1
|
Peterson PP, Croog S, Choi Y, Sun S, Heitman J. STRIPAK complex defects result in pseudosexual reproduction in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647827. [PMID: 40297506 PMCID: PMC12036433 DOI: 10.1101/2025.04.08.647827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
STRIPAK is an evolutionarily conserved signaling complex that coordinates diverse cellular processes across fungi and animals. In the human fungal pathogen Cryptococcus neoformans , STRIPAK was recently shown to play critical roles in maintaining genome stability and controlling both sexual and asexual development. In Cryptococcus , sexual reproduction is closely linked to virulence, and our findings demonstrate that the STRIPAK complex plays key roles in both processes. Here, we further investigate the specific roles of the STRIPAK catalytic subunit Pph22 and its regulatory partner Far8 during sexual development. We show that while pph22 Δ mutants are defective in α- a sexual reproduction, exhibiting impaired meiotic progression and a failure to produce viable spores, the deletion of PPH22 resulted in exclusive pseudosexual reproduction, with progeny inheriting nuclear genomes solely from the wild-type parent. Overexpression of PPG1 , a related phosphatase, rescued growth and developmental defects in pph22 Δ mutants, and restored the preference for α- a sexual reproduction over pseudosexual reproduction during mating, suggesting functional redundancy within the STRIPAK signaling network. Furthermore, deletion of FAR8 , another component of the STRIPAK complex, also led to a high rate of pseudosexual reproduction during α- a sexual mating, reinforcing the role of STRIPAK in modulating reproductive modes in C. neoformans , possibly through regulating nuclear inheritance and meiotic progression. Together, these findings highlight the distinct contributions of STRIPAK to sexual reproduction in C. neoformans and suggest that disruptions of this complex affect genome integrity and inheritance mechanisms, with broader implications for fungal adaptation and pathogenesis.
Collapse
|
2
|
Zheng T, Ji L, Chen Y, Cao C, Bing J, Hu T, Zheng Q, Wu D, Chu H, Huang G. Biology and genetic diversity of Candida krusei isolates from fermented vegetables and clinical samples in China. Virulence 2024; 15:2411543. [PMID: 39359062 PMCID: PMC11487970 DOI: 10.1080/21505594.2024.2411543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Candida krusei, also known as Pichia kudriavzevii, is an emerging non-albicans Candida (NAC) species causing both superficial and deep-seated infections in humans. This fungal pathogen is inherently resistant to the first-line antifungal drug, fluconazole, and is widely distributed in natural environments such as soil, foods, vegetables, and fruits. In this study, we collected 86 C. krusei strains from clinical settings and traditional fermented vegetables from different areas of China. Compared to C. krusei strains from fermented vegetables, clinical isolates exhibited a higher ability to undergo filamentation and biofilm development, which could facilitate its host colonization and infections. Isolates from fermented vegetables showed higher resistance to several antifungal drugs including fluconazole, voriconazole, itraconazole, amphotericin B, and caspofungin, than clinical strains, while they were more susceptible to posaconazole than clinical strains. Although C. krusei has been thought to be a diploid organism, we found that one-fourth of clinical strains and the majority of isolates from fermented vegetables (87.5%) are triploid. Whole-genome sequencing and population genetic analyses demonstrated that isolates from clinical settings and fermented food are genetically associated, and distributed across a wide range of genetic clusters. Additionally, we found that six nucleotide substitutions at the promoter region of the ABC11 gene, encoding a multidrug efflux pump, could play a critical role in antifungal resistance in this species. Given the ubiquitous distribution of C. krusei strains in fermented vegetables and their genetic association with clinical strains, a One Health approach will be necessary to control the prevalence of this pathogen.
Collapse
Affiliation(s)
- Tianhong Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Lingyu Ji
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Yi Chen
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengjun Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Tianren Hu
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiushi Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Dan Wu
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| |
Collapse
|
3
|
Kwizera R, Kiiza TK, Akampurira A, Kimuda S, Mugabi T, Meya DB. Evolution of Laboratory Diagnostics for Cryptococcosis and Missing Links to Optimize Diagnosis and Outcomes in Resource-Constrained Settings. Open Forum Infect Dis 2024; 11:ofae487. [PMID: 39282635 PMCID: PMC11398909 DOI: 10.1093/ofid/ofae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Cryptococcal meningitis is one of the leading causes of death in sub-Saharan Africa among patients with advanced HIV disease. Early diagnosis is crucial in improving treatment outcomes. Despite advances and the availability of modern and point-of-care diagnostics for cryptococcosis, gaps still exist in resource-constrained settings, leading to unfavorable treatment outcomes. Here, we review the current outstanding issues or missing links that need to be filled to optimize the diagnosis of cryptococcosis in resource-constrained settings to improve treatment outcomes. We highlight the evolution of cryptococcosis diagnostics; the roles of early fungicidal activity, cryptococcal antigen titers, antifungal susceptibility testing, and therapeutic drug monitoring; and the missing links to optimize diagnosis and outcomes, including practical recommendations.
Collapse
Affiliation(s)
- Richard Kwizera
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Tadeo K Kiiza
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Akampurira
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sarah Kimuda
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Timothy Mugabi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David B Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
4
|
Upadhya R, Probst C, Alspaugh JA, Lodge JK. Measuring Stress Phenotypes in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:277-303. [PMID: 38758325 PMCID: PMC11521573 DOI: 10.1007/978-1-0716-3722-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen capable of surviving in a wide range of environments and hosts. It has been developed as a model organism to study fungal pathogenesis due to its fully sequenced haploid genome and optimized gene deletion and mutagenesis protocols. These methods have greatly aided in determining the relationship between Cryptococcus genotype and phenotype. Furthermore, the presence of congenic mata and matα strains associated with a defined sexual cycle has helped further understand cryptococcal biology. Several in vitro stress conditions have been optimized to closely mimic the stress that yeast encounter in the environment or within the infected host. These conditions have proven to be extremely useful in elucidating the role of several genes in allowing yeast to adapt and survive in hostile external environments. This chapter describes various in vitro stress conditions that could be used to test the sensitivity of different mutant strains, as well as the protocol for preparing them. We have also included a list of mutants that could be used as a positive control strain when testing the sensitivity of the desired strain to a specific stress.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Corinna Probst
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - J Andrew Alspaugh
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer K Lodge
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Meena P, Bhargava V, Singh K, sethi J, Prabhakar A, panda S. Cryptococcosis in kidney transplant recipients: Current understanding and practices. World J Nephrol 2023; 12:120-131. [PMID: 38230297 PMCID: PMC10789088 DOI: 10.5527/wjn.v12.i5.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 12/22/2023] Open
Abstract
Cryptococcosis is the third most commonly occurring invasive fungal disease in solid organ transplant recipients (SOT). It is caused by encapsulated yeast, Cryptococcus species, predominantly Cryptococcus neoformans and Cryptococcus gattii. Though kidney transplant recipients are at the lowest risk of cryptococcosis when compared to other solid organ transplant recipients such as lung, liver or heart, still this opportunistic infection causes significant morbidity and mortality in this subset of patients. Mortality rates with cryptococcosis range from 10%-25%, while it can be as high as 50% in SOT recipients with central nervous system involvement. The main aim of diagnosis is to find out if there is any involvement of the central nervous system in disseminated disease or whether there is only localized pulmonary involvement as it has implications for both prognostication and treatment. Detection of cryptococcal antigen (CrAg) in cerebrospinal fluid or plasma is a highly recommended test as it is more sensitive and specific than India ink and fungal cultures. The CrAg lateral flow assay is the single point of care test that can rapidly detect cryptococcal polysaccharide capsule. Treatment of cryptococcosis is challenging in kidney transplant recipients. Apart from the reduction or optimization of immunosuppression, lipid formulations of amphotericin B are preferred as induction antifungal agents. Consolidation and maintenance are done with fluconazole; carefully monitoring its interactions with calcineurin inhibitors. This review further discusses in depth the evolving developments in the epidemiology, pathogenesis, diagnostic assays, and management approach of cryptococcosis in kidney transplant recipients.
Collapse
Affiliation(s)
- Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar 751019, Odhisha, India
| | - Vinant Bhargava
- Department of Nephrology, Sir Ganga Ram Hospital New Delhi, New Delhi 110001, New Delhi, India
| | - Kulwant Singh
- Department of Nephrology, Ivy Hospital, Mohali Punjab, Mohali 160071, Punjab, India
| | - Jasmine sethi
- Department of Nephrology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, Punjab, India
| | - Aniketh Prabhakar
- Department of Nephrology, Consultant Nephrologist, Sigma Hospital, Mysore 570009, Karnataka, India
| | - Sandip panda
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar 751019, Odhisha, India
| |
Collapse
|
6
|
Crandall JG, Fisher KJ, Sato TK, Hittinger CT. Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism. PLoS Biol 2023; 21:e3001909. [PMID: 37943740 PMCID: PMC10635434 DOI: 10.1371/journal.pbio.3001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.
Collapse
Affiliation(s)
- Johnathan G. Crandall
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kaitlin J. Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Hitchcock M, Xu J. Global Analyses of Multi-Locus Sequence Typing Data Reveal Geographic Differentiation, Hybridization, and Recombination in the Cryptococcus gattii Species Complex. J Fungi (Basel) 2023; 9:276. [PMID: 36836390 PMCID: PMC9967412 DOI: 10.3390/jof9020276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cryptococcus gattii species complex (CGSC) is a basidiomycete haploid yeast and globally distributed mammalian pathogen. CGSC is comprised of six distinct lineages (VGI, VGII, VGIII, VGIV, VGV, and VGVI); however, the geographical distribution and population structure of these lineages is incompletely described. In this study, we analyze published multi-locus sequence data at seven loci for 566 previously recorded sequence types (STs) encompassing four distinct lineages (VGI, VGII, VGIII, and VGIV) within the CGSC. We investigate indicators of both clonal dispersal and recombination. Population genetic analyses of the 375 STs representing 1202 isolates with geographic information and 188 STs representing 788 isolates with ecological source data suggested historically differentiated geographic populations with infrequent long-distance gene flow. Phylogenetic analyses of sequences at the individual locus and of the concatenated sequences at all seven loci among all 566 STs revealed distinct clusters largely congruent with four major distinct lineages. However, 23 of the 566 STs (4%) each contained alleles at the seven loci belonging to two or more lineages, consistent with their hybrid origins among lineages. Within each of the four major lineages, phylogenetic incompatibility analyses revealed evidence for recombination. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across all samples. Together, our results suggest evidence for historical geographical differentiation, sexual recombination, hybridization, and both long-distance and localized clonal expansion in the global CGSC population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
8
|
Suo C, Gao Y, Ding C, Sun T. The function and regulation of heat shock transcription factor in Cryptococcus. Front Cell Infect Microbiol 2023; 13:1195968. [PMID: 37168390 PMCID: PMC10165103 DOI: 10.3389/fcimb.2023.1195968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cryptococcus species are opportunistic human fungal pathogens. Survival in a hostile environment, such as the elevated body temperatures of transmitting animals and humans, is crucial for Cryptococcus infection. Numerous intriguing investigations have shown that the Hsf family of thermotolerance transcription regulators plays a crucial role in the pathogen-host axis of Cryptococcus. Although Hsf1 is known to be a master regulator of the heat shock response through the activation of gene expression of heat shock proteins (Hsps). Hsf1 and other Hsfs are multifaceted transcription regulators that regulate the expression of genes involved in protein chaperones, metabolism, cell signal transduction, and the electron transfer chain. In Saccharomyces cerevisiae, a model organism, Hsf1's working mechanism has been intensively examined. Nonetheless, the link between Hsfs and Cryptococcus pathogenicity remains poorly understood. This review will focus on the transcriptional regulation of Hsf function in Cryptococcus, as well as potential antifungal treatments targeting Hsf proteins.
Collapse
Affiliation(s)
- Chenhao Suo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yiru Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- *Correspondence: Tianshu Sun, ; Chen Ding,
| | - Tianshu Sun
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- *Correspondence: Tianshu Sun, ; Chen Ding,
| |
Collapse
|
9
|
Abstract
Invasive fungal infections are emerging diseases that kill over 1.5 million people per year worldwide. With the increase of immunocompromised populations, the incidence of invasive fungal infections is expected to continue to rise. Vaccines for viral and bacterial infectious diseases have had a transformative impact on human health worldwide. However, no fungal vaccines are currently in clinical use. Recently, interest in fungal vaccines has grown significantly. One Candida vaccine has completed phase 2 clinical trials, and research on vaccines against coccidioidomycosis continues to advance. Additionally, multiple groups have discovered various Cryptococcus mutant strains that promote protective responses to subsequent challenge in mouse models. There has also been progress in antibody-mediated fungal vaccines. In this review, we highlight recent fungal vaccine research progress, outline the wealth of data generated, and summarize current research for both fungal biology and immunology studies relevant to fungal vaccine development. We also review technological advancements in vaccine development and highlight the future prospects of a human vaccine against invasive fungal infections.
Collapse
Affiliation(s)
- Amariliz Rivera
- Department of Pediatrics and Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA;
| | - Jennifer Lodge
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Current affiliation: Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA;
| |
Collapse
|
10
|
Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans Genotypic Diversity and Disease Outcome among HIV Patients in Africa. J Fungi (Basel) 2022; 8:734. [PMID: 35887489 PMCID: PMC9325144 DOI: 10.3390/jof8070734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates affects infection and disease. In this review, we discuss current knowledge of how various genotypes impact disease progression and patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden of cryptococcosis.
Collapse
Affiliation(s)
- Kennedy Kassaza
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Fredrickson Wasswa
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel Bazira
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| |
Collapse
|
11
|
A Velvet Transcription Factor Specifically Activates Mating through a Novel Mating-Responsive Protein in the Human Fungal Pathogen Cryptococcus deneoformans. Microbiol Spectr 2022; 10:e0265321. [PMID: 35471092 PMCID: PMC9241590 DOI: 10.1128/spectrum.02653-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sexual reproduction facilitates infection by the production of both a lineage advantage and infectious sexual spores in the ubiquitous human fungal pathogen Cryptococcus deneoformans. However, the regulatory determinants specific for initiating mating remain poorly understood. Here, we identified a velvet family regulator, Cva1, that strongly promotes sexual reproduction in C. deneoformans. This regulation was determined to be specific, based on a comprehensive phenotypic analysis of cva1Δ under 26 distinct in vitro and in vivo growth conditions. We further revealed that Cva1 plays a critical role in the initiation of early mating events, including sexual cell-cell fusion, but is not important for the late sexual development stages or meiosis. Thus, Cva1 specifically contributes to mating activation. Importantly, a novel mating-responsive protein, Cfs1, serves as the key target of Cva1 during mating, since its absence nearly blocks cell-cell fusion in C. deneoformans and its sister species C. neoformans. Together, our findings provide insight into how C. deneoformans ensures the regulatory specificity of mating. IMPORTANCE The human fungal pathogen C. deneoformans is a model organism for studying fungal sexual reproduction, which is considered to be important to infection. However, the specific regulatory determinants for activation of sexual reproduction remain poorly understood. In this study, by combining transcriptomic and comprehensive phenotypic analysis, we identified a velvet family regulator Cva1 that specifically and critically elicits early mating events, including sexual cell-cell fusion. Significantly, Cva1 induces mating through the novel mating-responsive protein Cfs1, which is essential for cell-cell fusion in C. deneoformans and its sister species C. neoformans. Considering that Cva1 and Cfs1 are highly conserved in species belonging to Cryptococcaeceae, they may play conserved and specific roles in the initiation of sexual reproduction in this important fungal clade, which includes multiple human fungal pathogens.
Collapse
|
12
|
Abstract
Systemic cryptococcosis is fatal without treatment. Globally, this disease kills 180,000 of the 225,000 infected people each year, even with the use of antifungal therapies. Currently, there is no vaccine to prevent cryptococcosis. Previously, we discovered that Znf2, a morphogenesis regulator that directs Cryptococcus yeast-to-hyphal transition, profoundly affects cryptococcal interaction with the host-overexpression of ZNF2 drives filamentous growth, attenuates cryptococcal virulence, and elicits protective host immune responses. Importantly, immunization with cryptococcal cells overexpressing ZNF2, either in live or heat-inactivated form, offers significant protection to the host from a subsequent challenge by the otherwise lethal wild-type H99 strain. We hypothesize that cellular components enriched in ZNF2oe cells are immunoprotective. Here, we discovered that serum from protected animals vaccinated with inactivated ZNF2oe cells recognizes cryptococcal antigens that reside within the capsule. Consistently, capsule is required for immunoprotection offered by ZNF2oe cells. Interestingly, the serum from protective animals recognizes antigens in both wild-type yeast cells and ZNF2oe cells, with higher abundance in the latter. Consequently, even the heat-inactivated wild-type cells become immunoprotective with an increased vaccination dose. We also found that disruption of a chromatin remodeling factor Brf1, which is important for initiation of filamentation by Znf2, reduces the antigen level in ZNF2oe cells. Deletion of BRF1 drastically reduces the protective effect of ZNF2oe cells in both live and heat-killed forms even though the ZNF2oebrf1Δ strain itself is avirulent. Collectively, our findings underscore the importance of identifying the subset of cryptococcal surface factors that are beneficial in host protection. IMPORTANCE Cryptococcosis claims close to 200,000 lives annually. There is no vaccine clinically available for this fungal disease. Many avirulent mutant strains do not provide protection against cryptococcosis. We previously discovered that hyphal ZNF2oe strains elicit protective host immune responses both in the live and heat-inactivated forms. Here we seek to understand the mechanism underlying the host protection provided by ZNF2oe cells. We discovered increased accumulation of antigens located within the caspusle of ZNF2oe cells and consequently the requirement of the capsule for ZNF2oe strain-elicited host protection. Furthermore, genetically blocking the ability of ZNF2oe cells to grow in the hyphal form significantly reduces antigen accumulation and impairs the ability of ZNF2oe strain to provide host protection. Our findings highlight the importance of identifying the Znf2-regulated capsular surface factors that are fundamental in host protection.
Collapse
|
13
|
Yukuyama MN, Ishida K, de Araujo GLB, Spadari CDC, de Souza A, Löbenberg R, Henostroza MAB, Folchini BR, Peroni CM, Peters MCC, de Oliveira IF, Miyagi MYS, Bou-Chacra NA. Rational design of oral flubendazole-loaded nanoemulsion for brain delivery in cryptococcosis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Maroc L, Fairhead C. Lessons from the Nakaseomyces: mating-type switching, DSB repair and evolution of Ho. Curr Genet 2021; 67:685-693. [PMID: 33830322 DOI: 10.1007/s00294-021-01182-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
This short paper aims to review what our recent studies in the Nakaseomyces yeasts, principally Candida glabrata, reveal about the evolution of the mating-type switching system and its components, as well as about the repair of chromosomal double-strand breaks in this clade. In the model yeast Saccharomyces cerevisiae, the study of mating-type switching has, over the years, led to major discoveries in how cells process chromosomal breaks. Indeed, in this species, switching, which allows every haploid cell to produce cells of opposite mating types that can mate together, is initiated by the Ho endonuclease, linking sexual reproduction to a programmed chromosomal cut. More recently, the availability of other yeasts' genomes from type strains and from populations, and the ability to manipulate and edit the genomes of most yeasts in the laboratory, has enabled scientists to explore mating-type switching in new species, thus enriching our evolutionary perspective on this phenomenon. In this review, we will show how the study of mating-type switching in C. glabrata and Nakaseomyces delphensis has allowed us to reveal possible additional roles for Ho, and also to discover major differences in DSB repair at central and subtelomeric sexual loci. In addition, we report how the study of repair of chromosomal breaks induced by CRISPR-Cas9 reveals that efficient and faithful NHEJ is a major repair pathway in C. glabrata.
Collapse
Affiliation(s)
- Laetitia Maroc
- GQE-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Cécile Fairhead
- GQE-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
15
|
|
16
|
Gu Z. An improved staining method of cell cycle analysis with Sybr Green I for fungi: Cryptococcus neoformans and Saccharomyces cerevisiae. Cell Cycle 2021; 20:271-282. [PMID: 33463377 PMCID: PMC7889188 DOI: 10.1080/15384101.2020.1870334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022] Open
Abstract
Cryptococcus neoformans is a pathogenic fungus which causes millions of deaths and infections, especially threatening immunocompromised individuals. During the development of new drugs, the ubiquitination has been found to play an important role in the regulation of the virulence and cell cycle of this fungus. Based on this mechanism, ubiquitination-related mutant strains exhibiting cell cycle arrest have been established for drug development for the fungus. However, flow cytometry detection of the cell cycle in fungi is generally difficult because the thick cell wall and capsule of fungi generally contribute to a nonspecific signal of cytometry. In this study, an improved method, derived from Saccharomyces cerevisiae assays, is developed to specifically stain C. neoformans, in whose cell cycle the G1 and G2 peaks are separated enough to be allowed for cell cycle analysis. As a result, the improved method facilitates the detection of the alterations in the cell cycle of C. neoformans with a mutation that results in cell cycle arrest, which distinctly delays the cell division of C. neoformans. Thus, the improved method reported here provides detailed technical information regarding assays on C. neoformans and, more importantly, offers a solution for assessing the cell cycle in other fungi in the future. Abbreviation: PI: propidium iodide.
Collapse
Affiliation(s)
- Zhongkai Gu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Wang P. Genetic Transformation in Cryptococcus Species. J Fungi (Basel) 2021; 7:56. [PMID: 33467426 PMCID: PMC7829943 DOI: 10.3390/jof7010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Roth C, Murray D, Scott A, Fu C, Averette AF, Sun S, Heitman J, Magwene PM. Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence. PLoS Genet 2021; 17:e1009313. [PMID: 33493169 PMCID: PMC7861560 DOI: 10.1371/journal.pgen.1009313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/04/2021] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcal disease is estimated to affect nearly a quarter of a million people annually. Environmental isolates of Cryptococcus deneoformans, which make up 15 to 30% of clinical infections in temperate climates such as Europe, vary in their pathogenicity, ranging from benign to hyper-virulent. Key traits that contribute to virulence, such as the production of the pigment melanin, an extracellular polysaccharide capsule, and the ability to grow at human body temperature have been identified, yet little is known about the genetic basis of variation in such traits. Here we investigate the genetic basis of melanization, capsule size, thermal tolerance, oxidative stress resistance, and antifungal drug sensitivity using quantitative trait locus (QTL) mapping in progeny derived from a cross between two divergent C. deneoformans strains. Using a "function-valued" QTL analysis framework that exploits both time-series information and growth differences across multiple environments, we identified QTL for each of these virulence traits and drug susceptibility. For three QTL we identified the underlying genes and nucleotide differences that govern variation in virulence traits. One of these genes, RIC8, which encodes a regulator of cAMP-PKA signaling, contributes to variation in four virulence traits: melanization, capsule size, thermal tolerance, and resistance to oxidative stress. Two major effect QTL for amphotericin B resistance map to the genes SSK1 and SSK2, which encode key components of the HOG pathway, a fungal-specific signal transduction network that orchestrates cellular responses to osmotic and other stresses. We also discovered complex epistatic interactions within and between genes in the HOG and cAMP-PKA pathways that regulate antifungal drug resistance and resistance to oxidative stress. Our findings advance the understanding of virulence traits among diverse lineages of Cryptococcus, and highlight the role of genetic variation in key stress-responsive signaling pathways as a major contributor to phenotypic variation.
Collapse
Affiliation(s)
- Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alexandria Scott
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
19
|
Vreulink JM, Boekhout T, Vismer H, Botha A. The growth of Cryptococcus gattii MATα and MATa strains is affected by the chemical composition of their woody debris substrate. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Matha AR, Lin X. Current Perspectives on Uniparental Mitochondrial Inheritance in Cryptococcus neoformans. Pathogens 2020; 9:pathogens9090743. [PMID: 32927641 PMCID: PMC7559238 DOI: 10.3390/pathogens9090743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is a vital organelle in most eukaryotic cells. It contains its own DNA which differs from nuclear DNA, since it is often inherited from only one parent during sexual reproduction. In anisogamous mammals, this is largely due to the fact that the oocyte has over 1000 times more copies of mitochondrial DNA than the sperm. However, in the isogamous fungus Cryptococcus neoformans, uniparental mitochondrial inheritance (UMI) still occurs during sexual reproduction. It is proposed that UMI might have evolved in the last common ancestor of eukaryotes. Thus, understanding the fundamental process of UMI in lower eukaryotes may give insights into how the process might have evolved in eukaryotic ancestors. In this review, we discuss the current knowledge regarding the cellular features as well as the molecular underpinnings of UMI in Cryptococcus during the mating process, and open questions that need to be answered to solve the mystery of UMI in this eukaryotic microbe.
Collapse
|
21
|
Liu KH, Shen WC. Sexual Differentiation Is Coordinately Regulated by Cryptococcus neoformans CRK1 and GAT1. Genes (Basel) 2020; 11:genes11060669. [PMID: 32575488 PMCID: PMC7349709 DOI: 10.3390/genes11060669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
The heterothallic basidiomycetous fungus Cryptococcus neoformans has two mating types, MATa and MATα. Morphological progression of bisexual reproduction in C. neoformans is as follows: yeast to hyphal transition, filament extension, basidium formation, meiosis, and sporulation. C. neoformans Cdk-related kinase 1 (CRK1) is a negative regulator of bisexual mating. In this study, we characterized the morphological features of mating structures in the crk1 mutant and determined the genetic interaction of CRK1 in the regulatory networks of sexual differentiation. In the bilateral crk1 mutant cross, despite shorter length of filaments than in the wild-type cross, dikaryotic filaments and other structures still remained intact during bisexual mating, but the timing of basidium formation was approximately 18 h earlier than in the cross between wild type strains. Furthermore, gene expression analyses revealed that CRK1 modulated the expression of genes involved in the progression of hyphal elongation, basidium formation, karyogamy and meiosis. Phenotypic results showed that, although deletion of C. neoformans CRK1 gene increased the efficiency of bisexual mating, filamentation in the crk1 mutant was blocked by MAT2 or ZNF2 mutation. A bioinformatics survey predicted the C. neoformans GATA transcriptional factor Gat1 as a potential substrate of Crk1 kinase. Our genetic and phenotypic findings revealed that C. neoformansGAT1 and CRK1 formed a regulatory circuit to negatively regulate MAT2 to control filamentation progression and transition during bisexual mating.
Collapse
|
22
|
Park M, Cho YJ, Lee YW, Jung WH. Genomic Multiplication and Drug Efflux Influence Ketoconazole Resistance in Malassezia restricta. Front Cell Infect Microbiol 2020; 10:191. [PMID: 32426297 PMCID: PMC7203472 DOI: 10.3389/fcimb.2020.00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Malassezia restricta is an opportunistic fungal pathogen on human skin; it is associated with various skin diseases, including seborrheic dermatitis and dandruff, which are usually treated using ketoconazole. In this study, we clinically isolated ketoconazole-resistant M. restricta strains (KCTC 27529 and KCTC 27550) from patients with dandruff. To understand the mechanisms of ketoconazole resistance in the isolates, their genomes were sequenced and compared with the susceptible reference strain M. restricta KCTC 27527. Using comparative genome analysis, we identified tandem multiplications of the genomic loci containing ATM1 and ERG11 homologs in M. restricta KCTC 27529 and KCTC 27550, respectively. Additionally, we found that the copy number increase of ATM1 and ERG11 is reflected in the increased expression of these genes; moreover, we observed that overexpression of these homologs caused ketoconazole resistance in a genetically tractable fungal pathogen, Cryptococcus neoformans. In addition to tandem multiplications of the genomic region containing the ATM1 homolog, the PDR5 homolog, which encodes the drug efflux pump protein was upregulated in M. restricta KCTC 27529 compared to the reference strain. Biochemical analysis confirmed that drug efflux was highly activated in M. restricta KCTC 27529, implying that upregulation of the PDR5 homolog may also contribute to ketoconazole resistance in the strain. Overall, our results suggest that multiplication of the genomic loci encoding genes involved in ergosterol synthesis, mitochondrial iron metabolism, and oxidative stress response and overexpression of the drug efflux pumps are the mechanisms underlying ketoconazole resistance in M. restricta.
Collapse
Affiliation(s)
- Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Yang Won Lee
- Department of Dermatology, School of Medicine, Konkuk University, Seoul, South Korea.,Research Institute of Medicine, Konkuk University, Seoul, South Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
23
|
Hybridization Facilitates Adaptive Evolution in Two Major Fungal Pathogens. Genes (Basel) 2020; 11:genes11010101. [PMID: 31963231 PMCID: PMC7017293 DOI: 10.3390/genes11010101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
Hybridization is increasingly recognized as an important force impacting adaptation and evolution in many lineages of fungi. During hybridization, divergent genomes and alleles are brought together into the same cell, potentiating adaptation by increasing genomic plasticity. Here, we review hybridization in fungi by focusing on two fungal pathogens of animals. Hybridization is common between the basidiomycete yeast species Cryptococcus neoformans × Cryptococcus deneoformans, and hybrid genotypes are frequently found in both environmental and clinical settings. The two species show 10-15% nucleotide divergence at the genome level, and their hybrids are highly heterozygous. Though largely sterile and unable to mate, these hybrids can propagate asexually and generate diverse genotypes by nondisjunction, aberrant meiosis, mitotic recombination, and gene conversion. Under stress conditions, the rate of such genetic changes can increase, leading to rapid adaptation. Conversely, in hybrids formed between lineages of the chytridiomycete frog pathogen Batrachochytrium dendrobatidis (Bd), the parental genotypes are considerably less diverged (0.2% divergent). Bd hybrids are formed from crosses between lineages that rarely undergo sex. A common theme in both species is that hybrids show genome plasticity via aneuploidy or loss of heterozygosity and leverage these mechanisms as a rapid way to generate genotypic/phenotypic diversity. Some hybrids show greater fitness and survival in both virulence and virulence-associated phenotypes than parental lineages under certain conditions. These studies showcase how experimentation in model species such as Cryptococcus can be a powerful tool in elucidating the genotypic and phenotypic consequences of hybridization.
Collapse
|
24
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
25
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
26
|
Guan G, Tao L, Yue H, Liang W, Gong J, Bing J, Zheng Q, Veri AO, Fan S, Robbins N, Cowen LE, Huang G. Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1-Hsp90 pathway. PLoS Biol 2019; 17:e2006966. [PMID: 30865631 PMCID: PMC6415874 DOI: 10.1371/journal.pbio.2006966] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
While sexual reproduction is pervasive in eukaryotic cells, the strategies employed by fungal species to achieve and complete sexual cycles is highly diverse and complex. Many fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, are homothallic (able to mate with their own mitotic descendants) because of homothallic switching (HO) endonuclease-mediated mating-type switching. Under laboratory conditions, the human fungal pathogen Candida albicans can undergo both heterothallic and homothallic (opposite- and same-sex) mating. However, both mating modes require the presence of cells with two opposite mating types (MTLa/a and α/α) in close proximity. Given the predominant clonal feature of this yeast in the human host, both opposite- and same-sex mating would be rare in nature. In this study, we report that glucose starvation and oxidative stress, common environmental stresses encountered by the pathogen, induce the development of mating projections and efficiently permit same-sex mating in C. albicans with an "a" mating type (MTLa/a). This induction bypasses the requirement for the presence of cells with an opposite mating type and allows efficient sexual mating between cells derived from a single progenitor. Glucose starvation causes an increase in intracellular oxidative species, overwhelming the Heat Shock transcription Factor 1 (Hsf1)- and Heat shock protein (Hsp)90-mediated stress-response pathway. We further demonstrate that Candida TransActivating protein 4 (Cta4) and Cell Wall Transcription factor 1 (Cwt1), downstream effectors of the Hsf1-Hsp90 pathway, regulate same-sex mating in C. albicans through the transcriptional control of the master regulator of a-type mating, MTLa2, and the pheromone precursor-encoding gene Mating α factor precursor (MFα). Our results suggest that mating could occur much more frequently in nature than was originally appreciated and that same-sex mating could be an important mode of sexual reproduction in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Huizhen Yue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shuru Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Fan CL, Han LT, Jiang ST, Chang AN, Zhou ZY, Liu TB. The Cys 2His 2 zinc finger protein Zfp1 regulates sexual reproduction and virulence in Cryptococcus neoformans. Fungal Genet Biol 2019; 124:59-72. [PMID: 30630094 DOI: 10.1016/j.fgb.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is a ubiquitous yeast pathogen that often infects the human central nervous system (CNS) to cause meningitis in immunocompromised individuals. Although numerous signaling pathways and factors important for fungal sexual reproduction and virulence have been investigated, their precise mechanism of action remains to be further elucidated. In this study, we identified and characterized a novel zinc finger protein Zfp1 that regulates fungal sexual reproduction and virulence in C. neoformans. qRT-PCR and ZFP1 promoter regulatory activity assays revealed a ubiquitous expression pattern of ZFP1 in all stages during mating. Subcellular localization analysis indicates that Zfp1 is targeted to the cytoplasm of C. neoformans. In vitro assays of stress responses showed that zfp1Δ mutants and the ZFP1 overexpressed strains ZFP1OE are hypersensitive to SDS, but not Congo red, indicating that Zfp1 may regulate cell membrane integrity. Zfp1 is also essential for fungal sexual reproduction because basidiospore production was blocked in bilateral mating between zfp1Δ mutants or ZFP1 overexpressed strains. Fungal nuclei development assay showed that nuclei in the bilateral mating of zfp1Δ mutants or ZFP1 overexpressed strains failed to undergo meiosis after fusion, indicating Zfp1 is important for regulating meiosis during mating. Although zfp1Δ mutants showed normal growth and produced normal major virulence factors, virulence was attenuated in a murine model. Interestingly, we found that the ZFP1 overexpressed strains were avirulent in a murine systemic-infection model. Overall, our study showed that the zinc finger protein Zfp1 is essential for fungal sporulation and virulence in C. neoformans.
Collapse
Affiliation(s)
- Cheng-Li Fan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Lian-Tao Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Su-Ting Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - An-Ni Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
du Plooy LM, Sebolai OM, Pohl CH, Albertyn J. Functional Characterization of Cryptococcal Genes: Then and Now. Front Microbiol 2018; 9:2263. [PMID: 30294320 PMCID: PMC6158324 DOI: 10.3389/fmicb.2018.02263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/05/2018] [Indexed: 02/03/2023] Open
Abstract
Site-directed mutagenesis enables researchers to switch a gene of interest off for functional characterization of the gene. In the pathogenic yeasts, Cryptococcus neoformans and sister species C. deneoformans, this is almost exclusively achieved by introducing DNA into cells through either biolistic transformation or electroporation. The targeted gene is then disrupted by homologous recombination (HR) between the gene and the transforming DNA. Both techniques have downsides; biolistic transformation equipment is very expensive, limiting the use thereof to well-resourced laboratories, and HR occurs at extremely low frequencies in electroporated cryptococcal cells, making this method unappealing for gene targeting when not making use of additional modifications or methods to enhance HR in these cells. One approach to increase the frequency of HR in electroporated cryptococcal cells have recently been described. In this approach, CRISPR-Cas9 technology is utilized to form a double strand break in the targeted gene where after the occurrence of HR seems to be higher. The less expensive electroporation technique can therefore be used to deliver the CRISPR-Cas9 components into cells to disrupt a gene of interest, but only if the CRISPR components can be maintained for long enough in cells to enable their expression. Maintenance of episomal DNA occurs readily in C. deneoformans, but only under certain conditions in C. neoformans. In addition, CRISPR-Cas9 allows for gene complementation in order to fulfill Falkow’s molecular Koch’s postulates and adds other novel methods for studying genes as well, such as the addition of a fluorophore to an inactive Cas9 enzyme to highlight the location of a gene in a chromosome. These developments add less expensive alternatives to current methods, which could lead to more research on this yeast in developing countries where cryptococcal infections are more prevalent and researchers have access to more clinical isolates.
Collapse
Affiliation(s)
- Lukas M du Plooy
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Olihile M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
29
|
Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat Microbiol 2018; 3:402-414. [DOI: 10.1038/s41564-018-0127-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
|
30
|
Upadhya R, Lam WC, Maybruck BT, Donlin MJ, Chang AL, Kayode S, Ormerod KL, Fraser JA, Doering TL, Lodge JK. A fluorogenic C. neoformans reporter strain with a robust expression of m-cherry expressed from a safe haven site in the genome. Fungal Genet Biol 2017; 108:13-25. [PMID: 28870457 PMCID: PMC5681388 DOI: 10.1016/j.fgb.2017.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
C. neoformans is an encapsulated fungal pathogen with defined asexual and sexual life cycles. Due to the availability of genetic and molecular tools for its manipulation, it has become a model organism for studies of fungal pathogens, even though it lacks a reliable system for maintaining DNA fragments as extrachromosomal plasmids. To compensate for this deficiency, we identified a genomic gene-free intergenic region where heterologous DNA could be inserted by homologous recombination without adverse effects on the phenotype of the recipient strain. Since such a site in the C. neoformans genome at a different location has been named previously as "safe haven", we named this locus second safe haven site (SH2). Insertion of DNA into this site in the genome of the KN99 congenic strain pair caused minimal change in the growth of the engineered strain under a variety of in vitro and in vivo conditions. We exploited this 'safe' locus to create a genetically stable highly fluorescent strain expressing mCherry protein (KN99mCH); this strain closely resembled its wild-type parent (KN99α) in growth under a variety of in vitro stress conditions and in the expression of virulence traits. The efficiency of phagocytosis and the proliferation of KN99mCH inside human monocyte-derived macrophages were comparable to those of KN99α, and the engineered strain showed the expected organ dissemination after inoculation, although there was a slight reduction in virulence. The mCherry fluorescence allowed us to measure specific association of cryptococci with leukocytes in the lungs and mediastinal lymph nodes of infected animals and, for the first-time, to assess their live/dead status in vivo. These results highlight the utility of KN99mCH for elucidation of host-pathogen interactions in vivo. Finally, we generated drug-resistant KN99 strains of both mating types that are marked at the SH2 locus with a specific drug resistant gene cassette; these strains will facilitate the generation of mutant strains by mating.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Woei C Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian T Maybruck
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maureen J Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Andrew L Chang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah Kayode
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kate L Ormerod
- Australian Infectious Diseases Research Centre and School of Chemistry& Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre and School of Chemistry& Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
31
|
A Family of Secretory Proteins Is Associated with Different Morphotypes in Cryptococcus neoformans. Appl Environ Microbiol 2017; 83:AEM.02967-16. [PMID: 28039134 DOI: 10.1128/aem.02967-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans, an opportunistic human fungal pathogen, can undergo a yeast-to-hypha transition in response to environmental cues. This morphological transition is associated with changes in the expression of cell surface proteins. The Cryptococcus cell surface and secreted protein Cfl1 was the first identified adhesin in the Basidiomycota. Cfl1 has been shown to regulate morphology, biofilm formation, and intercellular communication. Four additional homologs of CFL1 are harbored by the Cryptococcus genome: DHA1, DHA2, CPL1, and CFL105 The common features of this gene family are the conserved C-terminal SIGC domain and the presence of an N-terminal signal peptide. We found that all these Cfl1 homolog proteins are indeed secreted extracellularly. Interestingly, some of these secretory proteins display cell type-specific expression patterns: Cfl1 is hypha specific, Dha2 is yeast specific, and Dha1 (delayed hypersensitivity antigen 1) is expressed in all cell types but is particularly enriched at basidia. Interestingly, Dha1 is induced by copper limitation and suppressed by excessive copper in the medium. This study further attests to the physiological heterogeneity of the Cryptococcus mating colony, which is composed of cells with heterogeneous morphotypes. The differential expression of these secretory proteins contributes to heterogeneity, which is beneficial for the fungus to adapt to changing environments.IMPORTANCE Heterogeneity in physiology and morphology is an important bet-hedging strategy for nonmobile microbes such as fungi to adapt to unpredictable environmental changes. Cryptococcus neoformans, a ubiquitous basidiomycetous fungus, is known to switch from the yeast form to the hypha form during sexual development. However, in a mating colony, only a subset of yeast cells switch to hyphae, and only a fraction of the hyphal subpopulation will develop into fruiting bodies, where meiosis and sporulation occur. Here, we investigated a basidiomycete-specific secretory protein family. We found that some of these proteins are cell type specific, thus contributing to the heterogeneity of a mating colony. Our study also demonstrates the importance of examining the protein expression pattern at the individual-cell level in addition to population gene expression profiling for the investigation of a heterogeneous community.
Collapse
|
32
|
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy Y. James
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
33
|
Fan Y, Tao X, Pan W, Fang W, Huang Y, Jia M. CSN1201, a subunit of the COP9 signalosome, regulates the virulence in Cryptococcus neoformans infection. Fungal Genet Biol 2016:S1087-1845(16)30144-X. [PMID: 27915049 DOI: 10.1016/j.fgb.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/12/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
The COP9 signalosome (CSN) is a multisubunit protein complex, and it now has been found to participate in diverse cellular and developmental processes in various eukaryotic organisms. Cryptococcus neoformans (C. neoformans) is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immune compromised population. Here, we generated CSN deletion mutants to investigate the role in Cryptococcus infection. Compared to other CSN mutants, we identified a CSN1201 mutant exhibited severely attenuated virulence. Deletion of CSN1201 made cryptococcal cells more susceptible to nearly all in vitro stresses. Furthermore, deletion of CSN1201 obviously impaired survival of C. neoformans. At the same time, in vivo virulence assay of mouse infection models demonstrated that CSN1201 significantly enhanced the virulence of C. neoformans compared with the other CSN subunit strains, while ELISA analysis of C. neoformans infection in innate or adaptive immune response showed that deletion of CSN1201 significantly impaired cytokines and interferon expression. In vitro model of the blood-brain barrier (BBB) analysis indicated that deletion of CSN1201 reduced the invasion efficacy of Cryptococcusto cross BBB. Taken together, our findings reveal a novel mechanism of CSN1201, which plays a critical role for the virulence composite of C. neoformans, and also provides an additional yeast survival and propagation advantage in the host.
Collapse
Affiliation(s)
- Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China.
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Weili Pan
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Wei Fang
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Mingyan Jia
- Department of Dermatology, Cixi People's Hospital, No. 999 South East Road, Cixi 315300 Zhejiang, PR China
| |
Collapse
|
34
|
Abstract
Cryptococcosis is an invasive mycosis caused by pathogenic encapsulated yeasts in the genus Cryptococcus. Cryptococcus gained prominence as a pathogen capable of widespread disease outbreaks in vulnerable populations. We have gained insight into the pathobiology of Cryptococcus, including the yeast' s capacity to adapt to environmental pressures, exploit new geographic environments, and cause disease in both immunocompromised and apparently immunocompetent hosts. Inexpensive, point-of-care testing makes diagnosis more feasible than ever. The associated worldwide burden and mortality remains unacceptably high. Novel screening strategies and preemptive therapy offer promise at making a sustained and much needed impact on this sugar-coated opportunistic mycosis.
Collapse
Affiliation(s)
- Eileen K Maziarz
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, DUMC Box 102359, 315 Trent Drive, Durham, NC 27710, USA.
| | - John R Perfect
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, DUMC Box 102359, 315 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
35
|
Vélez N, Escandón P. Distribution and association between environmental and clinical isolates of Cryptococcus neoformans in Bogotá-Colombia, 2012-2015. Mem Inst Oswaldo Cruz 2016; 111:642-648. [PMID: 27706379 PMCID: PMC5066331 DOI: 10.1590/0074-02760160201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/16/2016] [Indexed: 11/22/2022] Open
Abstract
The propagules of the fungal species Cryptococcus neoformans and
C. gattii, whose varieties are distributed world wide, are the
primary cause of cryptococcosis, a life threatening disease. The study of
environmental and clinical isolates of Cryptococcosis is an
important contribution to the epidemiology and ecology of the fungus. The aim of this
work was to determine the presence of C. neoformans and C.
gattii in the environment in Bogotá, Colombia’s capital city and to
establish the relation between clinical and environmental isolates in the period
2012-2015. From a total of 4.116 environmental samples collected between October 2012
- March 2014, 35 were positive for C. neoformans var.
grubii. From 55 cryptococcosis cases reported in Bogotá during
2012-2015, 49 isolates were recovered. From those, 94% were identified as C.
neoformans var. grubii molecular type VNI; 4% as VNII
and 1,2% as C. neoformans var neoformans VNIV. The
84 detected clinical and environmental isolates studied had a similarity between
49-100% according with molecular typing. The correlation between environmental and
clinical samples confirms the hypothesis that patients acquire the disease from
environmental exposure to the fungal propagules.
Collapse
Affiliation(s)
- Norida Vélez
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| |
Collapse
|
36
|
Park HS, Chow EWL, Fu C, Soderblom EJ, Moseley MA, Heitman J, Cardenas ME. Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathog 2016; 12:e1005873. [PMID: 27611567 PMCID: PMC5017699 DOI: 10.1371/journal.ppat.1005873] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022] Open
Abstract
Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Calcineurin is activated by increased Ca2+ levels caused by stress, and transduces signals by dephosphorylating protein substrates. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic TiO2 enrichment and quantitative mass spectrometry. The identified targets include the transactivator Crz1 as well as novel substrates whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and Crz1 localization and transcriptional activity are controlled by calcineurin. We previously demonstrated that thermal and other stresses trigger calcineurin localization to PBs/SGs. Several calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, contribute to stress resistance and virulence individually or in conjunction with Crz1. Moreover, Pbp1 is also required for sexual development. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings support a model whereby calcineurin controls stress and virulence, at the transcriptional level via Crz1, and post-transcriptionally by localizing to PBs/SGs and acting on targets involved in mRNA metabolism. The calcineurin targets identified in this study share little overlap with known calcineurin substrates, with the exception of Crz1. In particular, the mRNA binding proteins and PBs/SGs residents comprise a cohort of novel calcineurin targets that have not been previously linked to calcineurin in mammals or in Saccharomyces cerevisiae. This study suggests either extensive evolutionary rewiring of the calcineurin pathway, or alternatively that these novel calcineurin targets have yet to be characterized as calcineurin targets in other organisms. These findings further highlight C. neoformans as an outstanding model to define calcineurin-responsive virulence networks as targets for antifungal therapy. Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase essential for stress survival, sexual development, and virulence of the human fungal pathogen Cryptococcus neoformans and other major pathogenic fungi of global human health relevance. However, no calcineurin substrates are known in pathogenic fungi. Employing state-of-the-art phosphoproteomic approaches we identified calcineurin substrates, including calcineurin itself and the conserved Crz1 transcriptional activator known to function in calcium signaling and stress survival. Remarkably, our study also identified novel calcineurin targets involved in RNA processing, stability, and translation, which colocalize together with calcineurin in stress granules/P-bodies upon thermal stress. These findings support a model whereby calcineurin functions in a branched pathway, via Crz1 and several of the identified novel targets, that governs transcriptional and posttranscriptional circuits to drive stress survival, sexual development, and fungal virulence. Our study underscores C. neoformans as an experimental model to define basic paradigms of calcineurin signaling in global thermostress responsive virulence networks that can be targeted for fungal therapy.
Collapse
Affiliation(s)
- Hee-Soo Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eve W. L. Chow
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| |
Collapse
|
37
|
Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery. J Fungi (Basel) 2016; 2:jof2030024. [PMID: 29376941 PMCID: PMC5753137 DOI: 10.3390/jof2030024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP₅ (IP₇) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.
Collapse
Affiliation(s)
- Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
38
|
Genetic Dissection of Sexual Reproduction in a Primary Homothallic Basidiomycete. PLoS Genet 2016; 12:e1006110. [PMID: 27327578 PMCID: PMC4915694 DOI: 10.1371/journal.pgen.1006110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/16/2016] [Indexed: 11/19/2022] Open
Abstract
In fungi belonging to the phylum Basidiomycota, sexual compatibility is usually determined by two genetically unlinked MAT loci, one of which encodes one or more pheromone receptors (P/R) and pheromone precursors, and the other comprehends at least one pair of divergently transcribed genes encoding homeodomain (HD) transcription factors. Most species are heterothallic, meaning that sexual reproduction requires mating between two sexually compatible individuals harboring different alleles at both MAT loci. However, some species are known to be homothallic, one individual being capable of completing the sexual cycle without mating with a genetically distinct partner. While the molecular underpinnings of the heterothallic life cycles of several basidiomycete model species have been dissected in great detail, much less is known concerning the molecular basis for homothallism. Following the discovery in available draft genomes of the homothallic basidiomycetous yeast Phaffia rhodozyma of P/R and HD genes, we employed available genetic tools to determine their role in sexual development. Two P/R clusters, each harboring one pheromone receptor and one pheromone precursor gene were found in close vicinity of each other and were shown to form two redundant P/R pairs, each receptor being activated by the pheromone encoded by the most distal pheromone precursor gene. The HD locus is apparently genetically unlinked to the P/R locus and encodes a single pair of divergently transcribed HD1 and HD2 transcription factors, both required for normal completion of the sexual cycle. Given the genetic makeup of P. rhodozyma MAT loci, we postulate that it is a primarily homothallic organism and we propose a model for the interplay of molecular interactions required for sexual development in this species. Phaffia rhodozyma is considered one of the most promising microbial source of the carotenoid astaxanthin. Further development of this yeast as an industrial organism will benefit from new insights regarding its sexual reproduction system. Some fungi are capable of sexual reproduction without the need for a sexually compatible partner, a behavior called homothallism. For some of these fungi, it was observed that they carried in a single individual all the genes normally determining sexual identity in two distinct sexually compatible individuals, but in most cases the role of these genes is still unclear. Here we examined in detail the homothallic sexual cycle of the yeast Phaffia rhodozyma that belongs to the Basidiomycota, which is the fungal lineage that also includes the mushrooms. Phaffia rhodozyma produces astaxanthin, a pigment with antioxidant properties used in the food and cosmetic industries and is accessible to genetic modifications, so far aimed mainly at improving astaxanthin production. Here we harnessed these genetic tools to dissect the self-fertile life cycle of this yeast and found that all genes normally involved in two-partner sexual reproduction are also required for self-fertile sex in P. rhodozyma and propose a model describing molecular interactions required to trigger sexual development. We also generated preferably outcrossing strains, which are potentially useful for further improvement of P. rhodozyma as an industrial organism.
Collapse
|
39
|
Mead ME, Hull CM. Transcriptional control of sexual development in Cryptococcus neoformans. J Microbiol 2016; 54:339-46. [PMID: 27095452 DOI: 10.1007/s12275-016-6080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christina M Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Department of Medical Microbiology & Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
40
|
Mesquita I, Moreira D, Sampaio-Marques B, Laforge M, Cordeiro-da-Silva A, Ludovico P, Estaquier J, Silvestre R. AMPK in Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:287-323. [PMID: 27812985 DOI: 10.1007/978-3-319-43589-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.
Collapse
Affiliation(s)
- Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Diana Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | | | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France.,Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
41
|
Secreted Acb1 Contributes to the Yeast-to-Hypha Transition in Cryptococcus neoformans. Appl Environ Microbiol 2015; 82:1069-1079. [PMID: 26637591 DOI: 10.1128/aem.03691-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 01/30/2023] Open
Abstract
Adaptation to stress by eukaryotic pathogens is often accompanied by a transition in cellular morphology. The human fungal pathogen Cryptococcus neoformans is known to switch between the yeast and the filamentous form in response to amoebic predation or during mating. As in the classic dimorphic fungal pathogens, the morphotype is associated with the ability of cryptococci to infect various hosts. Many cryptococcal factors and environmental stimuli, including pheromones (small peptides) and nutrient limitation, are known to induce the yeast-to-hypha transition. We recently discovered that secreted matricellular proteins could also act as intercellular signals to promote the yeast-to-hypha transition. Here we show that the secreted acyl coenzyme A (acyl-CoA)-binding protein Acb1 plays an important role in enhancing this morphotype transition. Acb1 does not possess a signal peptide. Its extracellular secretion and, consequently, its function in filamentation are dependent on an unconventional GRASP (Golgi reassembly stacking protein)-dependent secretion pathway. Surprisingly, intracellular recruitment of Acb1 to the secretory vesicles is independent of Grasp. In addition to Acb1, Grasp possibly controls the secretion of other cargos, because the graspΔ mutant, but not the acb1Δ mutant, is defective in capsule production and macrophage phagocytosis. Nonetheless, Acb1 is likely the major or the sole effector of Grasp in terms of filamentation. Furthermore, we found that the key residue of Acb1 for acyl binding, Y80, is critical for the proper subcellular localization and secretion of Acb1 and for cryptococcal morphogenesis.
Collapse
|
42
|
Heitman J. Evolution of sexual reproduction: a view from the Fungal Kingdom supports an evolutionary epoch with sex before sexes. FUNGAL BIOL REV 2015; 29:108-117. [PMID: 26834823 DOI: 10.1016/j.fbr.2015.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sexual reproduction is conserved throughout each supergroup within the eukaryotic tree of life, and therefore thought to have evolved once and to have been present in the last eukaryotic common ancestor (LECA). Given the antiquity of sex, there are features of sexual reproduction that are ancient and ancestral, and thus shared in diverse extant organisms. On the other hand, the vast evolutionary distance that separates any given extant species from the LECA necessarily implies that other features of sex will be derived. While most types of sex we are familiar with involve two opposite sexes or mating types, recent studies in the fungal kingdom have revealed novel and unusual patterns of sexual reproduction, including unisexual reproduction. In this mode of reproduction a single mating type can on its own undergo self-fertile/homothallic reproduction, either with itself or with other members of the population of the same mating type. Unisexual reproduction has arisen independently as a derived feature in several different lineages. That a myriad of different types of sex determination and sex determinants abound in animals, plants, protists, and fungi suggests that sex specification itself may not be ancestral and instead may be a derived trait. If so, then the original form of sexual reproduction may have been unisexual, onto which sexes were superimposed as a later feature. In this model, unisexual reproduction is both an ancestral and a derived trait. In this review, we consider what is new and what is old about sexual reproduction from the unique vantage point of the fungal kingdom.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
43
|
Chacko N, Zhao Y, Yang E, Wang L, Cai JJ, Lin X. The lncRNA RZE1 Controls Cryptococcal Morphological Transition. PLoS Genet 2015; 11:e1005692. [PMID: 26588844 PMCID: PMC4654512 DOI: 10.1371/journal.pgen.1005692] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/30/2015] [Indexed: 02/01/2023] Open
Abstract
In the fungal pathogen Cryptococcus neoformans, the switch from yeast to hypha is an important morphological process preceding the meiotic events during sexual development. Morphotype is also known to be associated with cryptococcal virulence potential. Previous studies identified the regulator Znf2 as a key decision maker for hypha formation and as an anti-virulence factor. By a forward genetic screen, we discovered that a long non-coding RNA (lncRNA) RZE1 functions upstream of ZNF2 in regulating yeast-to-hypha transition. We demonstrate that RZE1 functions primarily in cis and less effectively in trans. Interestingly, RZE1's function is restricted to its native nucleus. Accordingly, RZE1 does not appear to directly affect Znf2 translation or the subcellular localization of Znf2 protein. Transcriptome analysis indicates that the loss of RZE1 reduces the transcript level of ZNF2 and Znf2's prominent downstream targets. In addition, microscopic examination using single molecule fluorescent in situ hybridization (smFISH) indicates that the loss of RZE1 increases the ratio of ZNF2 transcripts in the nucleus versus those in the cytoplasm. Taken together, this lncRNA controls Cryptococcus yeast-to-hypha transition through regulating the key morphogenesis regulator Znf2. This is the first functional characterization of a lncRNA in a human fungal pathogen. Given the potential large number of lncRNAs in the genomes of Cryptococcus and other fungal pathogens, the findings implicate lncRNAs as an additional layer of genetic regulation during fungal development that may well contribute to the complexity in these "simple" eukaryotes.
Collapse
Affiliation(s)
- Nadia Chacko
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Youbao Zhao
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Ence Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Linqi Wang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Fungal Inositol Pyrophosphate IP7 Is Crucial for Metabolic Adaptation to the Host Environment and Pathogenicity. mBio 2015; 6:e00531-15. [PMID: 26037119 PMCID: PMC4453010 DOI: 10.1128/mbio.00531-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inositol pyrophosphates (PP-IPs) comprising inositol, phosphate, and pyrophosphate (PP) are essential for multiple functions in eukaryotes. Their role in fungal pathogens has never been addressed. Cryptococcus neoformans is a model pathogenic fungus causing life-threatening meningoencephalitis. We investigate the cryptococcal kinases responsible for the production of PP-IPs (IP7/IP8) and the hierarchy of PP-IP importance in pathogenicity. Using gene deletion and inositol polyphosphate profiling, we identified Kcs1 as the major IP6 kinase (producing IP7) and Asp1 as an IP7 kinase (producing IP8). We show that Kcs1-derived IP7 is the most crucial PP-IP for cryptococcal drug susceptibility and the production of virulence determinants. In particular, Kcs1 kinase activity is essential for cryptococcal infection of mouse lungs, as reduced fungal burdens were observed in the absence of Kcs1 or when Kcs1 was catalytically inactive. Transcriptome and carbon source utilization analysis suggested that compromised growth of the KCS1 deletion strain (Δkcs1 mutant) in the low-glucose environment of the host lung is due to its inability to utilize alternative carbon sources. Despite this metabolic defect, the Δkcs1 mutant established persistent, low-level asymptomatic pulmonary infection but failed to elicit a strong immune response in vivo and in vitro and was not readily phagocytosed by primary or immortalized monocytes. Reduced recognition of the Δkcs1 cells by monocytes correlated with reduced exposure of mannoproteins on the Δkcs1 mutant cell surface. We conclude that IP7 is essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. Cryptococcus neoformans is responsible for 1 million cases of AIDS-associated meningitis and ~600,000 deaths annually. Understanding cellular pathways responsible for pathogenicity might have an impact on new drug development. We characterized the inositol polyphosphate kinases Kcs1 and Asp1, which are predicted to catalyze the production of inositol pyrophosphates containing one or two diphosphate moieties (PP-IPs). Using gene deletion analysis and inositol polyphosphate profiling, we confirmed that Kcs1 and Asp1 are major IP6 and IP7 kinases, respectively. Kcs1-derived IP7, but not Asp1-derived IP8, is crucial for pathogenicity. Global expression profiling and carbon source utilization testing suggest that IP7-deficient cryptococci cannot adapt their metabolism to allow growth in the glucose-poor environment of the host lung, and consequently, fungal burdens are significantly reduced. Persistent asymptomatic Δkcs1 mutant infection correlated with decreased mannoprotein exposure on the Δkcs1 mutant surface and reduced phagocytosis. We conclude that IP7 is crucial for the metabolic adaptation of C. neoformans to the host environment and for pathogenicity.
Collapse
|
45
|
Fu C, Sun S, Billmyre RB, Roach KC, Heitman J. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet Biol 2015; 78:65-75. [PMID: 25173822 PMCID: PMC4344436 DOI: 10.1016/j.fgb.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller's ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - R B Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin C Roach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Cryptococcosis. DIAGNOSIS AND TREATMENT OF FUNGAL INFECTIONS 2015. [PMCID: PMC7122569 DOI: 10.1007/978-3-319-13090-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryptococcosis is an infectious disease caused by the encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii. Once a relatively uncommon cause of human disease, cryptococcal infection can develop in apparently immunocompetent hosts and has emerged as an important opportunistic infection in humans over the past several decades as immunocompromised populations expand in the setting of HIV/AIDS, organ transplantation, malignancies, and treatment for other conditions. Clinical manifestations are myriad but pulmonary and central nervous system (CNS) infections are the most common. Improvements in diagnostic testing and standardized approaches to antifungal therapy, when available, have made considerable impact in the management of this infection. While the widespread use of highly active antiretroviral therapy (HAART) has improved the outcome of cryptococcosis in many HIV-infected patients, cryptococcosis remains an entity of considerable morbidity and mortality in many parts of the world, and restoration of host immunity can present management challenges that require individualized management. As immunocompromised populations continue to expand, it is likely that cryptococcosis will remain an important opportunistic fungal infection of humans requiring ongoing investigation.
Collapse
|
47
|
Sun S, Billmyre RB, Mieczkowski PA, Heitman J. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. PLoS Genet 2014; 10:e1004849. [PMID: 25503976 PMCID: PMC4263396 DOI: 10.1371/journal.pgen.1004849] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual reproduction. Our results provide definitive evidence that α-α unisexual reproduction is a meiotic process similar to a-α bisexual reproduction. Unisexual reproduction has been reported in several fungal species that have been traditionally thought to undergo bisexual reproduction, including major human fungal pathogens such as Cryptococcus neoformans and Candida albicans. While it has been well characterized qualitatively, quantitative description of unisexual reproduction, and detailed comparisons between unisexual and bisexual reproduction, are lacking. Here, by analyzing meiotic progeny generated from both α-α unisexual and a-α bisexual reproduction in C. neoformans, we find that the progeny collected from the two modes of sexual reproduction show similar phenotypic segregation, with transgressive segregation of several phenotypes being observed in both. Additionally, the two modes of sexual reproduction are similar in all the aspects of meiotic recombination that we have examined, providing definitive evidence that α-α unisexual reproduction is a meiotic process that operates similarly as in a-α bisexual reproduction. The ability to undergo both unisexual and bisexual reproduction may provide evolutionary advantages in environments where suitable mating partners are scarce, or where sexual reproduction is favored over asexual reproduction by mixing genetic materials and producing spores that are more tolerant of harsh environments. We discuss the implications of these findings in the context of the evolution of pathogenesis, mating types, and mating systems.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Piotr A. Mieczkowski
- Department of Biology, High-Throughput Sequencing Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
Sexual reproduction is ubiquitous throughout the eukaryotic kingdom, but the capacity of pathogenic fungi to undergo sexual reproduction has been a matter of intense debate. Pathogenic fungi maintained a complement of conserved meiotic genes but the populations appeared to be clonally derived. This debate was resolved first with the discovery of an extant sexual cycle and then unisexual reproduction. Unisexual reproduction is a distinct form of homothallism that dispenses with the requirement for an opposite mating type. Pathogenic and nonpathogenic fungi previously thought to be asexual are able to undergo robust unisexual reproduction. We review here recent advances in our understanding of the genetic and molecular basis of unisexual reproduction throughout fungi and the impact of unisex on the ecology and genomic evolution of fungal species.
Collapse
Affiliation(s)
- Kevin C Roach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
49
|
Sun TS, Ju X, Gao HL, Wang T, Thiele DJ, Li JY, Wang ZY, Ding C. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat Commun 2014; 5:5550. [DOI: 10.1038/ncomms6550] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/13/2014] [Indexed: 01/10/2023] Open
|
50
|
Goranov AI, Madhani HD. Functional profiling of human fungal pathogen genomes. Cold Spring Harb Perspect Med 2014; 5:a019596. [PMID: 25377143 DOI: 10.1101/cshperspect.a019596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fungal infections are challenging to diagnose and often difficult to treat, with only a handful of drug classes existing. Understanding the molecular mechanisms by which pathogenic fungi cause human disease is imperative. Here, we discuss how the development and use of genome-scale genetic resources, such as whole-genome knockout collections, can address this unmet need. Using work in Saccharomcyes cerevisiae as a guide, studies of Cryptococcus neoformans and Candida albicans have shown how the challenges of large-scale gene deletion can be overcome, and how such collections can be effectively used to obtain insights into mechanisms of pathogenesis. We conclude that, with concerted efforts, full genome-wide functional analysis of human fungal pathogen genomes is within reach.
Collapse
Affiliation(s)
- Alexi I Goranov
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|