1
|
Scholtmeijer K, Auxier B, Debets AJM, Aanen DK, Baars JJP, van Peer AF. An agar medium-based method for screening somatic incompatibility in Agaricus bisporus. Fungal Biol 2025; 129:101522. [PMID: 39826974 DOI: 10.1016/j.funbio.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To visualize the nonself recognition reaction in the cultivated mushroom Agaricus bisporus, we developed a method using the azo dye Evans blue. The use of Evans blue highlights dead mycelial sections, which are produced following nonself recognition in the interaction zone between two individuals. This method can differentiate between distinct heterokaryons, as well as between closely related heterokaryons constructed from siblings. As it is known that co-cultivation of mixed individuals leads to reduced yield, we compared small-scale cultivation experiments to the results of our laboratory assay. Co-cultivation of strains whose interaction produced noticeable Evans blue staining also produced low yield when mixed. However, a combination that did not produce noticeable Evans blue staining still produced an incompatible-like phenotype (reduced yield) when mixed under cultivation conditions. Together, these results suggest that while our Evans blue assay can discriminate between self and nonself pairings, it alone does not encompass all aspects of this interaction. However, this method can facilitate future research into the genetics and physiology of the incompatibility phenotype in this economically important fungus.
Collapse
Affiliation(s)
- Karin Scholtmeijer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Johan J P Baars
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Arend F van Peer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands.
| |
Collapse
|
2
|
Andrade GCD, Mota MF, Moreira-Ferreira DN, Silva JL, de Oliveira GAP, Marques MA. Protein aggregation in health and disease: A looking glass of two faces. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:145-217. [PMID: 40324846 DOI: 10.1016/bs.apcsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein molecules organize into an intricate alphabet of twenty amino acids and five architecture levels. The jargon "one structure, one functionality" has been challenged, considering the amount of intrinsically disordered proteins in the human genome and the requirements of hierarchical hetero- and homo-protein complexes in cell signaling. The assembly of large protein structures in health and disease is now viewed through the lens of phase separation and transition phenomena. What drives protein misfolding and aggregation? Or, more fundamentally, what hinders proteins from maintaining their native conformations, pushing them toward aggregation? Here, we explore the principles of protein folding, phase separation, and aggregation, which hinge on crucial events such as the reorganization of solvents, the chemical properties of amino acids, and their interactions with the environment. We focus on the dynamic shifts between functional and dysfunctional states of proteins and the conditions that promote protein misfolding, often leading to disease. By exploring these processes, we highlight potential therapeutic avenues to manage protein aggregation and reduce its harmful impacts on health.
Collapse
Affiliation(s)
- Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Dinarte N Moreira-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Wang YR, Su JE, Yang ZJ, Zhong J, Li XG, Chen Y, Zhu JZ. A pooled mycoviral resource in a strain of Rhizoctonia solani are regulators of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106042. [PMID: 39277369 DOI: 10.1016/j.pestbp.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.
Collapse
Affiliation(s)
- Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China; Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jia En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Zhi Juan Yang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
4
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
5
|
Hai D, Li J, Jiang D, Cheng J, Fu Y, Xiao X, Yin H, Lin Y, Chen T, Li B, Yu X, Cai Q, Chen W, Kotta-Loizou I, Xie J. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat Commun 2024; 15:4748. [PMID: 38834585 DOI: 10.1038/s41467-024-49110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.
Collapse
Affiliation(s)
- Du Hai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jincang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Qing Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ioly Kotta-Loizou
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Richter F, Calonne-Salmon M, van der Heijden MGA, Declerck S, Stanley CE. AMF-SporeChip provides new insights into arbuscular mycorrhizal fungal asymbiotic hyphal growth dynamics at the cellular level. LAB ON A CHIP 2024; 24:1930-1946. [PMID: 38416560 PMCID: PMC10964749 DOI: 10.1039/d3lc00859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (i.e., physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the AMF-SporeChip - to visualise the foraging behaviour of germinating Rhizophagus and Gigaspora spores and confront asymbiotic hyphae with physical obstacles. In combination with timelapse microscopy, the fungi could be examined at the cellular level and in real-time. The AMF-SporeChip allowed us to acquire movies with unprecedented visual clarity and therefore identify various exploration strategies of AMF asymbiotic hyphae. We witnessed tip-to-tip and tip-to-side hyphal anastomosis formation. Anastomosis involved directed hyphal growth in a "stop-and-go" manner, yielding visual evidence of pre-anastomosis signalling and decision-making. Remarkably, we also revealed a so-far undescribed reversible cytoplasmic retraction, including the formation of up to 8 septa upon retraction, as part of a highly dynamic space navigation, probably evolved to optimise foraging efficiency. Our findings demonstrated how AMF employ an intricate mechanism of space searching, involving reversible cytoplasmic retraction, branching and directional changes. In turn, the AMF-SporeChip is expected to open many future frontiers for AMF research.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Marcel G A van der Heijden
- Agroecology and Environment Research Division, Agroscope, 8046 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Basak P, Gurjar MS, Kumar TPJ, Kashyap N, Singh D, Jha SK, Saharan MS. Transcriptome analysis of Bipolaris sorokiniana - Hordeum vulgare provides insights into mechanisms of host-pathogen interaction. Front Microbiol 2024; 15:1360571. [PMID: 38577688 PMCID: PMC10993733 DOI: 10.3389/fmicb.2024.1360571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Spot blotch disease incited by Bipolaris sorokiniana severely affects the cultivation of barley. The resistance to B. sorokiniana is quantitative in nature and its interaction with the host is highly complex which necessitates in-depth molecular analysis. Thus, the study aimed to conduct the transcriptome analysis to decipher the mechanisms and pathways involved in interactions between barley and B. sorokiniana in both the resistant (EC0328964) and susceptible (EC0578292) genotypes using the RNA Seq approach. In the resistant genotype, 6,283 genes of Hordeum vulgare were differentially expressed out of which 5,567 genes were upregulated and 716 genes were downregulated. 1,158 genes of Hordeum vulgare were differentially expressed in the susceptible genotype, out of which 654 genes were upregulated and 504 genes were downregulated. Several defense-related genes like resistant gene analogs (RGAs), disease resistance protein RPM1, pathogenesis-related protein PRB1-2-like, pathogenesis-related protein 1, thaumatin-like protein PWIR2 and defensin Tm-AMP-D1.2 were highly expressed exclusively in resistant genotype only. The pathways involved in the metabolism and biosynthesis of secondary metabolites were the most prominently represented pathways in both the resistant and susceptible genotypes. However, pathways involved in MAPK signaling, plant-pathogen interaction, and plant hormone signal transduction were highly enriched in resistant genotype. Further, a higher number of pathogenicity genes of B. sorokiniana was found in response to the susceptible genotype. The pathways encoding for metabolism, biosynthesis of secondary metabolites, ABC transporters, and ubiquitin-mediated proteolysis were highly expressed in susceptible genotype in response to the pathogen. 14 and 11 genes of B. sorokiniana were identified as candidate effectors from susceptible and resistant host backgrounds, respectively. This investigation will offer valuable insights in unraveling the complex mechanisms involved in barley- B. sorokiniana interaction.
Collapse
Affiliation(s)
- Poulami Basak
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Malkhan Singh Gurjar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Natasha Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Barbelli-Lopez MS, Peralta MP, Levin L, Lechner BE. Effect of co-cultivation of white and brown rot species on basidiome production, lignocelluloytic enzyme activity and dye decolourisation. BIORESOURCE TECHNOLOGY 2024; 395:130397. [PMID: 38309669 DOI: 10.1016/j.biortech.2024.130397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The aim of this work was studying the impact of co-cultivating two mushroom species: a white (Pleurotus albidus CLA 45) and a brown rot one (Laetiporus sulphureus BAFC 205) in substrates based on poplar or pine sawdust, on their lignocellulolytic enzyme production, yield values and basidiomes properties. Laetiporus sulphureus only developed basidiome primordia, but P. albidus monoculture and co-culture in pine sawdust achieved biological efficiencies of up to 50-55 %. Co-cultivation on diverse substrates rendered varied enzyme titers. Laccase and Manganese peroxidase titers were highest in pine co-culture and P. albidus poplar monoculture, respectively. Enzymatic extracts obtained from spent poplar substrate of dual cultures displayed potential for treating non-sterile textile-coloured effluents, achieving 35 % decolourisation after 120 h. The knowledge available on the effects of co-culture of white and brown rot fungi is still limited. This study represents an initial exploration of the interaction between them within intensive cultivation conditions.
Collapse
Affiliation(s)
| | - Maria Patricia Peralta
- Universidad de Buenos Aires, Facultad de Bioquímica, Química y Farmacia. Instituto de Nanobiotecnología, (NANOBIOTEC) Consejo Nacional de Investigaciones Científicas (CONICET), Argentina.
| | - Laura Levin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Instituto de Micología y Botánica (InMiBo) Consejo Nacional de Investigaciones Científicas (CONICET), Argentina.
| | - Bernardo Ernesto Lechner
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Instituto de Micología y Botánica (InMiBo) Consejo Nacional de Investigaciones Científicas (CONICET), Argentina.
| |
Collapse
|
9
|
Clavé C, Dheur S, Ament-Velásquez SL, Granger-Farbos A, Saupe SJ. het-B allorecognition in Podospora anserina is determined by pseudo-allelic interaction of genes encoding a HET and lectin fold domain protein and a PII-like protein. PLoS Genet 2024; 20:e1011114. [PMID: 38346076 PMCID: PMC10890737 DOI: 10.1371/journal.pgen.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Filamentous fungi display allorecognition genes that trigger regulated cell death (RCD) when strains of unlike genotype fuse. Podospora anserina is one of several model species for the study of this allorecognition process termed heterokaryon or vegetative incompatibility. Incompatibility restricts transmission of mycoviruses between isolates. In P. anserina, genetic analyses have identified nine incompatibility loci, termed het loci. Here we set out to clone the genes controlling het-B incompatibility. het-B displays two incompatible alleles, het-B1 and het-B2. We find that the het-B locus encompasses two adjacent genes, Bh and Bp that exist as highly divergent allelic variants (Bh1/Bh2 and Bp1/Bp2) in the incompatible haplotypes. Bh encodes a protein with an N-terminal HET domain, a cell death inducing domain bearing homology to Toll/interleukin-1 receptor (TIR) domains and a C-terminal domain with a predicted lectin fold. The Bp product is homologous to PII-like proteins, a family of small trimeric proteins acting as sensors of adenine nucleotides in bacteria. We show that although the het-B system appears genetically allelic, incompatibility is in fact determined by the non-allelic Bh1/Bp2 interaction while the reciprocal Bh2/Bp1 interaction plays no role in incompatibility. The highly divergent C-terminal lectin fold domain of BH determines recognition specificity. Population studies and genome analyses indicate that het-B is under balancing selection with trans-species polymorphism, highlighting the evolutionary significance of the two incompatible haplotypes. In addition to emphasizing anew the central role of TIR-like HET domains in fungal RCD, this study identifies novel players in fungal allorecognition and completes the characterization of the entire het gene set in that species.
Collapse
Affiliation(s)
- Corinne Clavé
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | - Sonia Dheur
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | | | | | - Sven J. Saupe
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| |
Collapse
|
10
|
Wu B, Li J, Wang Y, Yang J, Ye Y, Sun J, Sheng L, Wu M, Zhang Y, Gong Y, Zhou J, Ji J, Sun X. Exploring the impact of fungal spores from agricultural environments on the mice lung microbiome and metabolic profile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115456. [PMID: 37714035 DOI: 10.1016/j.ecoenv.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Exposure to particulate matter (PM) from agricultural environments has been extensively reported to cause respiratory health concerns in both animals and agricultural workers. Furthermore, PM from agricultural environments, containing fungal spores, has emerged as a significant threat to public health and the environment. Despite its potential toxicity, the impact of fungal spores present in PM from agricultural environments on the lung microbiome and metabolic profile is not well understood. To address this gap in knowledge, we developed a mice model of immunodeficiency using cyclophosphamide and subsequently exposed the mice to fungal spores via the trachea. By utilizing metabolomics techniques and 16 S rRNA sequencing, we conducted a comprehensive investigation into the alterations in the lung microbiome and metabolic profile of mice exposed to fungal spores. Our study uncovered significant modifications in both the lung microbiome and metabolic profile post-exposure to fungal spores. Additionally, fungal spore exposure elicited noticeable changes in α and β diversity, with these microorganisms being closely associated with inflammatory factors. Employing non-targeted metabolomics analysis via GC-TOF-MS, a total of 215 metabolites were identified, among which 42 exhibited significant differences. These metabolites are linked to various metabolic pathways, with amino sugar and nucleotide sugar metabolism, as well as galactose metabolism, standing out as the most notable pathways. Cysteine and methionine metabolism, along with glycine, serine and threonine metabolism, emerged as particularly crucial pathways. Moreover, these metabolites demonstrated a strong correlation with inflammatory factors and exhibited significant associations with microbial production. Overall, our findings suggest that disruptions to the microbiome and metabolome may hold substantial relevance in the mechanism underlying fungal spore-induced lung damage in mice.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Yang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengying Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yajun Gong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Khan HA, Nerva L, Bhatti MF. The good, the bad and the cryptic: The multifaceted roles of mycoviruses and their potential applications for a sustainable agriculture. Virology 2023; 585:259-269. [PMID: 37453341 DOI: 10.1016/j.virol.2023.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Mycoviruses are natural inhabitants of fungi and have been identified in almost all fungal taxonomic groups. Mycoviruses that infect phytopathogenic fungi are now becoming a hot research area due to their potential for the biocontrol of important plant pathogens. But, before considering a mycovirus for biocontrol, we should be fully aware of the effects it induces in a fungal host and its interactions with other viruses, fungal strains and even the host plants. Mycoviral infections are generally associated with different effects, ranging from hypovirulence to hypervirulence, but they can often be cryptic (latent infections). The cryptic lifestyle has been associated to many mycoviruses, but thanks to growing knowledge we are now aware that it is often associated to axenic conditions while the real effects can be observed only in nature. Other mycoviruses either promote (hypervirulence) or (hypovirulence) fungal pathogenicity by a strong impact on the fungal physiology or by blocking the production of toxins or effectors. Finally, indirect effects of mycoviral infections can also be provided to the plant that hosts the fungal isolate, highlighting not only their potential as direct biocontrol agents but also as priming agents for plant resilience to biotic and abiotic stresses. This review provides a broad overview of mycoviral interactions both with their hosts and with other mycoviruses, highlighting the most interesting examples. In contrast to what has been observed to date, we believe that the collective availability of these data will not only improve our understanding of mycoviruses, but also increase our confidence in considering them as alternative measures against fungal diseases to improve the sustainable production of food and feed commodities.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan; Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015, Conegliano, (TV), Italy.
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| |
Collapse
|
12
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
13
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
14
|
Bao Y, Akbar S, Yao W, Xu Y, Xu J, Powell CA, Chen B, Zhang M. Genetic Diversity and Pathogenicity of Fusarium fujikuroi Species Complex (FFSC) Causing Sugarcane Pokkah Boeng Disease (PBD) in China. PLANT DISEASE 2023:PDIS07221639SR. [PMID: 36410020 DOI: 10.1094/pdis-07-22-1639-sr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pokkah boeng disease (PBD), a sugarcane foliar disease, is caused by various Fusarium spp. within the Fusarium fujikuroi species complex (FFSC). In the current study, we investigated the diversity of Fusarium spp. associated with PBD in China. In total, 320 leaf samples displaying PBD symptoms were collected over 10 consecutive years (2012 to 2021), during winter and summer, from six various sugarcane-growing regions (Guangxi, Yunnan, Guangdong, Zhejiang, Hainan, and Fujian) in China. Phylogenetic analysis of Fusarium spp. was reconstructed using translation elongation factor 1-α, and DNA-directed RNA polymerase II largest subunit and second-largest subunit multigene sequences. Evolutionary studies of these regions categorized the isolates into four FFSC species (F. sacchari, F. proliferatum, F. verticillioides, and F. andiyazi). The identified isolates, which developed irregular necrotic patches and rotting symptoms on the sugarcane plant after approximately 30 days were tested for their pathogenicity. Symptoms that appeared during pathogenicity testing were consistent with those observed under field conditions. Each strain of the pathogenic Fusarium spp. belonged to different vegetative compatibility groups (VCGs), and there was no affinity between VCGs. Our results contribute to understanding FFSC and accurately identifying Fusarium spp. associated with the sugarcane crop.
Collapse
Affiliation(s)
- Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- China/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sehrish Akbar
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Yuzhi Xu
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Jianlong Xu
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- China/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, China
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, U.S.A
| |
Collapse
|
15
|
Peng T, Yue P, Ma WB, Zhao ML, Guo JL, Tong XX. Growth characteristics and phylogenetic analysis of the isolate mycelium, Ophiocordyceps sinensis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Rodriguez-Morelos VH, Calonne-Salmon M, Declerck S. Anastomosis within and between networks of Rhizophagus irregularis is differentially influenced by fungicides. MYCORRHIZA 2023; 33:15-21. [PMID: 36680651 PMCID: PMC9938072 DOI: 10.1007/s00572-023-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play key roles in soil fertility of agroecosystems. They develop dense extraradical mycelial (ERM) networks via mechanisms such as hyphal anastomosis. These connections between hyphae can be affected by agricultural practices such as the use of fungicides, but how these compounds affect anastomosis formation within and more importantly between networks of the same AM fungal strain remains poorly unexplored. Here, the impact of azoxystrobin, pencycuron, flutolanil, and fenpropimorph at 0.02 and 2 mg L-1 were tested in vitro on the anastomosis formation within and between networks of Rhizophagus irregularis MUCL 41833. Azoxystrobin and fenpropimorph had a particularly detrimental impact, at the highest concentration (2 mg L-1), on the number of anastomoses within and between networks, and for fenpropimorph in particular at both concentrations (0.02 and 2 mg L-1) on the number of anastomoses per length of hyphae. Curiously fenpropimorph at 0.02 mg L-1 significantly stimulated spore production, while with azoxystrobin, the reverse was observed at 2 mg L-1. The two other fungicides, pencycuron and flutolanil, had no detrimental effects on spore production or anastomosis formation within and between networks. These results suggest that fungicides with different modes of action and concentrations differentially affect anastomosis possibly by altering the hyphal tips of AM fungi and may thus affect the capacity of AM fungi to develop large hyphal networks exploring and exploiting the soil at the service of plants.
Collapse
Affiliation(s)
- Victor Hugo Rodriguez-Morelos
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Maryline Calonne-Salmon
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium.
| |
Collapse
|
17
|
Staubli F, Imola L, Dauphin B, Molinier V, Pfister S, Piñuela Y, Schürz L, Sproll L, Steidinger BS, Stobbe U, Tegel W, Büntgen U, Egli S, Peter M. Hidden fairy rings and males-Genetic patterns of natural Burgundy truffle (Tuber aestivum Vittad.) populations reveal new insights into its life cycle. Environ Microbiol 2022; 24:6376-6391. [PMID: 35837848 PMCID: PMC10084442 DOI: 10.1111/1462-2920.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 01/12/2023]
Abstract
Burgundy truffles are heterothallic ascomycetes that grow in symbiosis with trees. Despite their esteemed belowground fruitbodies, the species' complex lifecycle is still not fully understood. Here, we present the genetic patterns in three natural Burgundy truffle populations based on genotyped fruitbodies, ascospore extracts and ectomycorrhizal root tips using microsatellites and the mating-type locus. Distinct genetic structures with high relatedness in close vicinity were found for females (forming the fruitbodies) and males (fertilizing partner as inferred from ascospore extracts), with high genotypic diversity and annual turnover of males, suggesting that ephemeral male mating partners are germinating ascospores from decaying fruitbodies. The presence of hermaphrodites and the interannual persistence of a few males suggest that persistent mycelia may sporadically also act as males. Only female or hermaphroditic individuals were detected on root tips. At one site, fruitbodies grew in a fairy ring formed by a large female individual that showed an outward growth rate of 30 cm per year, with the mycelium decaying within the ring and being fertilized by over 50 male individuals. While fairy ring structures have never been shown for truffles, the genetics of Burgundy truffle populations support a similar reproductive biology as those of other highly prized truffles.
Collapse
Affiliation(s)
- Florian Staubli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lea Imola
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Benjamin Dauphin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Virginie Molinier
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stephanie Pfister
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yasmine Piñuela
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain.,Forest Science and Technology Centre of Catalonia, Solsona, Spain
| | - Laura Schürz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Brian S Steidinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Ecology, University of Konstanz, Konstanz, Germany
| | | | - Willy Tegel
- Chair of Forest Growth, Albert-Ludwigs University, Freiburg, Germany
| | - Ulf Büntgen
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Geography, University of Cambridge, Cambridge, UK.,Global Change Research Centre (CzechGlobe), Brno, Czech Republic.,Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Egli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martina Peter
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
18
|
Hai D, Li J, Lan S, Wu T, Li Y, Cheng J, Fu Y, Lin Y, Jiang D, Wang M, Xie J. Discovery and Evolution of Six Positive-Sense RNA Viruses Co-infecting the Hypovirulent Strain SCH733 of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2022; 112:2449-2461. [PMID: 35793152 DOI: 10.1094/phyto-05-22-0148-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sclerotinia sclerotiorum is a well-known phytopathogenic fungus with a wide host range. Identifying novel mycoviruses in phytopathogenic fungi is necessary to develop novel strategies for plant health protection and contribute to understanding the origin of viruses. Six new mycoviruses with positive single-stranded RNA genomes co-infecting the hypovirulent strain SCH733 of S. sclerotiorum were identified using a metatranscriptomic approach, and their complete genome sequences were molecularly determined. These mycoviruses belong to the following five families: Narnaviridae, Mitoviridae, Deltaflexviridae, Botourmiaviridae, and Ambiguiviridae. Three of these mycoviruses belong to existing International Committee on Taxonomy of Viruses (ICTV)-recognized species. Two of these newly identified mycoviruses have unique genomic features that are significantly different from those of all known mycoviruses. Phylogenetic analysis revealed that these six mycoviruses included close as well as distant relatives of known mycoviruses, thereby providing new insight into virus evolution and classification. Mycovirus horizontal transmission and elimination experiments revealed that Sclerotinia sclerotiorum narnavirus 5 is associated with hypovirulence of S. sclerotiorum, although we have not shown that it is independently responsible for the hypovirulence phenotype. This study broadens the diversity of known mycoviruses infecting S. sclerotiorum and provides a clue toward limiting hypovirulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shangsong Lan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Tun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Minghong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, College of Forestry and Horticulture, Hubei Minzu University, Enshi, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
19
|
Hypovirulence of Colletotrichum gloesporioides Associated with dsRNA Mycovirus Isolated from a Mango Orchard in Thailand. Viruses 2022; 14:v14091921. [PMID: 36146727 PMCID: PMC9504431 DOI: 10.3390/v14091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
The pathogenic fungus Colletotrichum gloeosporioides causes anthracnose disease, which is an important fungal disease affecting the production of numerous crops around the world. The presence of mycoviruses, however, may have an impact on the pathogenicity of the fungal host. Here, we describe a double-stranded RNA (dsRNA) mycovirus, which was isolated from a field strain of C. gloeosporioides, Ssa-44.1. The 2939 bp genome sequence comprises two open reading frames (ORFs) that encode for a putative protein and RNA-dependent RNA polymerase (RdRp). The Ssa-44.1 mycovirus is a member of the unclassified mycovirus family named Colletotrichum gloeosporioides RNA virus 1 strain Ssa-44.1 (CgRV1-Ssa-44.1), which has a phylogenetic similarity to Colletotrichum gleosporioides RNA virus 1 (CgRV1), which was isolated from citrus leaves in China. In C. gloeosporioides, CgRV1-Ssa-44.1 was shown to be linked to hypovirulence. CgRV1-Ssa-44.1 has a low spore transfer efficiency but can successfully spread horizontally to isogenic virus-free isolates. Furthermore, CgRV1-Ssa-44.1 had a strong biological control impact on C. gloeosporioides on mango plants. This study is the first to describe a hypovirulence-associated mycovirus infecting C. gloeosporioides, which has the potential to assist with anthracnose disease biological management.
Collapse
|
20
|
Zhang W, Lv Y, Yang H, Wei S, Zhang S, Li N, Hu Y. Sub3 Inhibits Mycelia Growth and Aflatoxin Production of Aspergillus Flavus. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Baptista P, Guedes de Pinho P, Moreira N, Malheiro R, Reis F, Padrão J, Tavares R, Lino-Neto T. In vitro interactions between the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare fungi: morphological aspects and volatile production. Mycology 2021; 12:216-229. [PMID: 34552812 PMCID: PMC8451600 DOI: 10.1080/21501203.2021.1876778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ectomycorrhizal fungi are crucial for forests sustainability. For Castanea sativa, ectomycorrhizal fungus Pisolithus tinctorius is an important mutualist partner. Saprotrophic fungi Hypholoma fasciculare, although used for biocontrol of Armillaria root disease, it negatively affected the interaction between the P. tinctorius and plant host roots, by compromise the formation of P. tinctorius-C. sativa mycorrhizae. In this work, fungal morphology during inhibition of H. fasciculare against P. tinctorius was elucidated. P. tinctorius growth was strongly affected by H. fasciculare, which was significantly reduced after six days of co-culture and become even more significant through time. During this period, P. tinctorius developed vesicles and calcium oxalate crystals, which were described as mechanisms to stress adaption by fungi. H. fasciculare produced different volatile organic compounds in co-cultures over time and differ between single or in dual-species. H. fasciculare highly produced sesquiterpenes (namely, α-muurolene) and nitrogen-containing compounds, which are recognised as having antimicrobial activity.
Collapse
Affiliation(s)
- Paula Baptista
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico De Bragança, Campus De Santa Apolónia, Bragança, Portugal
| | - Paula Guedes de Pinho
- UCIBIO-REQUIMTE/Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Nathalie Moreira
- UCIBIO-REQUIMTE/Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ricardo Malheiro
- Centro De Investigação De Montanha (CIMO), Instituto Politécnico De Bragança, Campus De Santa Apolónia, Bragança, Portugal
| | - Francisca Reis
- BioSystems & Integrative Sciences Institute (Bioisi), Plant Functional Biology Centre, University of Minho, Campus De Gualtar, Braga, Portugal
| | - Jorge Padrão
- BioSystems & Integrative Sciences Institute (Bioisi), Plant Functional Biology Centre, University of Minho, Campus De Gualtar, Braga, Portugal
| | - Rui Tavares
- BioSystems & Integrative Sciences Institute (Bioisi), Plant Functional Biology Centre, University of Minho, Campus De Gualtar, Braga, Portugal
| | - Teresa Lino-Neto
- BioSystems & Integrative Sciences Institute (Bioisi), Plant Functional Biology Centre, University of Minho, Campus De Gualtar, Braga, Portugal
| |
Collapse
|
22
|
Spontaneous changes in somatic compatibility in Fusarium circinatum. Fungal Biol 2021; 125:725-732. [PMID: 34420699 DOI: 10.1016/j.funbio.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Filamentous fungi grow by the elaboration of hyphae, which may fuse to form a network as a colony develops. Fusion of hyphae can occur between genetically different individuals, provided they share a common allele at loci affecting somatic compatibility. Diversity in somatic compatibility phenotypes reduces the frequency of hyphal fusion in a population, thereby slowing the spread of deleterious genetic elements such as viruses and plasmids, which require direct cytoplasmic contact for transmission. Diverse somatic compatibility phenotypes can be generated by recombining alleles through sexual reproduction, but this mechanism may not fully account for the diversity found in nature. For example, multiple compatibility phenotypes of Fusarium circinatum were shown to be associated with the same clonal lineage, which implies they were derived by a mutation rather than recombination through sexual reproduction. Experimental tests of this hypothesis confirmed that spontaneous changes in somatic compatibility can occur at a frequency between 5 and 8 per million spores. Genomic analysis of F. circinatum strains with altered somatic compatibility revealed no consistent evidence of recombination and supported the hypothesis that a spontaneous mutation generated the observed phenotypic change. Genes known to be involved in somatic compatibility had no mutations, suggesting that mutation occurred in a gene with an as yet unexplored function in somatic compatibility.
Collapse
|
23
|
Abstract
True morels (Morchella spp., Morchellaceae, Ascomycota) are widely regarded as a highly prized delicacy and are of great economic and scientific value. Recently, the rapid development of cultivation technology and expansion of areas for artificial morel cultivation have propelled morel research into a hot topic. Many studies have been conducted in various aspects of morel biology, but despite this, cultivation sites still frequently report failure to fruit or only low production of fruiting bodies. Key problems include the gap between cultivation practices and basic knowledge of morel biology. In this review, in an effort to highlight the mating systems, evolution, and life cycle of morels, we summarize the current state of knowledge of morel sexual reproduction, the structure and evolution of mating-type genes, the sexual process itself, and the influence of mating-type genes on the asexual stages and conidium production. Understanding of these processes is critical for improving technology for the cultivation of morels and for scaling up their commercial production. Morel species may well be good candidates as model species for improving sexual development research in ascomycetes in the future.
Collapse
|
24
|
Maroc L, Fairhead C. Lessons from the Nakaseomyces: mating-type switching, DSB repair and evolution of Ho. Curr Genet 2021; 67:685-693. [PMID: 33830322 DOI: 10.1007/s00294-021-01182-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
This short paper aims to review what our recent studies in the Nakaseomyces yeasts, principally Candida glabrata, reveal about the evolution of the mating-type switching system and its components, as well as about the repair of chromosomal double-strand breaks in this clade. In the model yeast Saccharomyces cerevisiae, the study of mating-type switching has, over the years, led to major discoveries in how cells process chromosomal breaks. Indeed, in this species, switching, which allows every haploid cell to produce cells of opposite mating types that can mate together, is initiated by the Ho endonuclease, linking sexual reproduction to a programmed chromosomal cut. More recently, the availability of other yeasts' genomes from type strains and from populations, and the ability to manipulate and edit the genomes of most yeasts in the laboratory, has enabled scientists to explore mating-type switching in new species, thus enriching our evolutionary perspective on this phenomenon. In this review, we will show how the study of mating-type switching in C. glabrata and Nakaseomyces delphensis has allowed us to reveal possible additional roles for Ho, and also to discover major differences in DSB repair at central and subtelomeric sexual loci. In addition, we report how the study of repair of chromosomal breaks induced by CRISPR-Cas9 reveals that efficient and faithful NHEJ is a major repair pathway in C. glabrata.
Collapse
Affiliation(s)
- Laetitia Maroc
- GQE-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Cécile Fairhead
- GQE-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
25
|
Nutritional analysis and molecular characterization of hybrid mushrooms developed through intergeneric protoplast fusion between Pleurotus sajor-caju and Calocybe indica with the purpose to achieve improved strains. World J Microbiol Biotechnol 2021; 37:69. [PMID: 33748875 DOI: 10.1007/s11274-021-03032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Two edible mushrooms Calocybe indica and Pleurotus sajor-caju were chosen as parent strains in this study to approach the concept of hybridization through the protoplast fusion technique. Protoplast fusion in presence of polyethylene glycol (PEG) was conducted between the parent strains and by further double selection screening method, six somatic hybrid lines were developed. Those fruit bodies of the hybrid lines showed phenotypic resemblance with Pleurotus sajor-caju when grown on paddy straw under favorable conditions. The hybridity of the newly developed somatic hybrid strains was established by barrage reaction, morphological traits, fruitbody parameter and, inter single sequence repeat (ISSR) profiling. One-way analysis of variance (ANOVA) was used for the analysis of phenotypic data of hybrid lines and parents. Five ISSR primers were used to generate 51 amplified DNA fragments ranged between 250 and 3000 bp in size in six hybrids and two parents with 90.19% polymorphism. Some of the hybrids contain some non-parental bands which indicate that recombination might happen in the hybrid genome hence confirming the hybridity of newly developed strains. The dendrogram was created using the Average Linkage (Between Groups) method based on ISSR profiling and genetic distance between parent-hybrids and hybrid-hybrid was analyzed by Jaccard's proximity matrix. A definite improvement in nutritional properties and biological activity was observed in the study. Due to ease in their cultivation, it can play a significant role in the rural economic development.
Collapse
|
26
|
Rodriguez-Morelos VH, Calonne-Salmon M, Bremhorst V, Garcés-Ruiz M, Declerck S. Fungicides With Contrasting Mode of Action Differentially Affect Hyphal Healing Mechanism in Gigaspora sp. and Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2021; 12:642094. [PMID: 33777077 PMCID: PMC7989550 DOI: 10.3389/fpls.2021.642094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Fungicides are widely used in conventional agriculture to control fungal diseases, but may also affect non-target microorganisms such as arbuscular mycorrhizal (AM) fungi. These root symbionts develop extended mycelial networks within the soil via mechanisms such as anastomosis that indistinctly concerns intact and damaged hyphae, the latter being named hyphal healing mechanism (HHM). The HHM differs between Glomeraceae and Gigasporaceae. However, the effects of fungicides on this mechanism in unknown. Here, the impact of azoxystrobin, pencycuron, flutolanil, and fenpropimorph at 0.02 and 2 mg L-1 were tested in vitro on the HHM of Gigaspora sp. MUCL 52331 and Rhizophagus irregularis MUCL 41833, and repair events visualized carefully under a dissecting bright-field light microscope. Azoxystrobin was the more detrimental for both AM fungi at 2 mg L-1, while fenpropimorph impacted only R. irregularis (stimulating at low and inhibiting at high concentration). Conversely, flutolanil and pencycuron did not impact any of the two AM fungi. The mechanisms involved remains to be elucidated, but perturbation in the still-to-be firmly demonstrated spitzenkörper or in sterols content as well as a process of hormesis are possible avenues that deserve to be explored in view of a rationale management of chemicals to control fungal pathogens without harming the beneficial AM fungi.
Collapse
Affiliation(s)
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vincent Bremhorst
- Louvain Institute of Data Analysis and Modeling in Economics and Statistics, Statistical Methodology and Computing Service, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Landscape Genetic Connectivity and Evidence for Recombination in the North American Population of the White-Nose Syndrome Pathogen, Pseudogymnoascus destructans. J Fungi (Basel) 2021; 7:jof7030182. [PMID: 33802538 PMCID: PMC8001231 DOI: 10.3390/jof7030182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
White-Nose Syndrome is an ongoing fungal epizootic caused by epidermal infections of the fungus, Pseudogymnoascus destructans (P. destructans), affecting hibernating bat species in North America. Emerging early in 2006 in New York State, infections of P. destructans have spread to 38 US States and seven Canadian Provinces. Since then, clonal isolates of P. destructans have accumulated genotypic and phenotypic variations in North America. Using microsatellite and single nucleotide polymorphism markers, we investigated the population structure and genetic relationships among P. destructans isolates from diverse regions in North America to understand its pattern of spread, and to test hypotheses about factors that contribute to transmission. We found limited support for genetic isolation of P. destructans populations by geographic distance, and instead identified evidence for gene flow among geographic regions. Interestingly, allelic association tests revealed evidence for recombination in the North American P. destructans population. Our landscape genetic analyses revealed that the population structure of P. destructans in North America was significantly influenced by anthropogenic impacts on the landscape. Our results have important implications for understanding the mechanism(s) of P. destructans spread.
Collapse
|
28
|
Simbaqueba J, Rodríguez EA, Burbano-David D, González C, Caro-Quintero A. Putative Novel Effector Genes Revealed by the Genomic Analysis of the Phytopathogenic Fungus Fusarium oxysporum f. sp. physali ( Foph) That Infects Cape Gooseberry Plants. Front Microbiol 2021; 11:593915. [PMID: 33537009 PMCID: PMC7847934 DOI: 10.3389/fmicb.2020.593915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/28/2020] [Indexed: 02/02/2023] Open
Abstract
The vascular wilt disease caused by the fungus Fusarium oxysporum f. sp. physali (Foph) is one of the most limiting factors for the production and export of cape gooseberry (Physalis peruviana) in Colombia. A transcriptomic analysis of a highly virulent strain of F. oxysporum in cape gooseberry plants, revealed the presence of secreted in the xylem (SIX) effector genes, known to be involved in the pathogenicity of other formae speciales (ff. spp.) of F. oxysporum. This pathogenic strain was classified as a new f. sp. named Foph, due to its specificity for cape gooseberry hosts. Here, we sequenced and assembled the genome of five strains of F. oxysporum from a fungal collection associated to the cape gooseberry crop (including Foph), focusing on the validation of the presence of SIX homologous and on the identification of putative effectors unique to Foph. By comparative and phylogenomic analyses based on single-copy orthologous, we found that Foph is closely related to F. oxysporum ff. spp., associated with solanaceous hosts. We confirmed the presence of highly identical homologous genomic regions between Foph and Fol that contain effector genes and identified six new putative effector genes, specific to Foph pathogenic strains. We also conducted a molecular characterization using this set of putative novel effectors in a panel of 36 additional stains of F. oxysporum including two of the four sequenced strains, from the fungal collection mentioned above. These results suggest the polyphyletic origin of Foph and the putative independent acquisition of new candidate effectors in different clades of related strains. The novel effector candidates identified in this genomic analysis, represent new sources involved in the interaction between Foph and cape gooseberry, that could be implemented to develop appropriate management strategies of the wilt disease caused by Foph in the cape gooseberry crop.
Collapse
Affiliation(s)
- Jaime Simbaqueba
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Edwin A Rodríguez
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Diana Burbano-David
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Carolina González
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | | |
Collapse
|
29
|
Belov AA, Witte TE, Overy DP, Smith ML. Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in Cryphonectria parasitica. G3-GENES GENOMES GENETICS 2021; 11:6025178. [PMID: 33561228 PMCID: PMC7849911 DOI: 10.1093/g3journal/jkaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023]
Abstract
The underlying molecular mechanisms of programmed cell death associated with fungal allorecognition, a form of innate immunity, remain largely unknown. In this study, transcriptome analysis was used to infer mechanisms activated during barrage formation in vic3-incompatible strains of Cryphonectria parasitica, the chestnut blight fungus. Pronounced differential expression occurred in barraging strains of genes involved in mating pheromone (mf2-1, mf2-2), secondary metabolite production, detoxification (including oxidative stress), apoptosis-related, RNA interference, and HET-domain genes. Evidence for secondary metabolite production and reactive oxygen species (ROS) accumulation is supported through UPLC-HRMS analysis and cytological staining, respectively. Differential expression of mating-related genes and HET-domain genes was further examined by RT-qPCR of incompatible interactions involving each of the six vegetative incompatibility (vic) loci in C. parasitica and revealed distinct recognition process networks. We infer that vegetative incompatibility in C. parasitica activates defence reactions that involve secondary metabolism, resulting in increased toxicity of the extra- and intracellular environment. Accumulation of ROS (and other potential toxins) may result in detoxification failure and activation of apoptosis, sporulation, and the expression of associated pheromone genes. The incompatible reaction leaves abundant traces of a process-specific metabolome as conidiation is initiated.
Collapse
Affiliation(s)
- Anatoly A Belov
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas E Witte
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa, ON, K1Y 4X2, Canada
| | - Myron L Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
30
|
Korfanty G, Stanley K, Lammers K, Fan Y, Xu J. Variations in sexual fitness among natural strains of the opportunistic human fungal pathogen Aspergillus fumigatus. INFECTION GENETICS AND EVOLUTION 2020; 87:104640. [PMID: 33246083 DOI: 10.1016/j.meegid.2020.104640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/05/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
Aspergillus fumigatus is a ubiquitous ascomycete fungus, naturally inhabiting the soil and compost piles. Its conidia readily disperse into the atmosphere and cause opportunistic infections known as aspergillosis. With the emerging resistance to many antifungal drugs, our understanding of A. fumigatus epidemiology has become increasingly important for developing effective control and treatment strategies. As a pathogen capable of both sexual and asexual reproduction, mutations causing drug resistance and increased virulence could be spread rapidly in A. fumigatus populations. However, relatively little is known about the distributions of sexual reproductive fitness among natural strains of A. fumigatus. Here we investigated the formation of sexual reproductive structure (i.e. cleistothecia) and sexual spore viability among 60 natural strains of A. fumigatus. These strains were from six geographically distant countries (India, China, Canada, Cameroon, Saudi Arabia, and New Zealand), with 10 strains (including five MAT1-1 strains and five MAT1-2 strains) from each country. These strains were crossed in all combinations with strains of the opposite mating type. In addition, all 60 strains were crossed with either AFB62-1 (MAT1-1) or AFIR928 (MAT1-2), two reference supermater strains. Of the 900 crosses among the 60 natural strains, 136 crosses (15.1%) produced cleistothecia. Our analyses revealed that strains from China had the highest average ability to form cleistothecia, followed by those from New Zealand, Saudi Arabia, India, Canada, and Cameroon. Among the crosses that produced cleistothecia, about 40% produced viable ascospores, with the rate of ascospore germination varied significantly among crosses. Interestingly, neither the ability to form cleistothecia nor ascospore germination rate showed any distinct relationships with either geographic or genetic distance between parental strains. Our results suggest that genetic exchange among geographically and genetically divergent strains of A. fumigatus are possible. However, the rates of genetic exchange likely vary among strains and populations in nature.
Collapse
Affiliation(s)
- Greg Korfanty
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlin Stanley
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlyn Lammers
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - YuYing Fan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
31
|
Mela AP, Rico-Ramírez AM, Glass NL. Syncytia in Fungi. Cells 2020; 9:cells9102255. [PMID: 33050028 PMCID: PMC7600787 DOI: 10.3390/cells9102255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Filamentous fungi typically grow as interconnected multinucleate syncytia that can be microscopic to many hectares in size. Mechanistic details and rules that govern the formation and function of these multinucleate syncytia are largely unexplored, including details on syncytial morphology and the regulatory controls of cellular and molecular processes. Recent discoveries have revealed various adaptations that enable fungal syncytia to accomplish coordinated behaviors, including cell growth, nuclear division, secretion, communication, and adaptation of the hyphal network for mixing nuclear and cytoplasmic organelles. In this review, we highlight recent studies using advanced technologies to define rules that govern organizing principles of hyphal and colony differentiation, including various aspects of nuclear and mitochondrial cooperation versus competition. We place these findings into context with previous foundational literature and present still unanswered questions on mechanistic aspects, function, and morphological diversity of fungal syncytia across the fungal kingdom.
Collapse
Affiliation(s)
- Alexander P. Mela
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - Adriana M. Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
32
|
Zhang Y, Wei J, Qi Y, Li J, Amin R, Yang W, Liu D. Predicating the Effector Proteins Secreted by Puccinia triticina Through Transcriptomic Analysis and Multiple Prediction Approaches. Front Microbiol 2020; 11:538032. [PMID: 33072007 PMCID: PMC7536266 DOI: 10.3389/fmicb.2020.538032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Wheat leaf rust caused by Puccinia triticina is one of the most common and serious diseases in wheat production. The constantly changing pathogens overcome the plant resistance to P. triticina. Plant pathogens secrete effector proteins that alter the structure of the host cell, interfere plant defenses, or modify the physiology of plant cells. Therefore, the identification of effector proteins is critical to reveal the pathogenic mechanism. We used SignalP v4.1, TargetP v1.1, TMHMM v2.0, and EffectorP v2.0 to screen the candidate effector proteins in P. triticina isolates – KHTT, JHKT, and THSN. As a result, a total of 635 candidate effector proteins were obtained. Structural analysis showed that effector proteins were small in size (50AA to 422AA) and of diverse sequences, and the conserved sequential elements or clear common elements were not involved, regardless of their secretion from the pathogen to the host. There were 427 candidate effector proteins that contain more than or equal to 4 cysteine residues, and 339 candidate effector proteins contained the known motifs. Sixteen families, 9 domains, and 53 other known functional types were found in 186 candidate effector proteins using the Pfam search. Three novel motifs were found by MEME. Heterogeneous expression system was performed to verify the functions of 30 candidate effectors by inhibiting the programmed cell death (PCD) induced by BAX (the mouse-apoptotic gene elicitor) on Nicotiana benthamiana. Hypersensitive response (HR) can be induced by the six effectors in the wheat leaf rust resistance near isogenic lines, and this would be shown by the method of transient expression through Agrobacterium tumefaciens infiltration. The quantitative reverse transcription PCR (qRT-PCR) analysis of 14 candidate effector proteins secreted after P. triticina inoculation showed that the tested effectors displayed different expression patterns in different stages, suggesting that they may be involved in the wheat–P. triticina interaction. The results showed that the prediction of P. triticina effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, laying the foundation of revealing the pathogenic mechanism of Pt and controlling disease.
Collapse
Affiliation(s)
- Yue Zhang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Jie Wei
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Yue Qi
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Jianyuan Li
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.,College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai, China
| | - Raheela Amin
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Francisco CS, Zwyssig MM, Palma-Guerrero J. The role of vegetative cell fusions in the development and asexual reproduction of the wheat fungal pathogen Zymoseptoria tritici. BMC Biol 2020; 18:99. [PMID: 32782023 PMCID: PMC7477884 DOI: 10.1186/s12915-020-00838-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability of fungal cells to undergo cell-to-cell communication and anastomosis, the process of vegetative hyphal fusion, allows them to maximize their overall fitness. Previous studies in a number of fungal species have identified the requirement of several signaling pathways for anastomosis, including the so far best characterized soft (So) gene, and the MAPK pathway components MAK-1 and MAK-2 of Neurospora crassa. Despite the observations of hyphal fusions' involvement in pathogenicity and host adhesion, the connection between cell fusion and fungal lifestyles is still unclear. Here, we address the role of anastomosis in fungal development and asexual reproduction in Zymoseptoria tritici, the most important fungal pathogen of wheat in Europe. RESULTS We show that Z. tritici undergoes self-fusion between distinct cellular structures, and its mechanism is dependent on the initial cell density. Contrary to other fungi, cell fusion in Z. tritici only resulted in cytoplasmic mixing but not in multinucleated cell formation. The deletion of the So orthologous ZtSof1 disrupted cell-to-cell communication affecting both hyphal and germling fusion. We show that Z. tritici mutants for MAPK-encoding ZtSlt2 (orthologous to MAK-1) and ZtFus3 (orthologous to MAK-2) genes also failed to undergo anastomosis, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSof1 mutant was severely impaired in melanization, suggesting that the So gene function is related to melanization. Finally, we demonstrated that anastomosis is dispensable for pathogenicity, but essential for the pycnidium development, and its absence abolishes the asexual reproduction of Z. tritici. CONCLUSIONS We demonstrate the role for ZtSof1, ZtSlt2, and ZtFus3 in cell fusions of Z. tritici. Cell fusions are essential for different aspects of the Z. tritici biology, and the ZtSof1 gene is a potential target to control septoria tritici blotch (STB) disease.
Collapse
Affiliation(s)
| | - Maria Manuela Zwyssig
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- New Address: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
34
|
Gonçalves AP, Heller J, Rico-Ramírez AM, Daskalov A, Rosenfield G, Glass NL. Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi. Annu Rev Microbiol 2020; 74:693-712. [PMID: 32689913 DOI: 10.1146/annurev-micro-012420-080905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei 115, Taiwan
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Perfect Day, Inc., Emeryville, California 94608, USA
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Asen Daskalov
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Gabriel Rosenfield
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Proteomic investigation of interhyphal interactions between strains of Agaricus bisporus. Fungal Biol 2020; 124:579-591. [PMID: 32448449 DOI: 10.1016/j.funbio.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022]
Abstract
Hyphae of filamentous fungi undergo polar extension, bifurcation and hyphal fusion to form reticulating networks of mycelia. Hyphal fusion or anastomosis, a ubiquitous process among filamentous fungi, is a vital strategy for how fungi expand over their substrate and interact with or recognise self- and non-self hyphae of neighbouring mycelia in their environment. Morphological and genetic characterisation of anastomosis has been studied in many model fungal species, but little is known of the direct proteomic response of two interacting fungal isolates. Agaricus bisporus, the most widely cultivated edible mushroom crop worldwide, was used as an in vitro model to profile the proteomes of interacting cultures. The globally cultivated strain (A15) was paired with two distinct strains; a commercial hybrid strain and a wild isolate strain. Each co-culture presented a different interaction ranging from complete vegetative compatibility (self), lack of interactions, and antagonistic interactions. These incompatible strains are the focus of research into disease-resistance in commercial crops as the spread of intracellular pathogens, namely mycoviruses, is limited by the lack of interhyphal anastomosis. Unique proteomic responses were detected between all co-cultures. An array of cell wall modifying enzymes, plus fungal growth and morphogenesis proteins were found in significantly (P < 0.05) altered abundances. Nitrogen metabolism dominated in the intracellular proteome, with evidence of nitrogen starvation between competing, non-compatible cultures. Changes in key enzymes of A. bisporus morphogenesis were observed, particularly via increased abundance of glucanosyltransferase in competing interactions and certain chitinases in vegetative compatible interactions only. Carbohydrate-active enzyme arsenals are expanded in antagonistic interactions in A. bisporus. Pathways involved in carbohydrate metabolism and genetic information processing were higher in interacting cultures, most notably during self-recognition. New insights into the differential response of interacting strains of A. bisporus will enhance our understanding of potential barriers to viral transmission through vegetative incompatibility. Our results suggest that a differential proteomic response occurs between A. bisporus at strain-level and findings from this work may guide future proteomic investigation of fungal anastomosis.
Collapse
|
36
|
|
37
|
Guo H, Yao Q, Chen L, Wang F, Lang X, Pang Y, Feng J, Zhou J, Lin R, Xu S. Virulence and Molecular Diversity in the Cochliobolus sativus Population Causing Barley Spot Blotch in China. PLANT DISEASE 2019; 103:2252-2262. [PMID: 31298990 DOI: 10.1094/pdis-11-18-2103-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spot blotch, caused by the fungal pathogen Cochliobolus sativus, is a limiting factor for barley (Hordeum vulgare) production in northeast China, which causes significant grain yield losses and kernel quality degradation. It is critical to determine the virulence diversity of C. sativus populations for barley resistance breeding and the judicious grouping of available resistance varieties according to the predominant pathotypes in disease epidemic regions. With little information on the barley pathogen in China, this study selected 12 typical barley genotypes to differentiate the pathotypes of C. sativus isolates collected in China. Seventy-one isolates were grouped into 19 Chinese pathotypes based on infection responses. Seventeen isolates were classified as pathotype 3, which has only been identified in China, whereas most (52 of 71) were classified as pathotype 1. All of the tested isolates had low virulence on the North Dakota (ND) durable, resistant line ND B112. Using 22 selected amplified fragment-length polymorphism (AFLP) primer combinations, genetic polymorphism was used to analyze 68 isolates, which clustered into three distinct groups using the unweighted pair group method average with the genetic distance coefficient. No relationship was found between the virulence of isolates and their origins. Isolates of the same pathotype or those collected from the same location did not group into clusters based on the AFLP analysis.
Collapse
Affiliation(s)
- Huanqiang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Quanjie Yao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xiaowei Lang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yunxing Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jing Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jun Zhou
- Hongxinglong Agricultural Science Research Institute, Shuangyashan 155811, People's Republic of China
| | - Ruiming Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shichang Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
38
|
Mori N, Katayama T, Saito R, Iwashita K, Maruyama JI. Inter-strain expression of sequence-diverse HET domain genes severely inhibits growth of Aspergillus oryzae. Biosci Biotechnol Biochem 2019; 83:1557-1569. [DOI: 10.1080/09168451.2019.1580138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
In the Pezizomycotina (filamentous ascomycete) species, genes that encode proteins with an HET domain (Pfam: PF06985) are reportedly involved in heterokaryon incompatibility (HI) in which cell death or growth defects are induced after fusion of cells that are genetically incompatible owing to diversities in their nucleotide sequence. HET domain genes are commonly found in Pezizomycotina genomes and are functionally characterized in only a few species. Here, we compared 44 HET domain genes between an incompatible strain pair of Aspergillus oryzae RIB40 and RIB128 and performed inter-strain expression of 37 sequence-diverse genes for mimicking HI. Four HET domain genes were identified to cause severe growth inhibition in a strain- or sequence-specific manner. Furthermore, SNPs responsible for the inhibition of cell growth were identified. This study provides an important insight into the physiological significance of sequence diversity of HET domain genes and their potential functions in HI of A. oryzae.
Collapse
Affiliation(s)
- Noriko Mori
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Ryota Saito
- Division of Fundamental Research, National Research Institute of Brewing (NRIB), Hiroshima, Japan
| | - Kazuhiro Iwashita
- Division of Fundamental Research, National Research Institute of Brewing (NRIB), Hiroshima, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
The mitochondrial translocase of the inner membrane PaTim54 is involved in defense response and longevity in Podospora anserina. Fungal Genet Biol 2019; 132:103257. [PMID: 31351193 DOI: 10.1016/j.fgb.2019.103257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022]
Abstract
Fungi are very successful microorganisms capable of colonizing virtually any ecological niche where they must constantly cope with competitors including fungi, bacteria and nematodes. We have shown previously that the ascomycete Podopora anserina exhibits Hyphal Interference (HI), an antagonistic response triggered by direct contact of competing fungal hyphae. When challenged with Penicillium chrysogenum, P. anserina produces hydrogen peroxide at the confrontation and kills the hyphae of P. chrysogenum. Here, we report the characterization of the PDC2218 mutant affected in HI. When challenged with P. chrysogenum, the PDC2218 mutant produces a massive oxidative burst at the confrontation. However, this increased production of hydrogen peroxide is not correlated to increased cell death in P. chrysogenum. Hence, the oxidative burst and cell death in the challenger are uncoupled in PDC2218. The gene affected in PDC2218 is PaTim54, encoding the homologue of the budding yeast mitochondrial inner membrane import machinery component Tim54p. We show that PaTim54 is essential in P. anserina and that the phenotypes displayed by the PDC2218 mutant, renamed PaTim542218, are the consequence of a drastic reduction in the expression of PaTim54. Among these pleiotropic phenotypes, PDC2218-PaTim542218- displays increased lifespan, a phenotype in line with the observed mitochondrial defects in the mutant.
Collapse
|
40
|
Smith‐Ferguson J, Beekman M. Can't see the colony for the bees: behavioural perspectives of biological individuality. Biol Rev Camb Philos Soc 2019; 94:1935-1946. [DOI: 10.1111/brv.12542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jules Smith‐Ferguson
- School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Madeleine Beekman
- School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
41
|
Thoma L, Vollmer B, Oesterhelt F, Muth G. Live-cell imaging of Streptomyces conjugation. Int J Med Microbiol 2019; 309:338-343. [PMID: 31175019 DOI: 10.1016/j.ijmm.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 11/19/2022] Open
Abstract
Time-lapse imaging of conjugative plasmid transfer in Streptomyces revealed intriguing insights into the unique two-step conjugation process of this Gram+ mycelial soil bacterium. Differentially labelling of donor and recipient strains with distinct fluorescent proteins allowed the visualization of plasmid transfer in living mycelium. In nearly all observed matings, plasmid transfer occurred when donor and recipient hyphae made intimate contact at the lateral walls. Plasmid transfer does not involve a complete fusion of donor and recipient hyphae, but depends on a pore formed by the FtsK-like DNA translocase TraB. Following the initial transfer at the contact site of donor and recipient, the plasmids spread within the recipient mycelium by invading neighboring compartments, separated by cross walls. Intra-mycelial plasmid spreading depends on a septal cross wall localized multi-protein DNA translocation apparatus consisting of TraB and several Spd proteins and is abolished in a spd mutant. The ability to spread within the recipient mycelium is a crucial adaptation to the mycelial life style of Streptomyces, potentiating the efficiency of plasmid transfer.
Collapse
Affiliation(s)
- L Thoma
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - B Vollmer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - F Oesterhelt
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobielle Wirkstoffe, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - G Muth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.
| |
Collapse
|
42
|
Kang L, Zhu Y, Bai Y, Yuan S. Characteristics, transcriptional patterns and possible physiological significance of glycoside hydrolase family 16 members in Coprinopsis cinerea. FEMS Microbiol Lett 2019; 366:5475642. [DOI: 10.1093/femsle/fnz083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yiting Zhu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yang Bai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
43
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:77. [PMID: 30988699 PMCID: PMC6446404 DOI: 10.1186/s13068-019-1400-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/09/2019] [Indexed: 05/21/2023]
Abstract
Filamentous fungi are harnessed as cell factories for the production of a diverse range of organic acids, proteins, and secondary metabolites. Growth and morphology have critical implications for product titres in both submerged and solid-state fermentations. Recent advances in systems-level understanding of the filamentous lifestyle and development of sophisticated synthetic biological tools for controlled manipulation of fungal genomes now allow rational strain development programs based on data-driven decision making. In this review, we focus on Aspergillus spp. and other industrially utilised fungi to summarise recent insights into the multifaceted and dynamic relationship between filamentous growth and product titres from genetic, metabolic, modelling, subcellular, macromorphological and process engineering perspectives. Current progress and knowledge gaps with regard to mechanistic understanding of product secretion and export from the fungal cell are discussed. We highlight possible strategies for unlocking lead genes for rational strain optimizations based on omics data, and discuss how targeted genetic manipulation of these candidates can be used to optimise fungal morphology for improved performance. Additionally, fungal signalling cascades are introduced as critical processes that can be genetically targeted to control growth and morphology during biotechnological applications. Finally, we review progress in the field of synthetic biology towards chassis cells and minimal genomes, which will eventually enable highly programmable filamentous growth and diversified production capabilities. Ultimately, these advances will not only expand the fungal biotechnology portfolio but will also significantly contribute to a sustainable bio-economy.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Vera Meyer
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
44
|
Enhanced hypovirus transmission by engineered super donor strains of the chestnut blight fungus, Cryphonectria parasitica, into a natural population of strains exhibiting diverse vegetative compatibility genotypes. Virology 2019; 528:1-6. [DOI: 10.1016/j.virol.2018.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022]
|
45
|
Schmieder SS, Stanley CE, Rzepiela A, van Swaay D, Sabotič J, Nørrelykke SF, deMello AJ, Aebi M, Künzler M. Bidirectional Propagation of Signals and Nutrients in Fungal Networks via Specialized Hyphae. Curr Biol 2019; 29:217-228.e4. [PMID: 30612903 DOI: 10.1016/j.cub.2018.11.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/05/2018] [Accepted: 11/23/2018] [Indexed: 11/15/2022]
Abstract
Intercellular distribution of nutrients and coordination of responses to internal and external cues via endogenous signaling molecules are hallmarks of multicellular organisms. Vegetative mycelia of multicellular fungi are syncytial networks of interconnected hyphae resulting from hyphal tip growth, branching, and fusion. Such mycelia can reach considerable dimensions and, thus, different parts can be exposed to quite different environmental conditions. Our knowledge about the mechanisms by which fungal mycelia can adjust nutrient gradients or coordinate their defense response to fungivores is scarce, in part due to limitations in technologies currently available for examining different parts of a mycelium over longer time periods at the microscopic level. Here, we combined a tailor-made microfluidic platform with time-lapse fluorescence microscopy to visualize the dynamic response of the vegetative mycelium of a basidiomycete to two different stimuli. The microfluidic platform allows simultaneous monitoring at both the colony and single-hypha level. We followed the dynamics of the distribution of a locally administered nutrient analog and the defense response to spatially confined predation by a fungivorous nematode. Although both responses of the mycelium were constrained locally, we observed long-distance propagation for both the nutrient analog and defense response in a subset of hyphae. This propagation along hyphae occurred in both acropetal and basipetal directions and, intriguingly, the direction was found to alternate every 3 hr in an individual hypha. These results suggest that multicellular fungi have, as of yet, undescribed mechanisms to coordinate the distribution of nutrients and their behavioral response upon attack by fungivores.
Collapse
Affiliation(s)
- Stefanie S Schmieder
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Claire E Stanley
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Andrzej Rzepiela
- Scientific Center for Optical and Electron Microscopy, ETH Zürich, Switzerland
| | - Dirk van Swaay
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Simon F Nørrelykke
- Scientific Center for Optical and Electron Microscopy, ETH Zürich, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Markus Aebi
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
46
|
Katz ME. Nutrient sensing-the key to fungal p53-like transcription factors? Fungal Genet Biol 2018; 124:8-16. [PMID: 30579885 DOI: 10.1016/j.fgb.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023]
Abstract
The mammalian tumour suppressor protein, p53, plays an important role in cell cycle control, DNA repair and apoptotic cell death. Transcription factors belonging to the "p53-like" superfamily are found exclusively in the Amorphea branch of eukaryotes, which includes animals, fungi and slime molds. Many members of the p53-like superfamily (proteins containing p53, Rel/Dorsal, T-box, STAT, Runt, Ndt80, and the CSL DNA-binding domains) are involved in development. Two families of p53-like proteins (Ndt80 and CSL) are widespread in fungi as well as animals. The Basidiomycetes and the Ascomycetes have undergone reciprocal loss of the Ndt80 and CSL classes of transcription factors, with the CSL class preserved in only one branch of Ascomycetes and the Ndt80 class found in only one branch of Basidiomycetes. Recent studies have greatly expanded the known functions of fungal Ndt80-like proteins and shown that they play important roles in sexual reproduction, cell death, N-acetylglucosamine sensing and catabolism, secondary metabolism, and production of extracellular hydrolases such as proteases, chitinases and cellulases. In the opportunistic pathogen, Candida albicans, Ndt80-like proteins are essential for hyphal growth and virulence and also play a role in antifungal resistance. These recent studies have confirmed that nutrient sensing is a common feature of fungal Ndt80-like proteins and is also found in fungal CSL-like transcription factors, which in animals is the mediator of Notch signalling. Thus, nutrient sensing may represent the ancestral role of the p53-like superfamily.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
47
|
Fortuna TM, Namias A, Snirc A, Branca A, Hood ME, Raquin C, Shykoff JA, Giraud T. Multiple infections, relatedness and virulence in the anther-smut fungus castrating Saponaria plants. Mol Ecol 2018; 27:4947-4959. [PMID: 30372557 DOI: 10.1111/mec.14911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 11/26/2022]
Abstract
Multiple infections (co-occurrence of multiple pathogen genotypes within an individual host) can have important impacts on diseases. Relatedness among pathogens can affect the likelihood of multiple infections and their consequences through kin selection. Previous studies on the castrating anther-smut fungus Microbotryum lychnidis-dioicae have shown that multiple infections occur in its host plant Silene latifolia. Relatedness was high among fungal genotypes within plants, which could result from competitive exclusion between unrelated fungal genotypes, from population structure or from interactions between plant and fungal genotypes for infection ability. Here, we aimed at disentangling these hypotheses using M. saponariae and its host Saponaria officinalis, both experimentally tractable for these questions. By analysing populations using microsatellite markers, we also found frequent occurrence of multiple infections and high relatedness among strains within host plants. Infections resulting from experimental inoculations in the greenhouse also revealed high relatedness among strains co-infecting host plants, even in clonally replicated plant genotypes, indicating that high relatedness within plants did not result merely from plant x fungus interactions or population structure. Furthermore, hyphal growth in vitro was affected by the presence of a competitor growing nearby and by its genetic similarity, although this latter effect was strain-dependent. Altogether, our results support the hypothesis that relatedness-dependent competitive exclusion occurs in Microbotryum fungi within plants. These microorganisms can thus respond to competitors and to their level of relatedness.
Collapse
Affiliation(s)
- Taiadjana M Fortuna
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Alice Namias
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.,Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts
| | - Christian Raquin
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Jacqui A Shykoff
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
48
|
Li H, Hu P, Wang Y, Pan Y, Liu G. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum. Microb Cell Fact 2018; 17:175. [PMID: 30424777 PMCID: PMC6233533 DOI: 10.1186/s12934-018-1021-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/01/2018] [Indexed: 11/12/2022] Open
Abstract
Background Autophagy is used for degradation of cellular components and nutrient recycling. Atg8 is one of the core proteins in autophagy and used as a marker for autophagic detection. However, the autophagy of filamentous fungi is poorly understood compared with that of Saccharomyces cerevisiae. Our previous study revealed that disruption of the autophagy related gene Acatg1 significantly enhanced cephalosporin C yield through reducing degradation of cephalosporin biosynthetic proteins in Acremonium chrysogenum, suggesting that modulation of autophagic process is one promising way to increase antibiotic production in A. chrysogenum. Results In this study, a S. cerevisiae ATG8 homologue gene Acatg8 was identified from A. chrysogenum. Acatg8 could complement the ATG8 mutation in S. cerevisiae, indicating that Acatg8 is a functional homologue of ATG8. Microscope observation demonstrated the fluorescently labeled AcAtg8 was localized in the cytoplasm and autophagosome of A. chrysogenum, and the expression of Acatg8 was induced by nutrient starvation. Gene disruption and genetic complementation revealed that Acatg8 is essential for autophagosome formation. Disruption of Acatg8 significantly reduced fungal conidiation and delayed conidial germination. Localization of GFP-AcAtg8 implied that autophagy is involved in the early phase of conidial germination. Similar to Acatg1, disruption of Acatg8 remarkably enhanced cephalosporin C yield. The cephalosporin C biosynthetic enzymes (isopenicillin N synthase PcbC and isopenicillin N epimerase CefD2) and peroxisomes were accumulated in the Acatg8 disruption mutant (∆Acatg8), which might be the main reasons for the enhancement of cephalosporin C production. However, the biomass of ΔAcatg8 decreased drastically at the late stage of fermentation, suggesting that autophagy is critical for A. chrysogenum cell survival under nutrition deprived condition. Disruption of Acatg8 also resulted in accumulation of mitochondria, which might produce more reactive oxygen species (ROS) which promotes fungal death. However, the premature death is unfavorable for cephalosporin C production. To solve this problem, a plasmid containing Acatg8 under control of the xylose/xylan-inducible promoter was introduced into ∆Acatg8. Conidiation and growth of the recombinant strain restored to the wild-type level in the medium supplemented with xylose, while the cephalosporin C production maintained at a high level even prolonged fermentation. Conclusions Our results demonstrated inducible expression of Acatg8 and disruption of Acatg8 remarkably increased cephalosporin C production. This study provides a promising approach for yield improvement of cephalosporin C in A. chrysogenum. Electronic supplementary material The online version of this article (10.1186/s12934-018-1021-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Honghua Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
49
|
Almeida-Silva F, Barbedo LS, Taylor ML, Muniz MDM, Guimarães AJ, Zancopé-Oliveira RM. Multiplex polymerase chain reaction as an improved method for screening Histoplasma capsulatum mating types. Mem Inst Oswaldo Cruz 2018; 113:e180340. [PMID: 30231112 PMCID: PMC6140378 DOI: 10.1590/0074-02760180340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/17/2018] [Indexed: 12/04/2022] Open
Abstract
Histoplasmosis is a systemic mycosis infection caused by Histoplasma capsulatum, a heterothallic ascomycete. The sexual reproduction of this fungus is regulated by the mating type (MAT1) locus that contains MAT1-1 and MAT1-2 idiomorphs, which were identified by uniplex polymerase chain reaction (PCR). This study aimed to optimise single-step multiplex PCR for the accurate detection of the distinct mating types of H. capsulatum. Among the 26 isolates tested, 20 had MAT1-1 genotype, while six showed MAT1-2 genotype, in agreement with the uniplex PCR results. These results suggest that multiplex PCR is a fast and specific tool for screening H. capsulatum mating types.
Collapse
Affiliation(s)
- Fernando Almeida-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor de Imunodiagnóstico, Rio de Janeiro, RJ, Brasil
| | - Leonardo Silva Barbedo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor de Imunodiagnóstico, Rio de Janeiro, RJ, Brasil.,Universidade Federal do Amazonas, Instituto de Saúde e Biotecnologia, Coari, AM, Brasil
| | - Maria Lucia Taylor
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología-Parasitología, DF, México
| | - Mauro de Medeiros Muniz
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor de Imunodiagnóstico, Rio de Janeiro, RJ, Brasil
| | - Allan Jefferson Guimarães
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brasil
| | - Rosely Maria Zancopé-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor de Imunodiagnóstico, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
50
|
Feurtey A, Stukenbrock EH. Interspecific Gene Exchange as a Driver of Adaptive Evolution in Fungi. Annu Rev Microbiol 2018; 72:377-398. [DOI: 10.1146/annurev-micro-090817-062753] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout evolutionary history in the kingdom Fungi, taxa have exchanged genetic information among species, as revealed in particular by analyses of genome sequences. In fungi, hybridization can occur by sexual mating or by fusion of vegetative structures giving rise to new species or leaving traces of introgression in the genome. Furthermore, gene exchange can occur by horizontal gene transfer between species and can even include organisms outside the kingdom Fungi. In several cases, interspecific gene exchange has been instrumental in rapid adaptive evolution of fungal species and has notably played a role in the emergence of new pathogens. Here we summarize mechanisms and examples of gene exchange in fungi with a particular focus on the genomic context. We emphasize the need for and potential of applying population genetic approaches to better understand the processes and the impact of interspecific gene exchange in rapid adaptive evolution and species diversification. The broad occurrence of gene exchange among fungal species challenges our species concepts in the kingdom Fungi.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
| | - Eva H. Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|