances are considered key predictors of leaf herbivory but their direct and indirect contributions to community-level herbivory are not well understood along broad climatic gradients. Here, we determined elevational herbivory patterns and used a path analytical approach to disentangle the direct and indirect effects of climate, land use, net primary productivity (NPP), herbivore abundance, and plant functional traits on community-level invertebrate herbivory along the extensive elevational and land use gradients at Mt. Kilimanjaro, Tanzania. We recorded standing leaf herbivory caused by leaf chewers, leaf miners and leaf gallers on 55 study sites distributed in natural and anthropogenic habitats along a 3,060 m elevation gradient. We related the total community-level herbivory to climate (temperature and precipitation), NPP, plant functional traits (specific leaf area, leaf carbon-to-nitrogen [CN] ratio and leaf nitrogen-to-phosphorus [NP] ratio) and herbivore abundances. Leaf herbivory ranged from 5% to 11% along the elevation gradient. Total leaf herbivory showed unimodal pattern in natural habitats but a strongly contrasting bimodal pattern in anthropogenic habitats. We also detected some variation in the patterns of leaf herbivory along environmental gradients across feeding guilds with leaf chewers being responsible for a disproportionally large part of herbivory. Path analyses indicated that the variation in leaf herbivory was mainly driven by changes in leaf CN and NP ratios which were closely linked to changes in NPP in natural habitats. Similarly, patterns of leaf herbivory in anthropogenic habitats were best explained by variation in leaf CN ratios and a negative effect of land use. Our study elucidates the strong role of leaf nutrient stoichiometry and its linkages to climate and NPP for explaining the variation in leaf herbivory along broad climatic gradients. Furthermore, the study suggests that climatic changes and nutrient inputs in the course of land use change may alter leaf herbivory and consequently energy and nutrient fluxes in terrestrial habitats.
Collapse
Affiliation(s)
- Henry K Njovu
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,College of African Wildlife Management, Mweka, Moshi, Tanzania
| | - Marcell K Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | - Roland Brandl
- Department of Animal Ecology, University of Marburg, Marburg, Germany
| | - Michael Kleyer
- Institute of Biology and Environmental Sciences, University Oldenburg, Oldenburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
35
|
Espunyes J, Lurgi M, Büntgen U, Bartolomé J, Antonio Calleja J, Gálvez-Cerón A, Peñuelas J, Claramunt-López B, Serrano E. Different effects of alpine woody plant expansion on domestic and wild ungulates. GLOBAL CHANGE BIOLOGY 2019; 25:1808-1819. [PMID: 30737872 PMCID: PMC6522367 DOI: 10.1111/gcb.14587] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Changes in land-use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species-specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land-use practices and climate conditions.
Collapse
Affiliation(s)
- Johan Espunyes
- Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Lurgi
- Centre for Biodiversity Theory and Modelling. Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, Moulis, France
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, UK
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Global Change Research Centre (CzechGlobe), Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jordi Bartolomé
- Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelon, Barcelona, Spain
| | - Juan Antonio Calleja
- Unitat de botánica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain
| | - Arturo Gálvez-Cerón
- Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
- Facultad de ciencias pecuarias, Universidad de Nariño, Pasto, Colombia
| | - Josep Peñuelas
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bernat Claramunt-López
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Edifici Ciències, Bellaterra Catalunya, Spain
- Unitat d’Ecologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Edifici Ciències, Bellaterra Catalunya, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Vicari M, Puentes A, Granath G, Georgeff J, Strathdee F, Bazely DR. Unpacking multi-trophic herbivore-grass-endophyte interactions: feedbacks across different scales in vegetation responses to Soay sheep herbivory. Naturwissenschaften 2018; 105:66. [PMID: 30460621 PMCID: PMC6244524 DOI: 10.1007/s00114-018-1590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/26/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
Grazing can induce changes in both plant productivity and nutritional quality, which may subsequently influence herbivore carrying capacity. While research on Soay sheep (Ovis aries L.) dynamics on Hirta Island in the St. Kilda archipelago has elucidated the complexity of population drivers, including parasites, the role of herbivore-generated feedbacks as an intrinsic regulating factor remains unclear. The sheep lack large predators and every 3-9 years undergo population crashes (overcompensatory mortality). We investigated the effects of grazing on (1) sward productivity and (2) quality (toxicity) of the primary forage species, red fescue (Festuca rubra L.), which is highly infected by an alkaloid-synthesizing fungal endophyte. Grazing had a negative impact on both forage quantity and quality. At higher sheep densities, impacts on sward growth were magnified, resulting in a nonlinear relationship with plant productivity. Simultaneously, endophyte hyphal load (and by inference, toxicity) peaked close to the time of a crash. A greenhouse experiment showed that alkaloid concentration in F. rubra increased in response to artificial defoliation. We conclude that at high sheep densities, grazing-mediated reductions in productivity, together with sustained alkaloid production, are likely to influence sheep dynamics. Future research should consider the interactive effects of forage toxicity, quantity, and nutritional content.
Collapse
Affiliation(s)
- Mark Vicari
- Department of Biology, York University, 4700 Keele St., Toronto, ON, Canada.
| | - Adriana Puentes
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07, Uppsala, Sweden
| | - Gustaf Granath
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Jennifer Georgeff
- Department of Biology, York University, 4700 Keele St., Toronto, ON, Canada
| | - Fiona Strathdee
- Department of Biology, York University, 4700 Keele St., Toronto, ON, Canada
| | - Dawn R Bazely
- Department of Biology, York University, 4700 Keele St., Toronto, ON, Canada
| |
Collapse
|
37
|
Ecological Role of an Apex Predator Revealed by a Reintroduction Experiment and Bayesian Statistics. Ecosystems 2018. [DOI: 10.1007/s10021-018-0269-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Kersch-Becker MF, Grisolia BB, Campos MJO, Romero GQ. The role of spider hunting mode on the strength of spider–plant mutualisms. Oecologia 2018; 188:213-222. [DOI: 10.1007/s00442-018-4170-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/16/2018] [Indexed: 01/06/2023]
|
39
|
Schuldt A, Fornoff F, Bruelheide H, Klein AM, Staab M. Tree species richness attenuates the positive relationship between mutualistic ant-hemipteran interactions and leaf chewer herbivory. Proc Biol Sci 2018; 284:rspb.2017.1489. [PMID: 28878067 DOI: 10.1098/rspb.2017.1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/27/2022] Open
Abstract
Interactions across trophic levels influence plant diversity effects on ecosystem functions, but the complexity of these interactions remains poorly explored. For example, the interplay between different interactions (e.g. mutualism, predation) might be an important moderator of biodiversity-ecosystem function relationships. We tested for relationships between trophobioses (facultative ant-hemipteran mutualism) and leaf chewer herbivory in a subtropical forest biodiversity experiment. We analysed trophobiosis and herbivory data of more than 10 000 trees along a tree species richness gradient. Against expectations, chewing damage was higher on trees with trophobioses. However, the net positive relationship between trophobioses and overall herbivory depended on tree species richness, being most pronounced at low richness. Our results point to indirect, positive effects of ant-tended sap suckers on leaf chewers, potentially by altering plant defences. Direct antagonistic relationships of trophobiotic ants and leaf-chewing herbivores-frequently reported to drive community-wide effects of trophobioses in other ecosystems-seemed less relevant. However, antagonistic interactions likely contributed to the attenuating effect of tree species richness, because trophobiotic ant and herbivore communities changed from monocultures to species-rich mixtures. Our findings, therefore, suggest that biodiversity loss might lead to complex changes in higher trophic level effects on ecosystem functions, mediated by both trophic and non-trophic interactions.
Collapse
Affiliation(s)
- Andreas Schuldt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany .,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Felix Fornoff
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Alexandra-Maria Klein
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| | - Michael Staab
- University of Freiburg, Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, Tennenbacherstr. 4, 79106 Freiburg, Germany
| |
Collapse
|
40
|
Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall. TOPICS IN GEOBIOLOGY 2018. [DOI: 10.1007/978-3-319-68009-5_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Lurie MH, Barton KE, Daehler CC. Pre-damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii. Ecology 2017; 98:3011-3021. [DOI: 10.1002/ecy.2031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/10/2017] [Accepted: 09/11/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew H. Lurie
- Department of Botany; University of Hawai'i at Mānoa; 3190 Maile Way Room 101 Honolulu, Hawai'i 96822 USA
| | - Kasey E. Barton
- Department of Botany; University of Hawai'i at Mānoa; 3190 Maile Way Room 101 Honolulu, Hawai'i 96822 USA
| | - Curtis C. Daehler
- Department of Botany; University of Hawai'i at Mānoa; 3190 Maile Way Room 101 Honolulu, Hawai'i 96822 USA
| |
Collapse
|
42
|
Trogisch S, Schuldt A, Bauhus J, Blum JA, Both S, Buscot F, Castro-Izaguirre N, Chesters D, Durka W, Eichenberg D, Erfmeier A, Fischer M, Geißler C, Germany MS, Goebes P, Gutknecht J, Hahn CZ, Haider S, Härdtle W, He JS, Hector A, Hönig L, Huang Y, Klein AM, Kühn P, Kunz M, Leppert KN, Li Y, Liu X, Niklaus PA, Pei Z, Pietsch KA, Prinz R, Proß T, Scherer-Lorenzen M, Schmidt K, Scholten T, Seitz S, Song Z, Staab M, von Oheimb G, Weißbecker C, Welk E, Wirth C, Wubet T, Yang B, Yang X, Zhu CD, Schmid B, Ma K, Bruelheide H. Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecol Evol 2017; 7:10652-10674. [PMID: 29299246 PMCID: PMC5743643 DOI: 10.1002/ece3.3488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/27/2017] [Accepted: 09/02/2017] [Indexed: 01/30/2023] Open
Abstract
Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above- and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized.
Collapse
Affiliation(s)
- Stefan Trogisch
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Andreas Schuldt
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Jürgen Bauhus
- Chair of Silviculture Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Juliet A Blum
- Institute of Plant Sciences University of Bern Bern Switzerland
| | - Sabine Both
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Nadia Castro-Izaguirre
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | | | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Department of Community Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - David Eichenberg
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology University of Leipzig Leipzig Germany
| | - Alexandra Erfmeier
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute for Ecosystem Research/Geobotany Kiel University Kiel Germany
| | - Markus Fischer
- Institute of Plant Sciences University of Bern Bern Switzerland
| | - Christian Geißler
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Markus S Germany
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute for Ecosystem Research/Geobotany Kiel University Kiel Germany
| | - Philipp Goebes
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Jessica Gutknecht
- Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany.,Department of Soil, Water, and Climate University of Minnesota, Twin Cities Saint Paul MN USA
| | - Christoph Zacharias Hahn
- Department of Community Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Werner Härdtle
- Institute of Ecology Leuphana University of Lüneburg Lüneburg Germany
| | - Jin-Sheng He
- Department of Ecology College of Urban and Environmental Sciences Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing China
| | - Andy Hector
- Department of Plant Sciences University of Oxford Oxford UK
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Yuanyuan Huang
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Peter Kühn
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Matthias Kunz
- Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Katrin N Leppert
- Faculty of Biology University of Freiburg Geobotany, Freiburg Germany
| | - Ying Li
- Faculty of Soil and Water Conservation Beijing Forestry University Haidian District Beijing China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Zhiqin Pei
- Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | | | - Ricarda Prinz
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,Senckenberg Biodiversity and Climate Research Centre (BIK-F) Frankfurt am Main Germany
| | - Tobias Proß
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | | | - Karsten Schmidt
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Thomas Scholten
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Steffen Seitz
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Zhengshan Song
- Institute of Geography, Soil Science and Geomorphology University of Tübingen Tübingen Germany
| | - Michael Staab
- Nature Conservation and Landscape Ecology Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
| | - Goddert von Oheimb
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Christina Weißbecker
- Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Erik Welk
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology University of Leipzig Leipzig Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Department of Soil Ecology Helmholtz Centre for Environmental Research - UFZ Halle (Saale) Germany
| | - Bo Yang
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,Key Laboratory of Speciality Plant Resources of Jiangxi Province Jingdezhen University Jingdezhen China
| | - Xuefei Yang
- Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Chao-Dong Zhu
- Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle-Wittenberg Halle (Saale) Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| |
Collapse
|
43
|
The detritus-based microbial-invertebrate food web contributes disproportionately to carbon and nitrogen cycling in the Arctic. Polar Biol 2017. [DOI: 10.1007/s00300-017-2201-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Identification of host plant use of adults of a long-distance migratory insect, Mythimna separata. PLoS One 2017; 12:e0184116. [PMID: 28873457 PMCID: PMC5584948 DOI: 10.1371/journal.pone.0184116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 08/20/2017] [Indexed: 11/29/2022] Open
Abstract
Adults of many insect species often become contaminated with pollen grains when feeding. Identification of plant hosts for M. separata moths could increase our understanding of their geographic origin and the coevolution of M. separata moths and their host plants. However, identifying the diet of noctuid moths using traditional direct observation is limited by their nocturnal and flight habits. In this study, we used core barcode markers and pollen morphology to identify pollen species. We found pollen from 13 plant species belonging to nine families on trapped M. separata moths, mainly from Angiosperm, Dicotyledoneae. Pollen was found on 14.4% and 12.3% of females and males, respectively, and the amount of pollen transported varied with the body part, with the most pollen on the proboscis. We were able to determine from this that the moths visited woody plants more than herbaceous plants, but not significantly so, and that they carried more pollen earlier in the migration season. In this study, we clarified the species and frequencies of pollen deposition on M. separata moths. These findings improve our understanding of the coevolution of the moths and their host plants. Identification of plant hosts for adult moths provides a new means of studying noctuid moth-host plant interactions, and informs the development of more efficient management practices for M. separata.
Collapse
|
45
|
Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Sci Rep 2017; 7:4222. [PMID: 28652616 PMCID: PMC5484685 DOI: 10.1038/s41598-017-04619-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
Abstract
Ecosystem functioning and human well-being critically depend on numerous species interactions above- and belowground. However, unraveling the structure of multitrophic interaction webs at the ecosystem level is challenging for biodiverse ecosystems. Attempts to identify major relationships between trophic levels usually rely on simplified proxies, such as species diversity. Here, we propose to consider the full information on species composition across trophic levels, using Procrustes correlation and structural equation models. We show that species composition data of a highly diverse subtropical forest―with 5,716 taxa across 25 trophic groups― reveal strong interrelationships among plants, arthropods, and microorganisms, indicating complex multitrophic interactions. We found substantial support for top-down effects of microorganisms belowground, indicating important feedbacks of microbial symbionts, pathogens, and decomposers on plant communities. In contrast, aboveground pathways were characterized by bottom-up control of plants on arthropods, including many non-trophic links. Additional analyses based on diversity patterns revealed much weaker interrelationships. Our study suggests that multitrophic communities in our forest system are structured via top-down effects of belowground biota on plants, which in turn affect aboveground arthropod communities across trophic levels. Moreover, the study shows that the consequences of species loss will be more complex than indicated by studies based solely on diversity.
Collapse
|
46
|
Kampfraath AA, Giesen D, van Gestel CAM, Le Lann C. Pesticide stress on plants negatively affects parasitoid fitness through a bypass of their phytophage hosts. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:383-395. [PMID: 28188590 DOI: 10.1007/s10646-017-1771-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Pesticides taken up by plants from the soil or interstitial (pore) water can cascade to higher trophic levels, which are expected to be more affected due to cumulative bottom-up effects. Knowledge about the impact of indirect exposure to pesticides on non-target terrestrial trophic chains, however, is still lacking. Therefore, we examined the direct and indirect effects of three concentrations of the herbicide 2,6-dichlorobenzonitrile (DCBN) and an insecticide with a similar molecular structure (1,4-dichlorobenzene, DCB) on the fitness traits of a tritrophic system: the wheat plant Triticum aestivum, the aphid Sitobion avenae and its specialist parasitoid Aphidius rhopalosiphi. To mimic exposure via interstitial water the toxicants were added to the growth medium of the plant. Passive dosing between the medium and a silicon layer was used to achieve constant exposure of the poorly soluble pesticides. Wheat plants exposed to both pesticides grew smaller and had reduced biomasses. Negative effects on the reproductive rate, biomass and the number of aphids were only observable at the highest concentration of DCBN. Overall parasitism rate decreased when exposed to both pesticides and parasitoid attack rates decreased at lower concentrations of DCBN and at the highest DCB concentration. The parasitoid sex ratio was extremely male-biased in the presence of DCBN. Our results demonstrate that pesticides can alter the performance of higher trophic levels by sublethal effects, through a bypass of the second trophic level. In addition, the novel test system used was suitable for detecting such carryover effects on non-target organisms.
Collapse
Affiliation(s)
- Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Daniel Giesen
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
- Soil and Groundwater Systems, Deltares, Princetonlaan 6, Utrecht, 3584 CB, The Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Cécile Le Lann
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.
- University of Rennes1, UMR CNRS 6553, ECOBIO, Rennes Cedex, 35042, France.
| |
Collapse
|
47
|
Laws AN, Joern A. Density mediates grasshopper performance in response to temperature manipulation and spider predation in tallgrass prairie. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:261-267. [PMID: 27702418 DOI: 10.1017/s0007485316000894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Species interactions are often context-dependent, where outcomes require an understanding of influences among multiple biotic and abiotic factors. However, it remains unclear how abiotic factors such as temperature combine with important biotic factors such as density-dependent food limitation and predation to influence species interactions. Using a native grassland - grasshopper - wolf spider model food chain in tallgrass prairie, we conducted a manipulative field experiment to examine how predator-prey interactions respond to manipulations of temperature, grasshopper density, and food chain length. We find that grasshopper performance responses to temperature and predator treatments were density dependent. At high densities, grasshopper survival decreased with increased temperature when no spiders were present. When spiders were present, grasshopper survival was reduced, and this effect was strongest in the cooled treatment. In contrast, grasshopper survival did not vary significantly with spider presence or among temperature treatments at low grasshopper densities. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how and when key biotic and abiotic factors combine to influence species interactions.
Collapse
Affiliation(s)
- A N Laws
- Division of Biology,Kansas State University,Manhattan, KS 66506,USA
| | - A Joern
- Division of Biology,Kansas State University,Manhattan, KS 66506,USA
| |
Collapse
|
48
|
Soil nutrient additions increase invertebrate herbivore abundances, but not herbivory, across three grassland systems. Oecologia 2016; 180:485-97. [PMID: 26474567 DOI: 10.1007/s00442-015-3471-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Resource availability may influence invertebrate communities, with important consequences for ecosystem function, such as biomass production. We assessed: (1) the effects of experimental soil nutrient additions on invertebrate abundances and feeding rates and (2) the resultant changes in the effects of invertebrates on aboveground plant biomass at three grassland sites spanning the North American Central Plains, across which plant tissue chemistry and biomass vary. Invertebrate communities and rates of herbivory were sampled within a long-term nutrient-addition experiment established at each site along the broad Central Plains precipitation gradient. Additionally, the effects of invertebrates on aboveground plant biomass were determined under ambient and elevated nutrient conditions. At the more mesic sites, invertebrate herbivore abundances increased and their per capita rate of herbivory decreased with nutrient additions. In contrast, at the semi-arid site where plant biomass is low and plant nutrient concentrations are high, invertebrate herbivore abundances did not vary and per capita rates of herbivory increased with nutrient additions. No change in the effect of invertebrate herbivores on aboveground plant biomass was observed at any of the sites. In sum, nutrient additions induced shifts in both plant biomass and leaf nutrient content, which altered invertebrate abundances and feeding rate. However, due to the inverse relationship between changes in herbivore abundance and per capita rates of herbivory, nutrient additions did not alter the effect of invertebrates on aboveground biomass. Overall, we suggest that this inverse response of herbivore abundance and per capita feeding rate may buffer ecosystems against changes in invertebrate damage in response to fluctuations in nutrient levels.
Collapse
|
49
|
Digging Further into Wolf-Deer Interactions: Food Web Effects on Soil Nitrogen Availability in a Great Lakes Forest. AMERICAN MIDLAND NATURALIST 2016. [DOI: 10.1674/0003-0031-176.1.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Gravel D, Albouy C, Thuiller W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150268. [PMID: 27114571 PMCID: PMC4843690 DOI: 10.1098/rstb.2015.0268] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 11/12/2022] Open
Abstract
There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists.
Collapse
Affiliation(s)
- Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Quebec, Canada J1K 2R1 Québec Centre for Biodiversity Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Camille Albouy
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Wilfried Thuiller
- Laboratoire d'Écologie Alpine (LECA), Université de Grenoble Alpes, Grenoble 38000, France CNRS, Laboratoire d'écologie Alpine (LECA), Grenoble 38000, France
| |
Collapse
|