1
|
Mietto M, Montanari S, Falzarano MS, Manzati E, Rimessi P, Fabris M, Selvatici R, Gualandi F, Neri M, Fortunato F, Foti MRS, Bigoni S, Gessi M, Vacca M, Torelli S, Hayek J, Ferlini A. MECP2 mRNA Profile in Brain Tissues from a Rett Syndrome Patient and Three Human Controls: Mutated Allele Preferential Transcription and In Situ RNA Mapping. Biomolecules 2025; 15:687. [PMID: 40427580 PMCID: PMC12108707 DOI: 10.3390/biom15050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Rett syndrome (RTT) is a rare X-linked dominant neurodevelopmental disorder caused by pathogenic variants in the methyl-CpG-binding protein 2 (MECP2) gene, which encodes a methyl-CpG-binding protein (MeCP2) that acts as a repressor of gene expression, crucial in neurons. Dysfunction of MeCP2 due to its pathogenic variants explains the clinical features of RTT. Here, we performed histological and RNA analyses on a post-mortem brain sample from an RTT patient carrying the p.Arg106Trp missense mutation. This patient is part of a cohort of 56 genetically and clinically characterized RTT patients, for whom we provide an overview of the mutation landscape. In the RTT brain specimen, RT-PCR analysis detected preferential transcription of the mutated mRNA. X-inactivation studies revealed a skewed X-chromosome inactivation ratio (95:5), supporting the transcriptional findings. We also mapped the MECP2 transcript in control human brain regions (temporal cortex and cerebellum) using the RNAscope assay, confirming its high expression. This study reports the MECP2 transcript representation in a post-mortem RTT brain and, for the first time, the in situ MECP2 transcript localization in a human control brain, offering insights into how specific MECP2 mutations may differentially impact neuronal functions. We suggest these findings are crucial for developing RNA-based therapies for Rett syndrome.
Collapse
Affiliation(s)
- Martina Mietto
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Silvia Montanari
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Maria Sofia Falzarano
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Elisa Manzati
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Paola Rimessi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Marina Fabris
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Rita Selvatici
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Marcella Neri
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Fernanda Fortunato
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Miryam Rosa Stella Foti
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Stefania Bigoni
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| | - Marco Gessi
- Pathology Institute, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, 80131 Naples, Italy
| | - Silvia Torelli
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London WC1E 6BT, UK
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.)
| |
Collapse
|
2
|
Techaniyom P, Korsirikoon C, Chitta P, Sae-Lee C. Regulatory roles of transposable elements on autism molecular neuropathology. Epigenomics 2025:1-9. [PMID: 40326043 DOI: 10.1080/17501911.2025.2501520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social communication and the presence of repetitive behaviors, typically diagnosed in early childhood. In this review, we searched PubMed and Google Scholar databases for relevant articles. ASD displays considerable heterogeneity in symptomatology and is more common in males, though shifting demographics indicate rising rates among minority populations. Transposable elements (TEs), which constitute approximately 50% of the mammalian genome, are increasingly recognized for their contribution to neurodevelopmental disorders, including ASD. These mobile genetic elements can induce genomic instability and modulate gene expression, thereby influencing ASD pathology. Evidence suggests that specific TEs, such as L1 and Alu elements, can disrupt genes critical for neurodevelopment and contribute to the disorder's genetic complexity. Furthermore, prenatal environmental exposures may activate TEs, potentially contributing to neuroinflammation observed in ASD. While the precise regulatory roles of non-coding TEs in ASD are still under investigation and require careful interpretation, integrating epigenetic aging markers like epigenetic clocks holds promise for advancing the field. Future research focused on the intricate relationship between TEs, environmental factors, epigenetic mechanisms, and neurodevelopmental processes is essential for identifying novel biomarkers and therapeutic targets, ultimately improving early diagnosis and interventions for ASD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chawin Korsirikoon
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Pitaksin Chitta
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Silaiyiman S, Liu J, Wu J, Ouyang L, Cao Z, Shen C. A Systematic Review of the Advances and New Insights into Copy Number Variations in Plant Genomes. PLANTS (BASEL, SWITZERLAND) 2025; 14:1399. [PMID: 40364428 PMCID: PMC12073271 DOI: 10.3390/plants14091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Copy number variations (CNVs), as an important structural variant in genomes, are widely present in plants, affecting their phenotype and adaptability. In recent years, CNV research has not only focused on changes in gene copy numbers but has also been linked to complex mechanisms such as genome rearrangements, transposon activity, and environmental adaptation. The advancement in sequencing technologies has made the detection and analysis of CNVs more efficient, not only revealing their crucial roles in plant disease resistance, adaptability, and growth development, but also demonstrating broad application potential in crop improvement, particularly in selective breeding and genomic selection. By studying CNV changes during the domestication process, researchers have gradually recognized the important role of CNVs in plant domestication and evolution. This article reviews the formation mechanisms of CNVs in plants, methods for their detection, their relationship with plant traits, and their applications in crop improvement. It emphasizes future research directions involving the integration of multi-omics to provide new perspectives on the structure and function of plant genomes.
Collapse
Affiliation(s)
- Saimire Silaiyiman
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi 844000, China
| | - Jiaxuan Liu
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi 844000, China
| | - Jiaxin Wu
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi 844000, China
| | - Lejun Ouyang
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
| | - Zheng Cao
- Maoming Agricultural Science and Technology Extension Center, Maoming 525000, China;
| | - Chao Shen
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
| |
Collapse
|
4
|
Schmidleithner L, Stüve P, Feuerer M. Transposable elements as instructors of the immune system. Nat Rev Immunol 2025:10.1038/s41577-025-01172-3. [PMID: 40301669 DOI: 10.1038/s41577-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Transposable elements (TEs) are mobile repetitive nucleic acid sequences that have been incorporated into the genome through spontaneous integration, accounting for almost 50% of human DNA. Even though most TEs are no longer mobile today, studies have demonstrated that they have important roles in different biological processes, such as ageing, embryonic development, and cancer. TEs influence these processes through various mechanisms, including active transposition of TEs contributing to ongoing evolution, transposon transcription generating RNA or protein, and by influencing gene regulation as enhancers. However, how TEs interact with the immune system remains a largely unexplored field. In this Perspective, we describe how TEs might influence different aspects of the immune system, such as innate immune responses, T cell activation and differentiation, and tissue adaptation. Furthermore, TEs can serve as a source of neoantigens for T cells in antitumour immunity. We suggest that TE biology is an important emerging field of immunology and discuss the potential to harness the TE network therapeutically, for example, to improve immunotherapies for cancer and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Chair for Immunology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Park S, Jeong J, Ahn K. Human cytomegalovirus infection induces L1 expression through UL38-dependent mTOR-KAP1 pathway. PLoS One 2025; 20:e0320512. [PMID: 40267069 PMCID: PMC12017509 DOI: 10.1371/journal.pone.0320512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 04/25/2025] Open
Abstract
Human cytomegalovirus (HCMV) and LINE-1 (L1) can co-inhabit a common host and closely interact with each other within a single cell. We have previously shown that HCMV exploits this opportunistic interaction by upregulating L1 expression that promotes its own productive life cycle by facilitating HCMV DNA replication. However, the mechanism by which HCMV increases L1 expression remains unknown. Here, we report that HCMV infection functionally inactivates KRAB-associated protein 1 (KAP1), a key epigenetic repressor of L1, through phosphorylation. HCMV infection of cells activates mTOR kinase that phosphorylates S824 residue of KAP1 and reduces its epigenetic repressive function, leading to increased chromatin accessibility of L1 promoter region. Treatment of potent mTOR inhibitor to the HCMV-infected cells was sufficient to reduce KAP1 phosphorylation and block L1 expression. Furthermore, cells infected with a mutant virus lacking UL38, an HCMV mTOR pathway activator, showed reduced KAP1 S824 phosphorylation and abolished L1 expression. Our results highlight the synergistic interaction between HCMV and L1 where HCMV UL38 serves as a primary viral regulator of L1 expression by upregulating the mTOR-KAP1 pathway.
Collapse
Affiliation(s)
- Sehong Park
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, Republic of Korea
| | - Jiseok Jeong
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- SNU Institute for Virus Research, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Baumann AA, Knol LI, Arlt M, Hutschenreiter T, Richter A, Widmann TJ, Franke M, Hackmann K, Winkler S, Richter D, Spier I, Aretz S, Aust D, Porrmann J, William D, Schröck E, Glimm H, Jahn A. Long-read genome and RNA sequencing resolve a pathogenic intronic germline LINE-1 insertion in APC. NPJ Genom Med 2025; 10:30. [PMID: 40180948 PMCID: PMC11968988 DOI: 10.1038/s41525-025-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Familial adenomatous polyposis (FAP) is caused by pathogenic germline variants in the tumor suppressor gene APC. Confirmation of diagnosis was not achieved by cancer gene panel and exome sequencing or custom array-CGH in a family with suspected FAP across five generations. Long-read genome sequencing (PacBio), short-read genome sequencing (Illumina), short-read RNA sequencing, and further validations were performed in different tissues of multiple family members. Long-read genome sequencing resolved a 6 kb full-length intronic insertion of a heterozygous LINE-1 element between exons 7 and 8 of APC that could be detected but not fully resolved by short-read genome sequencing. Targeted RNA analysis revealed aberrant splicing resulting in the formation of a pseudo-exon with a premature stop codon. The variant segregated with the phenotype in several family members allowing its evaluation as likely pathogenic. This study supports the utility of long-read DNA sequencing and complementary RNA approaches to tackle unsolved cases of hereditary disease.
Collapse
Affiliation(s)
- Alexandra A Baumann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Lisanne I Knol
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Marie Arlt
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Tim Hutschenreiter
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Anja Richter
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Thomas J Widmann
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), PTS Granada, managed by Fundación Pública Andaluza Progreso y Salud (FPS), Granada, Spain
| | - Marcus Franke
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniela Richter
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital Carl Gustav Carus at TUD Dresden University, Dresden, Germany
- Tumor- and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital Carl Gustav Carus, Medical Faculty, TUD Dresden University of Technology, Dresden, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Doreen William
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hanno Glimm
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Translational Medical Oncology, NCT Dresden and DKFZ, Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Personalized Oncology, NCT Dresden and University Hospital Carl Gustav Carus, Faculty of Medicine and TUD Dresden University of Technology, Dresden, Germany
- Translational Functional Cancer Genomics, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany.
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden,, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany.
- German Cancer Consortium (DKTK), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Kumar M, Maria AG, Prajapat M, Vidigal JA. AGO2 slicing of a domesticated retrotransposon is necessary for normal vasculature development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646793. [PMID: 40235999 PMCID: PMC11996547 DOI: 10.1101/2025.04.02.646793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Argonaute (AGO) mediated slicing of RNA-also known as RNAi-is a highly conserved phenomenon that is evolutionarily linked to the repression of transposons and other repeats. Although RNAi is no longer a major mechanism of repeat control in mammals, AGO2 has retained cleavage competence and is able to efficiently cut RNAs with extensive complementarity to a bound guide. The regulatory roles this activity plays in mammals however remains poorly understood. Here we show that mice carrying two catalytically inactive Ago2 alleles have extensive developmental abnormalities including systemic vascular defects that are characterized by enlarged and leaky vessels and stem from endothelial cell dysfunction. Endothelial cell defects are caused by failure to repress Rtl1 , a paternally-imprinted domesticated retrotransposon, whose cleavage in wild-type animals is triggered by miRNAs of the maternally-imprinted miR-433∼127 cluster. Our data pinpoint an essential mRNA cleavage target of AGO2 and suggest that the repurposing of a TE-Argonaute regulatory interaction contributes to the retention of AGO catalytic competence in mammals.
Collapse
|
8
|
Zhu M, Zhou J, Chen N, Xu J, Wang H, Jiang L, Yang F. Identification and Characterization of LINE and SINE Retrotransposons in the African Hedgehog ( Atelerix albiventris, Erinaceidae) and Their Association with 3D Genome Organization and Gene Expression. Genes (Basel) 2025; 16:397. [PMID: 40282356 PMCID: PMC12026660 DOI: 10.3390/genes16040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The African hedgehog (Atelerix albiventris) exhibits specialized skin differentiation leading to spine formation, yet its regulatory mechanisms remain unclear. Transposable elements (TEs), particularly LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements), are known to influence genome organization and gene regulation. OBJECTIVES Given the high proportion of SINEs in the hedgehog genome, this study aims to characterize the distribution, evolutionary dynamics, and potential regulatory roles of LINEs and SINEs, focusing on their associations with chromatin architecture, DNA methylation, and gene expression. METHODS We analyzed LINE and SINE distribution using HiFi sequencing and classified TE families through phylogenetic reconstruction. Hi-C data were used to explore TE interactions with chromatin architecture, while whole-genome 5mCpG methylation was inferred from PacBio HiFi reads of muscle tissue using a deep-learning-based approach. RNA-seq data from skin tissues were analyzed to assess TE expression and potential associations with genes linked to spine development. RESULTS SINEs form distinct genomic blocks in GC-rich and highly methylated regions, whereas LINEs are enriched in AT-rich, hypomethylated regions. LINEs and SINEs are associated differently with A/B compartments, with SINEs in euchromatin and LINEs in heterochromatin. Methylation analysis suggests that younger TEs tend to have higher methylation levels, and expression analysis indicates that some differentially expressed TEs may be linked to genes involved in epidermal and skeletal development. CONCLUSIONS This study provides a genome-wide perspective on LINE and SINE distribution, methylation patterns, and potential regulatory roles in A. albiventris. While not establishing a direct causal link, the findings suggest that TEs may influence gene expression associated with spine development, offering a basis for future functional studies.
Collapse
Affiliation(s)
- Mengyuan Zhu
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Jianxuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Nannan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Haipeng Wang
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| |
Collapse
|
9
|
de Santiago PR, Sato S, Zhang SJ, Dougher MC, Devins KM, Bilecz AJ, Rayamajhi S, Mingo G, Rendulich HS, Feng Y, Wu C, Taylor MS, Zhuravlev Y, Jung E, Omran DK, Wang TL, Shih IM, Schwartz LE, Kim S, Morgan MA, Tanyi JL, Burns KH, Lengyel E, Parra-Herran C, Godwin AK, Walt DR, Drapkin R. LINE-1 ORF1p expression occurs in clear cell ovarian carcinoma precursors and is a candidate blood biomarker. NPJ Precis Oncol 2025; 9:62. [PMID: 40050409 PMCID: PMC11885553 DOI: 10.1038/s41698-025-00849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Long interspersed element 1 (LINE-1) retrotransposons are repetitive sequences that can move within the genome by an autonomous mechanism. To limit their mutagenic potential, benign cells restrict LINE-1 expression through molecular mechanisms such as DNA methylation and histone modification, but these mechanisms are usually impaired in cancer. Clear cell ovarian carcinoma (CCOC) represents 5-10% of ovarian cancers and is thought to arise from endometriosis. Women with advanced CCOC face poor prognoses, highlighting the importance of understanding early disease pathogenesis. In our study, 33 of 40 cases (over 82%) of CCOC tumors express ORF1p, a LINE-1-encoded protein. We found that LINE-1 de-repression is an early event in CCOC, as ORF1p is enhanced during the transition from typical to atypical endometriosis and persists in invasive cancer. Finally, using single-molecule array (Simoa) assays, we detected ORF1p in patient blood, suggesting it as a potential minimally invasive biomarker for this disease.
Collapse
Affiliation(s)
- Pamela R de Santiago
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sho Sato
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie J Zhang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Meaghan C Dougher
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle M Devins
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Agnes J Bilecz
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah S Rendulich
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Feng
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connie Wu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yelena Zhuravlev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dalia K Omran
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tian-Li Wang
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren E Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Kim
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Morgan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen H Burns
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Carlos Parra-Herran
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Le E, Moadab F, Wang X, Najjar R, Van den Bogaerde SJ, Bays A, LaCava J, Mustelin T. Interferons and Cytokines Induce Transcriptional Activation of the Long-Interspersed Element-1 in Myeloid Cells from Autoimmune Patients. Eur J Immunol 2025; 55:e2451351. [PMID: 40071709 PMCID: PMC11951091 DOI: 10.1002/eji.202451351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/30/2025]
Abstract
Approximately 17% of our genome consists of copies of the retrotransposon "long interspersed element-1" (LINE-1 or L1). Patients with systemic lupus erythematosus (SLE) frequently have autoantibodies against the L1-encoded ORF1 protein (ORF1p), which correlate with disease activity and interferon gene signature. ORF1p is present in neutrophils from patients with active disease in perinuclear ribonucleoprotein particles that also contain Ro60 and nucleic acid sensors. Here, we report that treatment of neutrophils or monocytes with the demethylating agent 5-aza-deoxycytidine, interferon-α, tumor necrosis factor-α, and other cytokines or toll-like receptor agonists, induce a rapid increase in L1 transcripts. This increase was greater in cells from patients with SLE or rheumatoid arthritis (RA) than in cells from healthy donors, except that cells from SLE did not respond to interferon-α, presumably because most SLE patients have elevated type I interferons in vivo. Interferon-α also induced ORF1p in RA neutrophils with a subcellular distribution like that of ORF1p in freshly isolated SLE neutrophils. A luciferase reporter gene driven by the 5' untranslated region of L1, which controls its transcription, was also stimulated by interferon-α. These new insights into L1 transcriptional regulation indicate that it may play a more active role in antiviral immune responses.
Collapse
Affiliation(s)
- Ethan Le
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Paul P, Kumar A, Parida AS, De AK, Bhadke G, Khatua S, Tiwari B. p53-mediated regulation of LINE1 retrotransposon-derived R-loops. J Biol Chem 2025; 301:108200. [PMID: 39828096 PMCID: PMC11903798 DOI: 10.1016/j.jbc.2025.108200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Long interspersed nuclear element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear. In this study, we used DNA-RNA immunoprecipitation-sequencing experiments to investigate RNA-DNA hybrids, which are key intermediates formed during L1 retrotransposition. Our findings reveal that L1 mRNA-genomic DNA (cis L1 R-loops) and L1 mRNA-complementary DNA (trans L1 R-loops) hybrids are upregulated in p53-/- cells. This increase is synergistic with L1 activation by histone deacetylase (HDAC) inhibitors (HDACi). However, treatment with a reverse transcriptase inhibitor reduces this accumulation, indicating that retrotransposition activity plays a significant role in R-loop accumulation. Interestingly, in WT cells, hyperactivated L1 transposons are suppressed upon HDACi withdrawal. L1 suppression in WT cells coincided with the recruitment of repressive marks, specifically H3K9me3 and H3K27me3, simultaneously preventing the addition of activating marks like H3K4me3, and H3K9ac at the L1 5'UTR. Mechanistically, we demonstrate that p53 cooperates with histone methyltransferases SETDB1 and G9A to deposit H3K9me3 marks at the L1 promoter, thereby silencing transposons. This study is the first to reveal novel roles of p53 in preventing the formation of L1-derived RNA-DNA hybrids (R-loops) and suppression of hyperactivated L1 elements by cooperating with histone methyltransferases, underscoring its critical role in maintaining genomic stability.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Arun Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Ankita Subhadarsani Parida
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Astik Kumar De
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Gauri Bhadke
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Satyajeet Khatua
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India.
| |
Collapse
|
12
|
Bravo JI, Zhang L, Benayoun BA. Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers. TRANSLATIONAL MEDICINE OF AGING 2025; 9:25-40. [PMID: 40051556 PMCID: PMC11883834 DOI: 10.1016/j.tma.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ~17% and ~11% of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize in trans. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Nielsen MI, Wolters JC, Bringas OGR, Jiang H, Di Stefano LH, Oghbaie M, Hozeifi S, Nitert MJ, van Pijkeren A, Smit M, Ter Morsche L, Mourtzinos A, Deshpande V, Taylor MS, Chait BT, LaCava J. Targeted detection of endogenous LINE-1 proteins and ORF2p interactions. Mob DNA 2025; 16:3. [PMID: 39915890 PMCID: PMC11800616 DOI: 10.1186/s13100-024-00339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Both the expression and activities of LINE-1 (L1) retrotransposons are known to occur in numerous cell-types and are implicated in pathobiological contexts such as aging-related inflammation, autoimmunity, and in cancers. L1s encode two proteins that are translated from bicistronic transcripts. The translation product of ORF1 (ORF1p) has been robustly detected by immunoassays and shotgun mass spectrometry (MS). Yet, more sensitive detection methods would enhance the use of ORF1p as a clinical biomarker. In contrast, until now, no direct evidence of endogenous L1 ORF2 translation to protein (ORF2p) has been shown. Instead, assays for ORF2p have been limited to ectopic L1 ORF over-expression contexts and to indirect detection of endogenous ORF2p enzymatic activity, such as by the sequencing of de novo genomic insertions. Immunoassays for endogenous ORF2p have been problematic, producing apparent false positives due to cross-reactivities, and shotgun MS has not yielded reliable evidence of ORF2p peptides in biological samples. RESULTS Here we present targeted mass spectrometry assays, selected and parallel reaction monitoring (SRM and PRM, respectively) to detect and quantify L1 ORF1p and ORF2p at their endogenous abundances. We were able to quantify ORF1p and ORF2p present in our samples down to a range in the low attomoles. Confident in our ability to affinity enrich ORF2p, we describe an interactome associated with endogenous ORF2-containing macromolecular assemblies. CONCLUSIONS This is the first assay to demonstrate sensitive and robust quantitation of endogenous ORF2p. The ability to assay ORF2p directly and quantitatively will improve our understanding of the developmental and diseased cell states where L1 expression and its activity naturally occur. The ability to simultaneously assay endogenous L1 ORF1p and ORF2p is an important step forward for L1 analytical biochemistry. Endogenous ORF2p interactomes can now be presented with confidence that ORF2p is among the enriched proteins.
Collapse
Affiliation(s)
- Mathias I Nielsen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Omar G Rosas Bringas
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Samira Hozeifi
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mats J Nitert
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alienke van Pijkeren
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marieke Smit
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lars Ter Morsche
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Apostolos Mourtzinos
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vikram Deshpande
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Martin S Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
14
|
Bravo JI, Zhang L, Benayoun BA. Multi-ancestry GWAS reveals loci linked to human variation in LINE-1- and Alu-insertion numbers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612283. [PMID: 39314493 PMCID: PMC11419044 DOI: 10.1101/2024.09.10.612283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
LINE-1 (L1) and Alu are two families of transposable elements (TEs) occupying ~17% and ~11% of the human genome, respectively. Though only a small fraction of L1 copies is able to produce the machinery to mobilize autonomously, Alu and degenerate L1s can hijack their functional machinery and mobilize in trans. The expression and subsequent mobilization of L1 and Alu can exert pathological effects on their hosts. These features have made them promising focus subjects in studies of aging where they can become active. However, mechanisms regulating TE activity are incompletely characterized, especially in diverse human populations. To address these gaps, we leveraged genomic data from the 1000 Genomes Project to carry out a trans-ethnic GWAS of L1/Alu insertion singletons. These are rare, recently acquired insertions observed in only one person and which we used as proxies for variation in L1/Alu insertion numbers. Our approach identified SNVs in genomic regions containing genes with potential and known TE regulatory properties, and it enriched for SNVs in regions containing known regulators of L1 expression. Moreover, we identified reference TE copies and structural variants that associated with L1/Alu singletons, suggesting their potential contribution to TE insertion number variation. Finally, a transcriptional analysis of lymphoblastoid cells highlighted potential cell cycle alterations in a subset of samples harboring L1/Alu singletons. Collectively, our results suggest that known TE regulatory mechanisms may be active in diverse human populations, expand the list of loci implicated in TE insertion number variability, and reinforce links between TEs and disease.
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Quantitative and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Cuarenta A. Retrotransposons and the brain: Exploring a complex relationship between mobile elements, stress, and neurological health. Neurobiol Stress 2025; 34:100709. [PMID: 39927173 PMCID: PMC11803260 DOI: 10.1016/j.ynstr.2025.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Environmental experiences during early life, including stress, can significantly impact brain development and behavior. Early life stress (ELS) is linked to an increased risk for various psychiatric disorders including anxiety, depression, and substance use disorders. Epigenetic mechanisms have increasingly been of interest to understand how environmental factors contribute to reprogramming the brain and alter risk and resilience to developing psychiatric disorders. However, we know very little about mobile elements or the regulation of mobile elements and their contribution to psychiatric disorders. Recently, advances in genomics have contributed to our understanding of mobile elements, including the retrotransposon LINE-1 (L1) and their potential role in mediating environmental experiences. Yet we still do not understand how these elements may contribute to psychiatric disorders. Future research leveraging cutting-edge technologies will deepen our understanding of these mobile elements. By elucidating their role in development and how stress may impact them, we may unlock new avenues for therapeutic and diagnostic innovations.
Collapse
Affiliation(s)
- Amelia Cuarenta
- Neuroscience Institute and the Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Wallace AD, Blue NR, Morgan T, Workalemahu T, Silver RM, Quinlan AR. Placental somatic mutation in human stillbirth and live birth: A pilot case-control study of paired placental, fetal, and maternal whole genomes. Placenta 2024; 154:137-144. [PMID: 38972082 PMCID: PMC11368634 DOI: 10.1016/j.placenta.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION A high frequency of single nucleotide somatic mutations in the placenta has been recently described, but its relationship to placental dysfunction is unknown. METHODS We performed a pilot case-control study using paired fetal, maternal, and placental samples collected from healthy live birth controls (n = 10), live births with fetal growth restriction (FGR) due to placental insufficiency (n = 7), and stillbirths with FGR and placental insufficiency (n = 11). We quantified single nucleotide and structural somatic variants using bulk whole genome sequencing (30-60X coverage) in four biopsies from each placenta. We also assessed their association with clinical and histological evidence of placental dysfunction. RESULTS Seventeen pregnancies had sufficiently high-quality placental, fetal, and maternal DNA for analysis. Each placenta had a median of 473 variants (range 111-870), with 95 % arising in just one biopsy within each placenta. In controls, live births with FGR, and stillbirths, the median variant counts per placenta were 514 (IQR 381-779), 582 (450-735), and 338 (245-441), respectively. After adjusting for depth of sequencing coverage and gestational age at birth, the somatic mutation burden was similar between groups (FGR live births vs. controls, adjusted diff. 59, 95 % CI -218 to +336; stillbirths vs controls, adjusted diff. -34, -351 to +419), and with no association with placental dysfunction (p = 0.7). DISCUSSION We confirmed the high prevalence of somatic mutation in the human placenta and conclude that the placenta is highly clonal. We were not able to identify any relationship between somatic mutation burden and clinical or histologic placental insufficiency.
Collapse
Affiliation(s)
- Amelia D Wallace
- University of Utah Health, Department of Human Genetics, 15 N 2030 E, Eccles Institute of Human Genetics Rm 7160B, Salt Lake City, UT, 84112, USA; Utah Center for Genetic Discovery, 15 N 2030 E, #2100, Salt Lake City, UT, 4112, USA
| | - Nathan R Blue
- University of Utah Health, Department of Obstetrics and Gynecology, 30 N Mario Capecchi Dr, Level 5 South, Salt Lake City, UT, 84132, USA
| | - Terry Morgan
- Oregon Health & Science University, Departments of Pathology and Obstetrics and Gynecology, 3181 SW Sam Jackson Park Rd, L-113, Portland, OR, 97239, USA
| | - Tsegaselassie Workalemahu
- University of Utah Health, Department of Obstetrics and Gynecology, 30 N Mario Capecchi Dr, Level 5 South, Salt Lake City, UT, 84132, USA
| | - Robert M Silver
- University of Utah Health, Department of Obstetrics and Gynecology, 30 N Mario Capecchi Dr, Level 5 South, Salt Lake City, UT, 84132, USA.
| | - Aaron R Quinlan
- University of Utah Health, Department of Human Genetics, 15 N 2030 E, Eccles Institute of Human Genetics Rm 7160B, Salt Lake City, UT, 84112, USA; Utah Center for Genetic Discovery, 15 N 2030 E, #2100, Salt Lake City, UT, 4112, USA.
| |
Collapse
|
17
|
Kohlrausch FB, Wang F, McKerrow W, Grivainis M, Fenyo D, Keefe DL. Mapping of long interspersed element-1 (L1) insertions by TIPseq provides information about sub chromosomal genetic variation in human embryos. J Assist Reprod Genet 2024; 41:2257-2269. [PMID: 38951360 PMCID: PMC11405744 DOI: 10.1007/s10815-024-03176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.
Collapse
Affiliation(s)
- Fabiana B Kohlrausch
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil.
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA.
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - Mark Grivainis
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - David Fenyo
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA
| |
Collapse
|
18
|
Moadab F, Sohrabi S, Wang X, Najjar R, Wolters JC, Jiang H, Miao W, Romero D, Zaller DM, Tran M, Bays A, Taylor MS, Kapeller R, LaCava J, Mustelin T. Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcription products, and DNA sensors in lupus granulocytes. Mob DNA 2024; 15:14. [PMID: 38937837 PMCID: PMC11212426 DOI: 10.1186/s13100-024-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sepideh Sohrabi
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | | | | | - Megan Tran
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alison Bays
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA.
- University of Washington, 750 Republican Street, Room E507, Seattle, WA, 98109, USA.
| |
Collapse
|
19
|
Fu B, Ma H, Liu D. Pioneer Transcription Factors: The First Domino in Zygotic Genome Activation. Biomolecules 2024; 14:720. [PMID: 38927123 PMCID: PMC11202083 DOI: 10.3390/biom14060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
20
|
Kojima S. Investigating mobile element variations by statistical genetics. Hum Genome Var 2024; 11:23. [PMID: 38816353 PMCID: PMC11140006 DOI: 10.1038/s41439-024-00280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.
Collapse
Affiliation(s)
- Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
21
|
Tang W, Liang P. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition. F1000Res 2024; 12:255. [PMID: 38915770 PMCID: PMC11195612 DOI: 10.12688/f1000research.130043.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Background Mobile elements (MEs) constitute a major portion of the genome in primates and other higher eukaryotes, and they play important role in genome evolution and gene function. MEs can be divided into two fundamentally different classes: DNA transposons which transpose in the genome in a "cut-and-paste" style, and retrotransposons which propagate in a "copy-and-paste" fashion via a process involving transcription and reverse-transcription. In primate genomes, DNA transposons are mostly dead, while many retrotransposons are still highly active. We report here the identification of a unique group of MEs, which we call "retro-DNAs", for their combined characteristics of these two fundamentally different ME classes. Methods A comparative computational genomic approach was used to analyze the reference genome sequences of 10 primate species consisting of five apes, four monkeys, and marmoset. Results From our analysis, we identified a total of 1,750 retro-DNAs, representing 748 unique insertion events in the genomes of ten primate species including human. These retro-DNAs contain sequences of DNA transposons but lack the terminal inverted repeats (TIRs), the hallmark of DNA transposons. Instead, they show characteristics of retrotransposons, such as polyA tails, longer target-site duplications (TSDs), and the "TT/AAAA" insertion site motif, suggesting the use of the L1-based target- primed reverse transcription (TPRT) mechanism. At least 40% of these retro-DNAs locate into genic regions, presenting potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of expression, suggesting that they have the potential to create more retro-DNA copies in the present primate genomes. Conclusions Although small in number, the identification of these retro-DNAs reveals a new mean for propagating DNA transposons in primate genomes without active canonical DNA transposon activity. Our data also suggest that the TPRT machinery may transpose a wider variety of DNA sequences in the genomes.
Collapse
Affiliation(s)
- Wangxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
- Centre of Biotechnology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
22
|
D'Ordine AM, Jogl G, Sedivy JM. Identification and characterization of small molecule inhibitors of the LINE-1 retrotransposon endonuclease. Nat Commun 2024; 15:3883. [PMID: 38719805 PMCID: PMC11078990 DOI: 10.1038/s41467-024-48066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
The long interspersed nuclear element-1 (LINE-1 or L1) retrotransposon is the only active autonomously replicating retrotransposon in the human genome. L1 harms the cell by inserting new copies, generating DNA damage, and triggering inflammation. Therefore, L1 inhibition could be used to treat many diseases associated with these processes. Previous research has focused on inhibition of the L1 reverse transcriptase due to the prevalence of well-characterized inhibitors of related viral enzymes. Here we present the L1 endonuclease as another target for reducing L1 activity. We characterize structurally diverse small molecule endonuclease inhibitors using computational, biochemical, and biophysical methods. We also show that these inhibitors reduce L1 retrotransposition, L1-induced DNA damage, and inflammation reinforced by L1 in senescent cells. These inhibitors could be used for further pharmacological development and as tools to better understand the life cycle of this element and its impact on disease processes.
Collapse
Affiliation(s)
- Alexandra M D'Ordine
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
23
|
Loomans-Kropp HA. The utility of liquid biopsy-based methylation biomarkers for colorectal cancer detection. Front Oncol 2024; 14:1351514. [PMID: 38595823 PMCID: PMC11002156 DOI: 10.3389/fonc.2024.1351514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and the second leading cause of cancer-related deaths in the United States. It is also one of the few cancers with established screening guidelines, however these methods have significant patient burden (e.g., time, invasive). In recent years, the development of liquid biopsy-based screening methods for biomarker detection have emerged as alternatives to traditional screening. Methylation biomarkers are of particular interest, and these markers can be identified and measured on circulating tumor and cell-free DNA. This perspective summarizes the current state of CRC screening and the potential integration of DNA methylation markers into liquid biopsy-based techniques. Finally, I discuss limitations to these methods and strategies for improvement. The continued development and implementation of liquid biopsy-based cancer screening approaches may provide an acceptable alternative to individuals unwilling to be screened by traditional methods.
Collapse
Affiliation(s)
- Holli A. Loomans-Kropp
- Cancer Control Program, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
24
|
Matsushima W, Planet E, Trono D. Ancestral genome reconstruction enhances transposable element annotation by identifying degenerate integrants. CELL GENOMICS 2024; 4:100497. [PMID: 38295789 PMCID: PMC10879028 DOI: 10.1016/j.xgen.2024.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024]
Abstract
Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual species, which limits its scope to relatively intact TE sequences. Here, we report a novel approach to uncover previously unannotated degenerate TEs (degTEs) by probing multiple ancestral genomes reconstructed from hundreds of species. We applied this method to the human genome and achieved a 10.8% increase in coverage over the most recent annotation. Further, we discovered that degTEs contribute to various cis-regulatory elements and transcription factor binding sites, including those of a known TE-controlling family, the KRAB zinc-finger proteins. We also report unannotated chimeric transcripts between degTEs and human genes expressed in embryos. This study provides a novel methodology and a freely available resource that will facilitate the investigation of TE co-option events on a full scale.
Collapse
Affiliation(s)
- Wayo Matsushima
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Mathavarajah S, Dellaire G. LINE-1: an emerging initiator of cGAS-STING signalling and inflammation that is dysregulated in disease. Biochem Cell Biol 2024; 102:38-46. [PMID: 37643478 DOI: 10.1139/bcb-2023-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The cGAS-STING (cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)) axis integrates DNA damage and cellular stress with type I interferon (IFN) signalling to facilitate transcriptional changes underlying inflammatory stress responses. The cGAS-STING pathway responds to cytosolic DNA in the form of double-stranded DNA, micronuclei, and long interspersed nuclear element 1 (L1) retroelements. L1 retroelements are a class of self-propagating non-long terminal repeat transposons that have remained highly active in mammalian genomes. L1 retroelements are emerging as important inducers of cGAS-STING and IFN signalling, which are often dysregulated in several diseases, including cancer. A key repressor of cGAS-STING and L1 activity is the exonuclease three prime repair exonuclease 1 (TREX1), and loss of TREX1 promotes the accumulation of L1. In addition, L1 dysregulation is a common theme among diseases with chronic induction of type I IFN signalling through cGAS-STING, such as Aicardi-Goutières syndrome, Fanconi anemia, and dermatomyositis. Although TREX1 is highly conserved in tetrapod species, other suppressor proteins exist that inhibit L1 retrotransposition. These suppressor genes when mutated are often associated with diseases characterized by unchecked inflammation that is associated with high cGAS-STING activity and elevated levels of L1 expression. In this review, we discuss these interconnected pathways of L1 suppression and their role in the regulation of cGAS-STING and inflammation in disease.
Collapse
Affiliation(s)
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
26
|
Sala L, Kumar M, Prajapat M, Chandrasekhar S, Cosby RL, La Rocca G, Macfarlan TS, Awasthi P, Chari R, Kruhlak M, Vidigal JA. AGO2 silences mobile transposons in the nucleus of quiescent cells. Nat Struct Mol Biol 2023; 30:1985-1995. [PMID: 37985687 DOI: 10.1038/s41594-023-01151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Argonaute 2 (AGO2) is a cytoplasmic component of the miRNA pathway, with essential roles in development and disease. Yet little is known about its regulation in vivo. Here we show that in quiescent mouse splenocytes, AGO2 localizes almost exclusively to the nucleus. AGO2 subcellular localization is modulated by the Pi3K-AKT-mTOR pathway, a well-established regulator of quiescence. Signaling through this pathway in proliferating cells promotes AGO2 cytoplasmic accumulation, at least in part by stimulating the expression of TNRC6, an essential AGO2 binding partner in the miRNA pathway. In quiescent cells in which mTOR signaling is low, AGO2 accumulates in the nucleus, where it binds to young mobile transposons co-transcriptionally to repress their expression via its catalytic domain. Our data point to an essential but previously unrecognized nuclear role for AGO2 during quiescence as part of a genome-defense system against young mobile elements and provide evidence of RNA interference in the soma of mammals.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Manish Kumar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Mahendra Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Rachel L Cosby
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
- The National Institute for General Medical Sciences, The National Institutes of Health, Bethesda, MD, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Michael Kruhlak
- CCR Confocal Microscopy Core Facility, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Vylegzhanina AV, Bespalov IA, Novototskaya-Vlasova KA, Hall BM, Gleiberman AS, Yu H, Leontieva OV, Leonova KI, Kurnasov OV, Osterman AL, Dy GK, Komissarov AA, Vasilieva E, Gehlhausen J, Iwasaki A, Ambrosone CB, Tsuji T, Matsuzaki J, Odunsi K, Andrianova EL, Gudkov AV. Cancer Relevance of Circulating Antibodies Against LINE-1 Antigens in Humans. CANCER RESEARCH COMMUNICATIONS 2023; 3:2256-2267. [PMID: 37870410 PMCID: PMC10631453 DOI: 10.1158/2767-9764.crc-23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant family of autonomous retrotransposons occupying over 17% of human DNA, is epigenetically silenced in normal tissues by the mechanisms involving p53 but is frequently derepressed in cancer, suggesting that L1-encoded proteins may act as tumor-associated antigens recognized by the immune system. In this study, we established an immunoassay to detect circulating autoantibodies against L1 proteins in human blood. Using this assay in >2,800 individuals with or without cancer, we observed significantly higher IgG titers against L1-encoded ORF1p and ORF2p in patients with lung, pancreatic, ovarian, esophageal, and liver cancers than in healthy individuals. Remarkably, elevated levels of anti-ORF1p-reactive IgG were observed in patients with cancer with disease stages 1 and 2, indicating that the immune response to L1 antigens can occur in the early phases of carcinogenesis. We concluded that the antibody response against L1 antigens could contribute to the diagnosis and determination of immunoreactivity of tumors among cancer types that frequently escape early detection. SIGNIFICANCE The discovery of autoantibodies against antigens encoded by L1 retrotransposons in patients with five poorly curable cancer types has potential implications for the detection of an ongoing carcinogenic process and tumor immunoreactivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Han Yu
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | | | - Oleg V. Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Grace K. Dy
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexey A. Komissarov
- I.V. Davydovsky Clinical City Hospital, Moscow, Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena Vasilieva
- I.V. Davydovsky Clinical City Hospital, Moscow, Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | | | - Akiko Iwasaki
- Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Takemasa Tsuji
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Junko Matsuzaki
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | | | - Andrei V. Gudkov
- Genome Protection, Inc., Buffalo, New York
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
28
|
Michalak TI. The Initial Hepatitis B Virus-Hepatocyte Genomic Integrations and Their Role in Hepatocellular Oncogenesis. Int J Mol Sci 2023; 24:14849. [PMID: 37834296 PMCID: PMC10573506 DOI: 10.3390/ijms241914849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis B virus (HBV) remains a dominant cause of hepatocellular carcinoma (HCC). Recently, it was shown that HBV and woodchuck hepatitis virus (WHV) integrate into the hepatocyte genome minutes after invasion. Retrotransposons and transposable sequences were frequent sites of the initial insertions, suggesting a mechanism for spontaneous HBV DNA dispersal throughout the hepatocyte genome. Several somatic genes were also identified as early insertional targets in infected hepatocytes and woodchuck livers. Head-to-tail joints (HTJs) dominated amongst fusions, indicating their creation by non-homologous end-joining (NHEJ). Their formation coincided with the robust oxidative damage of hepatocyte DNA. This was associated with the activation of poly(ADP-ribose) polymerase 1 (PARP1)-mediated dsDNA repair, as reflected by the augmented transcription of PARP1 and XRCC1; the PARP1 binding partner OGG1, a responder to oxidative DNA damage; and increased activity of NAD+, a marker of PARP1 activation, and HO1, an indicator of cell oxidative stress. The engagement of the PARP1-mediated NHEJ repair pathway explains the HTJ format of the initial merges. The findings show that HBV and WHV are immediate inducers of oxidative DNA damage and hijack dsDNA repair to integrate into the hepatocyte genome, and through this mechanism, they may initiate pro-oncogenic processes. Tracking initial integrations may uncover early markers of HCC and help to explain HBV-associated oncogenesis.
Collapse
Affiliation(s)
- Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Science, Faculty of Medicine, Health Science Center, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
29
|
Mauro M, Wei S, Breborowicz A, Li X, Bognanni C, Fuller Z, Philipp T, McDonald T, Lattin MT, Williams Z. Endogenous retrotransposons cause catastrophic deoxyribonucleic acid damage in human trophoblasts. F&S SCIENCE 2023; 4:200-210. [PMID: 37225003 DOI: 10.1016/j.xfss.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To determine the mechanistic role of mobile genetic elements in causing widespread DNA damage in primary human trophoblasts. DESIGN Experimental ex vivo study. SETTING Hospital-affiliated University. PATIENT(S) Trophoblasts from a patient with unexplained recurrent pregnancy loss and patients with spontaneous and elective abortions (n = 10). INTERVENTION(S) Biochemical and genetic analysis and modification of primary human trophoblasts. MAIN OUTCOME MEASURE(S) To phenotype and systematically evaluate the underlying pathogenic mechanism for elevated DNA damage observed in trophoblasts derived from a patient with unexplained recurrent pregnancy loss, transcervical embryoscopy, G-band karyotyping, RNA sequencing, quantitative polymerase chain reaction, immunoblotting, biochemical and siRNA assays, and whole-genome sequencing were performed. RESULT(S) Transcervical embryoscopy revealed a severely dysmorphic embryo that was euploid on G-band karyotyping. RNA sequencing was notable for markedly elevated LINE-1 expression, confirmed with quantitative polymerase chain reaction, and that resulted in elevated expression of LINE-1-encoded proteins, as shown by immunoblotting. Immunofluorescence, biochemical and genetic approaches demonstrated that overexpression of LINE-1 caused reversible widespread genomic damage and apoptosis. CONCLUSION(S) Derepression of LINE-1 elements in early trophoblasts results in reversible but widespread DNA damage.
Collapse
Affiliation(s)
- Maurizio Mauro
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York; Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Shan Wei
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York
| | - Andrzej Breborowicz
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Xin Li
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Claudia Bognanni
- The Rockefeller University, Howard Hughes Medical Institute, and Laboratory of RNA Molecular Biology, New York, New York
| | - Zachary Fuller
- Department of Biological Sciences, Columbia University, New York, New York
| | - Thomas Philipp
- Institute of Clinical Gynecology and Obstetrics, Danube Hospital, Vienna, Austria
| | - Torrin McDonald
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York
| | - Miriam Temmeh Lattin
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York
| | - Zev Williams
- Department of Obstetrics and Gynecology, Columbia University Fertility Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
30
|
Spirito G, Filosi M, Domenici E, Mangoni D, Gustincich S, Sanges R. Exploratory analysis of L1 retrotransposons expression in autism. Mol Autism 2023; 14:22. [PMID: 37381037 DOI: 10.1186/s13229-023-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a set of highly heterogeneous neurodevelopmental diseases whose genetic etiology is not completely understood. Several investigations have relied on transcriptome analysis from peripheral tissues to dissect ASD into homogenous molecular phenotypes. Recently, analysis of changes in gene expression from postmortem brain tissues has identified sets of genes that are involved in pathways previously associated with ASD etiology. In addition to protein-coding transcripts, the human transcriptome is composed by a large set of non-coding RNAs and transposable elements (TEs). Advancements in sequencing technologies have proven that TEs can be transcribed in a regulated fashion, and their dysregulation might have a role in brain diseases. METHODS We exploited published datasets comprising RNA-seq data from (1) postmortem brain of ASD subjects, (2) in vitro cell cultures where ten different ASD-relevant genes were knocked out and (3) blood of discordant siblings. We measured the expression levels of evolutionarily young full-length transposable L1 elements and characterized the genomic location of deregulated L1s assessing their potential impact on the transcription of ASD-relevant genes. We analyzed every sample independently, avoiding to pool together the disease subjects to unmask the heterogeneity of the molecular phenotypes. RESULTS We detected a strong upregulation of intronic full-length L1s in a subset of postmortem brain samples and in in vitro differentiated neurons from iPSC knocked out for ATRX. L1 upregulation correlated with an high number of deregulated genes and retained introns. In the anterior cingulate cortex of one subject, a small number of significantly upregulated L1s overlapped with ASD-relevant genes that were significantly downregulated, suggesting the possible existence of a negative effect of L1 transcription on host transcripts. LIMITATIONS Our analyses must be considered exploratory and will need to be validated in bigger cohorts. The main limitation is given by the small sample size and by the lack of replicates for postmortem brain samples. Measuring the transcription of locus-specific TEs is complicated by the repetitive nature of their sequence, which reduces the accuracy in mapping sequencing reads to the correct genomic locus. CONCLUSIONS L1 upregulation in ASD appears to be limited to a subset of subjects that are also characterized by a general deregulation of the expression of canonical genes and an increase in intron retention. In some samples from the anterior cingulate cortex, L1s upregulation seems to directly impair the expression of some ASD-relevant genes by a still unknown mechanism. L1s upregulation may therefore identify a group of ASD subjects with common molecular features and helps stratifying individuals for novel strategies of therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Spirito
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience, Via Bonomea 265, 34136, Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
- CMP3vda, Via Lavoratori Vittime del Col Du Mont 28, Aosta, Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy
- Eurac Research, Institute for Biomedicine, Bolzano, BZ, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, TN, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
- CMP3vda, Via Lavoratori Vittime del Col Du Mont 28, Aosta, Italy.
| | - Remo Sanges
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience, Via Bonomea 265, 34136, Trieste, Italy.
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
| |
Collapse
|
31
|
De Luca C, Gupta A, Bortvin A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 2023; 19:e1010797. [PMID: 37307272 DOI: 10.1371/journal.pgen.1010797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
Affiliation(s)
- Chiara De Luca
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of Americ
| |
Collapse
|
32
|
Batcher K, Varney S, Raudsepp T, Jevit M, Dickinson P, Jagannathan V, Leeb T, Bannasch D. Ancient segmentally duplicated LCORL retrocopies in equids. PLoS One 2023; 18:e0286861. [PMID: 37289743 PMCID: PMC10249811 DOI: 10.1371/journal.pone.0286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
LINE-1 is an active transposable element encoding proteins capable of inserting host gene retrocopies, resulting in retro-copy number variants (retroCNVs) between individuals. Here, we performed retroCNV discovery using 86 equids and identified 437 retrocopy insertions. Only 5 retroCNVs were shared between horses and other equids, indicating that the majority of retroCNVs inserted after the species diverged. A large number (17-35 copies) of segmentally duplicated Ligand Dependent Nuclear Receptor Corepressor Like (LCORL) retrocopies were present in all equids but absent from other extant perissodactyls. The majority of LCORL transcripts in horses and donkeys originate from the retrocopies. The initial LCORL retrotransposition occurred 18 million years ago (17-19 95% CI), which is coincident with the increase in body size, reduction in digit number, and changes in dentition that characterized equid evolution. Evolutionary conservation of the LCORL retrocopy segmental amplification in the Equidae family, high expression levels and the ancient timeline for LCORL retrotransposition support a functional role for this structural variant.
Collapse
Affiliation(s)
- Kevin Batcher
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Scarlett Varney
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Matthew Jevit
- Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, CA, United States of America
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
33
|
Du Q, Stow EC, LaCoste D, Freeman B, Baddoo M, Shareef A, Miller KM, Belancio VP. A novel role of TRIM28 B box domain in L1 retrotransposition and ORF2p-mediated cDNA synthesis. Nucleic Acids Res 2023; 51:4429-4450. [PMID: 37070200 PMCID: PMC10201437 DOI: 10.1093/nar/gkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The long interspersed element 1 (LINE-1 or L1) integration is affected by many cellular factors through various mechanisms. Some of these factors are required for L1 amplification, while others either suppress or enhance specific steps during L1 propagation. Previously, TRIM28 has been identified to suppress transposable elements, including L1 expression via its canonical role in chromatin remodeling. Here, we report that TRIM28 through its B box domain increases L1 retrotransposition and facilitates shorter cDNA and L1 insert generation in cultured cells. Consistent with the latter, we observe that tumor specific L1 inserts are shorter in endometrial, ovarian, and prostate tumors with higher TRIM28 mRNA expression than in those with lower TRIM28 expression. We determine that three amino acids in the B box domain that are involved in TRIM28 multimerization are critical for its effect on both L1 retrotransposition and cDNA synthesis. We provide evidence that B boxes from the other two members in the Class VI TRIM proteins, TRIM24 and TRIM33, also increase L1 retrotransposition. Our findings could lead to a better understanding of the host/L1 evolutionary arms race in the germline and their interplay during tumorigenesis.
Collapse
Affiliation(s)
- Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Dawn LaCoste
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Benjamin Freeman
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Afzaal M Shareef
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E 24th Street, Austin, TX 78712, USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| |
Collapse
|
34
|
Fujita M, Goto M, Tanaka M, Yoshida W. Detection of CpG methylation level using methyl-CpG-binding domain-fused fluorescent protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2294-2299. [PMID: 37010025 DOI: 10.1039/d3ay00227f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Methylation of cytosine to 5-methylcytosine on CpG dinucleotides is the most frequently studied epigenetic modification involved in the regulation of gene expression. In normal tissues, tissue-specific CpG methylation patterns are established during development. In contrast, alterations in methylation patterns have been observed in abnormal cells, such as cancer cells. Cancer type-specific CpG methylation patterns have been identified and used as biomarkers for cancer diagnosis. In this study, we developed a hybridization-based CpG methylation level sensing system using a methyl-CpG-binding domain (MBD)-fused fluorescent protein. In this system, the target DNA is captured by a complementary methylated probe DNA. When the target DNA is methylated, a symmetrically methylated CpG is formed in the double-stranded DNA. MBD specifically recognizes symmetrical methyl-CpG on double-stranded DNA; therefore, the methylation level is quantified by measuring the fluorescence intensity of the bound MBD-fused fluorescent protein. We prepared MBD-fused AcGFP1 and quantified the CpG methylation levels of the target DNA against SEPT9, BRCA1, and long interspersed nuclear element-1 (LINE-1) using MBD-AcGFP1. This detection principle can be applied to the simultaneous and genome-wide modified base detection systems using microarrays coupled with modified base binding proteins fused to fluorescent proteins.
Collapse
Affiliation(s)
- Marika Fujita
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| | - Masanori Goto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
35
|
Ukadike KC, Najjar R, Ni K, Laine A, Wang X, Bays A, Taylor MS, LaCava J, Mustelin T. Expression of L1 retrotransposons in granulocytes from patients with active systemic lupus erythematosus. Mob DNA 2023; 14:5. [PMID: 37165451 PMCID: PMC10170740 DOI: 10.1186/s13100-023-00293-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) have autoantibodies against the L1-encoded open-reading frame 1 protein (ORF1p). Here, we report (i) which immune cells ORF1p emanates from, (ii) which L1 loci are transcriptionally active, (iii) whether the cells express L1-dependent interferon and interferon-stimulated genes, and (iv) the effect of inhibition of L1 ORF2p by reverse transcriptase inhibitors. RESULTS L1 ORF1p was detected by flow cytometry primarily in SLE CD66b+CD15+ regular and low-density granulocytes, but much less in other immune cell lineages. The amount of ORF1p was higher in neutrophils from patients with SLE disease activity index (SLEDAI) > 6 (p = 0.011) compared to patients with inactive disease, SLEDAI < 4. Patient neutrophils transcribed seven to twelve human-specific L1 loci (L1Hs), but only 3 that are full-length and with an intact ORF1. Besides serving as a source of detectable ORF1p, the most abundant transcript encoded a truncated ORF2p reverse transcriptase predicted to remain cytosolic, while the two other encoded an intact full-length ORF2p. A number of genes encoding proteins that influence L1 transcription positively or negatively were altered in patients, particularly those with active disease, compared to healthy controls. Components of nucleic acid sensing and interferon induction were also altered. SLE neutrophils also expressed type I interferon-inducible genes and interferon β, which were substantially reduced after treatment of the cells with drugs known to inhibit ORF2p reverse transcriptase activity. CONCLUSIONS We identified L1Hs loci that are transcriptionally active in SLE neutrophils, and a reduction in the epigenetic silencing mechanisms that normally counteract L1 transcription. SLE neutrophils contained L1-encoded ORF1p protein, as well as activation of the type I interferon system, which was inhibited by treatment with reverse transcriptase inhibitors. Our findings will enable a deeper analysis of L1 dysregulation and its potential role in SLE pathogenesis.
Collapse
Affiliation(s)
- Kennedy C Ukadike
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
- Department of Internal Medicine, Renown Rheumatology, Renown Health - University of Nevada, Reno School of Medicine, 75 Pringle Way, Suite 701, Reno, NV, 89502, USA
| | - Rayan Najjar
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Kathryn Ni
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Amanda Laine
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Xiaoxing Wang
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Alison Bays
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomas Mustelin
- Department of Medicine, Division of Rheumatology, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA.
| |
Collapse
|
36
|
Nam CH, Youk J, Kim JY, Lim J, Park JW, Oh SA, Lee HJ, Park JW, Won H, Lee Y, Jeong SY, Lee DS, Oh JW, Han J, Lee J, Kwon HW, Kim MJ, Ju YS. Widespread somatic L1 retrotransposition in normal colorectal epithelium. Nature 2023; 617:540-547. [PMID: 37165195 PMCID: PMC10191854 DOI: 10.1038/s41586-023-06046-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Throughout an individual's lifetime, genomic alterations accumulate in somatic cells1-11. However, the mutational landscape induced by retrotransposition of long interspersed nuclear element-1 (L1), a widespread mobile element in the human genome12-14, is poorly understood in normal cells. Here we explored the whole-genome sequences of 899 single-cell clones established from three different cell types collected from 28 individuals. We identified 1,708 somatic L1 retrotransposition events that were enriched in colorectal epithelium and showed a positive relationship with age. Fingerprinting of source elements showed 34 retrotransposition-competent L1s. Multidimensional analysis demonstrated that (1) somatic L1 retrotranspositions occur from early embryogenesis at a substantial rate, (2) epigenetic on/off of a source element is preferentially determined in the early organogenesis stage, (3) retrotransposition-competent L1s with a lower population allele frequency have higher retrotransposition activity and (4) only a small fraction of L1 transcripts in the cytoplasm are finally retrotransposed in somatic cells. Analysis of matched cancers further suggested that somatic L1 retrotransposition rate is substantially increased during colorectal tumourigenesis. In summary, this study illustrates L1 retrotransposition-induced somatic mosaicism in normal cells and provides insights into the genomic and epigenomic regulation of transposable elements over the human lifetime.
Collapse
Affiliation(s)
- Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Genome Insight, Inc., Daejeon, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Joonoh Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Genome Insight, Inc., Daejeon, Republic of Korea
| | - Jung Woo Park
- Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Soo A Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Jung Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyein Won
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yunah Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Junehawk Lee
- Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Genome Insight, Inc., Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Demeneva VV, Tolmacheva EN, Nikitina TV, Sazhenova EA, Yuriev SY, Makhmutkhodzhaev AS, Zuev AS, Filatova SA, Dmitriev AE, Darkova YA, Nazarenko LP, Lebedev IN, Vasilyev SA. Expression of the NUP153 and YWHAB genes from their canonical promoters and alternative promoters of the LINE-1 retrotransposon in the placenta of the first trimester of pregnancy. Vavilovskii Zhurnal Genet Selektsii 2023; 27:63-71. [PMID: 36923475 PMCID: PMC10009475 DOI: 10.18699/vjgb-23-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 03/11/2023] Open
Abstract
The placenta has a unique hypomethylated genome. Due to this feature of the placenta, there is a potential possibility of using regulatory elements derived from retroviruses and retrotransposons, which are suppressed by DNA methylation in the adult body. In addition, there is an abnormal increase in the level of methylation of the LINE-1 retrotransposon in the chorionic trophoblast in spontaneous abortions with both normal karyotype and aneuploidy on different chromosomes, which may be associated with impaired gene transcription using LINE-1 regulatory elements. To date, 988 genes that can be expressed from alternative LINE-1 promoters have been identified. Using the STRING tool, genes (NUP153 and YWHAB) were selected, the products of which have significant functional relationships with proteins highly expressed in the placenta and involved in trophoblast differentiation. This study aimed to analyze the expression of the NUP153 and YWHAB genes, highly active in the placenta, from canonical and alternative LINE-1 promoters in the germinal part of the placenta of spontaneous and induced abortions. Gene expression analysis was performed using real-time PCR in chorionic villi and extraembryonic mesoderm of induced abortions (n = 10), adult lymphocytes (n = 10), spontaneous abortions with normal karyotype (n = 10), and with the most frequent aneuploidies in the first trimester of pregnancy (trisomy 16 (n = 8) and monosomy X (n = 6)). The LINE-1 methylation index was assessed in the chorionic villi of spontaneous abortions using targeted bisulfite massive parallel sequencing. The level of expression of both genes from canonical promoters was higher in blood lymphocytes than in placental tissues (p < 0.05). However, the expression level of the NUP153 gene from the alternative LINE-1 promoter was 17 times higher in chorionic villi and 23 times higher in extraembryonic mesoderm than in lymphocytes (p < 0.05). The expression level of NUP153 and YWHAB from canonical promoters was higher in the group of spontaneous abortions with monosomy X compared to all other groups (p <0.05). The LINE-1 methylation index negatively correlated with the level of gene expression from both canonical (NUP153 - R = -0.59, YWHAB - R = -0.52, p < 0.05) and alternative LINE-1 promoters (NUP153 - R = -0.46, YWHAB - R = -0.66, p < 0.05). Thus, the observed increase in the LINE-1 methylation index in the placenta of spontaneous abortions is associated with the level of expression of the NUP153 and YWHAB genes not only from alternative but also from canonical promoters, which can subsequently lead to negative consequences for normal embryogenesis.
Collapse
Affiliation(s)
- V V Demeneva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S Yu Yuriev
- Siberian State Medical University, Tomsk, Russia
| | | | - A S Zuev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S A Filatova
- National Research Tomsk State University, Tomsk, Russia
| | - A E Dmitriev
- National Research Tomsk State University, Tomsk, Russia
| | - Ya A Darkova
- National Research Tomsk State University, Tomsk, Russia
| | - L P Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University, Tomsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
38
|
Gasparotto E, Burattin FV, Di Gioia V, Panepuccia M, Ranzani V, Marasca F, Bodega B. Transposable Elements Co-Option in Genome Evolution and Gene Regulation. Int J Mol Sci 2023; 24:ijms24032610. [PMID: 36768929 PMCID: PMC9917352 DOI: 10.3390/ijms24032610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The genome is no longer deemed as a fixed and inert item but rather as a moldable matter that is continuously evolving and adapting. Within this frame, Transposable Elements (TEs), ubiquitous, mobile, repetitive elements, are considered an alive portion of the genomes to date, whose functions, although long considered "dark", are now coming to light. Here we will review that, besides the detrimental effects that TE mobilization can induce, TEs have shaped genomes in their current form, promoting genome sizing, genomic rearrangements and shuffling of DNA sequences. Although TEs are mostly represented in the genomes by evolutionarily old, short, degenerated, and sedentary fossils, they have been thoroughly co-opted by the hosts as a prolific and original source of regulatory instruments for the control of gene transcription and genome organization in the nuclear space. For these reasons, the deregulation of TE expression and/or activity is implicated in the onset and progression of several diseases. It is likely that we have just revealed the outermost layers of TE functions. Further studies on this portion of the genome are required to unlock novel regulatory functions that could also be exploited for diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Erica Gasparotto
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Filippo Vittorio Burattin
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Valeria Di Gioia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Michele Panepuccia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Valeria Ranzani
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Federica Marasca
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Bodega
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
39
|
Sato S, Gillette M, de Santiago PR, Kuhn E, Burgess M, Doucette K, Feng Y, Mendez-Dorantes C, Ippoliti PJ, Hobday S, Mitchell MA, Doberstein K, Gysler SM, Hirsch MS, Schwartz L, Birrer MJ, Skates SJ, Burns KH, Carr SA, Drapkin R. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 2023; 13:1537. [PMID: 36707610 PMCID: PMC9883229 DOI: 10.1038/s41598-023-28840-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p) expression is a common feature of many cancer types, including high-grade serous ovarian carcinoma (HGSOC). Here, we report that ORF1p is not only expressed but also released by ovarian cancer and primary tumor cells. Immuno-multiple reaction monitoring-mass spectrometry assays showed that released ORF1p is confidently detectable in conditioned media, ascites, and patients' plasma, implicating ORF1p as a potential biomarker. Interestingly, ORF1p expression is detectable in fallopian tube (FT) epithelial precursors of HGSOC but not in benign FT, suggesting that ORF1p expression in an early event in HGSOC development. Finally, treatment of FT cells with DNA methyltransferase inhibitors led to robust expression and release of ORF1p, validating the regulatory role of DNA methylation in LINE-1 repression in non-tumorigenic tissue.
Collapse
Affiliation(s)
- Sho Sato
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Gillette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela R de Santiago
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Eric Kuhn
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Burgess
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kristen Doucette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yi Feng
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Paul J Ippoliti
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sara Hobday
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marilyn A Mitchell
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kai Doberstein
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Schwartz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Birrer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Steven J Skates
- Harvard Medical School, Boston, MA, 02115, USA.,Biostatistics and Computational Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen H Burns
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Luca CD, Gupta A, Bortvin A. Ribonucleoprotein condensation driven by retrotransposon LINE-1 sustains RNA integrity and translation in mouse spermatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523313. [PMID: 36712121 PMCID: PMC9882024 DOI: 10.1101/2023.01.09.523313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TE) are mobile DNA sequences whose excessive proliferation endangers the host. Although animals have evolved robust TE-targeting defenses, including Piwi-interacting (pi)RNAs, retrotransposon LINE-1 (L1) still thrives in humans and mice. To gain insights into L1 endurance, we characterized L1 Bodies (LBs) and ORF1p complexes in germ cells of piRNA-deficient Maelstrom null mice. We report that ORF1p interacts with TE RNAs, genic mRNAs, and stress granule proteins, consistent with earlier studies. We also show that ORF1p associates with the CCR4-NOT deadenylation complex and PRKRA, a Protein Kinase R factor. Despite ORF1p interactions with these negative regulators of RNA expression, the stability and translation of LB-localized mRNAs remain unchanged. To scrutinize these findings, we studied the effects of PRKRA on L1 in cultured cells and showed that it elevates ORF1p levels and L1 retrotransposition. These results suggest that ORF1p-driven condensates promote L1 propagation, without affecting the metabolism of endogenous RNAs.
Collapse
|
41
|
Hejníčková M, Dalíková M, Zrzavá M, Marec F, Lorite P, Montiel EE. Accumulation of retrotransposons contributes to W chromosome differentiation in the willow beauty Peribatodes rhomboidaria (Lepidoptera: Geometridae). Sci Rep 2023; 13:534. [PMID: 36631492 PMCID: PMC9834309 DOI: 10.1038/s41598-023-27757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The W chromosome of Lepidoptera is typically gene-poor, repeat-rich and composed of heterochromatin. Pioneering studies investigating this chromosome reported an abundance of mobile elements. However, the actual composition of the W chromosome varies greatly between species, as repeatedly demonstrated by comparative genomic hybridization (CGH) or fluorescence in situ hybridization (FISH). Here we present an analysis of repeats on the W chromosome in the willow beauty, Peribatodes rhomboidaria (Geometridae), a species in which CGH predicted an abundance of W-enriched or W-specific sequences. Indeed, comparative analysis of male and female genomes using RepeatExplorer identified ten putative W chromosome-enriched repeats, most of which are LTR or LINE mobile elements. We analysed the two most abundant: PRW LINE-like and PRW Bel-Pao. The results of FISH mapping and bioinformatic analysis confirmed their enrichment on the W chromosome, supporting the hypothesis that mobile elements are the driving force of W chromosome differentiation in Lepidoptera. As the W chromosome is highly underrepresented in chromosome-level genome assemblies of Lepidoptera, this recently introduced approach, combining bioinformatic comparative genome analysis with molecular cytogenetics, provides an elegant tool for studying this elusive and rapidly evolving part of the genome.
Collapse
Affiliation(s)
- Martina Hejníčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic.
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magda Zrzavá
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - František Marec
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Eugenia E Montiel
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| |
Collapse
|
42
|
Garcia-Cañadas M, Sanchez-Luque FJ, Sanchez L, Rojas J, Garcia Perez JL. LINE-1 Retrotransposition Assays in Embryonic Stem Cells. Methods Mol Biol 2023; 2607:257-309. [PMID: 36449167 DOI: 10.1007/978-1-0716-2883-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.
Collapse
Affiliation(s)
- Marta Garcia-Cañadas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Laura Sanchez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Johana Rojas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Jose L Garcia Perez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC)/University of Edinburgh, Western General Hospital Campus, Edinburgh, UK.
| |
Collapse
|
43
|
Di Stefano LH, Saba LJ, Oghbaie M, Jiang H, McKerrow W, Benitez-Guijarro M, Taylor MS, LaCava J. Affinity-Based Interactome Analysis of Endogenous LINE-1 Macromolecules. Methods Mol Biol 2023; 2607:215-256. [PMID: 36449166 DOI: 10.1007/978-1-0716-2883-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.
Collapse
Affiliation(s)
- Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Leila J Saba
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
| | - Maria Benitez-Guijarro
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John LaCava
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
44
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
45
|
Nef Suppresses LINE-1 Retrotransposition through Two Distinct Mechanisms. J Virol 2022; 96:e0114822. [PMID: 36197106 DOI: 10.1128/jvi.01148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long interspersed element type 1 (LINE-1) is the only known type of retroelement that can replicate autonomously, and its retrotransposition activity can trigger interferon (IFN) production. IFN production suppresses the infectivity of exogenous viruses, such as human immunodeficiency virus (HIV). As a counteraction, HIV has been reported to use multiple proteins and mechanisms to suppress LINE-1 replication. However, the mechanisms of HIV-mediated LINE-1 regulation are not fully understood. In this study, we discovered that Nef protein, which is expressed by HIV and is important for HIV pathogenesis, inhibits LINE-1 retrotransposition. Two distinct mechanisms have been uncovered for Nef-induced LINE-1 suppression. Without direct interaction with LINE-1 DNA, Nef potently inhibits the promoter activity of the LINE-1 5'-untranslated region (5'-UTR) and reduces the expression levels of LINE-1 RNA and proteins. Alternatively, although Nef does not bind to the LINE-1 open reading frame 1 protein (ORF1p) or LINE-1 RNA, it significantly compromises the ORF1p-LINE-1 RNA interaction, which is essential for LINE-1 retrotransposition. Both mechanisms can be suppressed by the G2A mutation, which abolishes myristoylation of Nef, suggesting that membrane attachment is essential for Nef to suppress LINE-1. Consequently, through LINE-1 inhibition, Nef downregulates IFN production in host cells. Therefore, our data revealed that Nef is a potent LINE-1 suppressor and an effective innate immune regulator, which not only provides new information on the intricate interaction between HIV, LINE-1, and IFN signaling systems but also strengthens the importance of Nef in HIV infection and highlights the potential of designing novel Nef-targeting anti-HIV drugs. IMPORTANCE Human immunodeficiency viruses are pathogens of AIDS that were first discovered almost 40 years ago and continue to threaten human lives to date. While currently used anti-HIV drugs are sufficient to suppress viral loads in HIV-infected patients, both drug-resistant HIV strains and adverse side effects triggered by the long-term use of these drugs highlight the need to develop novel anti-HIV drugs targeting different viral proteins and/or different steps in viral replication. To achieve this, more information is required regarding HIV pathogenesis and especially its impact on cellular activities in host cells. In this study, we discovered that the Nef protein expressed by HIV potently inhibits LINE-1 retrotransposition. During our attempt to determine the mechanism of Nef-mediated LINE-1 suppression, two additional functions of Nef were uncovered. Nef effectively repressed the promoter activity of LINE-1 5'-UTR and destabilized the interaction between ORF1p and LINE-1 RNA. Consequently, Nef not only compromises LINE-1 replication but also reduces LINE-1-triggered IFN production. The reduction in IFN production, in theory, promotes HIV infectivity. Together with its previously known functions, these findings indicate that Nef is a potential target for the development of novel anti-HIV drugs. Notably, the G2 residue, which has been reported to be essential for most Nef functions, was found to be critical in the regulation of innate immune activation by Nef, suggesting that compromising myristoylation or membrane attachment of Nef may be a good strategy for the inhibition of HIV infection.
Collapse
|
46
|
Hepatitis B virus polymerase restricts LINE-1 mobility. Gene 2022; 850:146943. [PMID: 36198378 DOI: 10.1016/j.gene.2022.146943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Long interspersed element-1 (LINE-1, L1) transposable element (TE) composes about 17% of the human genome. However, genetic and biochemical interactions between L1 and hepatitis B virus (HBV) remain poorly understood. In this study, I found that HBV restricts L1 retrotransposition in a reverse transcriptase (RT)-independent manner. Notably, HBV polymerase (Pol) strongly inhibited L1 retrotransposition. Indeed, the ribonuclease H (RNase H) domain was essential for inhibition of L1 retrotransposition. The L1 ORF1p RNA-binding protein predominantly localized into cytoplasmic RNA granule termed P-body. However, HBV Pol hijacked L1 ORF1p from P-body through an interaction with L1 ORF1p, when both proteins were co-expressed. Furthermore, HBV Pol repressed the L1 5' untranslated region (UTR). Altogether, HBV seems to restrict L1 mobility at multiple steps. Thus, these results suggest a novel function or activity of HBV Pol in regulation of L1 retrotransposition.
Collapse
|
47
|
Zhao Y, Zhao K, Wang S, Du J. Multi-functional BST2/tetherin against HIV-1, other viruses and LINE-1. Front Cell Infect Microbiol 2022; 12:979091. [PMID: 36176574 PMCID: PMC9513188 DOI: 10.3389/fcimb.2022.979091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2), also known as CD317, HM1.24, or tetherin, is a type II transmembrane glycoprotein. Its expression is induced by IFN-I, and it initiates host immune responses by directly trapping enveloped HIV-1 particles onto the cell surface. This antagonistic mechanism toward the virus is attributable to the unique structure of BST2. In addition to its antiviral activity, BST2 restricts retrotransposon LINE-1 through a distinct mechanism. As counteractive measures, different viruses use a variety of proteins to neutralize the function or even stability of BST2. Interestingly, BST2 seems to have both a positive and a negative influence on immunomodulation and virus propagation. Here, we review the relationship between the structural and functional bases of BST2 in anti-HIV-1 and suppressing retrotransposon LINE-1 activation and focus on its dual features in immunomodulation and regulating virus propagation.
Collapse
Affiliation(s)
- Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Shaohua Wang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Juan Du,
| |
Collapse
|
48
|
Osburn SC, Mesquita P, Neal FK, Rumbley M, Holmes MT, Ruple BA, Mobley CB, Brown MD, McCullough DJ, Kavazis AN, Roberts MD. Long-term voluntary wheel running effects on markers of Long Interspersed Nuclear Element-1 in skeletal muscle, liver, and brain tissue of female rats. Am J Physiol Cell Physiol 2022; 323:C907-C919. [PMID: 35938680 DOI: 10.1152/ajpcell.00234.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to determine the effects of long-term voluntary wheel running on markers of Long Interspersed Nuclear Element-1 (L1) in skeletal muscle, liver, and the hippocampus of female rats. Additionally, markers of the cGAS-STING DNA sensing pathway that results in inflammation were interrogated. Female Lewis rats (n=34) were separated into one of three groups including a 6-month-old group to serve as a young comparator group (CTL, n=10), a group that had access to a running wheel for voluntary wheel running (EX, n=12), and an age-matched group that did not (SED, n=12). Both SED and EX groups were carried out from 6 months to 15 months of age. There were no significant differences in L1 mRNA expression for any of the tissues between groups. Methylation of the L1 promoter in the soleus and hippocampus was significantly higher in SED and EX compared to CTL (p<0.05). ORF1p expression was higher in older SED and EX rats compared to CTL for every tissue (p<0.05). There were no differences between groups for L1 mRNA or cGAS-STING pathway markers. Our results suggest there is an increased ORF1 protein expression across tissues with aging that is not mitigated by voluntary wheel running. Additionally, while previous data imply that L1 methylation changes may play a role in acute exercise for L1 RNA expression, this does not seem to occur during extended periods of voluntary wheel running.
Collapse
Affiliation(s)
- Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paulo Mesquita
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Frances K Neal
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Melissa Rumbley
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Matthew T Holmes
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Bradley A Ruple
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - C Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Michael D Brown
- School of Public Health, University of Maryland, College Park, MD, United States
| | - Danielle J McCullough
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
49
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022. [PMID: 35725016 PMCID: PMC9340088 DOI: 10.5483/bmbrep.2022.55.7.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of ‘Dissociation (Dc) locus’ by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host.
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
50
|
Lee Y, Ha U, Moon S. Ongoing endeavors to detect mobilization of transposable elements. BMB Rep 2022; 55:305-315. [PMID: 35725016 PMCID: PMC9340088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 02/21/2025] Open
Abstract
Transposable elements (TEs) are DNA sequences capable of mobilization from one location to another in the genome. Since the discovery of 'Dissociation (Dc) locus' by Barbara McClintock in maize (1), mounting evidence in the era of genomics indicates that a significant fraction of most eukaryotic genomes is composed of TE sequences, involving in various aspects of biological processes such as development, physiology, diseases and evolution. Although technical advances in genomics have discovered numerous functional impacts of TE across species, our understanding of TEs is still ongoing process due to challenges resulted from complexity and abundance of TEs in the genome. In this mini-review, we briefly summarize biology of TEs and their impacts on the host genome, emphasizing importance of understanding TE landscape in the genome. Then, we introduce recent endeavors especially in vivo retrotransposition assays and long read sequencing technology for identifying de novo insertions/TE polymorphism, which will broaden our knowledge of extraordinary relationship between genomic cohabitants and their host. [BMB Reports 2022; 55(7): 305-315].
Collapse
Affiliation(s)
- Yujeong Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Una Ha
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|