1
|
The Prmt5-Vasa module is essential for spermatogenesis in Bombyx mori. PLoS Genet 2023; 19:e1010600. [PMID: 36634107 PMCID: PMC9876381 DOI: 10.1371/journal.pgen.1010600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
In lepidopteran insects, dichotomous spermatogenesis produces eupyrene spermatozoa, which are nucleated, and apyrene spermatozoa, which are anucleated. Both sperm morphs are essential for fertilization, as eupyrene sperm fertilize the egg, and apyrene sperm is necessary for the migration of eupyrene sperm. In Drosophila, Prmt5 acts as a type II arginine methyltransferase that catalyzes the symmetrical dimethylation of arginine residues in the RNA helicase Vasa. Prmt5 is critical for the regulation of spermatogenesis, but Vasa is not. To date, functional genetic studies of spermatogenesis in the lepidopteran model Bombyx mori has been limited. In this study, we engineered mutations in BmPrmt5 and BmVasa through CRISPR/Cas9-based gene editing. Both BmPrmt5 and BmVasa loss-of-function mutants had similar male and female sterility phenotypes. Through immunofluorescence staining analysis, we found that the morphs of sperm from both BmPrmt5 and BmVasa mutants have severe defects, indicating essential roles for both BmPrmt5 and BmVasa in the regulation of spermatogenesis. Mass spectrometry results identified that R35, R54, and R56 of BmVasa were dimethylated in WT while unmethylated in BmPrmt5 mutants. RNA-seq analyses indicate that the defects in spermatogenesis in mutants resulted from reduced expression of the spermatogenesis-related genes, including BmSxl, implying that BmSxl acts downstream of BmPrmt5 and BmVasa to regulate apyrene sperm development. These findings indicate that BmPrmt5 and BmVasa constitute an integral regulatory module essential for spermatogenesis in B. mori.
Collapse
|
2
|
Yang Y, Kong R, Goh FG, Somers WG, Hime GR, Li Z, Cai Y. dRTEL1 is essential for the maintenance of Drosophila male germline stem cells. PLoS Genet 2021; 17:e1009834. [PMID: 34644293 PMCID: PMC8513875 DOI: 10.1371/journal.pgen.1009834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Stem cells have the potential to maintain undifferentiated state and differentiate into specialized cell types. Despite numerous progress has been achieved in understanding stem cell self-renewal and differentiation, many fundamental questions remain unanswered. In this study, we identify dRTEL1, the Drosophila homolog of Regulator of Telomere Elongation Helicase 1, as a novel regulator of male germline stem cells (GSCs). Our genome-wide transcriptome analysis and ChIP-Seq results suggest that dRTEL1 affects a set of candidate genes required for GSC maintenance, likely independent of its role in DNA repair. Furthermore, dRTEL1 prevents DNA damage-induced checkpoint activation in GSCs. Finally, dRTEL1 functions to sustain Stat92E protein levels, the key player in GSC maintenance. Together, our findings reveal an intrinsic role of the DNA helicase dRTEL1 in maintaining male GSC and provide insight into the function of dRTEL1.
Collapse
Affiliation(s)
- Ying Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - W. Gregory Somers
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Gaddy MA, Kuang S, Alfhili MA, Lee MH. The soma-germline communication: implications for somatic and reproductive aging. BMB Rep 2021. [PMID: 33407997 PMCID: PMC8167245 DOI: 10.5483/bmbrep.2021.54.5.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aging is characterized by a functional decline in most physiological processes, including alterations in cellular metabolism and defense mechanisms. Increasing evidence suggests that caloric restriction extends longevity and retards age-related diseases at least in part by reducing metabolic rate and oxidative stress in a variety of species, including yeast, worms, flies, and mice. Moreover, recent studies in invertebrates – worms and flies, highlight the intricate interrelation between reproductive longevity and somatic aging (known as disposable soma theory of aging), which appears to be conserved in vertebrates. This review is specifically focused on how the reproductive system modulates somatic aging and vice versa in genetic model systems. Since many signaling pathways governing the aging process are evolutionarily conserved, similar mechanisms may be involved in controlling soma and reproductive aging in vertebrates.
Collapse
Affiliation(s)
- Matthew A. Gaddy
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| | - Swana Kuang
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Myon Hee Lee
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
4
|
Rastegari E, Kajal K, Tan BS, Huang F, Chen RH, Hsieh TS, Hsu HJ. WD40 protein Wuho controls germline homeostasis via TRIM-NHL tumor suppressor Mei-p26 in Drosophila. Development 2020; 147:147/2/dev182063. [PMID: 31941704 DOI: 10.1242/dev.182063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
WD40 proteins control many cellular processes via protein interactions. Drosophila Wuho (Wh, a WD40 protein) controls fertility, although the involved mechanisms are unclear. Here, we show that Wh promotion of Mei-p26 (a human TRIM32 ortholog) function maintains ovarian germ cell homeostasis. Wh and Mei-p26 are epistatically linked, with wh and mei-p26 mutants showing nearly identical phenotypes, including germline stem cell (GSC) loss, stem-cyst formation due to incomplete cytokinesis between GSCs and daughter cells, and overproliferation of GSC progeny. Mechanistically, Wh interacts with Mei-p26 in different cellular contexts to induce cell type-specific effects. In GSCs, Wh and Mei-p26 promote BMP stemness signaling for proper GSC division and maintenance. In GSC progeny, Wh and Mei-p26 silence nanos translation, downregulate a subset of microRNAs involved in germ cell differentiation and suppress ribosomal biogenesis via dMyc to limit germ cell mitosis. We also found that the human ortholog of Wh (WDR4) interacts with TRIM32 in human cells. Our results show that Wh is a regulator of Mei-p26 in Drosophila germ cells and suggest that the WD40-TRIM interaction may also control tissue homeostasis in other stem cell systems.
Collapse
Affiliation(s)
- Elham Rastegari
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Kreeti Kajal
- Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Boon-Shing Tan
- Institute of Biological Chemistry, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Fu Huang
- Institute of Biological Chemistry, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Tao-Shieh Hsieh
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C
| | - Hwei-Jan Hsu
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C .,Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Institute of Cellular and Organismic Biology, Sinica, Taipei 11529, Taiwan, R.O.C.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
5
|
Hsu HJ, Bahader M, Lai CM. Molecular control of the female germline stem cell niche size in Drosophila. Cell Mol Life Sci 2019; 76:4309-4317. [PMID: 31300869 PMCID: PMC11105562 DOI: 10.1007/s00018-019-03223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/17/2019] [Accepted: 07/05/2019] [Indexed: 11/26/2022]
Abstract
Adult stem cells have a unique capacity to renew themselves and generate differentiated cells that are needed in the body. These cells are recruited and maintained by the surrounding microenvironment, known as the stem cell niche, during organ development. Thus, the stem cell niche is required for proper tissue homeostasis, and its dysregulation is associated with tumorigenesis and tissue degeneration. The identification of niche components and the mechanisms that regulate niche establishment and maintenance, however, are just beginning to be uncovered. Germline stem cells (GSCs) of the Drosophila ovary provide an excellent model for studying the stem cell niche in vivo because of their well-characterized cell biology and the availability of genetic tools. In this review, we introduce the ovarian GSC niche, and the key signaling pathways for niche precursor segregation, niche specification, and niche extracellular environment establishment and niche maintenance that are involved in regulating niche size during development and adulthood.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Majid Bahader
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Ming Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
6
|
Luo S, He F, Luo J, Dou S, Wang Y, Guo A, Lu J. Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response. Nucleic Acids Res 2019; 46:5250-5268. [PMID: 29548011 PMCID: PMC6007262 DOI: 10.1093/nar/gky189] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/03/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are an emerging class of small RNAs, yet their regulatory roles have not been well understood. Here we studied the molecular mechanisms and consequences of tsRNA-mediated regulation in Drosophila. By analyzing 495 public small RNA libraries, we demonstrate that most tsRNAs are conserved, prevalent and abundant in Drosophila. By carrying out mRNA sequencing and ribosome profiling of S2 cells transfected with single-stranded tsRNA mimics and mocks, we show that tsRNAs recognize target mRNAs through conserved complementary sequence matching and suppress target genes by translational inhibition. The target prediction suggests that tsRNAs preferentially suppress translation of the key components of the general translation machinery, which explains how tsRNAs inhibit the global mRNA translation. Serum starvation experiments confirm tsRNAs participate in cellular starvation responses by preferential targeting the ribosomal proteins and translational initiation or elongation factors. Knock-down of AGO2 in S2 cells under normal and starved conditions reveals a dependence of the tsRNA-mediated regulation on AGO2. We also validated the repressive effects of representative tsRNAs on cellular global translation and specific targets with luciferase reporter assays. Our study suggests the tsRNA-mediated regulation might be crucial for the energy homeostasis and the metabolic adaptation in the cellular systems.
Collapse
Affiliation(s)
- Shiqi Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Feng He
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Annan Guo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Ameku T, Yoshinari Y, Texada MJ, Kondo S, Amezawa K, Yoshizaki G, Shimada-Niwa Y, Niwa R. Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol 2018; 16:e2005004. [PMID: 30248087 PMCID: PMC6152996 DOI: 10.1371/journal.pbio.2005004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 08/20/2018] [Indexed: 01/21/2023] Open
Abstract
Stem cell maintenance is established by neighboring niche cells that promote stem cell self-renewal. However, it is poorly understood how stem cell activity is regulated by systemic, tissue-extrinsic signals in response to environmental cues and changes in physiological status. Here, we show that neuropeptide F (NPF) signaling plays an important role in the pathway regulating mating-induced germline stem cell (GSC) proliferation in the fruit fly Drosophila melanogaster. NPF expressed in enteroendocrine cells (EECs) of the midgut is released in response to the seminal-fluid protein sex peptide (SP) upon mating. This midgut-derived NPF controls mating-induced GSC proliferation via ovarian NPF receptor (NPFR) activity, which modulates bone morphogenetic protein (BMP) signaling levels in GSCs. Our study provides a molecular mechanism that describes how a gut-derived systemic factor couples stem cell behavior to physiological status, such as mating, through interorgan communication. Communication between different organs is essential to respond quickly to environmental cues or changes in the physiological status of an organism. Recent studies have shown the existence of humoral factors or hormones, which are transported by the circulatory system to different organs and achieve coordination between them. Here, we have analyzed the communication mechanism between organs that regulates proliferation of germline stem cells (GSCs) in the ovary of the fruit fly Drosophila melanogaster. We show that a peptide hormone called neuropeptide F (NPF) is a key player in this process. This peptide is produced in both the brain and the midgut, and, remarkably, we find that only NPF released from the midgut is crucial for controlling post-mating GSC proliferation. Our data suggest that mating stimulates the release of NPF from the endocrine cells of the midgut stimulated by the presence of a seminal peptide. Midgut-derived NPF is then transduced through an NPF-specific G-protein–coupled receptor expressed in the ovary, and this triggers GSC proliferation. Our study identifies an essential interaction between the digestive system and the ovary that regulates the size of stem cell populations in flies depending on mating.
Collapse
Affiliation(s)
- Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - Kotaro Amezawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
8
|
A Targeted RNAi Screen Reveals Drosophila Female-Sterile Genes That Control the Size of Germline Stem Cell Niche During Development. G3-GENES GENOMES GENETICS 2018; 8:2345-2354. [PMID: 29764959 PMCID: PMC6027894 DOI: 10.1534/g3.118.200355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adult stem cells maintain tissue homeostasis. This unique capability largely depends on the stem cell niche, a specialized microenvironment, which preserves stem cell identity through physical contacts and secreted factors. In many cancers, latent tumor cell niches are thought to house stem cells and aid tumor initiation. However, in developing tissue and cancer it is unclear how the niche is established. The well-characterized germline stem cells (GSCs) and niches in the Drosophila melanogaster ovary provide an excellent model to address this fundamental issue. As such, we conducted a small-scale RNAi screen of 560 individually expressed UAS-RNAi lines with targets implicated in female fertility. RNAi was expressed in the soma of larval gonads, and screening for reduced egg production and abnormal ovarian morphology was performed in adults. Twenty candidates that affect ovarian development were identified and subsequently knocked down in the soma only during niche formation. Feminization factors (Transformer, Sex lethal, and Virilizer), a histone methyltransferase (Enhancer of Zeste), a transcriptional machinery component (Enhancer of yellow 1), a chromatin remodeling complex member (Enhancer of yellow 3) and a chromosome passenger complex constituent (Incenp) were identified as potentially functioning in the control of niche size. The identification of these molecules highlights specific molecular events that are critical for niche formation and will provide a basis for future studies to fully understand the mechanisms of GSC recruitment and maintenance.
Collapse
|
9
|
Yoon DS, Cha DS, Alfhili MA, Keiper BD, Lee MH. Subunits of the DNA polymerase alpha-primase complex promote Notch-mediated proliferation with discrete and shared functions in C. elegans germline. FEBS J 2018; 285:2590-2604. [PMID: 29775245 DOI: 10.1111/febs.14512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
Notch receptor signaling is a highly conserved cell communication system in most multicellular organisms and plays a critical role at several junctures in animal development. In Caenorhabditis elegans,GLP-1/Notch signaling is essential for both germline stem cell maintenance and germ cell proliferation during gonad development. Here, we show that subunits (POLA-1, DIV-1, PRI-1, and PRI-2) of the DNA polymerase alpha-primase complex are required for germ cell proliferation in response to GLP-1/Notch signaling in different tissues at different developmental stages. Specifically, genetic and functional analyses demonstrated that (a) maternally contributed DIV-1 (regulatory subunit) is indispensable non-cell autonomously for GLP-1/Notch-mediated germ cell proliferation during early larval development, whereas POLA-1 (catalytic subunit) and two primase subunits, PRI-1 and PRI-2, do not appear to be essential; (b) germline POLA-1, PRI-1, and PRI-2 play a crucial role in GLP-1/Notch-mediated maintenance of proliferative cell fate during adulthood, while DIV-1 is dispensable; and (c) germline POLA-1, DIV-1, PRI-1, and PRI-2 function in tandem with PUF (Pumilio/FBF) RNA-binding proteins to maintain germline stem cells in the adult gonad. These findings suggest that the subunits of the DNA polymerase alpha-primase complex exhibit both discrete and shared functions in GLP-1/Notch or PUF-mediated germ cell dynamics in C. elegans. These findings link the biological functions of DNA replication machineries to signals that maintain a stem cell population, and may have further implications for Notch-dependent tumors.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Dong Seok Cha
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk, Korea
| | - Mohammad A Alfhili
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Myon-Hee Lee
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
10
|
Parvari S, Yazdekhasti H, Rajabi Z, Gerayeli Malek V, Rastegar T, Abbasi M. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells. Cell Reprogram 2017; 18:419-428. [PMID: 27906587 DOI: 10.1089/cell.2016.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.
Collapse
Affiliation(s)
- Soraya Parvari
- 1 Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Hossein Yazdekhasti
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Tayebeh Rastegar
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
11
|
Lai CM, Lin KY, Kao SH, Chen YN, Huang F, Hsu HJ. Hedgehog signaling establishes precursors for germline stem cell niches by regulating cell adhesion. J Cell Biol 2017; 216:1439-1453. [PMID: 28363970 PMCID: PMC5412570 DOI: 10.1083/jcb.201610063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
Stem cells require different types of supporting cells, or niches, to control stem cell maintenance and differentiation. However, little is known about how those niches are formed. We report that in the development of the Drosophila melanogaster ovary, the Hedgehog (Hh) gradient sets differential cell affinity for somatic gonadal precursors to specify stromal intermingled cells, which contributes to both germline stem cell maintenance and differentiation niches in the adult. We also report that Traffic Jam (an orthologue of a large Maf transcription factor in mammals) is a novel transcriptional target of Hh signaling to control cell-cell adhesion by negative regulation of E-cadherin expression. Our results demonstrate the role of Hh signaling in niche establishment by segregating somatic cell lineages for differentiation.
Collapse
Affiliation(s)
- Chun-Ming Lai
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ning Chen
- Institute of Molecular and Cell Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
12
|
Ma X, Zhu X, Han Y, Story B, Do T, Song X, Wang S, Zhang Y, Blanchette M, Gogol M, Hall K, Peak A, Anoja P, Xie T. Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms. Dev Cell 2017; 41:157-169.e5. [DOI: 10.1016/j.devcel.2017.03.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/10/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
|
13
|
Måløy M, Måløy F, Jakobsen P, Olav Brandsdal B. Dynamic self-organisation of haematopoiesis and (a)symmetric cell division. J Theor Biol 2017; 414:147-164. [DOI: 10.1016/j.jtbi.2016.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/06/2016] [Accepted: 11/30/2016] [Indexed: 12/24/2022]
|
14
|
Lee MH, Mamillapalli SS, Keiper BD, Cha DS. A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification. BMB Rep 2016; 49:93-8. [PMID: 26303971 PMCID: PMC4915122 DOI: 10.5483/bmbrep.2016.49.2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/20/2022] Open
Abstract
Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification. [BMB Reports 2016; 49(2): 93-98]
Collapse
Affiliation(s)
- Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Srivalli Swathi Mamillapalli
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Dong Seok Cha
- Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonju 55338, Korea
| |
Collapse
|
15
|
Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res 2016; 9:68. [PMID: 27765047 PMCID: PMC5072317 DOI: 10.1186/s13048-016-0274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Poon J, Wessel GM, Yajima M. An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis. Dev Biol 2016; 415:24-32. [PMID: 27179696 PMCID: PMC4902722 DOI: 10.1016/j.ydbio.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Growing evidence in diverse organisms shows that genes originally thought to function uniquely in the germ line may also function in somatic cells, and in some cases even contribute to tumorigenesis. Here we review the somatic functions of Vasa, one of the most conserved "germ line" factors among metazoans. Vasa expression in somatic cells is tightly regulated and often transient during normal development, and appears to play essential roles in regulation of embryonic cells and regenerative tissues. Its dysregulation, however, is believed to be an important element of tumorigenic cell regulation. In this perspectives paper, we propose how some conserved functions of Vasa may be selected for somatic cell regulation, including its potential impact on efficient and localized translational activities and in some cases on cellular malfunctioning and tumorigenesis.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA.
| |
Collapse
|
17
|
The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals. Stem Cells Int 2015; 2016:1728278. [PMID: 26788065 PMCID: PMC4693009 DOI: 10.1155/2016/1728278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022] Open
Abstract
The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.
Collapse
|
18
|
Flores HA, Bubnell JE, Aquadro CF, Barbash DA. The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence. PLoS Genet 2015; 11:e1005453. [PMID: 26291077 PMCID: PMC4546362 DOI: 10.1371/journal.pgen.1005453] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/20/2015] [Indexed: 01/09/2023] Open
Abstract
Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.
Collapse
Affiliation(s)
- Heather A. Flores
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jaclyn E. Bubnell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Høyem MR, Måløy F, Jakobsen P, Brandsdal BO. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division. J Theor Biol 2015; 380:203-19. [PMID: 25997796 DOI: 10.1016/j.jtbi.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/30/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023]
Abstract
We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells.
Collapse
Affiliation(s)
| | - Frode Måløy
- Department of Computer Science, University of Stavanger, Norway
| | - Per Jakobsen
- Department of Mathematics and Statistics, University of Tromsø, Norway
| | | |
Collapse
|
20
|
Adaptive evolution of genes involved in the regulation of germline stem cells in Drosophila melanogaster and D. simulans. G3-GENES GENOMES GENETICS 2015; 5:583-92. [PMID: 25670770 PMCID: PMC4390574 DOI: 10.1534/g3.114.015875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Population genetic and comparative analyses in diverse taxa have shown that numerous genes involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience recurrent, adaptive evolution in both Drosophila melanogaster and D. simulans. Here we report a population genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to several evolutionary pressures may be acting to drive the adaptive evolution of these genes.
Collapse
|
21
|
Tseng CY, Kao SH, Wan CL, Cho Y, Tung SY, Hsu HJ. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche. PLoS Genet 2014; 10:e1004888. [PMID: 25521289 PMCID: PMC4270478 DOI: 10.1371/journal.pgen.1004888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022] Open
Abstract
Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion. Aging is frequently associated with a decline in the size of stem cell pools, but little is known regarding the molecular mechanisms underlying this process. Here, we report that Notch signaling is increased in GSCs as they age, and this promotes their removal from the niche in an E-cadherin dependent manner. In contrast to GSCs, niche cells exhibit decreased Notch signaling with age; Notch signaling in these cells controls niche integrity, and consequently GSC retention. While Notch signaling in the niche is regulated by insulin signaling, Notch signaling in GSCs is controlled by Sex lethal, an RNA-binding protein. These results imply that Notch signaling is regulated in a cell-type-dependent manner, and coordination between GSCs and their niche facilitates the removal of cells from the niche during the aging process.
Collapse
Affiliation(s)
- Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Ling Wan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh Cho
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Genomic Core Facility, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Loza-Coll MA, Southall TD, Sandall SL, Brand AH, Jones DL. Regulation of Drosophila intestinal stem cell maintenance and differentiation by the transcription factor Escargot. EMBO J 2014; 33:2983-96. [PMID: 25433031 DOI: 10.15252/embj.201489050] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tissue stem cells divide to self-renew and generate differentiated cells to maintain homeostasis. Although influenced by both intrinsic and extrinsic factors, the genetic mechanisms coordinating the decision between self-renewal and initiation of differentiation remain poorly understood. The escargot (esg) gene encodes a transcription factor that is expressed in stem cells in multiple tissues in Drosophila melanogaster, including intestinal stem cells (ISCs). Here, we demonstrate that Esg plays a pivotal role in intestinal homeostasis, maintaining the stem cell pool while influencing fate decisions through modulation of Notch activity. Loss of esg induced ISC differentiation, a decline in Notch activity in daughter enteroblasts (EB), and an increase in differentiated enteroendocrine (EE) cells. Amun, an inhibitor of Notch in other systems, was identified as a target of Esg in the intestine. Decreased expression of esg resulted in upregulation of Amun, while downregulation of Amun rescued the ectopic EE cell phenotype resulting from loss of esg. Thus, our findings provide a framework for further comparative studies addressing the conserved roles of Snail factors in coordinating self-renewal and differentiation of stem cells across tissues and species.
Collapse
Affiliation(s)
- Mariano A Loza-Coll
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Sharsti L Sandall
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrea H Brand
- The Gurdon Institute University of Cambridge, Cambridge, UK
| | - D Leanne Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Venanzi A, Di Sante M, Bruscoli S, Biagioli M, Sorcini D, Cimino M, Frammartino T, Bereshchenko O, Franconi F, Riccardi C. Recombinant long-glucocorticoid-induced leucine zipper (L-GILZ) protein restores the control of proliferation in gilz KO spermatogonia. Eur J Pharm Sci 2014; 63:22-8. [DOI: 10.1016/j.ejps.2014.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 05/28/2014] [Accepted: 06/22/2014] [Indexed: 12/21/2022]
|
24
|
Sherman SL, Curnow EC, Easley CA, Jin P, Hukema RK, Tejada MI, Willemsen R, Usdin K. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J Neurodev Disord 2014; 6:26. [PMID: 25147583 PMCID: PMC4139715 DOI: 10.1186/1866-1955-6-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 08/13/2014] [Indexed: 01/04/2023] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) is among the family of disorders caused by the expansion of a CGG repeat sequence in the 5' untranslated region of the X-linked gene FMR1. About 20% of women who carry the premutation allele (55 to 200 unmethylated CGG repeats) develop hypergonadotropic hypogonadism and cease menstruating before age 40. Some proportion of those who are still cycling show hormonal profiles indicative of ovarian dysfunction. FXPOI leads to subfertility and an increased risk of medical conditions associated with early estrogen deficiency. Little progress has been made in understanding the etiology of this clinically significant disorder. Understanding the molecular mechanisms of FXPOI requires a detailed knowledge of ovarian FMR1 mRNA and FMRP’s function. In humans, non-invasive methods to discriminate the mechanisms of the premutation on ovarian function are not available, thus necessitating the development of model systems. Vertebrate (mouse and rat) and invertebrate (Drosophila melanogaster) animal studies for the FMR1 premutation and ovarian function exist and have been instrumental in advancing our understanding of the disease phenotype. For example, rodent models have shown that FMRP is highly expressed in oocytes where it is important for folliculogenesis. The two premutation mouse models studied to date show evidence of ovarian dysfunction and, together, suggest that the long repeat in the transcript itself may have some pathological effect quite apart from any effect of the toxic protein. Further, ovarian morphology in young animals appears normal and the primordial follicle pool size does not differ from that of wild-type animals. However, there is a progressive premature decline in the levels of most follicle classes. Observations also include granulosa cell abnormalities and altered gene expression patterns. Further comparisons of these models are now needed to gain insight into the etiology of the ovarian dysfunction. Premutation model systems in non-human primates and those based on induced pluripotent stem cells show particular promise and will complement current models. Here, we review the characterization of the current models and describe the development and potential of the new models. Finally, we will discuss some of the molecular mechanisms that might be responsible for FXPOI.
Collapse
Affiliation(s)
- Stephanie L Sherman
- Department of Human Genetics, Emory University, 615 Michael St, Emory University, Atlanta, GA 30322, USA
| | - Eliza C Curnow
- Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, 615 Michael St, Emory University, Atlanta, GA 30322, USA
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Maria Isabel Tejada
- Molecular Genetics Laboratory, Genetics Service, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Biscay, Spain
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
De Felici M, Barrios F. Seeking the origin of female germline stem cells in the mammalian ovary. Reproduction 2013; 146:R125-30. [PMID: 23801781 DOI: 10.1530/rep-13-0069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The function of female germline stem cells (FGSCs, also called oogonial stem cells) in the adult mammalian ovary is currently debated in the scientific community. As the evidence to support or discard the possible crucial role of this new class of germ cells in mammals has been extensively discussed, in this review, we wonder which could be their origin. We will assume that FGSCs are present in the post-natal ovaries and speculate as to what origin and characteristics such cells could have. We believe that the definition of these features might shed light on future experimental approaches that could clarify the ongoing debate.
Collapse
Affiliation(s)
- Massimo De Felici
- Section of Histology and Embryology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | | |
Collapse
|
26
|
|
27
|
Xuan T, Xin T, He J, Tan J, Gao Y, Feng S, He L, Zhao G, Li M. dBre1/dSet1-dependent pathway for histone H3K4 trimethylation has essential roles in controlling germline stem cell maintenance and germ cell differentiation in the Drosophila ovary. Dev Biol 2013; 379:167-81. [PMID: 23624310 DOI: 10.1016/j.ydbio.2013.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/27/2013] [Accepted: 04/13/2013] [Indexed: 11/28/2022]
Abstract
The Drosophila ovarian germline stem cells (GSCs) constantly experience self-renewal and differentiation, ensuring the female fertility throughout life. The balance between GSC self-renewal and differentiation is exquisitely regulated by the stem cell niche, the stem cells themselves and systemic factors. Increasing evidence has shown that the GSC regulation also involves epigenetic mechanisms including chromatin remodeling and histone modification. Here, we find that dBre1, an E3 ubiquitin ligase, functions in controlling GSC self-renewal and germ cell differentiation via distinct mechanisms. Removal or knock down of dBre1 function in the germline or somatic niche cell lineage leads to a gradual GSC loss and disruption of H3K4 trimethylation in the Drosophila ovary. Further studies suggest that the defective GSC maintenance is attributable to compromised BMP signaling emitted from the stem cell niche and impaired adhesion of GSCs to their niche. On the other hand, dBre1-RNAi expression in escort cells causes a loss of H3K4 trimethylation and accumulation of spectrosome-containing single germ cells in the germarium. Reducing dpp or dally levels suppresses the germ cell differentiation defects, indicating that dBre1 limits BMP signaling activities for the differentiation control. Strikingly, all phenotypes observed in dBre1 mutant ovaries can be mimicked by RNAi-based reduced expression of dSet1, a Drosophila H3K4 trimethylase. Moreover, genetic studies favor that dBre1 interacts with dSet1 in controlling GSC maintenance and germ cell differentiation. Taken together, we identify a dBre1/dSet1-dependent pathway for the H3K4 methylation involved in the cell fate regulation in the Drosophila ovary.
Collapse
Affiliation(s)
- Tao Xuan
- MoE Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases, Bio-X Institutes, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Woods DC, Tilly JL. An evolutionary perspective on adult female germline stem cell function from flies to humans. Semin Reprod Med 2013; 31:24-32. [PMID: 23329633 PMCID: PMC5545927 DOI: 10.1055/s-0032-1331794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The concept that oogenesis continues into reproductive life has been well established in nonmammalian species. Recent studies of mice and women indicate that oocyte formation is also not, as traditionally believed, restricted to the fetal or perinatal periods. Analogous to de novo oocyte formation in flies and fish, newly formed oocytes in adult mammalian ovaries arise from germline stem cells (GSCs) or, more specifically, oogonial stem cells (OSCs). Studies of mice have confirmed that isolated OSCs, once delivered back into adult ovaries, are capable of generating fully functional eggs that fertilize to produce healthy embryos and offspring. Parallel studies of OSCs recently purified from ovaries of reproductive-age women indicate that these cells closely resemble their mouse ovary-derived counterparts, although the fertilization competency of oocytes generated by human OSCs awaits clarification. Despite the ability of OSCs to produce new oocytes during adulthood, oogenesis will still ultimately cease with age, contributing to ovarian failure. The causal mechanisms behind these events in mammals are unknown, but studies of flies have revealed that GSC niche dysfunction plays a critical role in age-related oogenic failure. Such insights derived from evaluation of nonmammalian species, in which postnatal oogenesis has been studied in depth, may aid in development of new strategies to alleviate ovarian failure and infertility in mammals.
Collapse
Affiliation(s)
- Dori C. Woods
- Vincent Center for Reproductive Biology, Massachusetts General Hospital
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Jonathan L. Tilly
- Vincent Center for Reproductive Biology, Massachusetts General Hospital
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Woods DC, Tilly JL. The next (re)generation of ovarian biology and fertility in women: is current science tomorrow's practice? Fertil Steril 2012; 98:3-10. [PMID: 22682028 DOI: 10.1016/j.fertnstert.2012.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022]
Abstract
Stem cell-based strategies for ovarian regeneration and oocyte production have been proposed as future clinical therapies for treating infertility in women. However, utilization of embryonic stem cells or induced pluripotent stem cells to produce oocytes has had limited success in vitro. A recent report of the isolation and characterization of endogenous oocyte-producing or oogonial stem cells (OSCs) from ovaries of reproductive age women describes the first stable and pure human female germ cell culture model in which a subset of cells appear to initiate and complete meiosis. In addition, purified human OSCs introduced into adult human ovarian cortical tissue generate oocytes that arrest at the diplotene stage of meiosis and successfully recruit granulosa cells to form new primordial follicles. This overview examines the current landscape of in vitro and in vivo gametogenesis from stem cells, with emphasis on generation of human oocytes. Future research objectives for this area of work, as well as potential clinical applications involving the use of human OSCs, are discussed.
Collapse
Affiliation(s)
- Dori C Woods
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts 02114-2622, USA.
| | | |
Collapse
|
31
|
Papagiannouli F, Lohmann I. Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 2012; 7:723-36. [PMID: 22488937 DOI: 10.1002/biot.201100352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/31/2012] [Accepted: 02/27/2012] [Indexed: 11/12/2022]
Abstract
Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg and CellNetworks - Cluster of Excellence, Heidelberg, Germany.
| | | |
Collapse
|
32
|
Song Y, Lu B. Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila. Genes Dev 2012; 25:2644-58. [PMID: 22190460 DOI: 10.1101/gad.171959.111] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer stem cells (CSCs) are postulated to be a small subset of tumor cells with tumor-initiating ability that shares features with normal tissue-specific stem cells. The origin of CSCs and the mechanisms underlying their genesis are poorly understood, and it is uncertain whether it is possible to obliterate CSCs without inadvertently damaging normal stem cells. Here we show that a functional reduction of eukaryotic translation initiation factor 4E (eIF4E) in Drosophila specifically eliminates CSC-like cells in the brain and ovary without having discernable effects on normal stem cells. Brain CSC-like cells can arise from dedifferentiation of transit-amplifying progenitors upon Notch hyperactivation. eIF4E is up-regulated in these dedifferentiating progenitors, where it forms a feedback regulatory loop with the growth regulator dMyc to promote cell growth, particularly nucleolar growth, and subsequent ectopic neural stem cell (NSC) formation. Cell growth regulation is also a critical component of the mechanism by which Notch signaling regulates the self-renewal of normal NSCs. Our findings highlight the importance of Notch-regulated cell growth in stem cell maintenance and reveal a stronger dependence on eIF4E function and cell growth by CSCs, which might be exploited therapeutically.
Collapse
Affiliation(s)
- Yan Song
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
33
|
Cheng YJ, Fang S, Tsaur SC, Chen YL, Fu HW, Patel NH, Ting CT. Reduction of germ cells in the Odysseus null mutant causes male fertility defect in Drosophila melanogaster. Genes Genet Syst 2012; 87:273-6. [DOI: 10.1266/ggs.87.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ya-Jen Cheng
- Institute of Molecular and Cellular Biology, National Tsing Hua University
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica
| | - Shun-Chern Tsaur
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University
| | - Yi-Ling Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University
| | - Hua-Wen Fu
- Institute of Molecular and Cellular Biology, National Tsing Hua University
- Department of Life Science, National Tsing Hua University
| | - Nipam H. Patel
- Department of Molecular and Cell Biology, and Department of Integrative Biology, University of California-Berkeley
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan University
- Institute of Ecology and Evolutionary Biology, National Taiwan University
- Institute of Zoology, National Taiwan University
- Research Center for Developmental Biology and Regeneration Medicine, National Taiwan University
- Genome and Systems Biology Degree Program, National Taiwan University
| |
Collapse
|
34
|
Chai PC, Chia W, Cai Y. A niche for Drosophila neuroblasts? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:307-14. [PMID: 23801445 DOI: 10.1002/wdev.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stem cells, which can self-renew and give rise to differentiated daughters, are responsible for the generation of diverse cell types during development and the maintenance of tissue/organ homeostasis in adulthood. Thus, the precise regulation of stem-cell self-renewal and proliferative potential is a key aspect of development. The stem-cell niche confers such control by concentrating localized factors including signaling molecules which favor stem-cell self-renew and regulate stem-cell proliferation in line with developmental programs. In contrast, Drosophila neuroblasts (NBs), often referred to as neural stem cells/progenitors, can undergo asymmetric cell division to self-renew and produce differentiated daughters even in isolation (or in culture). Furthermore, these isolated NBs can also progress through an intrinsically regulated temporal series (of transcription factor expression) to generate diverse cell types in vitro. These data argue that NBs may depend only to a limited extent, if at all, on local environment (a niche) for their maintenance. On the other hand, there is increasing evidence which indicate that the interaction between NBs and their surrounding glia is critical for the control of NB proliferative potential and these glia, in conjunction with systemic regulation, perform the niche function to regulate NB behavior. Thus, these observations emphasize the importance of coordinated local microenvironment (niche activity) and systemic environment (global activity) on the regulation of NB behavior in vivo, and suggest NBs may conform to an alternative stem-cell/progenitor maintenance model.
Collapse
Affiliation(s)
- Phing Chian Chai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
35
|
Bruscoli S, Velardi E, Di Sante M, Bereshchenko O, Venanzi A, Coppo M, Berno V, Mameli MG, Colella R, Cavaliere A, Riccardi C. Long glucocorticoid-induced leucine zipper (L-GILZ) protein interacts with ras protein pathway and contributes to spermatogenesis control. J Biol Chem 2011; 287:1242-51. [PMID: 22110132 DOI: 10.1074/jbc.m111.316372] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Correct function of spermatogonia is critical for the maintenance of spermatogenesis throughout life, but the cellular pathways regulating undifferentiated spermatogonia proliferation, differentiation, and survival are only partially known. We show here that long glucocorticoid-induced leucine zipper (L-GILZ) is highly expressed in spermatogonia and primary spermatocytes and controls spermatogenesis. Gilz deficiency in knock-out (gilz KO) mice leads to a complete loss of germ cell lineage within first cycles of spermatogenesis, resulting in male sterility. Spermatogenesis failure is intrinsic to germ cells and is associated with increased proliferation and aberrant differentiation of undifferentiated spermatogonia and with hyperactivity of Ras signaling pathway as indicated by an increase of ERK and Akt phosphorylation. Spermatogonia differentiation does not proceed beyond the prophase of the first meiotic division due to massive apoptosis associated with accumulation of unrepaired chromosomal damage. These results identify L-GILZ as a novel important factor for undifferentiated spermatogonia function and spermatogenesis.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Toxicology, and Chemotherapy, Medical School, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fragile X mental retardation protein and stem cells. Results Probl Cell Differ 2011. [PMID: 22009351 DOI: 10.1007/978-3-642-21649-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Stem cells, which can self-renew and produce different cell types, are regulated by both extrinsic signals and intrinsic factors. Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by the functional loss of fragile X mental retardation protein (FMRP). FMRP is a selective RNA-binding protein that forms a messenger ribonucleoprotein (mRNP) complex that associates with polyribosomes. Recently, the role of Fmrp in stem cell biology has been explored in both Drosophila and the mouse. In this chapter, we discuss the role of FMRP in regulating the proliferation and differentiation of stem cells.
Collapse
|
37
|
Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev Biol 2011; 361:167-76. [PMID: 22024321 DOI: 10.1016/j.ydbio.2011.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/28/2011] [Accepted: 10/07/2011] [Indexed: 11/23/2022]
Abstract
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms.
Collapse
|
38
|
Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R. EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 2011; 354:31-43. [DOI: 10.1016/j.ydbio.2011.03.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 01/22/2023]
|
39
|
Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 2011; 330:1824-7. [PMID: 21205669 DOI: 10.1126/science.1195481] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Model organisms such as the fruit fly Drosophila melanogaster can help to elucidate the molecular basis of complex diseases such as cancer. Mutations in the Drosophila gene lethal (3) malignant brain tumor cause malignant growth in the larval brain. Here we show that l(3)mbt tumors exhibited a soma-to-germline transformation through the ectopic expression of genes normally required for germline stemness, fitness, or longevity. Orthologs of some of these genes were also expressed in human somatic tumors. In addition, inactivation of any of the germline genes nanos, vasa, piwi, or aubergine suppressed l(3)mbt malignant growth. Our results demonstrate that germline traits are necessary for tumor growth in this Drosophila model and suggest that inactivation of germline genes might have tumor-suppressing effects in other species.
Collapse
Affiliation(s)
- Ana Janic
- Cell Division Group, Institute for Research in Biomedicine (IRB-Barcelona), PCB, c/Baldiri Reixac 10-12, Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Ryser S, Glauser D, Vigier M, Zhang YQ, Tachini P, Schlegel W, Durand P, Irminger-Finger I. Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma. BMC Genomics 2011; 12:29. [PMID: 21232125 PMCID: PMC3033334 DOI: 10.1186/1471-2164-12-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 01/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.
Collapse
Affiliation(s)
- Stephan Ryser
- Molecular Gynecology and Obstetrics Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids. J Mol Evol 2010; 72:80-9. [PMID: 21079940 DOI: 10.1007/s00239-010-9404-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/25/2010] [Indexed: 12/23/2022]
Abstract
Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.
Collapse
|
42
|
Papagiannouli F, Mechler BM. Discs large in the Drosophila testis: an old player on a new task. Fly (Austin) 2010; 4:294-8. [PMID: 20798604 DOI: 10.4161/fly.4.4.13149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gamete development requires a coordinated soma-germ line interaction that ensures renewal and differentiation of germline and somatic stem cells. The physical contact between the germline and somatic cell populations is crucial because it allows the exchange of diffusible signals among them. The tumor suppressor gene discs large (dlg) encodes a septate junction protein with functions in epithelial cell polarity, asymmetric neuroblast division and formation of neuromuscular junctions. Our recent work reveals a new role of dlg in the Drosophila testis, as mutations in dlg lead to testis defects and cell death. Dlg is required throughout spermatogenesis in the somatic lineage and its localization changes from a uniform distribution along the plasma membrane of somatic cells in the testis apex, to a restricted localization on the distally located somatic cell in growing cysts. The extensive defects in dlg testis underline the importance of the somatic cells in the establishment and maintenance of the male stem cell niche and somatic cell differentiation. Here, we discuss our latest findings on the role of dlg in the Drosophila testis, supporting the view that junction proteins are dynamic structures, which can provide guiding cues to recruit scaffold proteins or other signaling molecules.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Cell Networks-Cluster of Excellence and BIOQUANT Center, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
43
|
Dash C, Routray P, Tripathy S, Verma DK, Guru BC, Meher PK, Nandi S, Eknath AE. Derivation and characterization of embryonic stem-like cells of Indian major carp Catla catla. JOURNAL OF FISH BIOLOGY 2010; 77:1096-1113. [PMID: 21039493 DOI: 10.1111/j.1095-8649.2010.02755.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Embryonic stem (ES)-like cells were derived from mid-blastula stage embryos of a freshwater fish, catla Catla catla, under feeder-free condition and designated as CCES cells. The conditioned media was optimized with 10% foetal bovine serum (FBS), fish embryo extract (FEE) having 100 µg ml(-1) protein concentration, 15 ng ml(-1) basic fibroblast growth factor (bFGF) and basic media containing Leibovitz-15, DMEM with 4·5 g l(-1) glucose and Ham's F12 (LDF) in 2:1:1 ratio using a primary culture of CCES cells. Cells attached to gelatin-coated plates after 24 h of seeding and ES-like colonies were obtained at day 5 onwards. A stable cell culture was obtained after passage 10 and further maintained up to passage 44. These cells were characterized by their typical morphology, high alkaline phosphatase activity, positive expression of cell-surface antigen SSEA-1, transcription factor Oct4, germ cell marker vasa and consistent karyotype up to extended periods. The undifferentiated state was confirmed by their ability to form embryoid bodies and their differentiation potential.
Collapse
Affiliation(s)
- C Dash
- Division of Aquaculture Production and Environment, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tastan OY, Maines JZ, Li Y, McKearin DM, Buszczak M. Drosophila ataxin 2-binding protein 1 marks an intermediate step in the molecular differentiation of female germline cysts. Development 2010; 137:3167-76. [PMID: 20724451 DOI: 10.1242/dev.050575] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the Drosophila ovary, extrinsic signaling from the niche and intrinsic translational control machinery regulate the balance between germline stem cell maintenance and the differentiation of their daughters. However, the molecules that promote the continued stepwise development of ovarian germ cells after their exit from the niche remain largely unknown. Here, we report that the early development of germline cysts depends on the Drosophila homolog of the human ataxin 2-binding protein 1 (A2BP1) gene. Drosophila A2BP1 protein expression is first observed in the cytoplasm of 4-, 8- and 16-cell cysts, bridging the expression of the early differentiation factor Bam with late markers such as Orb, Rbp9 and Bruno encoded by arrest. The expression of A2BP1 is lost in bam, sans-fille (snf) and mei-P26 mutants, but is still present in other mutants such as rbp9 and arrest. A2BP1 alleles of varying strength produce mutant phenotypes that include germline counting defects and cystic tumors. Phenotypic analysis reveals that strong A2BP1 alleles disrupt the transition from mitosis to meiosis. These mutant cells continue to express high levels of mitotic cyclins and fail to express markers of terminal differentiation. Biochemical analysis reveals that A2BP1 isoforms bind to each other and associate with Bruno, a known translational repressor protein. These data show that A2BP1 promotes the molecular differentiation of ovarian germline cysts.
Collapse
Affiliation(s)
- Omür Y Tastan
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9148, USA
| | | | | | | | | |
Collapse
|
45
|
Nakamura S, Kobayashi K, Nishimura T, Higashijima SI, Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science 2010; 328:1561-3. [PMID: 20488987 DOI: 10.1126/science.1185473] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Germline stem cells continually produce sperm in vertebrate testes, whereas there is no direct evidence showing that germline stem cells are present in adult vertebrate ovaries. By using transgenic methods and clonal analysis, we identified germline stem cells that supported oogenesis and the production of offspring in the ovaries of adult medaka fish. Early-stage germ cells were localized in clusters along interwoven threadlike cords of sox9b-expressing somatic cells (termed germinal cradles) where the germ cells developed. Germline stem cells gave rise to germ cells that divided to produce cysts, which then underwent cell death or separated to form follicles. Our results provide insight into the germline stem cell biology of medaka and provide a model system for studying vertebrate stem cell niches.
Collapse
Affiliation(s)
- Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
46
|
Shibata N, Rouhana L, Agata K. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Dev Growth Differ 2010; 52:27-41. [PMID: 20078652 DOI: 10.1111/j.1440-169x.2009.01155.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Freshwater planarians, Plathelminthes, have been an intriguing model animal of regeneration studies for more than 100 years. Their robust regenerative ability is one of asexual reproductive capacity, in which complete animals develop from tiny body fragments within a week. Pluripotent adult somatic stem cells, called neoblasts, assure this regenerative ability. Neoblasts give rise to not only all types of somatic cells, but also germline cells. During the last decade, several experimental techniques for the analysis of planarian neoblasts at the molecular level, such as in situ hybridization, RNAi and fluorescence activated cell sorting, have been established. Moreover, information about genes involved in maintenance and differentiation of neoblasts has been accumulated. One of the molecular features of neoblasts is the expression of many RNA regulators, which are involved in germline development in other animals, such as vasa and piwi family genes. In this review, we introduce physiological and molecular features of the neoblast, and discuss how germline genes regulate planarian neoblasts and what differences exist between neoblasts and germline cells.
Collapse
Affiliation(s)
- Norito Shibata
- Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
47
|
Loppion G, Lavigne R, Pineau C, Auvray P, Sourdaine P. Proteomic analysis of the spermatogonial stem cell compartment in dogfish Scyliorhinus canicula L. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:157-64. [PMID: 20435534 DOI: 10.1016/j.cbd.2010.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/22/2010] [Accepted: 03/27/2010] [Indexed: 01/15/2023]
Abstract
In the dogfish (Scyliorhinus canicula L.) the testicular germinative zone (GZ), composed of large isolated spermatogonia surrounded by elongating pre-Sertoli cells, is located between the albuginea and the ventrolateral intratesticular vessel. During the spermatogenic wave, cysts radiate in maturational order forming distinct testicular zones. In this study, soluble proteins of the GZ and of the zone containing cysts with spermatocytes were separated by two-dimensional electrophoresis. Gel images were matched and then evaluated for GZ-specific proteins. From the1400 protein spots identified, 680 were found to be apparently specific to this zone. Using MALDI-TOF/TOF mass spectrometry, de novo sequences were obtained for 33 proteins out of the 169 selected for identification by mass spectrometry, but only 16 of these 169 proteins were identified. One of them, proteasome subunit alpha-6, was analyzed further by immunohistochemistry. This study demonstrates the utility of the dogfish as a model for proteome analysis of the spermatogonial stem cell niche, even if it remains restricted by the lack of genomic data available on Elasmobranchs.
Collapse
Affiliation(s)
- Géraldine Loppion
- UMR M Ifremer, Physiologie et Ecophysiologie des Mollusques Marins, IFR ICORE, Université de Caen Basse-Normandie, France
| | | | | | | | | |
Collapse
|
48
|
Khila A, Abouheif E. Evaluating the role of reproductive constraints in ant social evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365:617-30. [PMID: 20083637 DOI: 10.1098/rstb.2009.0257] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The reproductive division of labour is a key feature of eusociality in ants, where queen and worker castes show dramatic differences in the development of their reproductive organs. To understand the developmental and genetic basis underlying this division of labour, we performed a molecular analysis of ovary function and germ cell development in queens and workers. We show that the processes of ovarian development in queens have been highly conserved relative to the fruitfly Drosophila melanogaster. We also identify specific steps during oogenesis and embryogenesis in which ovarian and germ cell development have been evolutionarily modified in the workers. These modifications, which we call 'reproductive constraints', are often assumed to represent neutral degenerations that are a consequence of social evolutionary forces. Based on our developmental and functional analysis of these constraints, however, we propose and discuss the alternative hypothesis that reproductive constraints represent adaptive proximate mechanisms or traits for maintaining social harmony in ants. We apply a multi-level selection framework to help understand the role of these constraints in ant social evolution. A complete understanding of how cooperation, conflict and developmental systems evolve in social groups requires a 'socio-evo-devo' approach that integrates social evolutionary and developmental biology.
Collapse
Affiliation(s)
- Abderrahman Khila
- Department of Biology, McGill University, Avenue Dr Penfield, Montreal, Quebec H3A1B1, Canada.
| | | |
Collapse
|
49
|
Brown FD, Keeling EL, Le AD, Swalla BJ. Whole body regeneration in a colonial ascidian, Botrylloides violaceus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 312:885-900. [PMID: 19588490 DOI: 10.1002/jez.b.21303] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Colonial ascidians are the only chordates to undergo whole body regeneration (WBR), the ability to form an entirely new individual from the peripheral vasculature. Here we describe WBR in Botrylloides violaceus, a colonial ascidian that reliably regenerates after ablation of all zooids and buds of young colonies. During early regeneration several buds develop within the tunic vasculature, but only one continues development into a complete zooid. We describe some of the first events of vascular budding leading to the vesicle stage with phase contrast microscopy, time-lapse video recording and detailed histological studies of regenerating colonies. The first conspicuous stage of vascular budding is when a single-layered sphere of cells becomes enclosed by vascular epithelium. We report the appearance of Piwi-positive cells in hemocytes surrounding the regenerates. We observed an increase of proliferating cell nuclear antigen (PCNA)-positive cells in circulatory hemocytes in late regenerates, and found double-labeled nuclear expression with Piwi in a subset of large circulatory cells. We rarely found Piwi or PCNA in differentiating tissues during vascular budding, suggesting that cells that form the epithelial tissues during budding and WBR originate mostly from circulatory hemocyte precursors. We propose that multiple stem cell types are circulating within B. violaceus and that they undergo proliferation in the peripheral vasculature before differentiating into epithelial tissues for all three germ layers during WBR.
Collapse
Affiliation(s)
- Federico D Brown
- Biology Department, Center for Developmental Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Self-renewal is the process by which stem cells divide to make more stem cells, perpetuating the stem cell pool throughout life. Self-renewal is division with maintenance of the undifferentiated state. This requires cell cycle control and often maintenance of multipotency or pluripotency, depending on the stem cell. Self-renewal programs involve networks that balance proto-oncogenes (promoting self-renewal), gate-keeping tumor suppressors (limiting self-renewal), and care-taking tumor suppressors (maintaining genomic integrity). These cell-intrinsic mechanisms are regulated by cell-extrinsic signals from the niche, the microenvironment that maintains stem cells and regulates their function in tissues. In response to changing tissue demands, stem cells undergo changes in cell cycle status and developmental potential over time, requiring different self-renewal programs at different stages of life. Reduced stem cell function and tissue regenerative capacity during aging are caused by changes in self-renewal programs that augment tumor suppression. Cancer arises from mutations that inappropriately activate self-renewal programs.
Collapse
Affiliation(s)
- Shenghui He
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | |
Collapse
|