1
|
Lloren KKS, Senevirathne A, Lee JH. Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria. Mater Today Bio 2024; 29:101349. [PMID: 39850273 PMCID: PMC11754135 DOI: 10.1016/j.mtbio.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision. Concurrently, commensal bacteria, which coexist harmlessly with their hosts and contribute to immune system regulation, are also being explored as novel delivery systems and in microbiome-based therapy. These bacteria can modulate immune responses, offering a promising avenue for developing effective and personalized vaccines. Integrating the distinctive characteristics of pathogenic and commensal bacteria with advanced bacterial engineering techniques paves the way for innovative vaccine and therapeutic platforms that could address a wide range of infectious diseases and potentially non-infectious conditions. This holistic approach signifies a paradigm shift in vaccine development and immunotherapy, emphasizing the intricate interplay between the bacteria and the immune systems to achieve optimal immunological outcomes.
Collapse
Affiliation(s)
- Khristine Kaith S. Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| |
Collapse
|
2
|
Beasley‐Hall PG, Kinjo Y, Rose HA, Walker J, Foster CSP, Kovacs TGL, Bourguignon T, Ho SYW, Lo N. Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life. INSECT SCIENCE 2024; 31:1810-1821. [PMID: 38462506 PMCID: PMC11632294 DOI: 10.1111/1744-7917.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.
Collapse
Affiliation(s)
- Perry G. Beasley‐Hall
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yukihiro Kinjo
- Evolutionary Genomics UnitOkinawa Institute of Science & Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Harley A. Rose
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - James Walker
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Charles S. P. Foster
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Toby G. L. Kovacs
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Thomas Bourguignon
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Simon Y. W. Ho
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nathan Lo
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: time for a new chapter? Infect Immun 2024; 92:e0030224. [PMID: 39347570 PMCID: PMC11556149 DOI: 10.1128/iai.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined. Here we discuss that sorting taxa into meaningful ecological units reveals that the availability of respiratory electron acceptors, such as oxygen, in the host environment has a dominant influence on gut microbiome health. During homeostasis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a microbial community dominated by primary fermenters from atmospheric oxygen. In turn, primary fermenters break down unabsorbed nutrients into fermentation products that support host nutrition. This symbiotic relationship is disrupted when host functions that limit the luminal availability of host-derived electron acceptors become weakened. The resulting changes in the host environment drive alterations in the microbiota composition, which feature an elevated abundance of facultatively anaerobic microbes. Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the host environment, whereas changes in the microbiota composition are secondary to this underlying cause. This shift in our understanding of dysbiosis provides a novel starting point for therapeutic strategies to restore microbiome health. Such strategies can either target the microbes through metabolism-based editing or strengthen the host functions that control their environment.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| | - Derek J. Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hannah P. Savage
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
4
|
Drerup C. The behavioural ecology of Sepiolidae (Cephalopoda: Sepiolida): a review. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Christian Drerup
- Marine Behavioural Ecology Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Loughran RM, Emsley SA, Jefferson T, Wasson BJ, Deadmond MC, Knauss TL, Pfannmuller KM, Lippert KJ, Miller G, Cline LC, Oline DK, Koyack MJ, Grant-Beurmann S, Gaylor MO, Saw JH, Ushijima B, Videau P. Vibrio tetraodonis subsp. pristinus subsp. nov., isolated from the coral Acropora cytherea at Palmyra Atoll, and creation and emended description of Vibrio tetraodonis subsp. tetraodonis subsp. nov. Antonie Van Leeuwenhoek 2022; 115:1215-1228. [PMID: 35920985 DOI: 10.1007/s10482-022-01766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Strain OCN044T was isolated from the homogenised tissue and mucus of an apparently healthy Acropora cytherea coral fragment collected from the western reef terrace of Palmyra Atoll in the Northern Line Islands and was taxonomically evaluated with a polyphasic approach. The morphological and chemotaxonomic properties are consistent with characteristics of the genus Vibrio: Gram-stain-negative rods, oxidase- and catalase-positive, and motile by means of a polar flagellum. Strain OCN044T can be differentiated as a novel subspecies based on 21 differences among chemotaxonomic features (e.g., fatty acids percentages for C12:0 and C18:1 ω7c), enzymatic activities (e.g., DNase and cystine arylamidase), and carbon sources utilized (e.g., L-xylose and D-melezitose) from its nearest genetic relative. Phylogenetic analysis and genomic comparisons show close evolutionary relatedness to Vibrio tetraodonis A511T but the overall genomic relatedness indices identify strain OCN044T as a distinct subspecies. Based on a polyphasic characterisation, differences in genomic and taxonomic data, strain OCN044T represents a novel subspecies of V. tetraodonis A511T, for which the name Vibrio tetraodonis subsp. pristinus subsp. nov. is proposed. The type strain is OCN044T (= LMG 31895T = DSM 111778T).
Collapse
Affiliation(s)
- Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR, USA.,Microbiology Graduate Program, University of Delaware, Newark, DE, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Tori Jefferson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | | | | | - Taylor L Knauss
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | | | - Katherine J Lippert
- Department of Biology, Southern Oregon University, Ashland, OR, USA.,Triplebar, Emeryville, CA, USA
| | - Gregory Miller
- Natural Sciences Department, Flagler College, St. Augustine, FL, USA
| | | | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR, USA
| | - Silvia Grant-Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, D.C, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA. .,Bayer Crop Science, Chesterfield, MO, USA.
| |
Collapse
|
6
|
Mondal K, Chaudhury S. Dynamics of the Protein Search for Targets on DNA in Quorum Sensing Cells. Biophys J 2022; 121:2398-2410. [PMID: 35596527 DOI: 10.1016/j.bpj.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/14/2021] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Quorum sensing (QS) is a bacterial cell-cell communication process that regulates gene expression. The search and binding of the AHL-bound LuxR-type proteins to specific sites on DNA in quorum sensing cells in Gram-negative bacteria is a complex process and has been theoretically investigated based on a discrete-state stochastic approach. It is shown that several factors such as the rate of formation of the AHL-bound LuxR protein within the cells and its dissociation to freely diffusing autoinducer molecule (AHL), the diffusion of the latter in and out of the cells, positive feedback loops, and the cell population density play an important role in the protein target search and can control the gene regulation processes. Physical-chemical arguments to explain these observations are presented. Our calculations of the dynamic properties are also supplemented by Monte Carlo computer simulations. Our theoretical model provides physical insights into the complex mechanisms of protein target search in quorum sensing cells.
Collapse
Affiliation(s)
- Kinjal Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
7
|
Allen C, Finkel SE. Vibrio harveyi Exhibits the Growth Advantage in Stationary Phase Phenotype during Long-Term Incubation. Microbiol Spectr 2022; 10:e0214421. [PMID: 35080444 PMCID: PMC8791185 DOI: 10.1128/spectrum.02144-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/26/2021] [Indexed: 11/20/2022] Open
Abstract
The bioluminescent marine bacterium Vibrio harveyi can exist within a host, acting as a mutualist or a parasitic microbe, and as planktonic cells in open seawater. This study demonstrates the ability of V. harveyi populations to survive and adapt under nutrient stress conditions in the laboratory, starting in an initially rich medium. V. harveyi populations remain viable into long-term stationary phase, for at least 1 month, without the addition of nutrients. To determine whether these communities are dynamic, populations were sampled after 10, 20, and 30 days of incubation and examined for their competitive ability when cocultured with an unaged, parental population. While populations incubated for 10 or 20 days showed some fitness advantage over parental populations, only after 30 days of incubation did all populations examined outcompete parental populations in coculture, fully expressing the growth advantage in stationary phase (GASP) phenotype. The ability to express GASP, in the absence of additional nutrients after inoculation, verifies the dynamism of long-term stationary-phase V. harveyi populations, implies the ability to generate genetic diversity, and demonstrates the plasticity of the V. harveyi genome, allowing for rapid adaptation for survival in changing culture environments. Despite the dynamism, the adaptation to the changing culture environment occurs less rapidly than in Escherichia coli, possibly due to Vibrio harveyi's lower mutation frequency. IMPORTANCE Vibrio harveyi populations exist in many different niches within the ocean environment, as free-living cells, symbionts with particular squid and fish species, and parasites to other marine organisms. It is important to understand V. harveyi's ability to survive and evolve within each of these niches. This study focuses on V. harveyi's lifestyle outside the host environment, demonstrating this microbe's ability to survive long-term culturing after inoculation in an initially rich medium and revealing increased competitive fitness correlated with incubation time when aged V. harveyi populations are cocultured with unaged, parental cultures. Thus, this study highlights the development of the growth advantage in stationary phase (GASP) phenotype in V. harveyi populations suggesting a dynamic population with fluctuating genotype frequencies throughout long-term, host-independent incubation.
Collapse
Affiliation(s)
- Calista Allen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
8
|
Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. DIVERSITY 2022. [DOI: 10.3390/d14020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrios are ubiquitous bacteria in aquatic systems, especially marine ones, and belong to the Gammaproteobacteria class, the most diverse class of Gram-negative bacteria. The main objective of this review is to update the information regarding the ecology of Vibrio species, and contribute to the discussion of their potential risk in a changing environment. As heterotrophic organisms, Vibrio spp. live freely in aquatic environments, from marine depths to the surface of the water column, and frequently may be associated with micro- and macroalgae, invertebrates, and vertebrates such as fish, or live in symbiosis. Some Vibrio spp. are pathogenic to humans and animals, and there is evidence that infections caused by vibrios are increasing in the world. This rise may be related to global changes in human behavior (increases in tourism, maritime traffic, consumption of seafood, aquaculture production, water demand, pollution), and temperature. Most likely in the future, Vibrio spp. in water and in seafood will be monitored in order to safeguard human and animal health. Regulators of the microbiological quality of water (marine and freshwater) and food for human and animal consumption, professionals involved in marine and freshwater production chains, consumers and users of aquatic resources, and health professionals will be challenged to anticipate and mitigate new risks.
Collapse
|
9
|
The polar flagellar transcriptional regulatory network in Vibrio campbellii deviates from canonical Vibrio species. J Bacteriol 2021; 203:e0027621. [PMID: 34339299 DOI: 10.1128/jb.00276-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swimming motility is a critical virulence factor in pathogenesis for numerous Vibrio species. Vibrio campbellii DS40M4 is a wild isolate that has been recently established as a highly tractable model strain for bacterial genetics studies. We sought to exploit the tractability and relevance of this strain for characterization of flagellar gene regulation in V. campbellii. Using comparative genomics, we identified homologs of V. campbellii flagellar and chemotaxis genes conserved in other members of the Vibrionaceae and determined the transcriptional profile of these loci using differential RNA-seq. We systematically deleted all 63 predicted flagellar and chemotaxis genes in V. campbellii and examined their effects on motility and flagellum production. We specifically focused on the core regulators of the flagellar hierarchy established in other vibrios: RpoN (σ54), FlrA, FlrC, and FliA. Our results show that V. campbellii transcription of flagellar and chemotaxis genes is governed by a multi-tiered regulatory hierarchy similar to other motile Vibrio species. However, there are several critical differences in V. campbellii: (i) the σ54-dependent regulator FlrA is dispensable for motility, (ii) the flgA, fliEFGHIJ, flrA, and flrBC operons do not require σ54 for expression, and (iii) FlrA and FlrC co-regulate class II genes. Our model proposes that the V. campbellii flagellar transcriptional hierarchy has three classes of genes, in contrast to the four-class hierarchy in Vibrio cholerae. Our genetic and phenotypic dissection of the V. campbellii flagellar regulatory network highlights the differences that have evolved in flagellar regulation across the Vibrionaceae. Importance Vibrio campbellii is a Gram-negative bacterium that is free-living and ubiquitous in marine environments and is an important global pathogen of fish and shellfish. Disruption of the flagellar motor significantly decreases host mortality of V. campbellii, suggesting that motility is a key factor in pathogenesis. Using this model organism, we identified >60 genes that encode proteins with predicted structural, mechanical, or regulatory roles in function of the single polar flagellum in V. campbellii. We systematically tested strains containing single deletions of each gene to determine the impact on motility and flagellum production. Our studies have uncovered differences in the regulatory network and function of several genes in V. campbellii as compared to established systems in Vibrio cholerae and Vibrio parahaemolyticus.
Collapse
|
10
|
Hybrid Histidine Kinase BinK Represses Vibrio fischeri Biofilm Signaling at Multiple Developmental Stages. J Bacteriol 2021; 203:e0015521. [PMID: 34031036 DOI: 10.1128/jb.00155-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the symbiosis polysaccharide Syp. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified the hybrid histidine kinase BinK as a strong negative regulator of V. fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that RscS is not essential for host colonization when binK is deleted from strain ES114, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis. IMPORTANCE Bacteria are often in a biofilm state, and transitions between planktonic and biofilm lifestyles are important for pathogenic, beneficial, and environmental microbes. The critical nature of biofilm formation during Vibrio fischeri colonization of the Hawaiian bobtail squid light organ provides an opportunity to study development of this process in vivo using a combination of genetic and imaging approaches. The current work refines the signaling circuitry of the biofilm pathway in V. fischeri, provides evidence that biofilm regulatory changes occur in the host, and identifies BinK as one of the regulators of that process. This study provides information about how bacteria regulate biofilm gene expression in an intact animal host.
Collapse
|
11
|
Sanchez G, Fernández-Álvarez FÁ, Taite M, Sugimoto C, Jolly J, Simakov O, Marlétaz F, Allcock L, Rokhsar DS. Phylogenomics illuminates the evolution of bobtail and bottletail squid (order Sepiolida). Commun Biol 2021; 4:819. [PMID: 34188187 PMCID: PMC8241861 DOI: 10.1038/s42003-021-02348-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
Bobtail and bottletail squid are small cephalopods with striking anti-predatory defensive mechanisms, bioluminescence, and complex morphology; that inhabit nektobenthic and pelagic environments around the world's oceans. Yet, the evolution and diversification of these animals remain unclear. Here, we used shallow genome sequencing of thirty-two bobtail and bottletail squids to estimate their evolutionary relationships and divergence time. Our phylogenetic analyses show that each of Sepiadariidae, Sepiolidae, and the three subfamilies of the Sepiolidae are monophyletic. We found that the ancestor of the Sepiolinae very likely possessed a bilobed light organ with bacteriogenic luminescence. Sepiolinae forms a sister group to Rossinae and Heteroteuthinae, and split into Indo-Pacific and Atlantic-Mediterranean lineages. The origin of these lineages coincides with the end of the Tethys Sea and the separation of these regions during the Eocene and the beginning of the Oligocene. We demonstrated that sepiolids radiated after the Late Cretaceous and that major biogeographic events might have shaped their distribution and speciation.
Collapse
Affiliation(s)
- Gustavo Sanchez
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi Hiroshima, Hiroshima, Japan.,Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Morag Taite
- Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, Ireland, UK
| | - Chikatoshi Sugimoto
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Jeffrey Jolly
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Louise Allcock
- Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, Ireland, UK
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan. .,Department of Molecular and Cell Biology, Life Sciences Addition #3200, Berkeley, CA, USA. .,Chan-Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
12
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
13
|
Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri. J Bacteriol 2021; 203:JB.00259-20. [PMID: 33199286 PMCID: PMC7811199 DOI: 10.1128/jb.00259-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.
Collapse
|
14
|
Stoy KS, Gibson AK, Gerardo NM, Morran LT. A need to consider the evolutionary genetics of host-symbiont mutualisms. J Evol Biol 2020; 33:1656-1668. [PMID: 33047414 DOI: 10.1111/jeb.13715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long-term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions.
Collapse
Affiliation(s)
- Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Amanda K Gibson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Schnorr SL. The soil in our microbial DNA informs about environmental interfaces across host and subsistence modalities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190577. [PMID: 33012224 DOI: 10.1098/rstb.2019.0577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, I use microbiome datasets from global soil samples and diverse hosts to learn whether soil microbial taxa are found in host microbiomes, and whether these observations fit the narrative that environmental interaction influences human microbiomes. A major motivation for conducting host-associated microbiome research is to contribute towards understanding how the environment may influence host physiology. The microbial molecular network is considered a key vector by which environmental traits may be transmitted to the host. Research on human evolution seeks evidence that can inform about the living experiences of human ancestors. This objective is substantially enhanced by recent work on ancient biomolecules from preserved microbial tissues, such as dental calculus, faecal sediments and whole coprolites. A challenge yet is to distinguish authentic biomolecules from environmental contaminants deposited contemporaneously, primarily from soil. However, we do not have sound expectations about the soil microbial elements arriving to host-associated microbiomes in a modern context. One assumption in human microbiome research is that proximity to the natural environment should affect biodiversity or impart genetic elements. I present evidence supporting the assumption that environmental soil taxa are found among host-associated gut taxa, which can recapitulate the surrounding host habitat ecotype. Soil taxa found in gut microbiomes relate to a set of universal 'core' taxa for all soil ecotypes, demonstrating that widespread host organisms may experience a consistent pattern of external environmental cues, perhaps critical for development. Observed differentiation of soil feature diversity, abundance and composition among human communities, great apes and invertebrate hosts also indicates that lifestyle patterns are inferable from an environmental signal that is retrievable from gut microbiome amplicon data. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Stephanie L Schnorr
- Department of Anthropology, University of Nevada, Las Vegas, NV, USA.,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
16
|
Genomic Comparison of Insect Gut Symbionts from Divergent Burkholderia Subclades. Genes (Basel) 2020; 11:genes11070744. [PMID: 32635398 PMCID: PMC7397029 DOI: 10.3390/genes11070744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Stink bugs of the superfamilies Coreoidea and Lygaeoidea establish gut symbioses with environmentally acquired bacteria of the genus Burkholderia sensu lato. In the genus Burkholderia, the stink bug-associated strains form a monophyletic clade, named stink bug-associated beneficial and environmental (SBE) clade (or Caballeronia). Recently, we revealed that members of the family Largidae of the superfamily Pyrrhocoroidea are associated with Burkholderia but not specifically with the SBE Burkholderia; largid bugs harbor symbionts that belong to a clade of plant-associated group of Burkholderia, called plant-associated beneficial and environmental (PBE) clade (or Paraburkholderia). To understand the genomic features of Burkholderia symbionts of stink bugs, we isolated two symbiotic Burkholderia strains from a bordered plant bug Physopellta gutta (Pyrrhocoroidea: Largidae) and determined their complete genomes. The genome sizes of the insect-associated PBE (iPBE) are 9.5 Mb and 11.2 Mb, both of which are larger than the genomes of the SBE Burkholderia symbionts. A whole-genome comparison between two iPBE symbionts and three SBE symbionts highlighted that all previously reported symbiosis factors are shared and that 282 genes are specifically conserved in the five stink bug symbionts, over one-third of which have unknown function. Among the symbiont-specific genes, about 40 genes formed a cluster in all five symbionts; this suggests a "symbiotic island" in the genome of stink bug-associated Burkholderia.
Collapse
|
17
|
Groussin M, Mazel F, Alm EJ. Co-evolution and Co-speciation of Host-Gut Bacteria Systems. Cell Host Microbe 2020; 28:12-22. [DOI: 10.1016/j.chom.2020.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Mahadevan P, Middlebrooks ML. Bacterial diversity in the clarki ecotype of the photosynthetic sacoglossan, Elysia crispata. Microbiologyopen 2020; 9:e1098. [PMID: 32602643 PMCID: PMC7520991 DOI: 10.1002/mbo3.1098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 01/04/2023] Open
Abstract
Few studies have examined the bacterial communities associated with photosynthetic sacoglossan sea slugs. In this study, we determined the bacterial diversity in the clarki ecotype, Elysia crispata using 16S rRNA sequencing. Computational analysis using QIIME2 revealed variability between individual samples, with the Spirochaetes and Bacteroidetes phyla dominating most samples. Tenericutes and Proteobacteria were also found, among other phyla. Computational metabolic profiling of the bacteria revealed a variety of metabolic pathways involving carbohydrate metabolism, lipid metabolism, nucleotide metabolism, and amino acid metabolism. Although associated bacteria may be involved in mutually beneficial metabolic pathways, there was a high degree of variation in the bacterial community of individual slugs. This suggests that many of these relationships are likely opportunistic rather than obligate and that many of these bacteria may live commensally providing no major benefit to the slugs.
Collapse
|
19
|
Vishwakarma J, V.L S. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Appl Microbiol Biotechnol 2020; 104:6299-6314. [DOI: 10.1007/s00253-020-10653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
|
20
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
21
|
Schuh NW, Carrier TJ, Schrankel CS, Reitzel AM, Heyland A, Rast JP. Bacterial Exposure Mediates Developmental Plasticity and Resistance to Lethal Vibrio lentus Infection in Purple Sea Urchin (Strongylocentrotus purpuratus) Larvae. Front Immunol 2020; 10:3014. [PMID: 31993052 PMCID: PMC6971090 DOI: 10.3389/fimmu.2019.03014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Exposure to and colonization by bacteria during development have wide-ranging beneficial effects on animal biology but can also inhibit growth or cause disease. The immune system is the prime mediator of these microbial interactions and is itself shaped by them. Studies using diverse animal taxa have begun to elucidate the mechanisms underlying the acquisition and transmission of bacterial symbionts and their interactions with developing immune systems. Moreover, the contexts of these associations are often confounded by stark differences between "wild type" microbiota and the bacterial communities associated with animals raised in conventional or germ-free laboratories. In this study, we investigate the spatio-temporal kinetics of bacterial colonization and associated effects on growth and immune function in larvae of the purple sea urchin (Strongylocentrotus purpuratus) as a model for host-microbe interactions and immune system development. We also compare the host-associated microbiota of developing embryos and larvae raised in natural seawater or exposed to adult-associated bacteria in the laboratory. Bacteria associated with zygotes, embryos, and early larvae are detectable with 16S amplicon sequencing, but 16S-FISH indicates that the vast majority of larval bacterial load is acquired after feeding begins and is localized to the gut lumen. The bacterial communities of laboratory-cultured embryos are significantly less diverse than the natural microbiota but recapitulate its major components (Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes), suggesting that biologically relevant host-microbe interactions can be studied in the laboratory. We also demonstrate that bacterial exposure in early development induces changes in morphology and in the immune system. In the absence of bacteria, larvae grow larger at the 4-arm stage. Additionally, bacteria-exposed larvae are significantly more resistant to lethal infection with the larva-associated pathogen Vibrio lentus suggesting that early exposure to high levels of microbes, as would be expected in natural conditions, affects the immune state in later larvae. These results expand our knowledge of microbial influences on early sea urchin development and establish a model in which to study the interactions between the developing larval immune system and the acquisition of larval microbiota.
Collapse
Affiliation(s)
- Nicholas W Schuh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Tyler J Carrier
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Catherine S Schrankel
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Marine Biology Research Division, Scripps Institute of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Jonathan P Rast
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Sanchez G, Jolly J, Reid A, Sugimoto C, Azama C, Marlétaz F, Simakov O, Rokhsar DS. New bobtail squid (Sepiolidae: Sepiolinae) from the Ryukyu islands revealed by molecular and morphological analysis. Commun Biol 2019; 2:465. [PMID: 31840110 PMCID: PMC6906322 DOI: 10.1038/s42003-019-0661-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/22/2019] [Indexed: 01/17/2023] Open
Abstract
Bobtail squid are emerging models for host-microbe interactions, behavior, and development, yet their species diversity and distribution remain poorly characterized. Here, we combine mitochondrial and transcriptome sequences with morphological analysis to describe three species of bobtail squid (Sepiolidae: Sepiolinae) from the Ryukyu archipelago, and compare them with related taxa. One Ryukyuan type was previously unknown, and is described here as Euprymna brenneri sp. nov. Another Ryukyuan type is morphologically indistinguishable from Sepiola parva Sasaki, 1913. Molecular analyses, however, place this taxon within the genus Euprymna Steenstrup, 1887, and additional morphological investigation led to formal rediagnosis of Euprymna and reassignment of this species as Euprymna parva comb. nov. While no adults from the third Ryukyuan type were found, sequences from hatchlings suggest a close relationship with E. pardalota Reid, 2011, known from Australia and East Timor. The broadly sampled transcriptomes reported here provide a foundation for future phylogenetic and comparative studies.
Collapse
Affiliation(s)
- Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi Hiroshima, Hiroshima, Japan
| | - Jeffrey Jolly
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Amanda Reid
- Australian Museum Research Institute, 1 William Street, Sydney, Australia 2010
| | - Chikatoshi Sugimoto
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Chika Azama
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Daniel S. Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
- Department of Molecular and Cell Biology, Life Sciences Addition #3200, Berkeley, CA 94720-3200 USA
| |
Collapse
|
23
|
Gutiérrez‐Barranquero JA, Reen FJ, Parages ML, McCarthy R, Dobson ADW, O'Gara F. Disruption of N-acyl-homoserine lactone-specific signalling and virulence in clinical pathogens by marine sponge bacteria. Microb Biotechnol 2019; 12:1049-1063. [PMID: 29105344 PMCID: PMC6680641 DOI: 10.1111/1751-7915.12867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/31/2017] [Indexed: 12/02/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel bioactivities. One such area of ongoing research is the discovery of compounds that interfere with the cell-cell signalling process called quorum sensing (QS). Described as the next generation of antimicrobials, these compounds can target virulence and persistence of clinically relevant pathogens, independent of any growth-limiting effects. Marine sponges are a rich source of microbial diversity, with dynamic populations in a symbiotic relationship. In this study, we have harnessed the QS inhibition (QSI) potential of marine sponge microbiota and through culture-based discovery have uncovered small molecule signal mimics that neutralize virulence phenotypes in clinical pathogens. This study describes for the first time a marine sponge Psychrobacter sp. isolate B98C22 that blocks QS signalling, while also reporting dual QS/QSI activity in the Pseudoalteromonas sp. J10 and ParacoccusJM45. Isolation of novel QSI activities has significant potential for future therapeutic development, of particular relevance in the light of the pending perfect storm of antibiotic resistance meeting antibiotic drug discovery decline.
Collapse
Affiliation(s)
- José A. Gutiérrez‐Barranquero
- BIOMERIT Research CentreSchool of MicrobiologyUniversity College CorkNational University of IrelandCorkIreland
- Present address:
Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraDepartamento de MicrobiologíaFacultad de CienciasUniversidad de Málaga29071MálagaSpain
| | - F. Jerry Reen
- BIOMERIT Research CentreSchool of MicrobiologyUniversity College CorkNational University of IrelandCorkIreland
| | - María L. Parages
- BIOMERIT Research CentreSchool of MicrobiologyUniversity College CorkNational University of IrelandCorkIreland
- Present address:
Departamento de EcologíaFacultad de CienciasUniversidad de Málaga29071MálagaSpain
| | - Ronan McCarthy
- BIOMERIT Research CentreSchool of MicrobiologyUniversity College CorkNational University of IrelandCorkIreland
| | - Alan D. W. Dobson
- School of MicrobiologyUniversity College CorkNational University of IrelandCorkIreland
| | - Fergal O'Gara
- BIOMERIT Research CentreSchool of MicrobiologyUniversity College CorkNational University of IrelandCorkIreland
- Human Microbiome ProgrammeSchool of Biomedical SciencesCurtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
- Curtin Health Innovation Research Institute (CHIRI)Curtin UniversityPerthWAAustralia
- School of Biomedical SciencesFaculty of Health SciencesCurtin UniversityPerthWAAustralia
| |
Collapse
|
24
|
Cohen ML, Mashanova EV, Rosen NM, Soto W. Adaptation to temperature stress by Vibrio fischeri facilitates this microbe's symbiosis with the Hawaiian bobtail squid (Euprymna scolopes). Evolution 2019; 73:1885-1897. [PMID: 31397886 DOI: 10.1111/evo.13819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/29/2022]
Abstract
For microorganisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether adaptation to stress during the free-living stage can impact microbial fitness in the host. To address this topic, the mutualism between the Hawaiian bobtail squid (Euprymna scolopes) and the marine bioluminescent bacterium Vibrio fischeri was utilized. Using microbial experimental evolution, V. fischeri was selected to low (8°C), high (34°C), and fluctuating temperature stress (8°C/34°C) for 2000 generations. The temperatures 8°C and 34°C were the lower and upper growth limits, respectively. V. fischeri was also selected to benign temperatures (21°C and 28°C) for 2000 generations, which served as controls. V. fischeri demonstrated significant adaptation to low, high, and fluctuating temperature stress. V. fischeri did not display significant adaptation to the benign temperatures. Adaptation to stressful temperatures facilitated V. fischeri's ability to colonize the squid host relative to the ancestral lines. Bioluminescence levels also increased. Evolution to benign temperatures did not manifest these results. In summary, microbial adaptation to stress during the free-living stage can promote coevolution between hosts and microorganisms.
Collapse
Affiliation(s)
- Meagan Leah Cohen
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| |
Collapse
|
25
|
Litvak Y, Bäumler AJ. Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity 2019; 51:214-224. [DOI: 10.1016/j.immuni.2019.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Rapid Metabolome and Bioactivity Profiling of Fungi Associated with the Leaf and Rhizosphere of the Baltic Seagrass Zostera marina. Mar Drugs 2019; 17:md17070419. [PMID: 31330983 PMCID: PMC6669648 DOI: 10.3390/md17070419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/30/2023] Open
Abstract
Zostera marina (eelgrass) is a marine foundation species with key ecological roles in coastal habitats. Its bacterial microbiota has been well studied, but very little is known about its mycobiome. In this study, we have isolated and identified 13 fungal strains, dominated by Penicillium species (10 strains), from the leaf and the root rhizosphere of Baltic Z. marina. The organic extracts of the fungi that were cultured by an OSMAC (One-Strain–Many-Compounds) regime using five liquid culture media under both static and shaking conditions were investigated for their chemical and bioactivity profiles. All extracts showed strong anti-quorum sensing activity, and the majority of the Penicillium extracts displayed antimicrobial or anti-biofilm activity against Gram-negative environmental marine and human pathogens. HPLC-DAD-MS-based rapid metabolome analyses of the extracts indicated the high influence of culture conditions on the secondary metabolite (SM) profiles. Among 69 compounds detected in all Penicillium sp. extracts, 46 were successfully dereplicated. Analysis of SM relatedness in culture conditions by Hierarchical Cluster Analysis (HCA) revealed generally low similarity and showed a strong effect of medium selection on chemical profiles of Penicillium sp. This is the first study assessing both the metabolite and bioactivity profile of the fungi associated with Baltic eelgrass Z. marina.
Collapse
|
27
|
Girard L. Quorum sensing in Vibrio spp.: the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 2019; 45:451-471. [PMID: 31241379 DOI: 10.1080/1040841x.2019.1624499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS) is a density-dependent mechanism enabling bacteria to coordinate their actions via the release of small diffusible molecules named autoinducers (AIs). Vibrio spp. are able to adapt to changing environmental conditions by using a wide range of physiological mechanisms and many species pose a threat for human health and diverse marine and estuarine ecosystems worldwide. Cell-to-cell communication controls many of their vital functions such as niche colonization, survival strategies, or virulence. In this review, I summarize (1) the different known QS pathways (2) the diversity of AIs as well as their biological functions, and (3) the QS-mediated interactions between Vibrio and other organisms. However, the current knowledge is limited to a few pathogenic or bioluminescent species and in order to provide a genus-wide view an inventory of QS genes among 87 Vibrio species has been made. The large diversity of signal molecules and their differential effects on a particular physiological function suggest that the complexity of multiple signalling systems within bacterial communities is far from being fully understood. I question here the real level of specificity of such communication in the environment and discuss the different perspectives in order to better apprehend QS in natural habitats.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics , KU Leuven , Belgium
| |
Collapse
|
28
|
Gorelik O, Levy N, Shaulov L, Yegodayev K, Meijler MM, Sal-Man N. Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. Sci Rep 2019; 9:4122. [PMID: 30858454 PMCID: PMC6411865 DOI: 10.1038/s41598-019-40859-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Diarrhoea is the second leading cause of death in children under the age of five. The bacterial species, Vibrio cholerae and enteropathogenic Escherichia coli (EPEC), are among the main pathogens that cause diarrhoeal diseases, which are associated with high mortality rates. These two pathogens have a common infection site-the small intestine. While it is known that both pathogens utilize quorum sensing (QS) to determine their population size, it is not yet clear whether potential bacterial competitors can also use this information. In this study, we examined the ability of EPEC to determine V. cholerae population sizes and to modulate its own virulence mechanisms accordingly. We found that EPEC virulence is enhanced in response to elevated concentrations of cholera autoinducer-1 (CAI-1), even though neither a CAI-1 synthase nor CAI-1 receptors have been reported in E. coli. This CAI-1 sensing and virulence upregulation response may facilitate the ability of EPEC to coordinate successful colonization of a host co-infected with V. cholerae. To the best of our knowledge, this is the first observed example of 'eavesdropping' between two bacterial pathogens that is based on interspecies sensing of a QS molecule.
Collapse
Affiliation(s)
- Orna Gorelik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niva Levy
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lihi Shaulov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael M Meijler
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
29
|
Détrée C, Haddad I, Demey-Thomas E, Vinh J, Lallier FH, Tanguy A, Mary J. Global host molecular perturbations upon in situ loss of bacterial endosymbionts in the deep-sea mussel Bathymodiolus azoricus assessed using proteomics and transcriptomics. BMC Genomics 2019; 20:109. [PMID: 30727955 PMCID: PMC6364412 DOI: 10.1186/s12864-019-5456-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
Background Colonization of deep-sea hydrothermal vents by most invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers in these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts loss on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels. Results Global proteomic and transcriptomic results evidenced a global disruption of host machinery in aposymbiotic organisms. We observed that the total number of proteins identified decreased from 1118 in symbiotic mussels to 790 in partially depleted mussels and 761 in aposymbiotic mussels. Using microarrays we identified 4300 transcripts differentially expressed between symbiont-depleted and symbiotic mussels. Among these transcripts, 799 were found differentially expressed in aposymbiotic mussels and almost twice as many in symbiont-depleted mussels as compared to symbiotic mussels. Regarding apoptotic and immune system processes – known to be largely involved in symbiotic interactions – an overall up-regulation of associated proteins and transcripts was observed in symbiont-depleted mussels. Conclusion Overall, our study showed a global impairment of host machinery and an activation of both the immune and apoptotic system following symbiont-depletion. One of the main assumptions is the involvement of symbiotic bacteria in the inhibition and regulation of immune and apoptotic systems. As such, symbiotic bacteria may increase their lifespan in gill cells while managing the defense of the holobiont against putative pathogens.
Collapse
Affiliation(s)
- Camille Détrée
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.,Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Iman Haddad
- ESPCI ParisTech, CNRS, USR 3149, Spectrométrie de Masse Biologique et Protéomique, 75231, Paris Cedex 05, France
| | - Emmanuelle Demey-Thomas
- ESPCI ParisTech, CNRS, USR 3149, Spectrométrie de Masse Biologique et Protéomique, 75231, Paris Cedex 05, France
| | - Joëlle Vinh
- ESPCI ParisTech, CNRS, USR 3149, Spectrométrie de Masse Biologique et Protéomique, 75231, Paris Cedex 05, France
| | - François H Lallier
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Jean Mary
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France.
| |
Collapse
|
30
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
31
|
Cai S, Shen Y, Zou Y, Sun P, Wei W, Zhao J, Zhang C. Engineering highly sensitive whole-cell mercury biosensors based on positive feedback loops from quorum-sensing systems. Analyst 2018; 143:630-634. [PMID: 29271434 DOI: 10.1039/c7an00587c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury contamination represents a global threat. A simple, sensitive, and rapid means of detecting trace mercury is urgently needed. Herein, we have developed a series of mercury biosensors by combining quorum sensing-based positive feedback systems with a mercury-specific operon, merR. Our results have demonstrated that the sensitivity and fluorescence intensity of the engineered E. coli cells were greatly improved thanks to the positive feedback system. In addition, by fitting the fluorescence signals to the classic Hill equation, we discovered that the responses of the engineered E. coli cells were close to ultrasensitive curves. Our work highlights quorum-sensing systems as a powerful tool in biosensor designs.
Collapse
Affiliation(s)
- Sheng Cai
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
All multicellular organisms are colonized by microbes, but a gestalt study of the composition of microbiome communities and their influence on the ecology and evolution of their macroscopic hosts has only recently become possible. One approach to thinking about the topic is to view the host–microbiome ecosystem as a “holobiont”. Because natural selection acts on an organism’s realized phenotype, and the phenotype of a holobiont is the result of the integrated activities of both the host and all of its microbiome inhabitants, it is reasonable to think that evolution can act at the level of the holobiont and cause changes in the “hologenome”, or the collective genomic content of all the individual bionts within the holobiont. This relatively simple assertion has nevertheless been controversial within the microbiome community. Here, I provide a review of recent work on the hologenome concept of evolution. I attempt to provide a clear definition of the concept and its implications and to clarify common points of disagreement.
Collapse
Affiliation(s)
- J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
33
|
Carthey AJR, Gillings MR, Blumstein DT. The Extended Genotype: Microbially Mediated Olfactory Communication. Trends Ecol Evol 2018; 33:885-894. [PMID: 30224089 DOI: 10.1016/j.tree.2018.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 12/26/2022]
Abstract
Microbes are now known to influence inter- and intraspecific olfactory signaling systems. They do so by producing metabolites that function as odorants. A unique attribute of such odorants is that they arise as a product of microbial-host interactions. These interactions need not be mutualistic, and indeed can be antagonistic. We develop an integrated ecoevolutionary model to explore microbially mediated olfactory communication and a process model that illustrates the various ways that microbial products might contribute to odorants. This novel approach generates testable predictions, including that selection to incorporate microbial products should be a common feature of infochemicals that communicate identity but not those that communicate fitness or quality. Microbes extend an individual's genotype, but also enhance vulnerability to environmental change.
Collapse
Affiliation(s)
- Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
The alternative sigma factor RpoQ regulates colony morphology, biofilm formation and motility in the fish pathogen Aliivibrio salmonicida. BMC Microbiol 2018; 18:116. [PMID: 30208852 PMCID: PMC6134601 DOI: 10.1186/s12866-018-1258-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023] Open
Abstract
Background Quorum sensing (QS) is a cell-to cell communication system that bacteria use to synchronize activities as a group. LitR, the master regulator of QS in Aliivibrio salmonicida, was recently shown to regulate activities such as motility, rugosity and biofilm formation in a temperature dependent manner. LitR was also found to be a positive regulator of rpoQ. RpoQ is an alternative sigma factor belonging to the sigma −70 family. Alternative sigma factors direct gene transcription in response to environmental signals. In this work we have studied the role of RpoQ in biofilm formation, colony morphology and motility of A. salmonicida LFI1238. Results The rpoQ gene in A. salmonicida LFI1238 was deleted using allelic exchange. We found that RpoQ is a strong repressor of rugose colony morphology and biofilm formation, and that it controls motility of the bacteria. We also show that overexpression of rpoQ in a ΔlitR mutant of A. salmonicida disrupts the biofilm produced by the ΔlitR mutant and decreases its motility, whereas rpoQ overexpression in the wild-type completely eliminates the motility. Conclusion The present work demonstrates that the RpoQ sigma factor is a novel regulatory component involved in modulating motility, colony morphology and biofilm formation in the fish pathogen A. salmonicida. The findings also confirm that RpoQ functions downstream of the QS master regulator LitR. However further studies are needed to elucidate how LitR and RpoQ work together in controlling phenotypes related to QS in A. salmonicida. Electronic supplementary material The online version of this article (10.1186/s12866-018-1258-9) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Byndloss MX, Pernitzsch SR, Bäumler AJ. Healthy hosts rule within: ecological forces shaping the gut microbiota. Mucosal Immunol 2018; 11:1299-1305. [PMID: 29743614 DOI: 10.1038/s41385-018-0010-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/05/2018] [Indexed: 02/04/2023]
Abstract
A balanced gut microbiota is important for human health, but the mechanisms that maintain homeostasis are incompletely understood. Recent insights suggest the host plays a key role in shaping its gut microbiota to be beneficial. While host control in the small intestine curbs bacterial numbers to avoid competition for simple sugars and amino acids, the host limits oxygen availability in the large intestine to obtain microbial fermentation products from fiber. Epithelial cells are major players in imposing ecological control mechanisms, which involves the release of antimicrobial peptides by small-intestinal Paneth cells and maintenance of luminal anaerobiosis by epithelial hypoxia in the colon. Harnessing these epithelial control mechanisms for therapeutic means could provide a novel lynchpin for strategies to remediate dysbiosis.
Collapse
Affiliation(s)
- Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | | | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
36
|
Wysoczynski-Horita CL, Boursier ME, Hill R, Hansen K, Blackwell HE, Churchill MEA. Mechanism of agonism and antagonism of the Pseudomonas aeruginosa quorum sensing regulator QscR with non-native ligands. Mol Microbiol 2018; 108:240-257. [PMID: 29437248 DOI: 10.1111/mmi.13930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses the process of quorum sensing (QS) to coordinate the expression of many virulence genes. During quorum sensing, N-acyl-homoserine lactone (AHL) signaling molecules regulate the activity of three LuxR-type transcription factors, LasR, RhlR and QscR. To better understand P. aeruginosa QS signal reception, we examined the mechanism underlying the response of QscR to synthetic agonists and antagonists using biophysical and structural approaches. The structure of QscR bound to a synthetic agonist reveals a novel mode of ligand binding supporting a general mechanism for agonist activity. In turn, antagonists of QscR with partial agonist activity were found to destabilize and greatly impair QscR dimerization and DNA binding. These results highlight the diversity of LuxR-type receptor responses to small molecule agonists and antagonists and demonstrate the potential for chemical strategies for the selective targeting of individual QS systems.
Collapse
Affiliation(s)
- Christina L Wysoczynski-Horita
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Ryan Hill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mair E A Churchill
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
37
|
|
38
|
Logic of two antagonizing intra-species quorum sensing systems in bacteria. Biosystems 2018; 165:88-98. [PMID: 29407383 DOI: 10.1016/j.biosystems.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/08/2017] [Accepted: 01/10/2018] [Indexed: 12/24/2022]
Abstract
Bacteria release signaling molecules into the surrounding environment and sense them when present in their proximity. Using this strategy, a cell estimates the number of neighbors in its surrounding. Upon sensing a critical number of individuals, bacteria coordinate a number of cellular processes. This density-dependent control of gene expression and physiology is called quorum sensing (QS). Quorum sensing controls a wide variety of functions in bacteria, including those related to motility, growth, virulence etc. Quorum sensing has been widely observed in bacteria while the individuals of the same species or different species compete and cooperate each other. Interestingly, many species possess more than one QS system (intra-species) and these QS systems interact each other to perform quorum sensing. Thus, several logical arrangements can be possible based on the interaction among intra-species QS systems - parallel, series, antagonizing, and agonizing. In this work, we perform simulations to understand the logic of interaction between two antagonizing intra-species QS systems. In such an interaction, one QS system gets fully expressed and the other only gets partially expressed. This is found to be dictated by the interplay between autoinducer's diffusivity and antagonizing strength. In addition, we speculate an important role of the intracellular regulators (eg. LuxR) in maintaining the uniform response among the individual cells from the different localities. We also expect the interplay between the autoinducer's diffusivity and distribution of cells in fine tuning the collective response. Interestingly, in a localized niche with a heterogeneous cell distribution, the cells are expected to perform a global quorum sensing via fully expressed QS system and a local quorum sensing via partially expressed QS system.
Collapse
|
39
|
Abstract
Gut dysbiosis is associated with many non-communicable human diseases, but the mechanisms maintaining homeostasis remain incompletely understood. Recent insights suggest that during homeostasis, epithelial hypoxia limits oxygen availability in the colon, thereby maintaining a balanced microbiota that functions as a microbial organ, producing metabolites contributing to host nutrition, immune education and niche protection. Dysbiosis is characterized by a shift in the microbial community structure from obligate to facultative anaerobes, suggesting oxygen as an important ecological driver of microbial organ dysfunction. The ensuing disruption of gut homeostasis can lead to non- communicable disease because microbiota-derived metabolites are either depleted or generated at harmful concentrations. This Opinion article describes the concept that host control over the microbial ecosystem in the colon is critical for the composition and function of our microbial organ, which provides a theoretical framework for linking microorganisms to non-communicable diseases.
Collapse
Affiliation(s)
- Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616, USA
| |
Collapse
|
40
|
KUWAHARA HITOMI, NINOMIYA JUNKO, MORITA HIROSHI. Control of Aliivibrio fischeri Luminescence and Decrease in Bioluminescence by Fungicides. Biocontrol Sci 2018; 23:85-96. [DOI: 10.4265/bio.23.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- HITOMI KUWAHARA
- Graduate School of Environment Engineering, University of Kitakyushu
| | - JUNKO NINOMIYA
- Graduate School of Environment Engineering, University of Kitakyushu
- National Institute of Technology, Oita College
| | - HIROSHI MORITA
- Faculty of Environment Engineering, University of Kitakyushu
| |
Collapse
|
41
|
Troselj V, Cao P, Wall D. Cell-cell recognition and social networking in bacteria. Environ Microbiol 2017; 20:923-933. [PMID: 29194914 DOI: 10.1111/1462-2920.14005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 01/13/2023]
Abstract
The ability to recognize self and to recognize partnering cells allows microorganisms to build social networks that perform functions beyond the capabilities of the individual. In bacteria, recognition typically involves genetic determinants that provide cell surface receptors or diffusible signalling chemicals to identify proximal cells at the molecular level that can participate in cooperative processes. Social networks also rely on discriminating mechanisms to exclude competing cells from joining and exploiting their groups. In addition to their appropriate genotypes, cell-cell recognition also requires compatible phenotypes, which vary according to environmental cues or exposures as well as stochastic processes that lead to heterogeneity and potential disharmony in the population. Understanding how bacteria identify their social partners and how they synchronize their behaviours to conduct multicellular functions is an expanding field of research. Here, we review recent progress in the field and contrast the various strategies used in recognition and behavioural networking.
Collapse
Affiliation(s)
- Vera Troselj
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Pengbo Cao
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
42
|
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101188. [PMID: 28991153 PMCID: PMC5664689 DOI: 10.3390/ijerph14101188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.
Collapse
|
43
|
Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc Natl Acad Sci U S A 2017; 114:E8488-E8497. [PMID: 28923926 DOI: 10.1073/pnas.1706879114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial communities colonize epithelial surfaces of most animals. Several factors, including the innate immune system, mucus composition, and diet, have been identified as determinants of host-associated bacterial communities. Here we show that the early branching metazoan Hydra is able to modify bacterial quorum-sensing signals. We identified a eukaryotic mechanism that enables Hydra to specifically modify long-chain 3-oxo-homoserine lactones into their 3-hydroxy-HSL counterparts. Expression data revealed that Hydra's main bacterial colonizer, Curvibacter sp., responds differentially to N-(3-hydroxydodecanoyl)-l-homoserine lactone (3OHC12-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL). Investigating the impacts of the different N-acyl-HSLs on host colonization elucidated that 3OHC12-HSL allows and 3OC12-HSL represses host colonization of Curvibacter sp. These results show that an animal manipulates bacterial quorum-sensing signals and that this modification leads to a phenotypic switch in the bacterial colonizers. This mechanism may enable the host to manipulate the gene expression and thereby the behavior of its bacterial colonizers.
Collapse
|
44
|
Abstract
Bacteria respond to cell density by expressing genes whose products are beneficial to the population as a whole. This response is brought about through the release into the medium of signaling molecules of the class N-acyl homoserine lactones, the concentration of which determines the level of gene expression. This form of communication between cells has been termed "quorum sensing," and has been found to operate in the control of many functions in a variety of gram-negative bacteria. As with all signaling between individuals, if fitness costs are associated with the release of and response to the signal, the inclusive fitness of alleles responsible for the phenomenon depends upon genetic relatedness between signaler and responder. The situation is considered in explicit models for bacterial population genetics, in which the critical parameter determining the success of quorum sensing is the mean number of cells founding a population sharing a patch of resource. It is found that extensive polymorphism for the presence or absence of quorum sensing is expected for a wide range of parameter space. If local communities of bacteria contain diverse species, community stability may be the consequence of these interactions rather than polymorphism.
Collapse
Affiliation(s)
- J F Y Brookfield
- Department of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
45
|
Thompson LR, Nikolakakis K, Pan S, Reed J, Knight R, Ruby EG. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ Microbiol 2017; 19:1845-1856. [PMID: 28152560 PMCID: PMC5409853 DOI: 10.1111/1462-2920.13684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 11/30/2022]
Abstract
The marine bacterium Vibrio fischeri is the monospecific symbiont of the Hawaiian bobtail squid, Euprymna scolopes, and the establishment of this association involves a number of signaling pathways and transcriptional responses between both partners. We report here the first full RNA-Seq dataset representing host-associated V. fischeri cells from colonized juvenile E. scolopes, as well as comparative transcriptomes under both laboratory and simulated marine planktonic conditions. These data elucidate the broad transcriptional changes that these bacteria undergo during the early stages of symbiotic colonization. We report several previously undescribed and unexpected transcriptional responses within the early stages of this symbiosis, including gene expression patterns consistent with biochemical stresses inside the host, and metabolic patterns distinct from those reported in associations with adult animals. Integration of these transcriptional data with a recently developed metabolic model of V. fischeri provides us with a clearer picture of the metabolic state of symbionts within the juvenile host, including their possible carbon sources. Taken together, these results expand our understanding of the early stages of the squid-vibrio symbiosis, and more generally inform the transcriptional responses underlying the activities of marine microbes during host colonization.
Collapse
Affiliation(s)
- Luke R Thompson
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Kiel Nikolakakis
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Shu Pan
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jennifer Reed
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Edward G Ruby
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
- Pacific Biosciences Research Center, University of Hawaii, Manoa, HI, USA
| |
Collapse
|
46
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Merindol R, Walther A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem Soc Rev 2017; 46:5588-5619. [DOI: 10.1039/c6cs00738d] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A broad overview of functional aspects in biological and synthetic out-of-equilibrium systems.
Collapse
Affiliation(s)
- Rémi Merindol
- Institute for Macromolecular Chemistry
- Albert-Ludwigs-University Freiburg
- 79106 Freiburg
- Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry
- Albert-Ludwigs-University Freiburg
- 79106 Freiburg
- Germany
| |
Collapse
|
48
|
Gao F, Al-Saari N, Rohul Amin AKM, Sato K, Mino S, Suda W, Oshima K, Hattori M, Ohkuma M, Hargreaves PI, Meirelles PM, Thompson FL, Thompson C, Gomez-Gil B, Sawabe T, Sawabe T. Vibrio ishigakensis sp. nov., in Halioticoli clade isolated from seawater in Okinawa coral reef area, Japan. Syst Appl Microbiol 2016; 39:330-5. [PMID: 27262360 DOI: 10.1016/j.syapm.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 11/26/2022]
Abstract
Five novel strains showing non-motile, alginolytic, halophilic and fermentative features were isolated from seawater samples off Okinawa in coral reef areas. These strains were characterized by an advanced polyphasic taxonomy including genome based taxonomy using multilocus sequence analysis (MLSA) and in silico DNA-DNA similarity (in silico DDH). Phylogenetic analyses on the basis of 16S rRNA gene sequences revealed that the isolates could be assigned to the genus Vibrio, however they were not allocated into any distinct cluster with known Vibrionaceae species. MLSA based on eight protein-coding genes (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA) showed the vibrios formed an outskirt branch of Halioticoli clade. The experimental DNA-DNA hybridization data revealed that the five strains were in the range of being defined as conspecific but separate from nine Halioticoli clade species. The G+C contents of the Vibrio ishigakensis strains were 47.3-49.1mol%. Both Amino Acid Identity and Average Nucleotide Identity of the strain C1(T) against Vibrio ezurae HDS1-1(T), Vibrio gallicus HT2-1(T), Vibrio halioticoli IAM 14596(T), Vibrio neonatus HDD3-1(T) and Vibrio superstes G3-29(T) showed less than 95% similarity. The genome-based taxonomic approach by means of in silico DDH values also supports the V. ishigakensis strains being distinct from the other known Halioticoli clade species. Sixteen traits (growth temperature range, DNase and lipase production, indole production, and assimilation of 10 carbon compounds) distinguished these strains from Halioticoli clade species. The names V. ishigakensis sp. nov. is proposed for the species of Halioticoli clade, with C1(T) as the type strain (JCM 19231(T)=LMG 28703(T)).
Collapse
Affiliation(s)
- Feng Gao
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Nurhidayu Al-Saari
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - A K M Rohul Amin
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Kazumichi Sato
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Wataru Suda
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenshiro Oshima
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Ibaraki, Japan
| | - Paulo Iiboshi Hargreaves
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Pedro Milet Meirelles
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Gomez-Gil
- CIAD, AC Mazatlan Unit for Aquaculture and Environmental Management, AP 711 Mazatlán, Sinaloa, Mexico
| | - Toko Sawabe
- Department of Food and Nutrition, Hakodate Junior College, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
49
|
Amara N, Gregor R, Rayo J, Dandela R, Daniel E, Liubin N, Willems HME, Ben-Zvi A, Krom BP, Meijler MM. Fine-Tuning Covalent Inhibition of Bacterial Quorum Sensing. Chembiochem 2016; 17:825-35. [PMID: 26840534 DOI: 10.1002/cbic.201500676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/04/2023]
Abstract
Emerging antibiotic resistance among human pathogens has galvanized efforts to find alternative routes to combat bacterial virulence. One new approach entails interfering with the ability of bacteria to coordinate population-wide gene expression, or quorum sensing (QS), thus inhibiting the production of virulence factors and biofilm formation. We have recently developed such a strategy by targeting LasR, the master regulator of QS in the opportunistic human pathogen Pseudomonas aeruginosa, through the rational design of covalent inhibitors closely based on the core structure of the native ligand. We now report several groups of new inhibitors, one of which, fluoro-substituted ITC-12, displayed complete covalent modification of LasR, as well as effective QS inhibition in vitro and promising in vivo results. In addition to their potential clinical relevance, this series of synthetic QS modulators can be used as a tool to further unravel the complicated QS regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Neri Amara
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rachel Gregor
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Josep Rayo
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Erik Daniel
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nina Liubin
- Department of Life Sciences and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheva, Israel
| | - H Marjo E Willems
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, Free University Amsterdam and the University of Amsterdam, Amsterdam, The Netherlands
| | - Anat Ben-Zvi
- Department of Life Sciences and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, Free University Amsterdam and the University of Amsterdam, Amsterdam, The Netherlands
| | - Michael M Meijler
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
50
|
Reuter K, Steinbach A, Helms V. Interfering with Bacterial Quorum Sensing. PERSPECTIVES IN MEDICINAL CHEMISTRY 2016; 8:1-15. [PMID: 26819549 PMCID: PMC4718088 DOI: 10.4137/pmc.s13209] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery.
Collapse
Affiliation(s)
- Kerstin Reuter
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.; Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anke Steinbach
- Department of Drug Design and Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|