1
|
Mouratidis A, Le Hesran S, Dicke M, Messelink GJ. Complementarity between Orius predators improves control of foliar and flower pests. PEST MANAGEMENT SCIENCE 2025. [PMID: 40099454 DOI: 10.1002/ps.8784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/15/2025] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Multispecies natural enemy assemblages may be more successful in suppressing herbivorous pests compared to low-diversity communities, especially when natural enemies complement each other regarding the niches they exploit. Orius predatory bugs are omnivorous biological control agents used in horticulture, and are widely associated with the control of flower thrips. However, species within the Orius genus may differ significantly in biological characteristics, such as size, thermal development requirements, induction of diapause, degree of omnivory, and within-plant distribution. In this study, we explored the differences in within-plant preferences and pest-control efficacy against foliar and flower pests of the predators Orius laevigatus, O. majusculus and O. minutus. RESULTS In oviposition experiments with Gerbera jamesonii plants, we found that O. laevigatus preferred ovipositing in the flower calyx, while eggs of the other two Orius species were mainly found in the leaves. Similarly, in a greenhouse trial where gerbera plants were infested with both the western flower thrips Frankliniella occidentalis and the greenhouse whitefly Trialeurodes vaporariorum, O. laevigatus was the most effective predator against the flower thrips, but the least effective against whiteflies. When O. laevigatus was combined with O. minutus, the best control of both pests at the same time was observed. CONCLUSION Our results suggest that the use of Orius predators for pest control may be further exploited and that species combinations that complement each other may expand the range of pests successfully controlled by anthocorids. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Angelos Mouratidis
- Business Unit Greenhouse Horticulture & Flower Bulbs, Wageningen University & Research, Bleiswijk, the Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Sophie Le Hesran
- Business Unit Greenhouse Horticulture & Flower Bulbs, Wageningen University & Research, Bleiswijk, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gerben J Messelink
- Business Unit Greenhouse Horticulture & Flower Bulbs, Wageningen University & Research, Bleiswijk, the Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Ramos Aguila LC, Li X, Akutse KS, Bamisile BS, Sánchez Moreano JP, Lie Z, Liu J. Host-Parasitoid Phenology, Distribution, and Biological Control under Climate Change. Life (Basel) 2023; 13:2290. [PMID: 38137891 PMCID: PMC10744521 DOI: 10.3390/life13122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Climate change raises a serious threat to global entomofauna-the foundation of many ecosystems-by threatening species preservation and the ecosystem services they provide. Already, changes in climate-warming-are causing (i) sharp phenological mismatches among host-parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species' fitness and abundance; (ii) shifting arthropods' expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | - Jessica Paola Sánchez Moreano
- Grupo Traslacional en Plantas, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador;
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| |
Collapse
|
3
|
Alvarez-Baca JK, Montealegre X, Alfaro-Tapia A, Zepeda-Paulo F, Van Baaren J, Lavandero B, Le Lann C. Composition and Food Web Structure of Aphid-Parasitoid Populations on Plum Orchards in Chile. INSECTS 2023; 14:288. [PMID: 36975973 PMCID: PMC10051262 DOI: 10.3390/insects14030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies' diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the food web structure and composition of the aphid- parasitoid and aphid-hyperparasitoid networks in two differentially managed plum orchards: plums with inter-rows of oats as a cover crop (OCC) and plums with inter-rows of spontaneous vegetation (SV). We hypothesized that food web composition and structure vary between OCC and SV, with network specialization being higher in OCC and a more complex food web composition in SV treatment. We found a more complex food web composition with a higher species richness in SV compared to OCC. Quantitative food web metrics differed significantly among treatments showing a higher generality, vulnerability, interaction evenness, and linkage density in SV, while OCC presented a higher degree of specialization. Our results suggest that plant diversification can greatly influence the food web structure and composition, with bottom-up effects induced by plant and aphid hosts that might benefit parasitoids and provide a better understanding of the activity, abundance, and interactions between aphids, parasitoids, and hyperparasitoids in plum orchards.
Collapse
Affiliation(s)
- Jeniffer K. Alvarez-Baca
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
| | - Xiomara Montealegre
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
| | - Armando Alfaro-Tapia
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, Centro Ceres, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Francisca Zepeda-Paulo
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
- Instituto Interdisciplinario para la Innovación -I3-, Universidad de Talca, Talca 3460000, Chile
| | - Joan Van Baaren
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
| | - Blas Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
| | - Cécile Le Lann
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
| |
Collapse
|
4
|
Tomanović Ž, Kavallieratos NG, Ye Z, Nika EP, Petrović A, Vollhardt IMG, Vorburger C. Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology. INSECTS 2022; 13:1142. [PMID: 36555052 PMCID: PMC9785021 DOI: 10.3390/insects13121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid-parasitoid-hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation.
Collapse
Affiliation(s)
- Željko Tomanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Zhengpei Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China
| | - Erifili P. Nika
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Andjeljko Petrović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
| | - Ines M. G. Vollhardt
- Agroecology, Department of Crop Science, Georg-August University Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Broadley HJ, Boettner GH, Schneider B, Elkinton JS. Native generalist natural enemies and an introduced specialist parasitoid together control an invasive forest insect. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2697. [PMID: 35731934 DOI: 10.1002/eap.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Specialized natural enemies have long been used to implement the biological control of invasive insects. Although research tracking populations following biological control introductions has traditionally focused on the impact of the introduced agent, recent studies and reviews have reflected an appreciation of the complex interactions of the introduced specialist agents with native generalist natural enemies. These interactions can be neutral, antagonistic, or complementary. Here we studied the invasive defoliator winter moth (Operophtera brumata) in the Northeast USA to investigate the role of native, generalist pupal predators along with the introduced, host-specific parasitoid Cyzenis albicans. Prior research in Canada has shown that predation of winter moth pupae from native generalists increased after C. albicans was established as a biological control agent. To explain this phenomenon, the following hypotheses were suggested: (H1 ) parasitoids suppress the winter moth population to a density that can be maintained by generalist predators, (H2 ) unparasitized pupae are preferred by predators and therefore experience higher mortality rates, or (H3 ) C. albicans sustains higher predator populations throughout the year more effectively than winter moth alone. We tested these hypotheses by deploying winter moth pupae over 6 years spanning 2005 to 2017 and by modeling pupal predation rates as a function of winter moth density and C. albicans establishment. We also compared predation rates of unparasitized and parasitized pupae and considered additional mortality by a native pupal parasitoid. We found support for the first hypothesis; we detected both temporal and spatial density dependence, but only in the latter years of the study when winter moth densities were low. We found no evidence for the latter two hypotheses. Our findings suggest that pupal predators have a regulatory effect on winter moth populations only after populations have been reduced, presumably by the introduction of the host-specific parasitoid C. albicans.
Collapse
Affiliation(s)
- Hannah J Broadley
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - George H Boettner
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Brenda Schneider
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
- Biology Department, Merced College, Merced, California, USA
| | - Joseph S Elkinton
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Liu K, Yuan L, Yue L, Chen W, Kang K, Lv J, Zhang W, Pang R. Population density modulates insect progenitive plasticity through the regulation of dopamine biosynthesis. INSECT SCIENCE 2022; 29:1773-1789. [PMID: 35230747 DOI: 10.1111/1744-7917.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Insect fecundity is a quantitative phenotype strongly affected by genotypes and the environment. However, interactions between genotypes and environmental factors in modulating insect fecundity remain largely unknown. This study investigated the impact of population density on the fecundity of Nilaparvata lugens (brown planthopper; BPH) carrying homozygous high- (HFG) or low- (LFG) fecundity homozygous genotypes. Under low population densities, the fecundity and population growth rate of both genotypes showed similar increasing trends across generations, while the trends between HFG and LFG under high population densities were opposite. Through a combination of temporal analysis and weighted gene co-expression network analyses on RNA-seq data of HFG and LFG under low and high population densities in the 1st, 3rd, and 5th generations, we identified 2 gene modules that were associated with these density-dependent progenitive phenotypes. Four pathways related to the neural system were simultaneously enriched by the 2 gene modules. Furthermore, Nlpale, which encodes a tyrosine hydroxylase, was identified as a key gene. The RNA interference of this gene and manipulation of its downstream product dopamine significantly affected the basic and density-dependent progenitive phenotypes of BPH. These findings indicated that dopamine biosynthesis is the key regulatory factor that determines fecundity in response to density changes in different BPH genotypes. Thus, this study provides insights into the interaction of a typical environmental factor and insect genotype during the process of population regulation.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwen Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kui Kang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Rodrigues LR, Montserrat M, Magalhães S. Evolution in agricultural systems: Moving toward the understanding of complexity. Evol Appl 2022; 15:1483-1489. [PMID: 36330296 PMCID: PMC9624076 DOI: 10.1111/eva.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Agricultural fields are typically simplified ecosystems compared to natural sites, a characteristic that has long-attracted researchers in Ecology and Evolution. In recent years, there has been a rising interest in understanding how agricultural systems are shaped by evolution in the context of changing agricultural practices by integrating biological information of crop systems. This editorial introduces the special issue "Evolution in agricultural systems," incorporating the articles published within this issue into three general areas of research: phenotypic and genetic responses to the environment, biotic interactions and the role of microbes. Together, this body of work unveils unforeseen complexity at all levels, from microbes to trophic chains. Understanding such complexity is critical not only to better understand natural systems, but also if we wish to improve the sustainability of the food system.
Collapse
Affiliation(s)
- Leonor R. Rodrigues
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Marta Montserrat
- IHSM La Mayora‐UMA‐CSIC: Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”MálagaSpain
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| |
Collapse
|
8
|
Snyder GB, Smith OM, Chapman EG, Crossley MS, Crowder DW, Fu Z, Harwood JD, Jensen AS, Krey KL, Lynch CA, Snyder WE. Alternative prey mediate intraguild predation in the open field. PEST MANAGEMENT SCIENCE 2022; 78:3939-3946. [PMID: 35124892 DOI: 10.1002/ps.6825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Generalist predators that kill and eat other natural enemies can weaken biological control. However, pest suppression can be disrupted even if actual intraguild predation is infrequent, if predators reduce their foraging to lower their risk of being killed. In turn, predator-predator interference might be frequent when few other prey are available, but less common when herbivorous and detritus-feeding prey are plentiful. We used molecular gut-content analysis to track consumption of the predatory bug Geocoris sp. by the larger intraguild predator Nabis sp., in organic and conventional potato (Solanum tuberosum) fields. RESULTS We found that higher densities of both aphids and thrips, two common herbivores, correlated with higher probability of detecting intraguild predation. Perhaps, Nabis foraging for these herbivores also encountered and ate more Geocoris. Surprisingly, likelihood of intraguild predation was not strongly linked to densities of either Nabis or Geocoris, or farming system, suggesting a greater importance for prey than predator community structure. Intriguingly, we found evidence that Geocoris fed more often on the detritus-feeding fly Scaptomyza pallida with increasing predator evenness. This would be consistent with Geocoris shifting to greater foraging on the ground, where S. pallida would be relatively abundant, in the face of greater risk of intraguild predation. CONCLUSION Overall, our findings suggest that while herbivorous prey may heighten intraguild predation of Geocoris in the foliage, detritivores might support a shift to safer foraging on the ground. This provides further evidence that prey abundance and diversity can act to either heighten or relax predator-predator interference, depending on prey species identity and predator behavior. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gretchen B Snyder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Olivia M Smith
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Eric G Chapman
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Michael S Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Zhen Fu
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - James D Harwood
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | | | - Karol L Krey
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Christine A Lynch
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Tena A, Bouvet JPR, Abram PK. Resting ecology of parasitoids in the field: safe in a bed and breakfast? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Smith OM, Chapman EG, Crossley MS, Crowder DW, Fu Z, Harwood JD, Jensen AS, Krey KL, Lynch CA, Snyder GB, Snyder WE. Alternative Prey and Predator Interference Mediate Thrips Consumption by Generalists. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.752159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generalist predators’ complex feeding relationships make it difficult to predict their contribution to pest suppression. Alternative prey can either distract predators from attacking pests, weakening biocontrol, or provide food that support larger predator communities to enhance it. Similarly, predator species might both feed upon and complement one another by occupying different niches. Here, we use molecular gut-content analysis to examine predation of western flower thrips (Frankliniella occidentalis) by two generalist predatory bugs, Geocoris sp. and Nabis sp. We collected predators from conventional and organic potato fields that differed in arthropod abundance and composition, so that we could draw correlations between abundance and biodiversity of predators and prey, and thrips predation. We found that alternative prey influenced the probability of detecting Geocoris predation of thrips through a complex interaction. In conventionally-managed potato fields, thrips DNA was more likely to be detected in Geocoris as total abundance of all arthropods in the community increased. But the opposite pattern was found in organic fields, where the probability of detecting thrips predation by Geocoris decreased with increasing total arthropod abundance. Perhaps, increasing abundance (from a relatively low baseline) of alternative prey triggered greater foraging activity in conventional fields, but drew attacks away from thrips in organic fields where prey were consistently relatively bountiful. The probability of detecting Geocoris predation of thrips generally increased with increasing thrips density, but this correlation was steeper in organic than conventional fields. For both Geocoris and Nabis, greater Nabis abundance correlated with reduced probability of detecting thrips DNA; for Nabis this was the only important variable. Nabis is a common intraguild predator of the smaller Geocoris, and is highly cannibalistic, suggesting that predator-predator interference increased with more Nabis present. Complex patterns of thrips predation seemed to result from a dynamic interaction with alternative prey abundance, alongside consistently negative interactions among predators. This provides further evidence that alternative prey and predator interference must be studied in concert to accurately predict the contributions of generalists to biocontrol.
Collapse
|
11
|
Stemmelen A, Jactel H, Brockerhoff E, Castagneyrol B. Meta-analysis of tree diversity effects on the abundance, diversity and activity of herbivores' enemies. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Messelink GJ, Lambion J, Janssen A, van Rijn PCJ. Biodiversity in and around Greenhouses: Benefits and Potential Risks for Pest Management. INSECTS 2021; 12:insects12100933. [PMID: 34680702 PMCID: PMC8540207 DOI: 10.3390/insects12100933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The role of plant diversity near greenhouses is heavily debated because it may have both negative and positive effects on pest control inside greenhouses. In this review, we discuss these potential risks and benefits. Although there is the risk of an increased influx of some pests and of viruses transmitted by pests, we argue that biodiversity in the adjacent environment usually has limited effects on pest abundance in greenhouses in temperate climates, as most greenhouse pests in temperate climates are of exotic origin. The main benefit of increased biodiversity near greenhouses is the immigration of natural enemies that can suppress pests inside greenhouses. An open question is how this can be promoted by specific plant communities, plant characteristics, and habitats while minimising risks. Plant biodiversity inside greenhouses can also support biological control. We summarise general methods that growers can use to enhance pest control with functional biodiversity and suggest that it is particularly important to study how biodiversity inside and outside greenhouses can be linked to enhancement of biological pest control with both released and naturally occurring species of natural enemies. Abstract One of the ecosystem services of biodiversity is the contribution to pest control through conservation and stimulation of natural enemies. However, whether plant diversity around greenhouses is beneficial or a potential risk is heavily debated. In this review, we argue that most greenhouse pests in temperate climates are of exotic origin and infest greenhouses mainly through transportation of plant material. For indigenous pests, we discuss the potential ways in which plant diversity around greenhouses can facilitate or prevent pest migrations into greenhouses. As shown in several studies, an important benefit of increased plant diversity around greenhouses is the stimulation of indigenous natural enemies that migrate to greenhouses, where they suppress both indigenous and exotic pests. How this influx can be supported by specific plant communities, plant characteristics, and habitats while minimising risks of increasing greenhouse pest densities, virus transmission, or hyperparasitism needs further studies. It also requires a better understanding of the underlying processes that link biodiversity with pest management. Inside greenhouses, plant biodiversity can also support biological control. We summarise general methods that growers can use to enhance pest control with functional biodiversity and suggest that it is particularly important to study how biodiversity inside and outside greenhouses can be linked to enhancement of biological pest control with both released and naturally occurring species of natural enemies.
Collapse
Affiliation(s)
- Gerben J. Messelink
- BU Greenhouse Horticulture, Wageningen Research, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Correspondence:
| | - Jérôme Lambion
- Groupe de Recherche and Agriculture Biologique (GRAB), Maison de la Bio 255, Chemin de la Castelette, 84911 Avignon, France;
| | - Arne Janssen
- IBED, Department Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (A.J.); (P.C.J.v.R.)
- Department of Entomology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Paul C. J. van Rijn
- IBED, Department Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (A.J.); (P.C.J.v.R.)
| |
Collapse
|
13
|
Montserrat M, Serrano-Carnero D, Torres-Campos I, Bohloolzadeh M, Ruiz-Lupión D, Moya-Laraño J. Food web engineering: ecology and evolution to improve biological pest control. CURRENT OPINION IN INSECT SCIENCE 2021; 47:125-135. [PMID: 34252593 DOI: 10.1016/j.cois.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
If we are to sustainably provide food to a rapidly growing human population, biological pest control (BPC) should integrate food web theory and evolution. This will account for the impacts of climate warming on the complex community settings of agroecosystems. We review recent studies looking for top-down augmentative pest control being hampered/promoted by biotic (community contexts) and/or abiotic (climate) drivers. Most studies found either positive or neutral effects on BPC. However, most ignored potential evolutionary responses occurring in the environments under study. We propose engineering food webs by engaging in a continuous feedback between ecological and evolutionary data, and individual-based modelling of agroecosystems. This should speed up the procurement of strains of efficient natural enemies better adapted to warming.
Collapse
Affiliation(s)
- Marta Montserrat
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Avda Dr. Weinberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Diego Serrano-Carnero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Avda Dr. Weinberg s/n, Algarrobo-Costa, 29750 Málaga, Spain
| | - Inmaculada Torres-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Avda Dr. Weinberg s/n, Algarrobo-Costa, 29750 Málaga, Spain
| | - Mehdi Bohloolzadeh
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Avda Dr. Weinberg s/n, Algarrobo-Costa, 29750 Málaga, Spain
| | - Dolores Ruiz-Lupión
- Estación Experimental de Zonas Áridas - CSIC, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Jordi Moya-Laraño
- Estación Experimental de Zonas Áridas - CSIC, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| |
Collapse
|
14
|
Grunseich JM, Aguirre NM, Thompson MN, Ali JG, Helms AM. Chemical Cues from Entomopathogenic Nematodes Vary Across Three Species with Different Foraging Strategies, Triggering Different Behavioral Responses in Prey and Competitors. J Chem Ecol 2021; 47:822-833. [PMID: 34415500 PMCID: PMC8613145 DOI: 10.1007/s10886-021-01304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
Chemical cues play important roles in predator-prey interactions. Semiochemicals can aid predator foraging and alert prey organisms to the presence of predators. Previous work suggests that predator traits differentially influence prey behavior, however, empirical data on how prey organisms respond to chemical cues from predator species with different hunting strategies, and how foraging predators react to cues from potential competitors, is lacking. Furthermore, most research in this area has focused on aquatic and aboveground terrestrial systems, while interactions among belowground, soiling-dwelling organisms have received relatively little attention. Here, we assessed how chemical cues from three species of entomopathogenic nematodes (EPNs), each with a different foraging strategy, influenced herbivore (cucumber beetle) and natural enemy (EPN) foraging behavior. We predicted these cues could serve as chemical indicators of increased predation risk, prey availability, or competition. Our findings revealed that foraging cucumber beetle larvae avoided chemical cues from Heterorhabditis bacteriophora (active-foraging cruiser EPNs), but not Steinernema carpocapsae (ambusher EPNs) or Steinernema riobrave (intermediate-foraging EPNs). In contrast, foraging H. bacteriophora EPNs were attracted to cues produced by the two Steinernema species but not conspecific cues. Notably, the three EPN species produced distinct blends of olfactory cues, with only a few semi-conserved compounds across species. These results indicate that a belowground insect herbivore responds differently to chemical cues from different EPN species, with some EPN species avoiding prey detection. Moreover, the active-hunting EPNs were attracted to heterospecific cues, suggesting these cues indicate a greater probability of available prey, rather than strong interspecific competition.
Collapse
Affiliation(s)
- John M Grunseich
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Natalie M Aguirre
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Hosseini M, Mehrparvar M, Zytynska SE, Hatano E, Weisser WW. Aphid alarm pheromone alters larval behaviour of the predatory gall midge, Aphidoletes aphidimyza and decreases intraguild predation by anthocorid bug, Orius laevigatus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:445-453. [PMID: 33663631 DOI: 10.1017/s0007485321000122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intraguild predation is the killing and consuming of a heterospecific competitor that uses similar resources as the prey, and also benefit from preying on each other. We investigated the foraging behaviour of the gallmidge, Aphidoletes aphidimyza, a predator of aphids used for biological control that is also the intraguild prey for most other aphid natural enemies. We focus on how aphid alarm pheromone can alter the behaviour of the gallmidge, and predation by the anthocorid bug Orius laevigatus (O. laevigatus). We hypothesised that gallmidges would respond to the presence of (E)-β-farnesene (EBF) by leaving the host plant. Since feeding by Aphidoletes gallmidge larvae does not induce EBF emission by aphids, this emission indicates the presence of an intraguild predator. We found that gallmidge larvae reduced their foraging activities and left the plant earlier when exposed to EBF, particularly when aphids were also present. Contrastingly, gallmidge females did not change the time visiting plants when exposed to EBF, but lay more eggs on plants that had a higher aphid density. Lastly, EBF reduced the number of attacks of the intraguild predator, O. laevigatus, on gallmidge larvae, potentially because more gallmidges stopped aphid feeding and moved off the plant at which point O. laevigatus predated on aphids. Our work highlights the importance of understanding how intraguild predation can influence the behaviour of potential biological control agents and the impact on pest control services when other natural enemies are also present.
Collapse
Affiliation(s)
- Mojtaba Hosseini
- Institute of Ecology, Friedrich-Schiller-University, Jena, Germany
| | - Mohsen Mehrparvar
- Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Sharon E Zytynska
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Centre for Food and Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Eduardo Hatano
- Institute of Ecology, Friedrich-Schiller-University, Jena, Germany
| | - Wolfgang W Weisser
- Institute of Ecology, Friedrich-Schiller-University, Jena, Germany
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Centre for Food and Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Miranda de Sousa MDS, de Deus E, Lima AL, Ramos de Jesus C, Vilar da Costa Neto S, do Nascimento Lemos L, Mendes Malhado AC, Ladle RJ, Adaime R. Spondias mombin as a reservoir of fruit fly parasitoid populations in the Eastern Amazon: an undervalued ecosystem service. PeerJ 2021; 9:e11530. [PMID: 34141484 PMCID: PMC8183428 DOI: 10.7717/peerj.11530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 12/01/2022] Open
Abstract
Fruit flies are economically important pests that infest a wide variety of host trees. The environmental damage caused by traditional pesticide-based control methods has prompted scientists to seek less damaging alternatives such as biological control by native species. Parasitoids, especially Braconidae species, have excellent potential as biological control agents for fruit flies, being both generalists and well distributed geographically. Native fruit trees that support medium or high levels of these parasitoids could therefore play an important role in biological control strategies. A good potential example is Spondias mombin L. in the Brazilian Amazon, which hosts several species of fruit flies and associated parasitoids. Here, we provide a unique synthesis of over nearly two decades of data from the east Amazon, clearly demonstrating the potential of S. mombin to act as a source and reservoir of fruit fly parasitoids. This important ecosystem service (biological control) provided by the parasitoids and supported by S. mombin could be further enhanced through conservation of this plant species in its natural environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard J Ladle
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.,Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Ricardo Adaime
- Programa de Pós-graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá, Amapá, Brazil.,Embrapa Amapá, Macapá, Amapá, Brazil
| |
Collapse
|
17
|
Jatsch AS, Ruther J. Acetone application for administration of bioactive substances has no negative effects on longevity, fitness, and sexual communication in a parasitic wasp. PLoS One 2021; 16:e0245698. [PMID: 33471848 PMCID: PMC7816986 DOI: 10.1371/journal.pone.0245698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Administration of defined amounts of bioactive substances is a perseverative problem in physiological studies on insects. Apart from feeding and injection, topical application of solutions of the chemicals is most commonly used for this purpose. The solvents used should be non-toxic and have least possible effects on the studied parameters. Acetone is widely used for administration of chemical substances to insects, but possible side-effects of acetone application on fitness and behavioral parameters have been rarely investigated. Here we study the effects of acetone application (207 nl) on fitness and sexual communication in the parasitic wasp Nasonia giraulti Darling. Application of acetone had neither negative effects on longevity nor on offspring number and offspring sex ratio of treated wasps. Treatment of females hampered courtship and mating of N. giraulti couples neither directly after application nor one day after. Male sex pheromone titers were not influenced by acetone treatment. Three application examples demonstrate that topical acetone application is capable of bringing active amounts of insect hormones, neuromodulators, and biosynthetic precursors even in tiny insects. We advocate the use of acetone as a convenient, conservative, and broadly applicable vehicle for studying the effects of bioactive substances in insects.
Collapse
Affiliation(s)
| | - Joachim Ruther
- Institute for Zoology, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Krey KL, Cooper WR, Renkema JM. Revealing the Diet of Generalist Insect Predators in Strawberry Fields: Not Only Pests, But Other Predators Beware. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1300-1306. [PMID: 33135057 DOI: 10.1093/ee/nvaa125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Generalist invertebrate predators contribute to pest management in agriculture, providing an important ecosystem service, particularly in organically managed fields. DNA-based methods to study food webs and feeding interactions in unrestricted field conditions have transformed dietary analysis of generalist predators. In this study, we used MiSeq next-generation sequencing (NGS) technology and universal arthropod primers to investigate the diet of several generalist insect predators collected in commercial organic Florida strawberry fields from November 2017 to March 2018. Of 12 predator insect taxa, Geocoris spp. (Say) (Hemiptera: Geocoridae) was the most abundant early in the growing season (November) and was collected consistently until the end of the season (early March). DNA sequences from 105 predator samples were matched to 44 arthropod families, and of these, 17 were categorized as pest families, 10 as nonpest or nonpredator families, and 17 as predator families. Drosophilidae was the most detected pest family, and Dolichopodidae was the most detected predator family. Prey diversity differed among the predators. Chrysoperla spp. (Neuroptera: Chrysopidae) consumed more prey earlier in the season than did other predators, whereas the other predators consumed a greater diversity of other predators regardless of month. Our results showed a high amount of intraguild predation, but also that predators are contributing to pest suppression in organic strawberries and providing an important biological control service in Florida organic strawberries.
Collapse
Affiliation(s)
- K L Krey
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL
- USDA-ARS - Temperate Tree Fruit and Vegetable Research, Wapato, WA
- New address: USDA-ARS - Temperate Tree Fruit and Vegetable Research, Wapato, WA
| | - W R Cooper
- USDA-ARS - Temperate Tree Fruit and Vegetable Research, Wapato, WA
| | - J M Renkema
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL
| |
Collapse
|
19
|
Culshaw‐Maurer M, Sih A, Rosenheim JA. Bugs scaring bugs: enemy-risk effects in biological control systems. Ecol Lett 2020; 23:1693-1714. [PMID: 32902103 PMCID: PMC7692946 DOI: 10.1111/ele.13601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Enemy-risk effects, often referred to as non-consumptive effects (NCEs), are an important feature of predator-prey ecology, but their significance has had little impact on the conceptual underpinning or practice of biological control. We provide an overview of enemy-risk effects in predator-prey interactions, discuss ways in which risk effects may impact biocontrol programs and suggest avenues for further integration of natural enemy ecology and integrated pest management. Enemy-risk effects can have important influences on different stages of biological control programs, including natural enemy selection, efficacy testing and quantification of non-target impacts. Enemy-risk effects can also shape the interactions of biological control with other pest management practices. Biocontrol systems also provide community ecologists with some of the richest examples of behaviourally mediated trophic cascades and demonstrations of how enemy-risk effects play out among species with no shared evolutionary history, important topics for invasion biology and conservation. We conclude that the longstanding use of ecological theory by biocontrol practitioners should be expanded to incorporate enemy-risk effects, and that community ecologists will find many opportunities to study enemy-risk effects in biocontrol settings.
Collapse
Affiliation(s)
- Michael Culshaw‐Maurer
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
- Department of Evolution and EcologyUniversity of CaliforniaDavisCA95616USA
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCA95616USA
| | - Jay A. Rosenheim
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
20
|
How Effective Is Conservation Biological Control in Regulating Insect Pest Populations in Organic Crop Production Systems? INSECTS 2020; 11:insects11110744. [PMID: 33138249 PMCID: PMC7692856 DOI: 10.3390/insects11110744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/27/2022]
Abstract
Simple Summary Organic crop production systems typically rely on conservation biological control to increase and sustain natural enemies including parasitoids and predators that will regulate insect pest populations below damaging levels. The use of flowering plants or floral resources to attract and retain natural enemies in organic crop production systems has not been consistent, based on the scientific literature, and most importantly, many studies do not correlate an increase in natural enemies with a reduction in plant damage. This may be associated with the effects of intraguild predation or the negative effects that can occur when multiple natural enemies are present in an ecosystem. Consequently, although incorporating flowering plants into organic crop production systems may increase the natural enemy assemblages, more robust scientific studies are warranted to determine the actual effects of natural enemies in reducing plant damage associated with insect pest populations. Abstract Organic crop production systems are designed to enhance or preserve the presence of natural enemies, including parasitoids and predators, by means of conservation biological control, which involves providing environments and habitats that sustain natural enemy assemblages. Conservation biological control can be accomplished by providing flowering plants (floral resources) that will attract and retain natural enemies. Natural enemies, in turn, will regulate existing insect pest populations to levels that minimize plant damage. However, evidence is not consistent, based on the scientific literature, that providing natural enemies with flowering plants will result in an abundance of natural enemies sufficient to regulate insect pest populations below economically damaging levels. The reason that conservation biological control has not been found to sufficiently regulate insect pest populations in organic crop production systems across the scientific literature is associated with complex interactions related to intraguild predation, the emission of plant volatiles, weed diversity, and climate and ecosystem resources across locations where studies have been conducted.
Collapse
|
21
|
Vyas DK, Paul RL, Gates MW, Kubik T, Harvey JA, Kondratieff BC, Ode PJ. Shared enemies exert differential mortality on two competing parasitic wasps. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Ward SF, Aukema BH, Fei S, Liebhold AM. Warm temperatures increase population growth of a nonnative defoliator and inhibit demographic responses by parasitoids. Ecology 2020; 101:e03156. [PMID: 32740922 DOI: 10.1002/ecy.3156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 11/06/2022]
Abstract
Changes in thermal regimes that disparately affect hosts and parasitoids could release hosts from biological control. When multiple natural enemy species share a host, shifts in host-parasitoid dynamics could depend on whether natural enemies interact antagonistically vs. synergistically. We investigated how biotic and abiotic factors influence the population ecology of larch casebearer (Coleophora laricella), a nonnative pest, and two imported parasitoids, Agathis pumila and Chrysocharis laricinellae, by analyzing (1) temporal dynamics in defoliation from 1962 to 2018, and (2) historical, branch-level data on densities of larch casebearer and parasitism rates by the two imported natural enemies from 1972 to 1995. Analyses of defoliation indicated that, prior to the widespread establishment of parasitoids (1962 to ~1980), larch casebearer outbreaks occurred in 2-6 yr cycles. This pattern was followed by a >15-yr period during which populations were at low, apparently stable densities undetectable via aerial surveys, presumably under control from parasitoids. However, since the late 1990s and despite the persistence of both parasitoids, outbreaks exhibiting unstable dynamics have occurred. Analyses of branch-level data indicated that growth of casebearer populations, A. pumila populations, and within-casebearer densities of C. laricinellae-a generalist whose population dynamics are likely also influenced by use of alternative hosts-were inhibited by density dependence, with high intraspecific densities in one year slowing growth into the next. Casebearer population growth was also inhibited by parasitism from A. pumila, but not C. laricinellae, and increased with warmer autumnal temperatures. Growth of A. pumila populations and within-casebearer densities of C. laricinellae increased with casebearer densities but decreased with warmer annual maximum temperatures. Moreover, parasitism by A. pumila was associated with increased growth of within-casebearer densities of C. laricinellae without adverse effects on its own demographics, indicating a synergistic interaction between these parasitoids. Our results indicate that warming can be associated with opposing effects between trophic levels, with deleterious effects of warming on one natural enemy species potentially being exacerbated by similar impacts on another. Coupling of such parasitoid responses with positive responses of hosts to warming might have contributed to the return of casebearer outbreaks to North America.
Collapse
Affiliation(s)
- Samuel F Ward
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Brian H Aukema
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Songlin Fei
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Andrew M Liebhold
- USDA Forest Service, Northern Research Station, Morgantown, West Virginia, 26505, USA.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, CZ 165 21, Praha 6-Suchdol, Czech Republic
| |
Collapse
|
23
|
Mezőfi L, Markó G, Nagy C, Korányi D, Markó V. Beyond polyphagy and opportunism: natural prey of hunting spiders in the canopy of apple trees. PeerJ 2020; 8:e9334. [PMID: 32596048 PMCID: PMC7307562 DOI: 10.7717/peerj.9334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
Spiders (Araneae) form abundant and diverse assemblages in agroecosystems such as fruit orchards, and thus might have an important role as natural enemies of orchard pests. Although spiders are polyphagous and opportunistic predators in general, limited information exists on their natural prey at both species and community levels. Thus, the aim of this study was to assess the natural prey (realized trophic niche) of arboreal hunting spiders, their role in trophic webs and their biological control potential with direct observation of predation events in apple orchards. Hunting spiders with prey in their chelicerae were collected in the canopy of apple trees in organic apple orchards in Hungary during the growing seasons between 2013 and 2019 and both spiders and their prey were identified and measured. Among others, the composition of the actual (captured by spiders) and the potential (available in the canopy) prey was compared, trophic niche and food web metrics were calculated, and some morphological, dimensional data of the spider-prey pairs were analyzed. Species-specific differences in prey composition or pest control ability were also discussed. By analyzing a total of 878 prey items captured by spiders, we concluded that arboreal hunting spiders forage selectively and consume a large number of apple pests; however, spiders’ beneficial effects are greatly reduced by their high levels of intraguild predation and by a propensity to switch from pests to alternative prey. In this study, arboreal hunting spiders showed negative selectivity for pests, no selectivity for natural enemies and positive selectivity for neutral species. In the trophic web, the dominant hunting spider taxa/groups (Carrhotus xanthogramma, Philodromus cespitum, Clubiona spp., Ebrechtella tricuspidata, Xysticus spp. and ‘Other salticids’) exhibit different levels of predation on different prey groups and the trophic web’s structure changes depending on the time of year. Hunting spiders show a high functional redundancy in their predation, but contrary to their polyphagous nature, the examined spider taxa showed differences in their natural diet, exhibited a certain degree of prey specialization and selected prey by size and taxonomic identity. Guilds (such as stalkers, ambushers and foliage runners) did not consistently predict either prey composition or predation selectivity of arboreal hunting spider species. From the economic standpoint, Ph. cespitum and Clubiona spp. were found to be the most effective natural enemies of apple pests, especially of aphids. Finally, the trophic niche width of C. xanthogramma and Ph. cespitum increased during ontogeny, resulting in a shift in their predation. These results demonstrate how specific generalist predators can differ from each other in aspects of their predation ecology even within a relatively narrow taxonomic group.
Collapse
Affiliation(s)
- László Mezőfi
- Department of Entomology, Szent István University, Budapest, Hungary
| | - Gábor Markó
- Department of Plant Pathology, Szent István University, Budapest, Hungary.,Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Csaba Nagy
- Research Institute for Fruitgrowing and Ornamentals, National Agricultural Research and Innovation Centre, Újfehértó, Hungary
| | - Dávid Korányi
- Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, Centre for Ecological Research, Vácrátót, Hungary.,GINOP Sustainable Ecosystems Group, Centre for Ecological Research, Tihany, Hungary
| | - Viktor Markó
- Department of Entomology, Szent István University, Budapest, Hungary
| |
Collapse
|
24
|
Raffa KF, Bonello P, Orrock JL. Why do entomologists and plant pathologists approach trophic relationships so differently? Identifying biological distinctions to foster synthesis. THE NEW PHYTOLOGIST 2020; 225:609-620. [PMID: 31494947 DOI: 10.1111/nph.16181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Plant interactions with herbivores and pathogens are among the most widespread ecological relationships, and show many congruent properties. Despite these similarities, general models describing how plant defenses function in ecosystems, and the prioritization of responses to emerging challenges such as climate change, invasive species and habitat alteration, often differ markedly between entomologists and plant pathologists. We posit that some fundamental distinctions between how insects and pathogens interact with plants underlie these differences. We propose a conceptual framework to help incorporate these distinctions into robust models and research priorities. The most salient distinctions include features of host-searching behavior, evasion of plant defenses, plant tolerance to utilization, and sources of insect and microbial population regulation. Collectively, these features lead to relatively more diffuse and environmentally mediated plant-insect interactions, and more intimate and genetically driven plant-pathogen interactions. Specific features of insect vs pathogen life histories can also yield different patterns of spatiotemporal dynamics. These differences can become increasingly pronounced when scaling from controlled laboratory to open ecological systems. Integrating these differences alongside similarities can foster improved models and research approaches to plant defense, trophic interactions, coevolutionary dynamics, food security and resource management, and provide guidance as traditional departments increase collaborations, or merge into larger units.
Collapse
Affiliation(s)
- Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
25
|
Haubrock PJ, Balzani P, Azzini M, Inghilesi AF, Veselý L, Guo W, Tricarico E. Shared Histories of Co-evolution May Affect Trophic Interactions in a Freshwater Community Dominated by Alien Species. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Dong Z, Men X, Liu S, Zhang Z. Food web structure of parasitoids in greenhouses is affected by surrounding landscape at different spatial scales. Sci Rep 2019; 9:8442. [PMID: 31186452 PMCID: PMC6560093 DOI: 10.1038/s41598-019-44857-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Landscape management affects species interactions and can have notable effects on food web structure. Local parasitoid populations in greenhouses usually migrate from outside crops; biological control of greenhouse aphids may be thus highly dependent on the composition of surrounding landscape. However, it is less clear how surrounding landscape composition affects primary-hyperparasitoid food webs and pest control services in greenhouses. We investigated the food web of parasitoids on melon-cotton aphid (Aphis gossypii Glover) in watermelon greenhouses in two suburban Beijing counties over two years. We used the quantitative food web metrics (generality, vulnerability, link density, and interaction evenness) to assess the effects of landscape composition on primary-hyperparasitoid food web structure. We found that landscape with more cropland within 1-3 km tended to have more primary parasitoids per hyperparasitoid species (generality). Higher proportions of woodland at the 0.5 km scale were negatively correlated with the mean numbers of hyperparasitoid per primary parasitoid species (vulnerability), as well as with hyperparasitism rate and hyperparasitoid richness. Link density, interaction evenness and aphid mortality caused by parasitoids (parasitism rate) were not affected by landscape factors. However, active primary parasitism (biocontrol potential) increased with the proportion of woodland. This suggested that the bottom-up effect induced by primary parasitoids might benefit hyperparasitoids, thus exerting little influence of primary parasitoids on pest control. The top-down effect of hyperparasitoids may reduce with increasing woodland proportion. To enhance the effects of primary parasitoids, landscape management programs should also target, and thus limit the impact of hyperparasitoids.
Collapse
Affiliation(s)
- Zhaoke Dong
- 0000 0004 1798 6793grid.411626.6Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, 102206 China
| | - Xingyuan Men
- 0000 0004 0644 6150grid.452757.6Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 China
| | - Shuang Liu
- 0000 0004 1798 6793grid.411626.6Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, 102206 China
| | - Zhiyong Zhang
- 0000 0004 1798 6793grid.411626.6Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
27
|
Carper AL, Enger M, Bowers MD. Host Plant Effects on Immune Response Across Development of a Specialist Caterpillar. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Mohammadpour M, Hosseini M, Karimi J, Hosseininaveh V. Effect of Age-Dependent Parasitism in Eggs of Tuta absoluta (Lepidoptera: Gelechiidae) on Intraguild Predation Between Nabis pseudoferus (Hemiptera: Nabidae) and Trichogramma brassicae (Hymenoptera: Trichogrammatidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5522602. [PMID: 31234208 PMCID: PMC6592540 DOI: 10.1093/jisesa/iez040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is a destructive pest of tomato that can cause up to 100% yield loss. The predatory bug Nabis pseudoferus (Remane) (Hemiptera: Nabidae) and the parasitoid Trichogramma brassicae (Bezdenko) (Hymenoptera: Trichogrammatidae) are natural enemies of this pest. Since the interaction between predators and parasitoids in different trophic levels including intraguild predation (IGP) can decrease or increase the efficiency of natural enemies, the effects of age-dependent parasitism of host eggs on IGP between these two species were investigated under laboratory conditions. In no-choice and choice preference tests, the predatory bug was exposed to 40 parasitized and nonparasitized eggs of different ages (24, 48, and 72 h old). Investigation of switching behavior was conducted using various combinations of tomato leafminer eggs (30:90, 45:75, 60:60, 75:45, and 90:30 nonparasitized:parasitized eggs) using eggs of different ages (24, 48, and 72 h old). In no-choice tests, the highest feeding rate of the predatory bug was 39.21 ± 0.36 eggs on 24-h-old nonparasitized eggs and the lowest feeding rate was 1.4 ± 0.80 eggs on 72-h-old parasitized eggs. In choice tests, comparison of the Manly's β indices indicated that the predatory bug preferred to feed on nonparasitized eggs with 48- and 72-h-old eggs, but there was no significant preference for the 24-h-old eggs. Results of switching test showed that the linear regression between Manly's β index and different ratios of nonparasitized eggs to parasitized and nonparasitized eggs was not significant in 72-h-old eggs. However, this regression was significant with 24- and 48-h-old eggs and the predator's preference was dependent upon the ratio of nonparasitized and parasitized tomato leafminer eggs. Results of the current study showed that the increasing age of parasitized egg decreased intensity of IGP between N. pseudoferus and T. brassicae.
Collapse
Affiliation(s)
- Marzieh Mohammadpour
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Hosseini
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Javad Karimi
- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Vahid Hosseininaveh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
29
|
Hymenoptera Complex Associated with Myzus persicae and Hyalopterus spp. in Peach Orchards in Northeastern Spain and Prospects for Biological Control of Aphids. INSECTS 2019; 10:insects10040109. [PMID: 30995749 PMCID: PMC6523163 DOI: 10.3390/insects10040109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 11/16/2022]
Abstract
Aphids are a serious pest for peach crops. They have traditionally been managed with insecticides, but there is increasing concern about the risk that insecticides pose to both humans and the environment. As a first step to use biological control in aphid management, we conducted a 3-year field survey in northeastern Spain to determine which parasitoids and hyperparasitoids were most prevalent on two aphids, Myzus persicae (Sulzer) and Hyalopterus spp. Koch, the most harmful to peach trees. We collected 11 parasitoid species from M. persicae, with Aphidius matricariae (Haliday) being the most abundant. Two parasitoid species were also collected from Hyalopterus spp., Aphidius transcaspicus Telenga and Praon volucre (Haliday). Hyperparasitoid species overlapped between these aphids but their relative abundances differed. We also discuss the possible impacts of hyperparasitoids on parasitoid populations. Our results suggest that it would be feasible to implement biocontrol methods for aphids in integrated pest management programmes in peach orchards. There are a number of primary parasitoid species associated with these aphids, and the nearby crops and wild vegetation in the vicinity and within the orchards may provide a suitable habitat for them. Additionally, some of them are commercially available and might be usable in augmentative releases.
Collapse
|
30
|
Hall AAG, Johnson SN, Cook JM, Riegler M. High nymphal host density and mortality negatively impact parasitoid complex during an insect herbivore outbreak. INSECT SCIENCE 2019; 26:351-365. [PMID: 28842961 DOI: 10.1111/1744-7917.12532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 07/05/2017] [Accepted: 07/25/2017] [Indexed: 05/28/2023]
Abstract
Insect herbivore outbreaks frequently occur and this may be due to factors that restrict top-down control by parasitoids, for example, host-parasitoid asynchrony, hyperparasitization, resource limitation and climate. Few studies have examined host-parasitoid density relationships during an insect herbivore outbreak in a natural ecosystem with diverse parasitoids. We studied parasitization patterns of Cardiaspina psyllids during an outbreak in a Eucalyptus woodland. First, we established the trophic roles of the parasitoids through a species-specific multiplex PCR approach on mummies from which parasitoids emerged. Then, we assessed host-parasitoid density relationships across three spatial scales (leaf, tree and site) over one year. We detected four endoparasitoid species of the family Encyrtidae (Hymenoptera); two primary parasitoid and one heteronomous hyperparasitoid Psyllaephagus species (the latter with female development as a primary parasitoid and male development as a hyperparasitoid), and the hyperparasitoid Coccidoctonus psyllae. Parasitoid development was host-synchronized, although synchrony between sites appeared constrained during winter (due to temperature differences). Parasitization was predominantly driven by one primary parasitoid species and was mostly inversely host-density dependent across the spatial scales. Hyperparasitization by C. psyllae was psyllid-density dependent at the site scale, however, this only impacted the rarer primary parasitoid. High larval parasitoid mortality due to density-dependent nymphal psyllid mortality (a consequence of resource limitation) compounded by a summer heat wave was incorporated in the assessment and resulted in density independence of host-parasitoid relationships. As such, high larval parasitoid mortality during insect herbivore outbreaks may contribute to the absence of host density-dependent parasitization during outbreak events.
Collapse
Affiliation(s)
- Aidan A G Hall
- Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| |
Collapse
|
31
|
Montoya P, Gálvez C, Díaz-Fleischer F. Host availability affects the interaction between pupal parasitoid Coptera haywardi (Hymenoptera: Diiapridae) and larval-pupal parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:15-23. [PMID: 29429418 DOI: 10.1017/s0007485318000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of multiple species in biological control programmes is controversial when interactions among them are not fully understood. We determined the response of the pupal parasitoid Coptera haywardi (Oglobin) to different availability of Anastrepha ludens (Loew) pupae previously parasitized or not by larval-pupal Diachasmimorpha longicaudata (Ashmead). The two types of pupae were exposed at different ages and proportions to different numbers of C. haywardi females for 48 h. The performance of C. haywardi adults emerging from parasitized and unparasitized pupae was measured. Coptera haywardi prefers to attack unparasitized A. ludens pupae rather than pupae parasitized by D. longicaudata. However, when the availability of unparasitized pupae was low or the number of foraging females was high, C. haywardi competed against early immature stages of the D. longicaudata, or hyperparasitized, feeding directly on the advanced-immature developmental stages of the early acting species. Adults of C. haywardi emerging as hyperparasitoids were no different in size, fecundity and longevity from those emerging as primary parasitoids. Our data suggest that simultaneous use of these species in augmentative biological control projects may be feasible but should be carefully planned in order to avoid any detrimental effect of its interaction.
Collapse
Affiliation(s)
- P Montoya
- Programa Moscafrut SAGARPA-IICA,Camino a los Cacaoatales S/N, C.P. 30860,Metapa de Domínguez,Chiapas,México
| | - C Gálvez
- Programa Moscafrut SAGARPA-IICA,Camino a los Cacaoatales S/N, C.P. 30860,Metapa de Domínguez,Chiapas,México
| | - F Díaz-Fleischer
- INBIOTECA,Universidad Veracruzana,Av. de las Culturas Veracruzanas 101,Col. Emiliano Zapata,Xalapa,Veracruz,C.P. 91090,México
| |
Collapse
|
32
|
Davis MJ, Andersen JC, Elkinton J. Identification of the parasitoid community associated with an outbreaking gall wasp, Zapatella davisae, and their relative abundances in New England and Long Island, New York. Ecol Evol 2019; 9:19-25. [PMID: 30680092 PMCID: PMC6342127 DOI: 10.1002/ece3.4543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Gall wasps (Hymenoptera: Cynipidae) are phytophagous insects that often go unnoticed; however, when they are introduced to a new area or released from their natural enemies, they have the capacity to outbreak and cause extensive foliar damage. One such outbreaking pest, Zapatella davisae (Cynipidae: Cynipini), causes significant damage and mortality to black oak, Quercus velutina, in the northeastern United States. In this study, we aimed to identify the parasitoid community associated with Z. davisae, compare differences in percent parasitism of Z. davisae in Cape Cod and Long Island, and determine which parasitoid species contribute most to parasitism in each region. From both locations, we reared parasitoids, identified morphological groups, analyzed percent parasitism rates for each group, and used DNA barcoding to provide species-level identifications. On Long Island, there was nearly 100% parasitism in 2015 followed by a near total collapse of the population in 2016. In contrast, parasitism rates were lower and remained consistent on Cape Cod between 2015 and 2016, which may explain the greater canopy damage observed in that region. Species of Sycophila were the dominant parasitoids, with one species Sycophila nr. novascotiae representing ~65% of reared parasitoids from Long Island, and two species of Sycophila (S. nr. novascotiae and S. foliatae) with near equal representations on Cape Cod. In order to manage an insect pest, it is important to understand factors that influence its mortality and survival. An understanding of how these infestations progress overtime can help predict the impact that newer infestations in Nantucket, MA, and coastal Rhode Island will have on black oak populations and will aid in the management of this rapidly spreading gall wasp pest.
Collapse
Affiliation(s)
- Monica J. Davis
- Department of Environmental ConservationUniversity of MassachusettsAmherstMassachusetts
| | - Jeremy C. Andersen
- Department of Environmental ConservationUniversity of MassachusettsAmherstMassachusetts
- Present address:
Department of Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCalifornia
| | - Joseph Elkinton
- Department of Environmental ConservationUniversity of MassachusettsAmherstMassachusetts
| |
Collapse
|
33
|
Abstract
The size or stage of interacting individuals is known to affect the outcome of ecological interactions and can have important consequences for population dynamics. This is also true for intraguild predation (the killing and eating of potential competitors), where the size or ontogenetic stage of an individual determines whether it is the intraguild predator or the intraguild prey. Studying size- or stage-specific interactions is therefore important, but can be challenging in species with complex life histories. Here, we investigated predatory interactions of all feeding stages of the two predatory mite species Neoseiulus californicus and Phytoseiulus macropilis, both of which have complex life cycles, typical for predatory arthropods. Populations of these two species compete for two-spotted spider mites, their prey. We evaluated both the capacity to kill stages of the other predator species and the capacity to benefit from feeding on these stages, both prerequisites for the occurrence of intraguild predation. Ontogeny played a critical role in the occurrence of intraguild predation. Whereas the juveniles of P. macropilis developed from larva until adulthood when feeding on N. californicus eggs, interestingly, adult female P. macropilis did not feed on the smaller stages of the other species. We furthermore show that intraguild predation was reciprocal: both juveniles and adult females of N. californicus preyed on the smallest stages of P. macropilis. These results suggest that a proper analysis of the interactions between pairs of species involved in intraguild predation should start with an inventory of the interactions among all ontogenetic stages of these species.
Collapse
|
34
|
Bouagga S, Urbaneja A, Pérez-Hedo M. Combined Use of Predatory Mirids With Amblyseius swirskii (Acari: Phytoseiidae) to Enhance Pest Management in Sweet Pepper. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1112-1120. [PMID: 29596645 DOI: 10.1093/jee/toy072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Indexed: 06/08/2023]
Abstract
The combined release of Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) with Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) provides effective control of sweet pepper key pests, such as thrips and whiteflies. However, the management of the aphids can still be improved. Recently, the predatory mirids Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) and Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) have been found to be effective in the control of aphids, thrips and whiteflies when tested alone. Hence, integrating one of these two mirids with A. swirskii might enhance sweet pepper pest management. In this work, we began by investigating the co-occurrence of both mirid species when released together with A. swirskii. This was compared to the standard release of O. laevigatus with A. swirskii. N. tenuis and A. swirskii were involved in a bidirectional intraguild predation (IGP). On the contrary, this interaction (IGP) was apparently unidirectional in the case of M. pygmaeus with A. swirskii and O. laevigatus with A. swirskii. Both, M. pygmaeus and O. laevigatus significantly reduced the abundance of A. swirskii. Secondly, in a greenhouse experiment, where the same release combinations were tested (either N. tenuis, M. pygmaeus or O. laevigatus combined with A. swirskii), IGP seemed to be neutralized. Mirids with A. swirskii significantly suppressed thrips, whitefly, and aphid infestations. Contrarily, the combined use of O. laevigatus with A. swirskii did not reached a satisfactory control for aphids, despite the reduction in thrips and whitefly densities. Therefore, our results suggest that the use of mirids combined with A. swirskii could result in more efficient and robust biological control programs in sweet pepper crops.
Collapse
Affiliation(s)
- Sarra Bouagga
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Unidad Asociada de Entomología UJI-IVIA, Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Unidad Asociada de Entomología UJI-IVIA, Moncada, Valencia, Spain
| | - Meritxell Pérez-Hedo
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Unidad Asociada de Entomología UJI-IVIA, Moncada, Valencia, Spain
| |
Collapse
|
35
|
Nenzén HK, Martel V, Gravel D. Can hyperparasitoids cause large-scale outbreaks of insect herbivores? OIKOS 2018. [DOI: 10.1111/oik.05112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hedvig K. Nenzén
- Dépt de biologie; Univ. de Sherbrooke; Sherbrooke QC Canada
- Dépt des sciences biologiques; Univ. du Québec à Montréal; PO Box 8888 Stn. Centre-Ville, Montréal QC H3C 3P8 Canada
| | - Véronique Martel
- Natural Resources Canada; Canadian Forest Service, Laurentian Forestry Centre, Stn Ste-Foy; Québec QC Canada
| | | |
Collapse
|
36
|
Calvo FJ, Torres-Ruiz A, Velázquez-González J, Rodríguez-Leyva E, Lomeli-Flores JR. Improved Sweetpotato Whitefly and Potato Psyllid Control in Tomato by Combining the Mirid Dicyphus hesperus (Heteroptera: Miridae) With Specialist Parasitic Wasps. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:549-555. [PMID: 29365143 DOI: 10.1093/jee/tox362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and Bactericera cockerelli Sulcer (Hemiptera: Psyllidae) are important pests in tomato, and the mirid Dicyphus hesperus Knight (Heteroptera: Miridae) has been shown as an effective predator of both pests. Although the predator was able to suppress populations of both pests, the remaining levels could still exceed tolerable levels. Thus, we here hypothesized whether the combination of D. hesperus with the specialist parasitoids Eretmocerus eremicus Rose y Zolnerowich (Hymenoptera: Aphelinidae) (whitefly) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) (psyllid) would result in better pest control on a greenhouse scale. For that, we conducted a trial in which we compared the results against B. tabaci and B. cockerelli in greenhouses treated with D. hesperus alone or the predator in combination with the specialist parasitoids. The results showed that the predator was able to establish and suppress B. tabaci and B. cockerelli in tomato, but the addition of the specialist parasitoids resulted in better and more cost-effective pest control. Implementation of this method would therefore increase the robustness and reliability of biocontrol-based integrated pest management programmes for tomato crops, over methods based exclusively on D. hesperus release.
Collapse
Affiliation(s)
- F J Calvo
- R&D Department. Koppert España S.L. Calle Cobre, Polígono Ind. Ciudad del Transporte. La Mojonera, Almería, Spain
| | - A Torres-Ruiz
- R&D Department, Koppert México SA de CV, Circuito el Marqués Norte, Parque Ind. El Marqués, El Marqués, Querétaro, México
| | - J Velázquez-González
- R&D Department, Koppert México SA de CV, Circuito el Marqués Norte, Parque Ind. El Marqués, El Marqués, Querétaro, México
| | - E Rodríguez-Leyva
- Posgrado en Fitosanidad, Entomología y Acarología, Colegio de Postgraduados, Carretera México-Texcoco, Montecillo, Texcoco, Estado de México, México
| | - J R Lomeli-Flores
- Posgrado en Fitosanidad, Entomología y Acarología, Colegio de Postgraduados, Carretera México-Texcoco, Montecillo, Texcoco, Estado de México, México
| |
Collapse
|
37
|
Kamenova S, Leroux C, Polin SE, Plantegenest M. Community-wide stable isotope analysis reveals two distinct trophic groups in a service-providing carabid community. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:130-139. [PMID: 28615084 DOI: 10.1017/s0007485317000542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Disentangling trophic interactions among species is important for elucidating mechanisms underlying ecosystem functioning and services. Carabid beetles are an important guild of predators that may regulate pest populations in arable landscapes, but their generalist feeding behavior hinders predictions about their actual contribution to pest control. In order to assess carabids' potential for pest control, we simultaneously analyzed the carbon and nitrogen stable isotope ratios of a community of 45 co-occurring species in wheat and oilseed rape fields. With the expectation to identify distinct trophic groups based on the mean and the variance of carabid isotopic signatures, we observed a high degree of overlap in trophic positions between species. However, we also observed that species could be successfully categorized into two groups according to whether or not their carbon signatures varied independently from variations in the crop baseline. We interpret these results as differential primary resource uptake or by differential mobility aptitude in foraging. Accordingly, we propose that the isotopic signal can inform us on the presence/absence of links between generalist predators and cultivated plants through the trophic networks they belong to, and consequently on their potential role as pest natural enemies. We therefore suggest the complementarity of stable isotope analysis for obtaining a time-integrated assessment of carabid trophic behavior that may be combined with more direct molecular diet analysis allowing the simultaneous quantification of specific trophic links within agricultural landscapes.
Collapse
Affiliation(s)
- S Kamenova
- Centre d'Etudes Biologiques de Chizé,79360 Villiers-en-Bois,France
| | - C Leroux
- Station Biologique de Roscoff,Place Georges Teissier 29680 Roscoff,France
| | - S E Polin
- UMR 1349 Institut de Génétique,Environnement et Protection des Plantes,35042 Rennes,France
| | - M Plantegenest
- UMR 1349 Institut de Génétique,Environnement et Protection des Plantes,35042 Rennes,France
| |
Collapse
|
38
|
Vidal MC, Murphy SM. Bottom‐up vs. top‐down effects on terrestrial insect herbivores: a meta‐analysis. Ecol Lett 2017; 21:138-150. [DOI: 10.1111/ele.12874] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Mayra C. Vidal
- Department of Biological Sciences University of Denver Denver CO USA
| | - Shannon M. Murphy
- Department of Biological Sciences University of Denver Denver CO USA
| |
Collapse
|
39
|
Species composition and seasonal dynamics of aphid parasitoids and hyperparasitoids in wheat fields in northern China. Sci Rep 2017; 7:13989. [PMID: 29070808 PMCID: PMC5656665 DOI: 10.1038/s41598-017-14441-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/10/2017] [Indexed: 11/08/2022] Open
Abstract
Parasitoids are important natural enemies of aphids in wheat fields of northern China, and interest in them has increased in recent years. However, little is known regarding parasitoids of wheat aphids, which has hindered the study and understanding of aphid-parasitoid interactions. In the present study, three primary parasitoids and 15 hyperparasitoids were collected in wheat fields during a 2-year survey in northern China (2014, 2015) and a 2-year investigation at Langfang, Hebei Province (2015, 2016). Among them, Aphidius uzbekistanicus Luzhetski was found most frequently among the primary parasitoids, while Pachyneuron aphidis (Bouché) dominated the hyperparasitoid community. Investigation of the dynamics of wheat aphids and parasitoids revealed that the primary parasitoids appeared early in the growing period and that the hyperparasitoids appeared later. Analysis of the seasonal dynamics revealed that growth of the parasitoid population followed that of the aphid population and that the parasitism rates were highest in the late growing period.
Collapse
|
40
|
Lefort MC, Wratten S, Cusumano A, Varennes YD, Boyer S. Disentangling higher trophic level interactions in the cabbage aphid food web using high-throughput DNA sequencing. METABARCODING AND METAGENOMICS 2017. [DOI: 10.3897/mbmg.1.13709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Wilson H, Daane KM. Review of Ecologically-Based Pest Management in California Vineyards. INSECTS 2017; 8:E108. [PMID: 29019946 PMCID: PMC5746791 DOI: 10.3390/insects8040108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022]
Abstract
Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.
Collapse
Affiliation(s)
- Houston Wilson
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Kent M Daane
- Department Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA.
| |
Collapse
|
42
|
Vandegehuchte ML, Schütz M, Schaetzen F, Risch AC. Mammal‐induced trophic cascades in invertebrate food webs are modulated by grazing intensity in subalpine grassland. J Anim Ecol 2017; 86:1434-1446. [DOI: 10.1111/1365-2656.12744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Martijn L. Vandegehuchte
- Research Unit Community EcologySwiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
- Terrestrial Ecology UnitDepartment of BiologyGhent University Ghent Belgium
| | - Martin Schütz
- Research Unit Community EcologySwiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
| | - Frederic Schaetzen
- PXL‐TechPXL University College Hasselt Belgium
- Institute of Environmental EngineeringDepartment of Civil, Environmental and Geomatic EngineeringETH Zurich Zurich Switzerland
| | - Anita C. Risch
- Research Unit Community EcologySwiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
| |
Collapse
|
43
|
Mlynarek JJ, Moffat CE, Edwards S, Einfeldt AL, Heustis A, Johns R, MacDonnell M, Pureswaran DS, Quiring DT, Shibel Z, Heard SB. Enemy escape: A general phenomenon in a fragmented literature? Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Many populations are thought to be regulated, in part, by their natural enemies. If so, disruption of this regulation should allow rapid population growth. Such “enemy escape” may occur in a variety of circumstances, including invasion, natural range expansion, range edges, suppression of enemy populations, host shifting, phenological changes, and defensive innovation. Periods of relaxed enemy pressure also occur in, and may drive, population oscillations and outbreaks. We draw attention to similarities among circumstances of enemy escape and build a general conceptual framework for the phenomenon. Although these circumstances share common mechanisms and depend on common assumptions, enemy escape can involve dynamics operating on very different temporal and spatial scales. In particular, the duration of enemy escape is rarely considered but will likely vary among circumstances. Enemy escape can have important evolutionary consequences including increasing competitive ability, spurring diversification, or triggering enemy counteradaptation. These evolutionary consequences have been considered for plant–herbivore interactions and invasions but largely neglected for other circumstances of enemy escape. We aim to unite the fragmented literature, which we argue has impeded progress in building a broader understanding of the eco-evolutionary dynamics of enemy escape.
Collapse
Affiliation(s)
- Julia J. Mlynarek
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Chandra E. Moffat
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Sara Edwards
- Population Ecology Group, Faculty of Forestry & Environmental Management, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Anthony L. Einfeldt
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Allyson Heustis
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
- Forest Insect Ecology, Atlantic Forestry Centre, 1350 Regent Street, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada
| | - Rob Johns
- Forest Insect Ecology, Atlantic Forestry Centre, 1350 Regent Street, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada
| | - Mallory MacDonnell
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Deepa S. Pureswaran
- Forest Insect Ecology, Laurentian Forestry Centre, 1055 Du PEPS Street, P.O. Box 10380, Québec, QC G1V 4C7, Canada
| | - Dan T. Quiring
- Population Ecology Group, Faculty of Forestry & Environmental Management, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Zoryana Shibel
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| | - Stephen B. Heard
- Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
44
|
Yang F, Wu YK, Xu L, Wang Q, Yao ZW, Žikić V, Tomanović Ž, Ferrer-Suay M, Selfa J, Pujade-Villar J, Lu YH, Guo YY. Species composition and richness of aphid parasitoid wasps in cotton fields in northern China. Sci Rep 2017; 7:9799. [PMID: 28852186 PMCID: PMC5575071 DOI: 10.1038/s41598-017-10345-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
The cotton aphid, Aphis gossypii (Hemiptera: Aphididae), is a serious pest of cotton across the globe, particularly in the cotton agroecosystems of northern China. Parasitic wasps are deemed to be important natural enemies of A. gossypii, but limited information exists about their species composition, richness and seasonal dynamics in northern China. In this study, we combine sampling over a broad geographical area with intensive field trials over the course of three cropping seasons to describe parasitoid-hyperparasitoid communities in cotton crops. We delineate a speciose complex of primary parasitoids and hyperparasitoids associated with A. gossypii. Over 90% of the primary parasitoids were Binodoxys communis. Syrphophagus sp. and Pachyneuron aphidis made up most of the hyperparasitoids. Parasitism rates changed in a similar way following the fluctuation of the aphid population. Early in the growing period, there were more hyperparasitoids, while later, the primary parasitoids provided control of A. gossypii. The first systematic report of this cotton aphid parasitoid complex and their population dynamics in association with their hosts presented a comprehensive assessment of cotton parasitoid species and provided important information for the establishment and promotion of their biological control of cotton aphids.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue-Kun Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Wen Yao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Vladimir Žikić
- Faculty of Sciences and Mathematics, Department of Biology and Ecology, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Željko Tomanović
- University of Belgrade, Faculty of Biology, Institute of Zoology, Department of Invertebrate Zoology and Entomology, Belgrade, 11000, Serbia
| | - Mar Ferrer-Suay
- Universitat de València, Facultat de Ciències Biològiques, Departament de Zoologia, València, 46100, Spain
| | - Jesús Selfa
- Universitat de València, Facultat de Ciències Biològiques, Departament de Zoologia, València, 46100, Spain
| | - Juli Pujade-Villar
- Universitat de Barcelona, Facultat de Biologia, Departament de Biologia Animal, Avda. Diagonal 645, 08028, Barcelona, Spain
| | - Yan-Hui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
45
|
Singer MS, Clark RE, Lichter-Marck IH, Johnson ER, Mooney KA. Predatory birds and ants partition caterpillar prey by body size and diet breadth. J Anim Ecol 2017; 86:1363-1371. [PMID: 28686298 DOI: 10.1111/1365-2656.12727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022]
Abstract
The effects of predator assemblages on herbivores are predicted to depend critically on predator-predator interactions and the extent to which predators partition prey resources. The role of prey heterogeneity in generating such multiple predator effects has received limited attention. Vertebrate and arthropod insectivores constitute two co-dominant predatory taxa in many ecosystems, and the emergent properties of their joint effects on insect herbivores inform theory on multiple predator effects as well as biological control of insect herbivores. Here we use a large-scale factorial manipulation to assess the extent to which birds and ants engage in antagonistic predator-predator interactions and the consequences of heterogeneity in herbivore body size and diet breadth (i.e. the diversity of host plants used) for prey partitioning. We excluded birds and reduced ant density (by 60%) in the canopies of eight northeastern USA deciduous tree species during two consecutive years and measured the community composition and traits of lepidopteran larvae (caterpillars). Birds did not affect ant density, implying limited intraguild predation between these taxa in this system. Birds preyed selectively upon large-bodied caterpillars (reducing mean caterpillar length by 12%) and ants preyed selectively upon small-bodied caterpillars (increasing mean caterpillar length by 6%). Birds and ants also partitioned caterpillar prey by diet breadth. Birds reduced the frequency dietary generalist caterpillars by 24%, while ants had no effect. In contrast, ants reduced the frequency of dietary specialists by 20%, while birds had no effect, but these effects were non-additive; under bird exclusion, ants had no detectable effect, while in the presence of birds, they reduced the frequency of specialists by 40%. As a likely result of prey partitioning by body size and diet breadth, the combined effects of birds and ants on total caterpillar density were additive, with birds and ants reducing caterpillar density by 44% and 20% respectively. These results show evidence for the role of prey heterogeneity in driving functional complementarity among predators and enhanced top-down control. Heterogeneity in herbivore body size and diet breadth, as well as other prey traits, may represent key predictors of the strength of top-down control from predator communities.
Collapse
Affiliation(s)
| | - Robert E Clark
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | | | - Emily R Johnson
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
46
|
Ye Z, Vollhardt IMG, Girtler S, Wallinger C, Tomanovic Z, Traugott M. An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks. Sci Rep 2017; 7:3138. [PMID: 28600542 PMCID: PMC5466676 DOI: 10.1038/s41598-017-02226-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
Molecular approaches are increasingly being used to analyse host-parasitoid food webs as they overcome several hurdles inherent to conventional approaches. However, such studies have focused primarily on the detection and identification of aphids and their aphidiid primary parasitoids, largely ignoring primary parasitoid-hyperparasitoid interactions or limiting these to a few common species within a small geographical area. Furthermore, the detection of bacterial secondary endosymbionts has not been considered in such assays despite the fact that endosymbionts may alter aphid-parasitoid interactions, as they can confer protection against parasitoids. Here we present a novel two-step multiplex PCR (MP-PCR) protocol to assess cereal aphid-primary parasitoid-hyperparasitoid-endosymbiont interactions. The first step of the assay allows detection of parasitoid DNA at a general level (24 primary and 16 hyperparasitoid species) as well as the species-specific detection of endosymbionts (3 species) and cereal aphids (3 species). The second step of the MP-PCR assay targets seven primary and six hyperparasitoid species that commonly occur in Central Europe. Additional parasitoid species not covered by the second-step of the assay can be identified via sequencing 16S rRNA amplicons generated in the first step of the assay. The approach presented here provides an efficient, highly sensitive, and cost-effective (~consumable costs of 1.3 € per sample) tool for assessing cereal aphid-parasitoid-endosymbiont interactions.
Collapse
Affiliation(s)
- Zhengpei Ye
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria.
| | - Ines M G Vollhardt
- Agroecology, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Susanne Girtler
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Corinna Wallinger
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Zeljko Tomanovic
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Abstract
The ability to learn allows organisms to take advantage of dynamic and ephemeral opportunities in their environment. Here we show that learning in belowground entomopathogenic nematodes has cascading multitrophic effects on their hosts, other nematodes, and nematophagous fungal predators. In addition to quantifying these effects, we show that social behavioral plasticity in these belowground parasitoids can amplify signaling by plant defense pathways and results in an almost doubling of insect herbivore infection by entomopathogenic nematodes. Cumulatively, these effects point to the critical role of plant signaling in regulating community structure while suggesting an equally important role for behavioral plasticity in shaping community dynamics.
Collapse
|
48
|
Transience after disturbance: Obligate species recovery dynamics depend on disturbance duration. Theor Popul Biol 2017; 115:81-88. [PMID: 28479290 DOI: 10.1016/j.tpb.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 02/21/2017] [Accepted: 04/23/2017] [Indexed: 11/20/2022]
Abstract
After a disturbance event, population recovery becomes an important species response that drives ecosystem dynamics. Yet, it is unclear how interspecific interactions impact species recovery from a disturbance and which role the disturbance duration (pulse or press) plays. Here, we analytically derive conditions that govern the transient recovery dynamics from disturbance of a host and its obligately dependent partner in a two-species metapopulation model. We find that, after disturbance, species recovery dynamics depend on the species' role (i.e. host or obligately dependent species) as well as the duration of disturbance. Host recovery starts immediately after the disturbance. In contrast, for obligate species, recovery depends on disturbance duration. After press disturbance, which allows dynamics to equilibrate during disturbance, obligate species immediately start to recover. Yet, after pulse disturbance, obligate species continue declining although their hosts have already begun to increase. Effectively, obligate species recovery is delayed until a necessary host threshold occupancy is reached. Obligates' delayed recovery arises solely from interspecific interactions independent of dispersal limitations, which contests previous explanations. Delayed recovery exerts a two-fold negative effect, because populations continue declining to even smaller population sizes and the phase of increased risk from demographic stochastic extinction in small populations is prolonged. We argue that delayed recovery and its determinants -species interactions and disturbance duration - have to be considered in biodiversity management.
Collapse
|
49
|
Forsman A, Betzholtz PE, Franzén M. Faster poleward range shifts in moths with more variable colour patterns. Sci Rep 2016; 6:36265. [PMID: 27808116 PMCID: PMC5093557 DOI: 10.1038/srep36265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Range shifts have been documented in many organisms, and climate change has been implicated as a contributing driver of latitudinal and altitudinal range modifications. However, little is known about what species trait(s) allow for faster environmental tracking and improved capacity for distribution expansions. We used data for 416 species of moths, and show that range limits in Sweden have shifted to the north by on average 52.4 km per decade between 1973 and 2014. When also including non-expanding species, average expansion rate was 23.2 km per decade. The rate of boundary shifts increased with increasing levels of inter-individual variation in colour patterns and decreased with increasing latitude. The association with colour patterns indicate that variation in this functionally important trait enables species to cope with novel and changing conditions. Northern range limits also increased with average abundance and decreased with increasing year-to-year abundance fluctuations, implicating production of dispersers as a driver of range dynamics. Studies of terrestrial animals show that rates of poleward shifts differ between taxonomic groups, increase over time, and depend on study duration and latitude. Knowledge of how distribution shifts change with time, location, and species characteristics may improve projections of responses to climate change and aid the protection of biodiversity.
Collapse
Affiliation(s)
- Anders Forsman
- Center for Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Per-Eric Betzholtz
- Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Markus Franzén
- Department of Community Ecology, UFZ, Helmholtz Centre for Environmental Research, Halle, Germany
| |
Collapse
|
50
|
Holland JM, Bianchi FJ, Entling MH, Moonen AC, Smith BM, Jeanneret P. Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. PEST MANAGEMENT SCIENCE 2016; 72:1638-1651. [PMID: 27178745 DOI: 10.1002/ps.4318] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Different semi-natural habitats occur on farmland, and it is the vegetation's traits and structure that subsequently determine their ability to support natural enemies and their associated contribution to conservation biocontrol. New habitats can be created and existing ones improved with agri-environment scheme funding in all EU member states. Understanding the contribution of each habitat type can aid the development of conservation control strategies. Here we review the extent to which the predominant habitat types in Europe support natural enemies, whether this results in enhanced natural enemy densities in the adjacent crop and whether this leads to reduced pest densities. Considerable variation exists in the available information for the different habitat types and trophic levels. Natural enemies within each habitat were the most studied, with less information on whether they were enhanced in adjacent fields, while their impact on pests was rarely investigated. Most information was available for woody and herbaceous linear habitats, yet not for woodland which can be the most common semi-natural habitat in many regions. While the management and design of habitats offer potential to stimulate conservation biocontrol, we also identified knowledge gaps. A better understanding of the relationship between resource availability and arthropod communities across habitat types, the spatiotemporal distribution of resources in the landscape and interactions with other factors that play a role in pest regulation could contribute to an informed management of semi-natural habitats for biocontrol. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- John M Holland
- Game and Wildlife Conservation Trust, Fordingbridge, Hants, UK
| | - Felix Jja Bianchi
- Farming Systems Ecology, Wageningen University, Wageningen, The Netherlands
| | - Martin H Entling
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | | | - Barbara M Smith
- Game and Wildlife Conservation Trust, Fordingbridge, Hants, UK
| | | |
Collapse
|