1
|
Molaey R, Appels L, Yesil H, Tugtas AE, Çalli B. Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177020. [PMID: 39427892 DOI: 10.1016/j.scitotenv.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
By 2050, global sewage sludge production is expected to increase by 51 %, rising from its current level of over 45 million tons of dry solids to nearly 68 million tons. This growth is primarily driven by population growth and the implementation of increasingly stringent environmental regulations. This increase in sewage sludge volume poses substantial challenges for sustainable management due to its complex composition. While sewage sludge contains valuable nutrients such as nitrogen (N), phosphorus (P), and potassium (K) that make it suitable for agriculture use, the presence of heavy metals (HMs), including cadmium (Cd), lead (Pb), mercury (Hg), chrome (Cr), copper (Cu), nickel (Ni) and zinc (Zn) creates significant barriers to its safe reuse. Inadequately treated sewage sludge, when repeatedly applied to agricultural soils, can lead to the accumulation of HMs, posing risks to long-term soil fertility, crop productivity, and broader environmental health. This review discusses various techniques for de-metallization of sewage sludge, including aerobic- and anaerobic bioleaching, chemical leaching, electrokinetic treatment, and supercritical fluid extraction. Among these techniques, anaerobic bioleaching is identified as the most environmentally sustainable option, as it offers a lower-energy, less chemically intensive approach to decrease HM content in the solid fraction of sewage sludge. This approach utilizes microbial activity under anaerobic conditions to solubilize and remove HMs, while minimizing nutrient loss and preserving the ecological integrity of the treated sewage sludge. Future research should prioritize the optimizing of anaerobic bioleaching processes to enhance both HM removal efficiency and nutrient retention. Additionally, integrating anaerobic bioleaching with air-assisted ultrasonication as a post treatment technology could further improve metal removal efficiency. This review aims to provide a comprehensive reference for researchers and practitioners seeking environmentally friendly solutions for HM removal from sewage sludge, ensuring its safe reuse in land applications and contributing to a circular agro-economy.
Collapse
Affiliation(s)
- Rahim Molaey
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Hatice Yesil
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - A Evren Tugtas
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - Bariş Çalli
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| |
Collapse
|
2
|
Gao H, Guo Z, He X, Yang J, Jiang L, Yang A, Xiao X, Xu R. Stress mitigation mechanism of rice leaf microbiota amid atmospheric deposition of heavy metals. CHEMOSPHERE 2024; 362:142680. [PMID: 38908447 DOI: 10.1016/j.chemosphere.2024.142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Leaf microbiota have been extensively applied in the biological control of plant diseases, but their crucial roles in mitigating atmospheric heavy metal (HM) deposition and promoting plant growth remain poorly understood. This study demonstrates that elevated atmospheric HM deposition on rice leaves significantly shapes distinct epiphytic and endophytic microbiota across all growth stages. HM stress consistently leads to the dominance of epiphytic Pantoea and endophytic Microbacterium in rice leaves, particularly during the booting and filling stages. Leaf-bound HMs stimulate the differentiation of specialized microbial communities in both endophytic and epiphytic compartments, thereby regulating leaf microbial interactions. Metagenomic binning retrieved high-quality genomes of keystone leaf microorganisms, indicating their potential for essential metabolic functions. Notably, Pantoea and Microbacterium show significant HM resistance, plant growth-promoting capabilities, and diverse element cycling functions. They possess genes associated with metal(loid) resistance, such as ars and czc, suggesting their ability to detoxify arsenic(As) and cadmium(Cd). They also support carbon, nitrogen, and sulfur cycling, with genes linked to carbon fixation, nitrogen fixation, and sulfur reduction. Additionally, these bacteria may enhance plant stress resistance and growth by producing antioxidants, phytohormones, and other beneficial compounds, potentially improving HM stress tolerance and nutrient availability in rice plants. This study shows that atmospheric HMs affect rice leaf microbial communities, prompting plants to seek microbial help to combat stress. The unique composition and metabolic potential of rice leaf microbiota offer a novel perspective for mitigating adverse stress induced by atmospheric HM deposition. This contributes to the utilization of leaf microbiota to alleviate the negative impact of heavy metal deposition on rice development and food security.
Collapse
Affiliation(s)
- Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiao He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Jinbo Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Li Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Aiping Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Le Geay M, Mayers K, Küttim M, Lauga B, Jassey VEJ. Development of a digital droplet PCR approach for the quantification of soil micro-organisms involved in atmospheric CO 2 fixation. Environ Microbiol 2024; 26:e16666. [PMID: 38889760 DOI: 10.1111/1462-2920.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Carbon-fixing micro-organisms (CFMs) play a pivotal role in soil carbon cycling, contributing to carbon uptake and sequestration through various metabolic pathways. Despite their importance, accurately quantifying the absolute abundance of these micro-organisms in soils has been challenging. This study used a digital droplet polymerase chain reaction (ddPCR) approach to measure the abundance of key and emerging CFMs pathways in fen and bog soils at different depths, ranging from 0 to 15 cm. We targeted total prokaryotes, oxygenic phototrophs, aerobic anoxygenic phototrophic bacteria and chemoautotrophs, optimizing the conditions to achieve absolute quantification of these genes. Our results revealed that oxygenic phototrophs were the most abundant CFMs, making up 15% of the total prokaryotic abundance. They were followed by chemoautotrophs at 10% and aerobic anoxygenic phototrophic bacteria at 9%. We observed higher gene concentrations in fen than in bog. There were also variations in depth, which differed between fen and bog for all genes. Our findings underscore the abundance of oxygenic phototrophs and chemoautotrophs in peatlands, challenging previous estimates that relied solely on oxygenic phototrophs for microbial carbon dioxide fixation assessments. Incorporating absolute gene quantification is essential for a comprehensive understanding of microbial contributions to soil processes. This approach sheds light on the complex mechanisms of soil functioning in peatlands.
Collapse
Affiliation(s)
- Marie Le Geay
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Kyle Mayers
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Béatrice Lauga
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Vincent E J Jassey
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
4
|
Michimori Y, Izaki R, Su Y, Fukuyama Y, Shimamura S, Nishimura K, Miwa Y, Hamakita S, Shimosaka T, Makino Y, Takeno R, Sato T, Beppu H, Cann I, Kanai T, Nunoura T, Atomi H. Removal of phosphoglycolate in hyperthermophilic archaea. Proc Natl Acad Sci U S A 2024; 121:e2311390121. [PMID: 38593075 PMCID: PMC11032457 DOI: 10.1073/pnas.2311390121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.
Collapse
Affiliation(s)
- Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Top Global University Program, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Rikihisa Izaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Yu Su
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Yuto Fukuyama
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka237–0061, Japan
| | - Shigeru Shimamura
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology, Yokosuka237–0061, Japan
| | - Karin Nishimura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Yuya Miwa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Sotaro Hamakita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Takahiro Shimosaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Top Global University Program, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Yuki Makino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Ryo Takeno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji611-0011, Japan
| | - Haruki Beppu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Isaac Cann
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Top Global University Program, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka237–0061, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Top Global University Program, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji611-0011, Japan
| |
Collapse
|
5
|
Zhu K, Liu J, Zhao M, Fu L, Du Z, Meng F, Gu L, Liu P, Liu Y, Zhang C, Zhang X, Li J. An intrusion and environmental effects of man-made silver nanoparticles in cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168890. [PMID: 38016565 DOI: 10.1016/j.scitotenv.2023.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.
Collapse
Affiliation(s)
- Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lulu Fu
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zengfeng Du
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Díez-Vives C, Riesgo A. High compositional and functional similarity in the microbiome of deep-sea sponges. THE ISME JOURNAL 2024; 18:wrad030. [PMID: 38365260 PMCID: PMC10837836 DOI: 10.1093/ismejo/wrad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Sponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species. This is most unfortunate, since HMA sponges can form massive sponge grounds in the deep sea, where they dominate the ecosystems, driving their biogeochemical cycles. Here, we assess the microbial transcriptional profile of three different deep-sea HMA sponges in four locations of the Cantabrian Sea and compared them to shallow water HMA and LMA (low microbial abundance) sponge species. Our results reveal that the sponge microbiome has converged in a fundamental metabolic role for deep-sea sponges, independent of taxonomic relationships or geographic location, which is shared in broad terms with shallow HMA species. We also observed a large number of redundant microbial members performing the same functions, likely providing stability to the sponge inner ecosystem. A comparison between the community composition of our deep-sea sponges and another 39 species of HMA sponges from deep-sea and shallow habitats, belonging to the same taxonomic orders, suggested strong homogeneity in microbial composition (i.e. weak species-specificity) in deep sea species, which contrasts with that observed in shallow water counterparts. This convergence in microbiome composition and functionality underscores the adaptation to an extremely restrictive environment with the aim of exploiting the available resources.
Collapse
Affiliation(s)
- Cristina Díez-Vives
- Department of Systems Biology, Centro Nacional de Biotecnología, c/ Darwin, 3, 28049 Madrid, Spain
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
7
|
Wang Y, Huang Y, Zeng Q, Liu D, An S. Biogeographic distribution of autotrophic bacteria was more affected by precipitation than by soil properties in an arid area. Front Microbiol 2023; 14:1303469. [PMID: 38173682 PMCID: PMC10761425 DOI: 10.3389/fmicb.2023.1303469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Autotrophic bacteria play an important role in carbon dioxide fixation and are widespread in terrestrial ecosystems. However, the biogeographic patterns of autotrophic bacteria and the driving factors still remain poorly understood. Methods Herein, we conducted a 391-km north to south transect (mean annual precipitation <600 mm) survey in the Loess Plateau of China, to investigate the biogeographic distributions of autotrophic bacteria (RubisCO cbbL and cbbM genes) and the environmental drivers across different latitude sites with clear vegetational and climatic gradients. Results and discussion The soils in northern region with lower precipitation are dominated by grassland/forest, which is typically separated from the soils in southern region with higher precipitation. The community structure of autotrophic bacterial cbbL and cbbM genes generally differed between the soils in the southern and northern Loess Plateau, suggesting that precipitation and its related land use practices/ecosystem types, rather than local soil properties, are more important in shaping the soil autotrophic microorganisms. The cbbL-containing generalist OTUs were almost equally abundant across the northern and southern Loess Plateau, while the cbbM-containing bacterial taxa were more prevalent in the low precipitation northern region. Such differences indicate differentiate distribution patterns of cbbM- and cbbL-containing bacteria across the north to south transect. Our results suggest that the community composition and the differentiate distributions of soil cbbL- and cbbM-containing bacterial communities depend on precipitation and the related ecosystem types in the north to south transect in the Loess Plateau of China.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Yimei Huang
- College of Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Quanchao Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| |
Collapse
|
8
|
Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. MICROBIOME 2023; 11:188. [PMID: 37612768 PMCID: PMC10464287 DOI: 10.1186/s40168-023-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Mangrove wetlands are coastal ecosystems with important ecological features and provide habitats for diverse microorganisms with key roles in nutrient and biogeochemical cycling. However, the overall metabolic potentials and ecological roles of microbial community in mangrove sediment are remained unanswered. In current study, the microbial and metabolic profiles of prokaryotic and fungal communities in mangrove sediments were investigated using metagenomic analysis based on PacBio single-molecule real time (SMRT) and Illumina sequencing techniques. RESULTS Comparing to Illumina short reads, the incorporation of PacBio long reads significantly contributed to more contiguous assemblies, yielded more than doubled high-quality metagenome-assembled genomes (MAGs), and improved the novelty of the MAGs. Further metabolic reconstruction for recovered MAGs showed that prokaryotes potentially played an essential role in carbon cycling in mangrove sediment, displaying versatile metabolic potential for degrading organic carbons, fermentation, autotrophy, and carbon fixation. Mangrove fungi also functioned as a player in carbon cycling, potentially involved in the degradation of various carbohydrate and peptide substrates. Notably, a new candidate bacterial phylum named as Candidatus Cosmopoliota with a ubiquitous distribution is proposed. Genomic analysis revealed that this new phylum is capable of utilizing various types of organic substrates, anaerobic fermentation, and carbon fixation with the Wood-Ljungdahl (WL) pathway and the reverse tricarboxylic acid (rTCA) cycle. CONCLUSIONS The study not only highlights the advantages of HiSeq-PacBio Hybrid assembly for a more complete profiling of environmental microbiomes but also expands our understanding of the microbial diversity and potential roles of distinct microbial groups in biogeochemical cycling in mangrove sediment. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Present Address: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Li-Rui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
9
|
Jameson B, Knobbe K, Glaser R. Nuclear Magnetic Resonance Study of CO 2 Capture by Fluoroalkylamines: Ammonium Ion p Ka Depression via Fluorine Modification and Thermochemistry of Carbamylation. J Org Chem 2023; 88:11534-11544. [PMID: 37531098 DOI: 10.1021/acs.joc.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We are developing energy-efficient and reversible carbon capture and release (CCR) systems that mimic the Lys201 carbamylation reaction in the active site of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO). The multiequilibria scenario ammonium ion Xa ⇌ amine Xb ⇌ carbamic acid Xc ⇌ carbamate Xd requires the presence of both free amine and CO2 for carbamylation and is affected by the pKa(Xa). Two fluorination strategies aimed at ammonium ion pKa depression and low pH carbamylation were analyzed with (2,2,2-trifluoroethyl)butylamine 2b and 2,2-difluoropropylamine 3b and compared to butylamine 1b. The determination of K1 and ΔG1 of the carbamylation reactions requires the solution of multiequilibria systems of equations based on initial conditions, 1H NMR measurements of carbamylation yields over a wide pH range, and knowledge of K2-K5 values. K2 and K3 describe carbonic acid acidity, and ammonium ion acidities K4 were measured experimentally. We calibrated carbamic acid acidities K5 based on the measured value K6 of aminocarbamic acid using isodesmic reactions. The proton exchange reactions were evaluated with ab initio computations at the APFD/6-311+G* level in combination with continuum solvation models and explicit solvation. The utilities of 1-3 will be discussed as they pertain to the development of fluorine-modified RuBisCO-mimetic reversible CCR systems.
Collapse
Affiliation(s)
- Brian Jameson
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| | - Kari Knobbe
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| | - Rainer Glaser
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| |
Collapse
|
10
|
Huang J, Yang J, Han M, Wang B, Sun X, Jiang H. Microbial carbon fixation and its influencing factors in saline lake water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162922. [PMID: 36933719 DOI: 10.1016/j.scitotenv.2023.162922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Microbial carbon fixation in saline lakes constitutes an important part of the global lacustrine carbon budget. However, the microbial inorganic carbon uptake rates in saline lake water and its influencing factors are still not fully understood. Here, we studied in situ microbial carbon uptake rates under light-dependent and dark conditions in the saline water of Qinghai Lake using a carbon isotopic labeling (14C-bicarbonate) technique, followed by geochemical and microbial analyses. The results showed that the light-dependent inorganic carbon uptake rates were 135.17-293.02 μg C L-1 h-1 during the summer cruise, while dark inorganic carbon uptake rates ranged from 4.27 to 14.10 μg C L-1 h-1. Photoautotrophic prokaryotes and algae (e.g. Oxyphotobacteria, Chlorophyta, Cryptophyta and Ochrophyta) may be the major contributors to light-dependent carbon fixation processes. Microbial inorganic carbon uptake rates were mainly influenced by the level of nutrients (e.g., ammonium, dissolved inorganic carbon, dissolved organic carbon, total nitrogen), with dissolved inorganic carbon content being predominant. Environmental and microbial factors jointly regulate the total, light-dependent and dark inorganic carbon uptake rates in the studied saline lake water. In summary, microbial light-dependent and dark carbon fixation processes are active and contribute significantly to carbon sequestration in saline lake water. Therefore, more attention should be given to microbial carbon fixation and its response to climate and environmental changes of the lake carbon cycle in the context of climate change.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
11
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
12
|
Jameson B, Glaser R. Unnatural Lysines with Reduced Sidechain
N
‐Basicity: Synthesis of
N
‐trifluoroethyl Substituted Lysine and Homologs. ChemistrySelect 2022. [DOI: 10.1002/slct.202203132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Brian Jameson
- Department of Chemistry Missouri University of Science and Technology Rolla Missouri 65401 United States
| | - Rainer Glaser
- Department of Chemistry Missouri University of Science and Technology Rolla Missouri 65401 United States
| |
Collapse
|
13
|
Wang X, Li W, Cheng A, Shen T, Xiao Y, Zhu M, Pan X, Yu L. Community characteristics of autotrophic CO 2-fixing bacteria in karst wetland groundwaters with different nitrogen levels. Front Microbiol 2022; 13:949208. [PMID: 36046022 PMCID: PMC9421164 DOI: 10.3389/fmicb.2022.949208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Karst wetlands are important in the global carbon and nitrogen cycles as well as in security of water resources. Huixian wetland (Guilin) is the largest natural karst wetland in China. In recent years, groundwater nitrogen pollution has increasingly affected the wetland ecosystem integrity due to anthropogenic activities. In this study, it was hypothesized that autotrophic microbial diversity is impacted with the advent of pollution, adversely affecting autotrophs in the carbon and nitrogen cycles. Autotrophic microbes have important roles in abating groundwater nitrogen pollution. Thus, it is of great significance to study the characteristics of autotrophic bacterial communities and their responses to environmental parameters in nitrogen-polluted karst groundwaters. The abundances of the Calvin-Benson cycle functional genes cbbL and cbbM as well as the autotrophic CO2-fixing bacterial communities were characterized in the karst groundwater samples with different levels of nitrogen pollution. The cbbM gene was generally more abundant than the cbbL gene in the groundwater samples. The cbbL gene abundance was significantly positively correlated with dissolved inorganic nitrogen (DIN) concentration (P < 0.01). In the autotrophic CO2-fixing bacterial communities, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria of the phylum Proteobacteria were predominant. At the genus level, Rubrivivax and Methylibium were the dominant cbbL gene containing genera, while Halothiobacillus and Endothiovibrio were the dominant genera for the cbbM gene. The abundance of autotrophic CO2-fixing bacterial communities increased but their diversity decreased with the inflow of nitrogen into the karst groundwater system. The community structure of autotrophic CO2-fixing bacteria in the groundwaters was also significantly affected by environmental factors such as the carbonic anhydrase (CA) activity, dissolved inorganic carbon (DIC) concentration, temperature, and oxidation-reduction potential (ORP). Nitrogen inflow significantly changed the characteristics of autotrophic CO2-fixing bacterial communities in the karst groundwaters. Some key genera such as Nitrosospira and Thiobacillus were clearly abundant in the karst groundwaters with high nitrogen levels. Their respective roles in nitrification and denitrification impact nitrogen removal in this ecosystem. The findings in this study provide an important reference for biological abatement of nitrogen pollution in the karst groundwater system.
Collapse
Affiliation(s)
- Xiayu Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Aoqi Cheng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Taiming Shen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Yutian Xiao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Pan
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| |
Collapse
|
14
|
Bolay P, Schlüter S, Grimm S, Riediger M, Hess WR, Klähn S. The transcriptional regulator RbcR controls ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes in the cyanobacterium Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2022; 235:432-445. [PMID: 35377491 DOI: 10.1111/nph.18139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Oxygenic photosynthesis evolved in cyanobacteria, primary producers of striking ecological importance. Like plants, cyanobacteria use the Calvin-Benson-Bassham cycle for CO2 fixation, fuelled by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). In a competitive reaction this enzyme also fixes O2 which makes it rather ineffective. To mitigate this problem, cyanobacteria evolved a CO2 concentrating mechanism (CCM) to pool CO2 in the vicinity of RuBisCO. However, the regulation of these carbon (C) assimilatory systems is understood only partially. Using the model Synechocystis sp. PCC 6803 we characterized an essential LysR-type transcriptional regulator encoded by gene sll0998. Transcript profiling of a knockdown mutant revealed diminished expression of several genes involved in C acquisition, including rbcLXS, sbtA and ccmKL encoding RuBisCO and parts of the CCM, respectively. We demonstrate that the Sll0998 protein binds the rbcL promoter and acts as a RuBisCO regulator (RbcR). We propose ATTA(G/A)-N5 -(C/T)TAAT as the binding motif consensus. Our data validate RbcR as a regulator of inorganic C assimilation and define the regulon controlled by it. Biological CO2 fixation can sustain efforts to reduce its atmospheric concentrations and is fundamental for the light-driven production of chemicals directly from CO2 . Information about the involved regulatory and physiological processes is crucial to engineer cyanobacterial cell factories.
Collapse
Affiliation(s)
- Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Susan Schlüter
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Samuel Grimm
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Matthias Riediger
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
15
|
Carbon dioxide photoreduction in prebiotic environments. Photochem Photobiol Sci 2022; 21:863-878. [PMID: 35107790 DOI: 10.1007/s43630-021-00168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The reduction of carbon dioxide is one of the hottest topics due to the concern of global warming. Carbon dioxide reduction is also an essential step for life's origins as photoautotrophs arose soon after Earth formation. Both the topics are of high general interest, and possibly, there could be a fruitful cross-fertilization of the two fields. Herein, we selected and collected papers related to photoreduction of carbon dioxide using compounds easily available on the Earth and considered of prebiotic relevance. This work might be useful also to scientists interested in carbon dioxide photoreduction and/or to have an overview of the techniques available.
Collapse
|
16
|
Kajla S, Kumari R, Nagi GK. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 2022; 204:149. [DOI: 10.1007/s00203-021-02677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
|
17
|
de Oliveira AL, Mitchell J, Girguis P, Bright M. Novel insights on obligate symbiont lifestyle and adaptation to chemosynthetic environment as revealed by the giant tubeworm genome. Mol Biol Evol 2021; 39:6454105. [PMID: 34893862 PMCID: PMC8789280 DOI: 10.1093/molbev/msab347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mutualism between the giant tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has been extensively researched over the past 40 years. However, the lack of the host whole genome information has impeded the full comprehension of the genotype/phenotype interface in Riftia. Here we described the high-quality draft genome of Riftia, its complete mitogenome, and tissue-specific transcriptomic data. The Riftia genome presents signs of reductive evolution, with gene family contractions exceeding expansions. Expanded gene families are related to sulphur metabolism, detoxification, anti-oxidative stress, oxygen transport, immune system, and lysosomal digestion, reflecting evolutionary adaptations to the vent environment and endosymbiosis. Despite the derived body plan, the developmental gene repertoire in the gutless tubeworm is extremely conserved with the presence of a near intact and complete Hox cluster. Gene expression analyses establishes that the trophosome is a multi-functional organ marked by intracellular digestion of endosymbionts, storage of excretory products and haematopoietic functions. Overall, the plume and gonad tissues both in contact to the environment harbour highly expressed genes involved with cell cycle, programmed cell death, and immunity indicating a high cell turnover and defence mechanisms against pathogens. We posit that the innate immune system plays a more prominent role into the establishment of the symbiosis during the infection in the larval stage, rather than maintaining the symbiostasis in the trophosome. This genome bridges four decades of physiological research in Riftia, whilst simultaneously provides new insights into the development, whole organism functions and evolution in the giant tubeworm.
Collapse
Affiliation(s)
| | - Jessica Mitchell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Monika Bright
- Department of Functional and Evolutionary Ecology, University of Vienna, Austria
| |
Collapse
|
18
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|
19
|
Wu S, Xi X, Fu X, Hu JJ, Zhang S, Wang L. Mixed electron donors synergistically enhance CO 2 fixation of non-photosynthetic microorganism communities through optimizing community structure to promote cbb gene transcription. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16368-16379. [PMID: 33387320 DOI: 10.1007/s11356-020-12201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Studies have shown that mixed electron donors (MEDs) can enhance the CO2-fixing efficiency of non-photosynthetic microbial communities (NPMCs), even up to the level of fixation observed when H2 is used as an electron donor. However, this promotion effect is not stable because its mechanism remains unclear. To elucidate the mechanisms involved, allowing further regulation and optimization of the MED system for improving the CO2-fixing efficiency of NPMCs consistently, cbb gene transcription level and efficiency, extracellular free organic carbon (EFOC) content as well as microbial structure of NPMCs under MED and other electron donor systems were investigated. MEDs synergistically promoted CO2 fixation efficiency of NPMCs, even producing levels seen when H2 was used as the electron donor. Subsequent experiments revealed that the cbb gene abundance and transcription level in the MED system were high compared with those in other single-electron donor systems; the concentration of EFOC per unit cell was relatively lower than that in any other electron donor system; and the system developed a large number of dominant heterotrophic bacteria such as Enterobacteriaceae and Vibrionaceae. Data analysis revealed a high negative correlation between EFOC concentration per unit cell and cbb gene abundance as well as gene transcription level. These results implied that MEDs can promote a complex microbial community structure enriched with high-efficiency heterotrophic bacteria, which can effectively reduce excessive EFOC generated by NPMCs in the CO2 fixation process, promoting overall cbb gene abundance and transcription level within the NPMC and thus enhancing CO2 fixation.
Collapse
Affiliation(s)
- Song Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xuefei Xi
- Shanghai Academy of Environmental Sciences, Shanghai, 200032, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jia-Jun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Saiwei Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
20
|
Picone N, Pol A, Mesman R, van Kessel MAHJ, Cremers G, van Gelder AH, van Alen TA, Jetten MSM, Lücker S, Op den Camp HJM. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. THE ISME JOURNAL 2021; 15:1150-1164. [PMID: 33303933 PMCID: PMC8115276 DOI: 10.1038/s41396-020-00840-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Ammonia oxidation was considered impossible under highly acidic conditions, as the protonation of ammonia leads to decreased substrate availability and formation of toxic nitrogenous compounds. Recently, some studies described archaeal and bacterial ammonia oxidizers growing at pH as low as 4, while environmental studies observed nitrification at even lower pH values. In this work, we report on the discovery, cultivation, and physiological, genomic, and transcriptomic characterization of a novel gammaproteobacterial ammonia-oxidizing bacterium enriched via continuous bioreactor cultivation from an acidic air biofilter that was able to grow and oxidize ammonia at pH 2.5. This microorganism has a chemolithoautotrophic lifestyle, using ammonia as energy source. The observed growth rate on ammonia was 0.196 day-1, with a doubling time of 3.5 days. The strain also displayed ureolytic activity and cultivation with urea as ammonia source resulted in a growth rate of 0.104 day-1 and a doubling time of 6.7 days. A high ammonia affinity (Km(app) = 147 ± 14 nM) and high tolerance to toxic nitric oxide could represent an adaptation to acidic environments. Electron microscopic analysis showed coccoid cell morphology with a large amount of intracytoplasmic membrane stacks, typical of gammaproteobacterial ammonia oxidizers. Furthermore, genome and transcriptome analysis showed the presence and expression of diagnostic genes for nitrifiers (amoCAB, hao, nor, ure, cbbLS), but no nirK was identified. Phylogenetic analysis revealed that this strain belonged to a novel bacterial genus, for which we propose the name "Candidatus Nitrosacidococcus tergens" sp. RJ19.
Collapse
Affiliation(s)
- Nunzia Picone
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Arjan Pol
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Rob Mesman
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Maartje A. H. J. van Kessel
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Geert Cremers
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Antonie H. van Gelder
- grid.4818.50000 0001 0791 5666Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Theo A. van Alen
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Mike S. M. Jetten
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Huub J. M. Op den Camp
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
21
|
Zhang S, Wang L, Fu X, Tsang YF, Maiti K. A continuous flow membrane bio-reactor releases the feedback inhibition of self-generated free organic carbon on cbb gene transcription of a typical chemoautotrophic bacterium to improve its CO 2 fixation efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143186. [PMID: 33131832 DOI: 10.1016/j.scitotenv.2020.143186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Since the free organic carbon (FOC) generated by chemoautotrophic bacterium self has a feedback inhibition effect on its growth and carbon fixation, a continuous flow membrane bio-reactor was designed to remove extracellular FOC (EFOC) and release its inhibition effect. The promotion effect of membrane reactor on growth and carbon fixation of typical chemoautotrophic bacterium and its mechanism were studied. The accumulated apparent carbon fixation yield in membrane reactor was 3.24 times that in the control reactor. The EFOC per unit bacteria and cbb gene transcription level in membrane reactor were about 0.41 times and 11.18 times that in control reactor in late stage, respectively. Membrane reactor separated out EFOC, especially the small molecules, which facilitated the release of intracellular FOC, thereby releasing the inhibition of FOC on cbb gene transcription, thus promoting growth and carbon fixation of the typical chemoautotrophic bacterium. This study lays a foundation for enhancing carbon fixation by chemoautotrophic bacteria and expands the application field of membrane reactor.
Collapse
Affiliation(s)
- Saiwei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China; Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong SAR, China
| | - Kanchan Maiti
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
22
|
|
23
|
Zhao Y, Liu P, Rui J, Cheng L, Wang Q, Liu X, Yuan Q. Dark carbon fixation and chemolithotrophic microbial community in surface sediments of the cascade reservoirs, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134316. [PMID: 31783464 DOI: 10.1016/j.scitotenv.2019.134316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Dark carbon fixation (DCF) by chemolithotrophic microbes can make considerable contribution to inorganic carbon fixation in aquatic ecosystems. However, little is known about the importance and diversity of chemolithotrophic microbes in cascade reservoir sediments. In this study, we determined the potential DCF rates of sediments of three cascade reservoirs in Wujiang River basin by carbon isotopic labeling. The results showed that the DCF rates of the surface sediments ranged from 1.5 to 14.7 mmol C m-2 d-1. The ratio of DCF to mineralization rate of sediment organic matter of surface sediment was between 11.6%~60.9%. High-throughput sequencing analysis of cbbL and cbbM genes involved in Calvin Benson Cycle indicated that cbbL-carrying CO2-assimilating bacteria included diverse functional groups, while cbbM type was mostly involved in sulfur oxidation. The sediments of Hongfeng (HF) reservoir, which has much longer hydraulic residence time (HRT) and locates in most upstream of a major tributary of Wujiang River, have substantially higher DCF rates. The cbbL and cbbM communities in HF were dominated by sulfur oxidizing bacteria, and were largely different from that in the other two reservoirs. Our results suggested that chemolithotrophy plays an important role in carbon cycling of sediments in cascade reservoir. Meanwhile, HRT and relative location of cascade reservoirs are the key control factors of both DCF and composition of autotrophic microbial communities in cascade reservoir sediments.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Junpeng Rui
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qian Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
24
|
Liu X, Wang H, Li H, Jin Y, Zhang W. Carbon sequestration pathway of inorganic carbon in partial nitrification sludge. BIORESOURCE TECHNOLOGY 2019; 293:122101. [PMID: 31518819 DOI: 10.1016/j.biortech.2019.122101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Inorganic carbon is an important carbon source of autotrophic bacteria, e.g., ammonia-oxidizing bacteria. Ammonia-oxidizing bacteria are chemoautotrophic bacteria with carbon sequestration capacity. Experiments were performed on partial nitrification sludge with different influent matrices, and optimal experimental operational conditions were established. The carbon fixation pathway of ammonia-oxidizing sludge was determined via 13C isotope tracers and qPCR. The denitrification effect was better when the NH4+-N, HCO3-, Ca2+, Mg2+, and microbial accelerant concentrations were 15, 250, 113, 100 and 1 mL/L, respectively. The nitrite accumulation rate reached 96.95%. 13C isotope tracing showed that 13C abundance in sludge increased significantly. The results showed that IC added into the influent participated in the carbon metabolism of microorganisms. The functional gene cbbL, which follows the Calvin cycle carbon sequestration pathway, was identified in the ammonia-oxidizing bacteria, and the effect of influent NH4+-N on the gene abundance was greater than that of other substrates.
Collapse
Affiliation(s)
- Xiaoning Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Huaqin Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Yue Jin
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, PR China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
25
|
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, Field CM, Coelho LP, Cruaud C, Engelen S, Gregory AC, Labadie K, Marec C, Pelletier E, Royo-Llonch M, Roux S, Sánchez P, Uehara H, Zayed AA, Zeller G, Carmichael M, Dimier C, Ferland J, Kandels S, Picheral M, Pisarev S, Poulain J, Acinas SG, Babin M, Bork P, Bowler C, de Vargas C, Guidi L, Hingamp P, Iudicone D, Karp-Boss L, Karsenti E, Ogata H, Pesant S, Speich S, Sullivan MB, Wincker P, Sunagawa S. Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. Cell 2019; 179:1068-1083.e21. [PMID: 31730850 PMCID: PMC6912165 DOI: 10.1016/j.cell.2019.10.014] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/26/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022]
Abstract
Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28223, Spain; Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Miguelangel Cuenca
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Christopher M Field
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China; Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Stefan Engelen
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Ann C Gregory
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Claudie Marec
- Département de biologie, Université Laval, QC G1V 0A6, Canada; Laboratoire d'Oceanographie Physique et Spatiale, UMR 6523, CNRS-IFREMER-IRD-UBO, Plouzané, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Barcelona 08003, Spain
| | - Simon Roux
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Barcelona 08003, Spain
| | - Hideya Uehara
- Institute for Chemical Research, Kyoto Univerisity, Gokasho, Uji 611-0011, Japan; Hewlett-Packard Japan, 2-2-1, Ojima, Koto-ku, Tokyo 136-8711, Japan
| | - Ahmed A Zayed
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA
| | - Georg Zeller
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Margaux Carmichael
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université & CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Céline Dimier
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, Villefranche-sur-mer 06230, France; Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Joannie Ferland
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Takuvik Joint International Laboratory, CNRS-Université Laval, QC G1V 0A6, Canada
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marc Picheral
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, Villefranche-sur-mer 06230, France
| | - Sergey Pisarev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Barcelona 08003, Spain
| | - Marcel Babin
- Takuvik Joint International Laboratory, CNRS-Université Laval, QC G1V 0A6, Canada
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Max Delbrück Centre for Molecular Medicine, Berlin 13125, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université & CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université & CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France; Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA
| | - Pascal Hingamp
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Eric Karsenti
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France; Directors' Research European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto Univerisity, Gokasho, Uji 611-0011, Japan
| | - Stephane Pesant
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | | | - Matthew B Sullivan
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, the Ohio State University, Columbus, OH 43214, USA; Center for RNA Biology, the Ohio State University, Columbus, OH 43214, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland.
| |
Collapse
|
26
|
Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium. Proc Natl Acad Sci U S A 2019; 116:18638-18646. [PMID: 31451656 DOI: 10.1073/pnas.1904225116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Calvin-Benson-Bassham (CBB) cycle assimilates CO2 for the primary production of organic matter in all plants and algae, as well as in some autotrophic bacteria. The key enzyme of the CBB cycle, ribulose-bisphosphate carboxylase/oxygenase (RubisCO), is a main determinant of de novo organic matter production on Earth. Of the three carboxylating forms of RubisCO, forms I and II participate in autotrophy, and form III so far has been associated only with nucleotide and nucleoside metabolism. Here, we report that form III RubisCO functions in the CBB cycle in the thermophilic chemolithoautotrophic bacterium Thermodesulfobium acidiphilum, a phylum-level lineage representative. We further show that autotrophic CO2 fixation in T. acidiphilum is accomplished via the transaldolase variant of the CBB cycle, which has not been previously demonstrated experimentally and has been considered unlikely to occur. Thus, this work reveals a distinct form of the key pathway of CO2 fixation.
Collapse
|
27
|
Reddy B, Pandey J, Dubey SK. Assessment of environmental gene tags linked with carbohydrate metabolism and chemolithotrophy associated microbial community in River Ganga. Gene 2019; 704:31-41. [DOI: 10.1016/j.gene.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
28
|
Bellenberg S, Huynh D, Poetsch A, Sand W, Vera M. Proteomics Reveal Enhanced Oxidative Stress Responses and Metabolic Adaptation in Acidithiobacillus ferrooxidans Biofilm Cells on Pyrite. Front Microbiol 2019; 10:592. [PMID: 30984136 PMCID: PMC6450195 DOI: 10.3389/fmicb.2019.00592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS) cause oxidative stress and growth inhibition by inactivation of essential enzymes, DNA and lipid damage in microbial cells. Acid mine drainage (AMD) ecosystems are characterized by low pH values, enhanced levels of metal ions and low species abundance. Furthermore, metal sulfides, such as pyrite and chalcopyrite, generate extracellular ROS upon exposure to acidic water. Consequently, oxidative stress management is especially important in acidophilic leaching microorganisms present in industrial biomining operations, especially when forming biofilms on metal sulfides. Several adaptive mechanisms have been described, but the molecular repertoire of responses upon exposure to pyrite and the presence of ROS are not thoroughly understood in acidophiles. In this study the impact of the addition of H2O2 on iron oxidation activity in Acidithiobacillus ferrooxidans DSM 14882T was investigated. Iron(II)- or sulfur-grown cells showed a higher sensitivity toward H2O2 than pyrite-grown ones. In order to elucidate which molecular responses may be involved, we used shot-gun proteomics and compared proteomes of cells grown with iron(II)-ions against biofilm cells, grown for 5 days in presence of pyrite as sole energy source. In total 1157 proteins were identified. 213 and 207 ones were found to have increased levels in iron(II) ion-grown or pyrite-biofilm cells, respectively. Proteins associated with inorganic sulfur compound (ISC) oxidation were among the latter. In total, 80 proteins involved in ROS degradation, thiol redox regulation, macromolecule repair mechanisms, biosynthesis of antioxidants, as well as metal and oxygen homeostasis were found. 42 of these proteins had no significant changes in abundance, while 30 proteins had increased levels in pyrite-biofilm cells. New insights in ROS mitigation strategies, such as importance of globins for oxygen homeostasis and prevention of unspecific reactions of free oxygen that generate ROS are presented for A. ferrooxidans biofilm cells. Furthermore, proteomic analyses provide insights in adaptations of carbon fixation and oxidative phosphorylation pathways under these two growth conditions.
Collapse
Affiliation(s)
- Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.,Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| | - Dieu Huynh
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-University Bochum, Bochum, Germany.,School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Wolfgang Sand
- Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany.,Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany.,College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Mario Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Zorz JK, Kozlowski JA, Stein LY, Strous M, Kleiner M. Comparative Proteomics of Three Species of Ammonia-Oxidizing Bacteria. Front Microbiol 2018; 9:938. [PMID: 29867847 PMCID: PMC5960693 DOI: 10.3389/fmicb.2018.00938] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Ammonia-oxidizing bacteria (AOB) are important members of terrestrial, marine, and industrial microbial communities and play a fundamental role in the Nitrogen cycle within these systems. They are responsible for the first step of nitrification, ammonia oxidation to nitrite. Although AOB are widespread and essential to environmental and industrial systems, where they regularly experience fluctuations in ammonia availability, no comparative studies of the physiological response of diverse AOB species at the protein level exist. In the present study, we used 1D-LC-MS/MS proteomics to compare the metabolism and physiology of three species of ammonia AOB, Nitrosomonas europaea, Nitrosospira multiformis, and Nitrosomonas ureae, under ammonia replete and ammonia starved conditions. Additionally, we compared the expression of orthologous genes to determine the major differences in the proteome composition of the three species. We found that approximately one-third of the predicted proteome was expressed in each species and that proteins for the key metabolic processes, ammonia oxidation and carbon fixation, were among the most abundant. The red copper protein, nitrosocyanin was highly abundant in all three species hinting toward its possible role as a central metabolic enzyme in AOB. The proteomic data also allowed us to identify pyrophosphate-dependent 6-phosphofructokinase as the potential enzyme replacing the Calvin-Benson-Bassham cycle enzyme Fructose-1,6-bisphosphatase missing in N. multiformis and N. ureae. Additionally, between species, there were statistically significant differences in the expression of many abundant proteins, including those related to nitrogen metabolism (nitrite reductase), motility (flagellin), cell growth and division (FtsH), and stress response (rubrerythrin). The three species did not exhibit a starvation response at the proteome level after 24 h of ammonia starvation, however, the levels of the RuBisCO enzyme were consistently reduced after the starvation period, suggesting a decrease in capacity for biomass accumulation. This study presents the first published proteomes of N. ureae and N. multiformis, and the first comparative proteomics study of ammonia-oxidizing bacteria, which gives new insights into consistent metabolic features and differences between members of this environmentally and industrially important group.
Collapse
Affiliation(s)
- Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jessica A Kozlowski
- Department of Ecogenomics and Systems Biology, Division Archaea Biology and Ecogenomics, University of Vienna, Vienna, Austria
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
30
|
Walczak AB, Yee N, Young LY. Draft genome sequence of Bosea sp. WAO an arsenite and sulfide oxidizer isolated from a pyrite rock outcrop in New Jersey. Stand Genomic Sci 2018; 13:6. [PMID: 29682167 PMCID: PMC5894208 DOI: 10.1186/s40793-018-0312-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/21/2018] [Indexed: 11/30/2022] Open
Abstract
This genome report describes the draft genome and physiological characteristics of Bosea sp. WAO (=DSM 102914), a novel strain of the genus Bosea in the family Bradyrhizobiaceae. Bosea sp. WAO was isolated from pulverized pyritic shale containing elevated levels of arsenic. This aerobic, gram negative microorganism is capable of facultative chemolithoautotrophic growth under aerobic conditions by oxidizing the electron donors arsenite, elemental sulfur, thiosulfate, polysulfide, and amorphous sulfur. The draft genome is of a single circular chromosome 6,125,776 bp long consisting of 21 scaffolds with a G + C content of 66.84%. A total 5727 genes were predicted of which 5665 or 98.92% are protein-coding genes and 62 RNA genes. We identified the genes aioA and aioB, which encode the large and small subunits of the arsenic oxidase respectively. We also identified the genes for the complete sulfur oxidation pathway sox which is used to oxidize thiosulfate to sulfate.
Collapse
Affiliation(s)
- Alexandra B Walczak
- 1Division of Life Sciences, Rutgers University, The State University of New Jersey, Piscataway, New Jersey USA
| | - Nathan Yee
- 2Department of Environmental Sciences, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey USA
| | - Lily Y Young
- 2Department of Environmental Sciences, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey USA
| |
Collapse
|
31
|
Liu D, Ramya RCS, Mueller-Cajar O. Surveying the expanding prokaryotic Rubisco multiverse. FEMS Microbiol Lett 2018; 364:3983162. [PMID: 28854711 DOI: 10.1093/femsle/fnx156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022] Open
Abstract
The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space.
Collapse
Affiliation(s)
- Di Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
32
|
Khaleque HN, Corbett MK, Ramsay JP, Kaksonen AH, Boxall NJ, Watkin ELJ. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite. J Biotechnol 2017; 262:56-59. [PMID: 28986293 DOI: 10.1016/j.jbiotec.2017.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/01/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Himel N Khaleque
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Melissa K Corbett
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Joshua P Ramsay
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Naomi J Boxall
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Elizabeth L J Watkin
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
33
|
Hu A, Wang H, Yang X, Hou L, Li J, Li S, Yu CP. Seasonal and spatial variations of prokaryoplankton communities in a salinity-influenced watershed, China. FEMS Microbiol Ecol 2017; 93:3966710. [DOI: 10.1093/femsec/fix093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022] Open
|
34
|
Draft Genome Sequence of Acidihalobacter ferrooxidans DSM 14175 (Strain V8), a New Iron- and Sulfur-Oxidizing, Halotolerant, Acidophilic Species. GENOME ANNOUNCEMENTS 2017; 5:5/21/e00413-17. [PMID: 28546494 PMCID: PMC5477407 DOI: 10.1128/genomea.00413-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of halotolerant acidophiles for bioleaching provides a biotechnical approach for the extraction of metals from regions where high salinity exists in the ores and source water. Here, we describe the first draft genome of a new species of a halotolerant and iron- and sulfur-oxidizing acidophile, Acidihalobacter ferrooxidans DSM-14175 (strain V8).
Collapse
|
35
|
Li X, Kappler U, Jiang G, Bond PL. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Front Microbiol 2017; 8:683. [PMID: 28473816 PMCID: PMC5397505 DOI: 10.3389/fmicb.2017.00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, BrisbaneQLD, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
36
|
Zhang X, Liu X, Liang Y, Fan F, Zhang X, Yin H. Metabolic diversity and adaptive mechanisms of iron- and/or sulfur-oxidizing autotrophic acidophiles in extremely acidic environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:738-751. [PMID: 27337207 DOI: 10.1111/1758-2229.12435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Many studies have investigated the mechanisms underlying the survival and growth of certain organisms in extremely acidic environments known to be harmful to most prokaryotes and eukaryotes. Acidithiobacillus and Leptospirillum spp. are dominant bioleaching bacteria widely used in bioleaching systems, which are characterized by extremely acidic environments. To survive and grow in such settings, these acidophiles utilize shared molecular mechanisms that allow life in extreme conditions. In this review, we have summarized the results of published genomic analyses, which underscore the ability of iron- and/or sulfur-oxidizing autotrophic acidophiles belonging to the genera Acidithiobacillus and Leptospirillum to adapt to acidic environmental conditions. Several lines of evidence point at the metabolic diversity and multiplicity of pathways involved in the survival of these organisms. The ability to thrive in adverse environments requires versatile activation of structural and functional adaptive responses, including bacterial adhesion, motility, and resistance to heavy metals. We have highlighted recent developments centered on the key survival mechanisms employed by dominant extremophiles, and have laid the foundation for future studies focused on the ability of acidophiles to thrive in extremely acidic environments.
Collapse
Affiliation(s)
- Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Beijing, China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
37
|
Ouyang J, Guo W, Li B, Gu L, Zhang H, Xinhua Chen H. Erratum to “Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration” [Microbiol. Res. 168 (7) (2013) 455–460]. Microbiol Res 2016; 182:163-8. [PMID: 27062771 DOI: 10.1016/j.micres.2015.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile that oxidizes ferrous iron or sulfur compounds to obtain energy in the presence of various ions. To investigate the potassium ion response of A. ferrooxidans, we conducted a proteomics analysis. We identified eight proteins that were differentially expressed in the presence of high potassium concentration, including four up-regulated and four down-regulated proteins. Transcription levels of the genes encoding differential expressed proteins were subsequently analyzed by Northern blot in the presence of high potassium concentration. Among the up-regulated proteins, GDP-mannose 4,6-dehydratase, ribose 5-phosphate isomerase A and ribose-phosphate pyrophosphokinase were known to be implicated in the synthesis of glycocalyx, suggesting that the formation of glycocalyx might be involved in the A. ferrooxidans response to high potassium concentration. Thickening of the glycocalyx layer was also observed in cells cultivated under high potassium concentration via transmission electronic microscopy (TEM) analysis. Among the down-regulated proteins, ATP synthase F1 delta subunit and ATP synthase F1 beta subunit were two important components of ATP synthase. ATP synthase (P-ATPase) is directly linked to the transport of potassium into the cell, thus Acidithiobacillus ferrooxidans might just reduce the quantity of ATP synthase to offset the high potassium level in the culture medium. Therefore, the results obtained here provide some new clues to improve our understanding of the response of A. ferrooxidans to high potassium concentration.
Collapse
|
38
|
Thermochemistry of a Biomimetic and Rubisco-Inspired CO2 Capture System from Air. C — JOURNAL OF CARBON RESEARCH 2016. [DOI: 10.3390/c2030018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
39
|
Zhang X, Niu J, Liang Y, Liu X, Yin H. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 2016; 17:21. [PMID: 26781463 PMCID: PMC4717592 DOI: 10.1186/s12863-016-0330-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/13/2016] [Indexed: 01/18/2023] Open
Abstract
Background Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Results Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Conclusion Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0330-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
40
|
Niederberger TD, Sohm JA, Gunderson T, Tirindelli J, Capone DG, Carpenter EJ, Cary SC. Carbon-Fixation Rates and Associated Microbial Communities Residing in Arid and Ephemerally Wet Antarctic Dry Valley Soils. Front Microbiol 2015; 6:1347. [PMID: 26696969 PMCID: PMC4673872 DOI: 10.3389/fmicb.2015.01347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Carbon-fixation is a critical process in severely oligotrophic Antarctic Dry Valley (DV) soils and may represent the major source of carbon in these arid environments. However, rates of C-fixation in DVs are currently unknown and the microorganisms responsible for these activities unidentified. In this study, C-fixation rates measured in the bulk arid soils (<5% moisture) ranged from below detection limits to ∼12 nmol C/cc/h. Rates in ephemerally wet soils ranged from ∼20 to 750 nmol C/cc/h, equating to turnover rates of ∼7-140 days, with lower rates in stream-associated soils as compared to lake-associated soils. Sequencing of the large subunit of RuBisCO (cbbL) in these soils identified green-type sequences dominated by the 1B cyanobacterial phylotype in both arid and wet soils including the RNA fraction of the wet soil. Red-type cbbL genes were dominated by 1C actinobacterial phylotypes in arid soils, with wetted soils containing nearly equal proportions of 1C (actinobacterial and proteobacterial signatures) and 1D (algal) phylotypes. Complementary 16S rRNA and 18S rRNA gene sequencing also revealed distinct differences in community structure between biotopes. This study is the first of its kind to examine C-fixation rates in DV soils and the microorganisms potentially responsible for these activities.
Collapse
Affiliation(s)
| | - Jill A. Sohm
- Wrigley Institute of Environmental Studies and Department of Biological Science, University of Southern CaliforniaLos Angeles, CA, USA
| | - Troy Gunderson
- Wrigley Institute of Environmental Studies and Department of Biological Science, University of Southern CaliforniaLos Angeles, CA, USA
| | - Joëlle Tirindelli
- Romberg Tiburon Center, San Francisco State UniversityTiburon, CA, USA
| | - Douglas G. Capone
- Wrigley Institute of Environmental Studies and Department of Biological Science, University of Southern CaliforniaLos Angeles, CA, USA
| | | | - S. Craig Cary
- College of Marine and Earth Sciences, University of DelawareLewes, DE, USA
- International Centre for Terrestrial Antarctic Research, University of WaikatoHamilton, New Zealand
| |
Collapse
|
41
|
Alissandratos A, Easton CJ. Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem 2015; 11:2370-87. [PMID: 26734087 PMCID: PMC4685893 DOI: 10.3762/bjoc.11.259] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/20/2015] [Indexed: 11/23/2022] Open
Abstract
Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.
Collapse
Affiliation(s)
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
42
|
Mahon BP, Díaz-Torres NA, Pinard MA, Tu C, Silverman DN, Scott KM, McKenna R. Activity and anion inhibition studies of the α-carbonic anhydrase from Thiomicrospira crunogena XCL-2 Gammaproteobacterium. Bioorg Med Chem Lett 2015; 25:4937-4940. [PMID: 25998503 PMCID: PMC5358508 DOI: 10.1016/j.bmcl.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
Abstract
Thiomicrospira crunogena XCL-2 expresses an α-carbonic anhydrase (TcruCA). Sequence alignments reveal that TcruCA displays a high sequence identity (>30%) relative to other α-CAs. This includes three conserved histidines that coordinate the active site zinc, a histidine proton shuttling residue, and opposing hydrophilic and hydrophobic sides that line the active site. The catalytic efficiency of TcruCA is considered moderate relative to other α-CAs (k(cat)/K(M)=1.1×10(7) M(-1) s(-1)), being a factor of ten less efficient than the most active α-CAs. TcruCA is also inhibited by anions with Cl(-), Br(-), and I(-), all showing Ki values in the millimolar range (53-361 mM). Hydrogen sulfide (HS(-)) revealed the highest affinity for TcruCA with a Ki of 1.1 μM. It is predicted that inhibition of TcruCA by HS(-) (an anion commonly found in the environment where Thiomicrospira crunogena is located) is a way for Thiomicrospira crunogena to regulate its carbon-concentrating mechanism (CCM) and thus the organism's metabolic functions. Results from this study provide preliminary insights into the role of TcruCA in the general metabolism of Thiomicrospira crunogena.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Natalia A Díaz-Torres
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - David N Silverman
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, United States
| | - Kathleen M Scott
- Department of Integrated Biology, University of South Florida, Tampa, FL 33620, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States.
| |
Collapse
|
43
|
Bobik TA, Lehman BP, Yeates TO. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol 2015; 98:193-207. [PMID: 26148529 PMCID: PMC4718714 DOI: 10.1111/mmi.13117] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2015] [Indexed: 12/15/2022]
Abstract
Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.
Collapse
Affiliation(s)
- Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Brent P. Lehman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Todd O. Yeates
- Molecular Biology Institute, University of California, Los Angeles
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| |
Collapse
|
44
|
Booth SC, Weljie AM, Turner RJ. Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 2015; 6:827. [PMID: 26347721 PMCID: PMC4538868 DOI: 10.3389/fmicb.2015.00827] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Co-contamination of metals and organic pollutants is a global problem as metals interfere with the metabolism of complex organics by bacteria. Based on a prior observation that metal tolerance was altered by the sole carbon source being used for growth, we sought to understand how metal toxicity specifically affects bacteria using an organic pollutant as their sole carbon source. To this end metabolomics was used to compare cultures of Pseudomonas pseudoalcaligenes KF707 grown on either biphenyl (Bp) or succinate (Sc) as the sole carbon source in the presence of either aluminum (Al) or copper (Cu). Using multivariate statistical analysis it was found that the metals caused perturbations to more cellular processes in the cultures grown on Bp than those grown on Sc. Al induced many changes that were indicative of increased oxidative stress as metabolites involved in DNA damage and protection, the Krebs cycle and anti-oxidant production were altered. Cu also caused metabolic changes that were indicative of similar stress, as well as appearing to disrupt other key enzymes such as fumarase. Additionally, both metals caused the accumulation of Bp degradation intermediates indicating that they interfered with Bp metabolism. Together these results provide a basic understanding of how metal toxicity specifically affects bacteria at a biochemical level during the degradation of an organic pollutant and implicate the catabolism of this carbon source as a major factor that exacerbates metal toxicity.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Aalim M Weljie
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Department of Systems Pharmacology and Translational Therapeutics, Smilow Centre for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Biofilm Research Group, University of Calgary, Calgary AB, Canada
| |
Collapse
|
45
|
Díaz-Torres NA, Mahon BP, Boone CD, Pinard MA, Tu C, Ng R, Agbandje-McKenna M, Silverman D, Scott K, McKenna R. Structural and biophysical characterization of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2: insights into engineering thermostable enzymes for CO2 sequestration. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1745-56. [PMID: 26249355 PMCID: PMC4528804 DOI: 10.1107/s1399004715012183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022]
Abstract
Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.
Collapse
Affiliation(s)
- Natalia A. Díaz-Torres
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christopher D. Boone
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - David Silverman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kathleen Scott
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
46
|
Wang YN, Wang L, Shan YN, Hu J, Tsang Y, Hu Y, Fu X, Le Y. Optimization of inorganic carbon sources to improve the carbon fixation efficiency of the non-photosynthetic microbial community with different electron donors. ENVIRONMENTAL TECHNOLOGY 2015; 36:1246-1255. [PMID: 25367398 DOI: 10.1080/09593330.2014.983991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the non-photosynthetic microbial community (NPMC) isolated from seawaters utilized inorganic carbon sources for carbon fixation, the concentrations and ratios of Na2CO3, NaHCO3, and CO2 were optimized by response surface methodology design. With H2 as the electron donor, the optimal carbon sources were 270 mg/L Na2CO3, 580 mg/L NaHCO3, and 120 mg/L CO2. The carbon fixation efficiency in response to total organic carbon (TOC) was up to 30.59 mg/L with optimal carbon sources, which was about 50% higher than that obtained with CO2 as the sole carbon source. The mixture of inorganic carbon sources developed a buffer system to prevent acidification or alkalization of the medium caused by CO2 or Na2CO3, respectively. Furthermore, CO2 and HCO3(-), the starting points of carbon fixation in the pathways of Calvin-Benson-Bassham and 3-hydroxypropionate cycles, were provided by the carbon source structure to facilitate carbon fixation by NPMC. However, in the presence of mixed electron donors composed of 1.25% Na2S, 0.50% Na2S2O3, and 0.457% NaNO2, the carbon source structure did not exhibit significant improvement in the carbon fixation efficiency, when compared with that achieved with CO2 as the sole carbon source. The positive effect of mixed electron donors on inorganic carbon fixation was much higher than that of the carbon source structure. Nevertheless, the carbon source structure could be used as an alternative to CO2 when using NPMC to fix carbon in industrial processes.
Collapse
Affiliation(s)
- Ya-nan Wang
- a State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Herrmann M, Rusznyák A, Akob DM, Schulze I, Opitz S, Totsche KU, Küsel K. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol 2015; 81:2384-94. [PMID: 25616797 PMCID: PMC4357952 DOI: 10.1128/aem.03269-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/17/2015] [Indexed: 11/20/2022] Open
Abstract
The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed-upper and lower-limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 10(3) to 6 × 10(6) genes liter(-1) over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.
Collapse
Affiliation(s)
- Martina Herrmann
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anna Rusznyák
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Denise M Akob
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany U.S. Geological Survey, Reston, Virginia, USA
| | - Isabel Schulze
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Sebastian Opitz
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Uwe Totsche
- Department of Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
48
|
Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō'ihi Seamount, Hawai'i). Appl Environ Microbiol 2015; 81:2976-84. [PMID: 25681182 DOI: 10.1128/aem.03608-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023] Open
Abstract
The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at Lō'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lō'ihi Seamount.
Collapse
|
49
|
Glaser R. RuBisCO-Inspired Biomimetic Approaches to Reversible CO 2Capture from Air. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1194.ch011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rainer Glaser
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
50
|
Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME JOURNAL 2014; 9:1579-92. [PMID: 25535937 PMCID: PMC4478699 DOI: 10.1038/ismej.2014.245] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/16/2014] [Indexed: 01/17/2023]
Abstract
The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.
Collapse
|