1
|
Gil-Cantero D, Mata CP, Valiente L, Rodríguez-Huete A, Valbuena A, Twarock R, Stockley PG, Mateu MG, Castón JR. Cryo-EM of human rhinovirus reveals capsid-RNA duplex interactions that provide insights into virus assembly and genome uncoating. Commun Biol 2024; 7:1501. [PMID: 39537894 PMCID: PMC11561273 DOI: 10.1038/s42003-024-07213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The cryo-EM structure of the human rhinovirus B14 determined in this study reveals 13-bp RNA duplexes symmetrically bound to regions around each of the 30 two-fold axes in the icosahedral viral capsid. The RNA duplexes (~12% of the ssRNA genome) define a quasi-dodecahedral cage that line a substantial part of the capsid interior surface. The RNA duplexes establish a complex network of non-covalent interactions with pockets in the capsid inner wall, including coulombic interactions with a cluster of basic amino acid residues that surround each RNA duplex. A direct comparison was made between the cryo-EM structure of RNA-filled virions and that of RNA-free (empty) capsids that resulted from genome release from a small fraction of viruses. The comparison reveals that some specific residues involved in capsid-duplex RNA interactions in the virion undergo remarkable conformational rearrangements upon RNA release from the capsid. RNA release is also associated with the asynchronous opening of channels at the 30 two-fold axes. The results provide further insights into the molecular mechanisms leading to assembly of rhinovirus particles and their genome uncoating during infection. They may also contribute to development of novel antiviral strategies aimed at interfering with viral capsid-genome interactions during the infectious cycle.
Collapse
Affiliation(s)
- David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Biocomputing Unit, Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Reidun Twarock
- Department of Mathematics and Department of Biology, University of York, York, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
2
|
Bukina V, Božič A. Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA. Biophys J 2024; 123:3397-3407. [PMID: 39118324 PMCID: PMC11480767 DOI: 10.1016/j.bpj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Many functions of ribonucleic acid (RNA) rely on its ability to assume specific sequence-structure motifs. Packaging signals found in certain RNA viruses are one such prominent example of functional RNA motifs. These signals are short hairpin loops that interact with coat proteins and drive viral self-assembly. As they are found in different positions along the much longer genomic RNA, the formation of their correct structure occurs as a part of a larger context. Any changes to this context can consequently lead to changes in the structure of the motifs themselves. In fact, previous studies have shown that structure and function of RNA motifs can be highly context sensitive to the flanking sequence surrounding them. However, in what ways different flanking sequences influence the structure of an RNA motif they surround has yet to be studied in detail. We focus on a hairpin-rich region of the RNA genome of bacteriophage MS2-a well-studied RNA virus with a wide potential for use in biotechnology-and systematically examine context-dependent structural stability of 14 previously identified hairpin motifs, which include putative and confirmed packaging signals. Combining secondary and tertiary RNA structure prediction of the hairpin motifs placed in different contexts, ranging from the native genomic sequence to random RNA sequences and unstructured poly-U sequences, we determine different measures of motif structural stability. In this way, we show that while some motif structures can be stable in any context, others require specific context provided by the genome. Our results demonstrate the importance of context in RNA structure formation and how changes in the flanking sequence of an RNA motif sometimes lead to drastic changes in its structure. Structural stability of a motif in different contexts could provide additional insights into its functionality as well as assist in determining whether it remains functional when intentionally placed in other contexts.
Collapse
Affiliation(s)
- Veronika Bukina
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Daudén MI, Pérez-Ruiz M, Carrascosa JL, Cuervo A. Nucleic Acid Packaging in Viruses. Subcell Biochem 2024; 105:469-502. [PMID: 39738955 DOI: 10.1007/978-3-031-65187-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid. In this chapter we will first give an overview of the different strategies used for genome packaging to discuss later some specific virus models where the structures of the main proteins involved are presented and the biophysics underlying the packaging mechanism are discussed.
Collapse
Affiliation(s)
- María I Daudén
- Structural Biology Programme, Spanish National Cancer Research Centre, (CNIO), Madrid, Spain
| | - Mar Pérez-Ruiz
- Faculty of Health and Medical Sciences, Structural Biology of Molecular Machines Group, Protein Structure and Function Program, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - José L Carrascosa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Tripathi K, Garg H, Rajesh R, Vemparala S. The conformational phase diagram of charged polymers in the presence of attractive bridging crowders. J Chem Phys 2023; 159:204903. [PMID: 38010332 DOI: 10.1063/5.0172696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Using extensive molecular dynamics simulations, we obtain the conformational phase diagram of a charged polymer in the presence of oppositely charged counterions and neutral attractive crowders for monovalent, divalent, and trivalent counterion valencies. We demonstrate that the charged polymer can exist in three phases: (1) an extended phase for low charge densities and weak polymer-crowder attractive interactions [Charged Extended (CE)]; (2) a collapsed phase for high charge densities and weak polymer-crowder attractive interactions, primarily driven by counterion condensation [Charged Collapsed due to Intra-polymer interactions [(CCI)]; and (3) a collapsed phase for strong polymer-crowder attractive interactions, irrespective of the charge density, driven by crowders acting as bridges or cross-links [Charged Collapsed due to Bridging interactions [(CCB)]. Importantly, simulations reveal that the interaction with crowders can induce collapse, despite the presence of strong repulsive electrostatic interactions, and can replace condensed counterions to facilitate a direct transition from the CCI and CE phases to the CCB phase.
Collapse
Affiliation(s)
- Kamal Tripathi
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Hitesh Garg
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
6
|
Poblete S, Božič A, Kanduč M, Podgornik R, Guzman HV. RNA Secondary Structures Regulate Adsorption of Fragments onto Flat Substrates. ACS OMEGA 2021; 6:32823-32831. [PMID: 34901632 PMCID: PMC8655909 DOI: 10.1021/acsomega.1c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
RNA is a functionally rich molecule with multilevel, hierarchical structures whose role in the adsorption to molecular substrates is only beginning to be elucidated. Here, we introduce a multiscale simulation approach that combines a tractable coarse-grained RNA structural model with an interaction potential of a structureless flat adsorbing substrate. Within this approach, we study the specific role of stem-hairpin and multibranch RNA secondary structure motifs on its adsorption phenomenology. Our findings identify a dual regime of adsorption for short RNA fragments with and without the secondary structure and underline the adsorption efficiency in both cases as a function of the surface interaction strength. The observed behavior results from an interplay between the number of contacts formed at the surface and the conformational entropy of the RNA molecule. The adsorption phenomenology of RNA seems to persist also for much longer RNAs as qualitatively observed by comparing the trends of our simulations with a theoretical approach based on an ideal semiflexible polymer chain.
Collapse
Affiliation(s)
- Simón Poblete
- Instituto
de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5091000, Chile
- Computational
Biology Lab, Fundación Ciencia &
Vida, Santiago 7780272, Chile
| | - Anže Božič
- Department
of Theoretical Physics, Jožef Stefan
Institute, SI-1000 Ljubljana, Slovenia
| | - Matej Kanduč
- Department
of Theoretical Physics, Jožef Stefan
Institute, SI-1000 Ljubljana, Slovenia
| | - Rudolf Podgornik
- School
of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou
Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Horacio V. Guzman
- Department
of Theoretical Physics, Jožef Stefan
Institute, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Li H, Zhang K, Binzel DW, Shlyakhtenko LS, Lyubchenko YL, Chiu W, Guo P. RNA nanotechnology to build a dodecahedral genome of single-stranded RNA virus. RNA Biol 2021; 18:2390-2400. [PMID: 33845711 PMCID: PMC8632126 DOI: 10.1080/15476286.2021.1915620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023] Open
Abstract
The quest for artificial RNA viral complexes with authentic structure while being non-replicative is on its way for the development of viral vaccines. RNA viruses contain capsid proteins that interact with the genome during morphogenesis. The sequence and properties of the protein and genome determine the structure of the virus. For example, the Pariacoto virus ssRNA genome assembles into a dodecahedron. Virus-inspired nanotechnology has progressed remarkably due to the unique structural and functional properties of viruses, which can inspire the design of novel nanomaterials. RNA is a programmable biopolymer able to self-assemble sophisticated 3D structures with rich functionalities. RNA dodecahedrons mimicking the Pariacoto virus quasi-icosahedral genome structures were constructed from both native and 2'-F modified RNA oligos. The RNA dodecahedron easily self-assembled using the stable pRNA three-way junction of bacteriophage phi29 as building blocks. The RNA dodecahedron cage was further characterized by cryo-electron microscopy and atomic force microscopy, confirming the spontaneous and homogenous formation of the RNA cage. The reported RNA dodecahedron cage will likely provide further studies on the mechanisms of interaction of the capsid protein with the viral genome while providing a template for further construction of the viral RNA scaffold to add capsid proteins for the assembly of the viral nucleocapsid as a model. Understanding the self-assembly and RNA folding of this RNA cage may offer new insights into the 3D organization of viral RNA genomes. The reported RNA cage also has the potential to be explored as a novel virus-inspired nanocarrier.
Collapse
Affiliation(s)
- Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kaiming Zhang
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Ghosh S, Vemparala S. Kinetics of charged polymer collapse in poor solvents. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:045101. [PMID: 34352747 DOI: 10.1088/1361-648x/ac1aef] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Extensive molecular dynamics simulations, using simple charged polymer models, have been employed to probe the collapse kinetics of a single flexible polyelectrolyte (PE) chain under implicit poor solvent conditions. We investigate the role of the charged nature of PE chain (A), valency of counterions (Z) on the kinetics of such PE collapse. Our study shows that the collapse kinetics of charged polymers are significantly different from those of the neutral polymer and that the finite-size scaling behavior of PE collapse times does not follow the Rouse scaling as observed in the case of neutral polymers. The critical exponent for charged PE chains is found to be less than that of neutral polymers and also exhibits dependence on counterion valency. The coarsening of clusters along the PE chain suggests a multi-stage collapse and exhibits opposite behavior of exponents compared to neutral polymers: faster in the early stages and slower in the later stages of collapse.
Collapse
Affiliation(s)
- Susmita Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Marichal L, Gargowitsch L, Rubim RL, Sizun C, Kra K, Bressanelli S, Dong Y, Panahandeh S, Zandi R, Tresset G. Relationships between RNA topology and nucleocapsid structure in a model icosahedral virus. Biophys J 2021; 120:3925-3936. [PMID: 34418368 PMCID: PMC8511167 DOI: 10.1016/j.bpj.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
The process of genome packaging in most of viruses is poorly understood, notably the role of the genome itself in the nucleocapsid structure. For simple icosahedral single-stranded RNA viruses, the branched topology due to the RNA secondary structure is thought to lower the free energy required to complete a virion. We investigate the structure of nucleocapsids packaging RNA segments with various degrees of compactness by small-angle x-ray scattering and cryotransmission electron microscopy. The structural differences are mild even though compact RNA segments lead on average to better-ordered and more uniform particles across the sample. Numerical calculations confirm that the free energy is lowered for the RNA segments displaying the larger number of branch points. The effect is, however, opposite with synthetic polyelectrolytes, in which a star topology gives rise to more disorder in the capsids than a linear topology. If RNA compactness and size account in part for the proper assembly of the nucleocapsid and the genome selectivity, other factors most likely related to the host cell environment during viral assembly must come into play as well.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Rafael Leite Rubim
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Kalouna Kra
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Yinan Dong
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France.
| |
Collapse
|
10
|
|
11
|
Blaas D. Individual subunits of a rhinovirus causing common cold exhibit largely different protein-RNA contact site conformations. Commun Biol 2020; 3:537. [PMID: 32994533 PMCID: PMC7525237 DOI: 10.1038/s42003-020-01269-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022] Open
Abstract
Rhinoviruses cause the common cold. They are icosahedral, built from sixty copies each of the capsid proteins VP1 through VP4 arranged in a pseudo T = 3 lattice. This shell encases a ss(+) RNA genome. Three-D classification of single and oligomeric asymmetric units computationally excised from a 2.9 Å cryo-EM density map of rhinovirus A89, showed that VP4 and the N-terminal extension of VP1 adopt different conformations within the otherwise identical 3D-structures. Analysis of up to sixty classes of single subunits and of six classes of subunit dimers, trimers, and pentamers revealed different orientations of the amino acid residues at the interface with the RNA suggesting that local asymmetry is dictated by disparities of the interacting nucleotide sequences. The different conformations escape detection by 3-D structure determination of entire virions with the conformational heterogeneity being only indicated by low density. My results do not exclude that the RNA follows a conserved assembly mechanism, contacting most or all asymmetric units in a specific way. However, as suggested by the gradual loss of asymmetry with increasing oligomerization and the 3D-structure of entire virions reconstructed by using Euler angles selected in the classification of single subunits, RNA path and/or folding likely differ from virion to virion. From analysis of up to sixty classes of single subunits and of six classes of subunit dimers, trimers, and pentamers, Dieter Blaas demonstrates different orientations of the amino acid residues at the interface with the RNA. This study suggests that RNA path and/or folding is likely to differ from virion to virion.
Collapse
Affiliation(s)
- Dieter Blaas
- Vienna Biocenter, Max Perutz Laboratories, Centre of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030, Vienna, Austria.
| |
Collapse
|
12
|
Buzón P, Maity S, Roos WH. Physical virology: From virus self-assembly to particle mechanics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1613. [PMID: 31960585 PMCID: PMC7317356 DOI: 10.1002/wnan.1613] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/01/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Viruses are highly ordered supramolecular complexes that have evolved to propagate by hijacking the host cell's machinery. Although viruses are very diverse, spreading through cells of all kingdoms of life, they share common functions and properties. Next to the general interest in virology, fundamental viral mechanisms are of growing importance in other disciplines such as biomedicine and (bio)nanotechnology. However, in order to optimally make use of viruses and virus-like particles, for instance as vehicle for targeted drug delivery or as building blocks in electronics, it is essential to understand their basic chemical and physical properties and characteristics. In this context, the number of studies addressing the mechanisms governing viral properties and processes has recently grown drastically. This review summarizes a specific part of these scientific achievements, particularly addressing physical virology approaches aimed to understand the self-assembly of viruses and the mechanical properties of viral particles. Using a physicochemical perspective, we have focused on fundamental studies providing an overview of the molecular basis governing these key aspects of viral systems. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Santoni M, Zampieri R, Avesani L. Plant Virus Nanoparticles for Vaccine Applications. Curr Protein Pept Sci 2020; 21:344-356. [PMID: 32048964 DOI: 10.2174/1389203721666200212100255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/16/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
| | | | - Linda Avesani
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
- Diamante srl. Strada Le Grazie, 15. 37134 Verona, Italy
| |
Collapse
|
14
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
15
|
Bhattacharya S, Jhunjhunwala A, Halder A, Bhattacharyya D, Mitra A. Going beyond base-pairs: topology-based characterization of base-multiplets in RNA. RNA (NEW YORK, N.Y.) 2019; 25:573-589. [PMID: 30792229 PMCID: PMC6467009 DOI: 10.1261/rna.068551.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/18/2019] [Indexed: 05/17/2023]
Abstract
Identification and characterization of base-multiplets, which are essentially mediated by base-pairing interactions, can provide insights into the diversity in the structure and dynamics of complex functional RNAs, and thus facilitate hypothesis driven biological research. The necessary nomenclature scheme, an extension of the geometric classification scheme for base-pairs by Leontis and Westhof, is however available only for base-triplets. In the absence of information on topology, this scheme is not applicable to quartets and higher order multiplets. Here we propose a topology-based classification scheme which, in conjunction with a graph-based algorithm, can be used for the automated identification and characterization of higher order base-multiplets in RNA structures. Here, the RNA structure is represented as a graph, where nodes represent nucleotides and edges represent base-pairing connectivity. Sets of connected components (of n nodes) within these graphs constitute subgraphs representing multiplets of "n" nucleotides. The different topological variants of the RNA multiplets thus correspond to different nonisomorphic forms of these subgraphs. To annotate RNA base-multiplets unambiguously, we propose a set of topology-based nomenclature rules for quartets, which are extendable to higher multiplets. We also demonstrate the utility of our approach toward the identification and annotation of higher order RNA multiplets, by investigating the occurrence contexts of selected examples in order to gain insights regarding their probable functional roles.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF, Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| |
Collapse
|
16
|
Kiatmetha P, Chotwiwatthanakun C, Jariyapong P, Santimanawong W, Ounjai P, Weerachatyanukul W. Nanocontainer designed from an infectious hypodermal and hematopoietic necrosis virus (IHHNV) has excellent physical stability and ability to deliver shrimp tissues. PeerJ 2018; 6:e6079. [PMID: 30588400 PMCID: PMC6302783 DOI: 10.7717/peerj.6079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background A virus-like particle (VLP) is an excellent tool for a compound delivery system due to its simple composition, symmetrical structure and self-assembly. Its surface modification both chemically and genetically is established, leading to the target-specific delivery and improved encapsulation efficiency. However, its physical stabilities against many harsh conditions that guarantee long term storage and oral administration have been much less studied. Methods IHHNV-VLPs were reconstructed from recombinant IHHNV capsid protein in E. coli. Their physical properties against three strong physical conditions including long term storage (0–30 days) in 4 °C, physical stabilities against broad ranged pH (4–9) and against three types of digestive enzymes were tested. Disassembly and reassembly of VLPs for encapsidating an enhanced green fluorescent protein tagged plasmid DNA (EGFP-VLPs) were controlled by the use of reducing agent (DTT) and calcium specific chelating agent (EGTA). Lastly, delivering ability of EGFP-VLPs was performed in vivo by intramuscular injection and traced the expression of GFP in the shrimp tissues 24 hr post-injection. Results Upon its purification, IHHNV-VLPs were able to be kept at 4 °C up to 30 days with only slight degradation. They were very stable in basic condition (pH 8–9) and to a lesser extent in acidic condition (pH 4–6) while they could stand digestions of trypsin and chymotrypsin better than pepsin. As similar with many other non-enveloped viruses, the assembly of IHHNV-VLPs was dependent on both disulfide bridging and calcium ions which allowed us to control disassembly and reassembly of these VLPs to pack EGFP plasmid DNA. IHHNV-VLPs could deliver EGFP plasmids into shrimp muscles and gills as evident by RT-PCR and confocal microscopy demonstrating the expression of GFP in the targeted tissues. Discussion There are extensive data in which capsid proteins of the non-enveloped viruses in the form of VLPs are constructed and used as nano-containers for therapeutic compound delivery. However, the bottleneck of its application as an excellent delivery container for oral administration would rely solely on physical stability and interacting ability of VLPs to the host cells. These properties are retained for IHHNV-VLPs reported herein. Thus, IHHNV-VLPs would stand as a good applicable nanocontainer to carry therapeutic agents towards the targeting tissues against ionic and digestive conditions via oral administration in aquaculture field.
Collapse
Affiliation(s)
- Pauline Kiatmetha
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | - Pitchanee Jariyapong
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, Thailand
| | - Wanida Santimanawong
- Centex Shrimp, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | |
Collapse
|
17
|
Webby MN, Sullivan MP, Yegambaram KM, Radjainia M, Keown JR, Kingston RL. A method for analyzing the composition of viral nucleoprotein complexes, produced by heterologous expression in bacteria. Virology 2018; 527:159-168. [PMID: 30529564 DOI: 10.1016/j.virol.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022]
Abstract
Viral genomes are protected and organized by virally encoded packaging proteins. Heterologous production of these proteins often results in formation of particles resembling the authentic viral capsid or nucleocapsid, with cellular nucleic acids packaged in place of the viral genome. Quantifying the total protein and nucleic acid content of particle preparations is a recurrent biochemical problem. We describe a method for resolving this problem, developed when characterizing particles resembling the Menangle Virus nucleocapsid. The protein content was quantified using the biuret assay, which is largely independent of amino acid composition. Bound nucleic acids were quantified by determining the phosphorus content, using inductively coupled plasma mass spectrometry. Estimates for the amount of RNA packaged within the particles were consistent with the structurally-characterized packaging mechanism. For a bacterially-produced nucleoprotein complex, phosphorus usually provides a unique elemental marker of bound nucleic acids, hence this method of analysis should be routinely applicable.
Collapse
Affiliation(s)
- Melissa N Webby
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Mazdak Radjainia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jeremy R Keown
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
The RNA-Binding Protein of a Double-Stranded RNA Virus Acts like a Scaffold Protein. J Virol 2018; 92:JVI.00968-18. [PMID: 30021893 DOI: 10.1128/jvi.00968-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.
Collapse
|
19
|
Systematic analysis of biological roles of charged amino acid residues located throughout the structured inner wall of a virus capsid. Sci Rep 2018; 8:9543. [PMID: 29934575 PMCID: PMC6015035 DOI: 10.1038/s41598-018-27749-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
Structure-based mutational analysis of viruses is providing many insights into the relationship between structure and biological function of macromolecular complexes. We have systematically investigated the individual biological roles of charged residues located throughout the structured capsid inner wall (outside disordered peptide segments) of a model spherical virus, the minute virus of mice (MVM). The functional effects of point mutations that altered the electrical charge at 16 different positions at the capsid inner wall were analyzed. The results revealed that MVM capsid self-assembly is rather tolerant to point mutations that alter the number and distribution of charged residues at the capsid inner wall. However, mutations that either increased or decreased the number of positive charges around capsid-bound DNA segments reduced the thermal resistance of the virion. Moreover, mutations that either removed or changed the positions of negatively charged carboxylates in rings of acidic residues around capsid pores were deleterious by precluding a capsid conformational transition associated to through-pore translocation events. The results suggest that number, distribution and specific position of electrically charged residues across the inner wall of a spherical virus may have been selected through evolution as a compromise between several different biological requirements.
Collapse
|
20
|
Lošdorfer Božič A, Podgornik R. Varieties of charge distributions in coat proteins of ssRNA+ viruses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:024001. [PMID: 29182522 PMCID: PMC7104810 DOI: 10.1088/1361-648x/aa9ded] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A major part of the interactions involved in the assembly and stability of icosahedral, positive-sense single-stranded RNA (ssRNA+) viruses is electrostatic in nature, as can be inferred from the strong pH- and salt-dependence of their assembly phase diagrams. Electrostatic interactions do not act only between the capsid coat proteins (CPs), but just as often provide a significant contribution to the interactions of the CPs with the genomic RNA, mediated to a large extent by positively charged, flexible N-terminal tails of the CPs. In this work, we provide two clear and complementary definitions of an N-terminal tail of a protein, and use them to extract the tail sequences of a large number of CPs of ssRNA+ viruses. We examine the pH-dependent interplay of charge on both tails and CPs alike, and show that-in contrast to the charge on the CPs-the net positive charge on the N-tails persists even to very basic pH values. In addition, we note a limit to the length of the wild-type genomes of those viruses which utilize positively charged tails, when compared to viruses without charged tails and similar capsid size. At the same time, we observe no clear connection between the charge on the N-tails and the genome lengths of the viruses included in our study.
Collapse
Affiliation(s)
- Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Wołek K, Cieplak M. Self-assembly of model proteins into virus capsids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:474003. [PMID: 29027904 PMCID: PMC7104874 DOI: 10.1088/1361-648x/aa9351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
We consider self-assembly of proteins into a virus capsid by the methods of molecular dynamics. The capsid corresponds either to SPMV or CCMV and is studied with and without the RNA molecule inside. The proteins are flexible and described by the structure-based coarse-grained model augmented by electrostatic interactions. Previous studies of the capsid self-assembly involved solid objects of a supramolecular scale, e.g. corresponding to capsomeres, with engineered couplings and stochastic movements. In our approach, a single capsid is dissociated by an application of a high temperature for a variable period and then the system is cooled down to allow for self-assembly. The restoration of the capsid proceeds to various extent, depending on the nature of the dissociated state, but is rarely complete because some proteins depart too far unless the process takes place in a confined space.
Collapse
Affiliation(s)
- Karol Wołek
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
22
|
Yuan H, Li P, Ma X, Lu Z, Sun P, Bai X, Zhang J, Bao H, Cao Y, Li D, Fu Y, Chen Y, Bai Q, Zhang J, Liu Z. The pH stability of foot-and-mouth disease virus. Virol J 2017; 14:233. [PMID: 29183342 PMCID: PMC5706165 DOI: 10.1186/s12985-017-0897-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
ᅟ This review summarized the molecular determinants of the acid stability of FMDV in order to explore the uncoating mechanism of FMDV and improve the acid stability of vaccines. Background The foot-and-mouth disease virus (FMDV) capsid is highly acid labile and tends to dissociate into pentameric subunits at acidic condition to release viral RNA for initiating virus replication. However, the acid stability of virus capsid is greatly required for the maintenance of intact virion during the process of virus culture and vaccine production. The conflict between the acid lability in vivo and acid stability in vitro of FMDV capsid promotes the selection of a series of amino acid substitutions which can confer resistance to acid-induced FMDV inactivation. In order to explore the uncoating activity of FMDV and enhance the acid stability of vaccines, we summarized the available works about the pH stability of FMDV. Main body of the abstract In this review, we analyzed the intrinsic reasons for the acid instability of FMDV from the structural and functional aspects. We also listed all substitutions obtained by different research methods and showed them in the partial capsid of FMDV. We found that a quadrangle region in the viral capsid was the place where a great many pH-sensitive residues were distributed. As the uncoating event of FMDV is dependent on the pH-sensitive amino acid residues in the capsid, this most pH-sensitive position indicates a potential candidate location for RNA delivery triggered by the acid-induced coat disassociation. Short conclusion This review provided an overview of the pH stability of FMDV. The study of pH stability of FMDV not only contributes to the exploration of molecule and mechanism information for FMDV uncoating, but also enlightens the development of FMDV vaccines, including the traditionally inactivated vaccines and the new VLP (virus-like particle) vaccines.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| |
Collapse
|
23
|
Erdemci-Tandogan G, Orland H, Zandi R. RNA Base Pairing Determines the Conformations of RNA Inside Spherical Viruses. PHYSICAL REVIEW LETTERS 2017; 119:188102. [PMID: 29219580 DOI: 10.1103/physrevlett.119.188102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Indexed: 05/21/2023]
Abstract
Many simple RNA viruses enclose their genetic material by a protein shell called the capsid. While the capsid structures are well characterized for most viruses, the structure of RNA inside the shells and the factors contributing to it remain poorly understood. We study the impact of base pairing on the conformations of RNA and find that it undergoes a swollen coil to globule continuous transition as a function of the strength of the pairing interaction. We also observe a first order transition and kink profile as a function of RNA length. All these transitions could explain the different RNA profiles observed inside viral shells.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Henri Orland
- Institut de Physique Théorique, CEA-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, No. 10 East Xibeiwang Road, Haidan District, Beijing 100193, China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
24
|
Song Y, Gorbatsevych O, Liu Y, Mugavero J, Shen SH, Ward CB, Asare E, Jiang P, Paul AV, Mueller S, Wimmer E. Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes. Proc Natl Acad Sci U S A 2017; 114:E8731-E8740. [PMID: 28973853 PMCID: PMC5642728 DOI: 10.1073/pnas.1714385114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2Min, a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2Min, 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either (a) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or (b) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.
Collapse
Affiliation(s)
- Yutong Song
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794;
| | - Oleksandr Gorbatsevych
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
- Pathology and Laboratory Medicine, Staten Island University Hospital, Staten Island, NY 10305
| | - JoAnn Mugavero
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Sam H Shen
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Charles B Ward
- Google, Inc., Mountain View, CA 94043
- Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794
| | - Emmanuel Asare
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Ping Jiang
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
- Codagenix Inc., Stony Brook, NY 11794
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794;
| |
Collapse
|
25
|
Ho KL, Kueh CL, Beh PL, Tan WS, Bhella D. Cryo-Electron Microscopy Structure of the Macrobrachium rosenbergii Nodavirus Capsid at 7 Angstroms Resolution. Sci Rep 2017; 7:2083. [PMID: 28522842 PMCID: PMC5437026 DOI: 10.1038/s41598-017-02292-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/18/2017] [Indexed: 11/10/2022] Open
Abstract
White tail disease in the giant freshwater prawn Macrobrachium rosenbergii causes significant economic losses in shrimp farms and hatcheries and poses a threat to food-security in many developing countries. Outbreaks of Macrobrachium rosenbergii nodavirus (MrNV), the causative agent of white tail disease (WTD) are associated with up to 100% mortality rates. There are no interventions available to treat or prevent MrNV disease however. Here we show the structure of MrNV virus-like particles (VLPs) produced by recombinant expression of the capsid protein, using cryogenic electron microscopy. Our data show that MrNV VLPs package nucleic acids in a manner reminiscent of other known nodavirus structures. The structure of the capsid however shows striking differences from insect and fish infecting nodaviruses, which have been shown to assemble trimer-clustered T = 3 icosahedral virus particles. MrNV particles have pronounced dimeric blade-shaped spikes extending up to 6 nm from the outer surface of the capsid shell. Our structural analysis supports the assertion that MrNV may belong to a new genus of the Nodaviridae. Moreover, our study provides the first structural view of an important pathogen affecting aquaculture industries across the world.
Collapse
Affiliation(s)
- Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chare Li Kueh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, 43400 UPM, Serdang, Selangor, Malaysia
| | - Poay Ling Beh
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, 43400 UPM, Serdang, Selangor, Malaysia
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
26
|
Chen TH, Hu CC, Liao JT, Lee YL, Huang YW, Lin NS, Lin YL, Hsu YH. Production of Japanese Encephalitis Virus Antigens in Plants Using Bamboo Mosaic Virus-Based Vector. Front Microbiol 2017; 8:788. [PMID: 28515719 PMCID: PMC5413549 DOI: 10.3389/fmicb.2017.00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Japanese encephalitis virus (JEV) is among the major threats to public health in Asia. For disease control and prevention, the efficient production of safe and effective vaccines against JEV is in urgent need. In this study, we produced a plant-made JEV vaccine candidate using a chimeric virus particle (CVP) strategy based on bamboo mosaic virus (BaMV) for epitope presentation. The chimeric virus, designated BJ2A, was constructed by fusing JEV envelope protein domain III (EDIII) at the N-terminus of BaMV coat protein, with an insertion of the foot-and-mouth disease virus 2A peptide to facilitate the production of both unfused and epitope-presenting for efficient assembly of the CVP vaccine candidate. The strategy allowed stable maintenance of the fusion construct over long-term serial passages in plants. Immuno-electron microscopy examination and immunization assays revealed that BJ2A is able to present the EDIII epitope on the surface of the CVPs, which stimulated effective neutralizing antibodies against JEV infection in mice. This study demonstrates the efficient production of an effective CVP vaccine candidate against JEV in plants by the BaMV-based epitope presentation system.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Jia-Teh Liao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan.,Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
27
|
Larman BC, Dethoff EA, Weeks KM. Packaged and Free Satellite Tobacco Mosaic Virus (STMV) RNA Genomes Adopt Distinct Conformational States. Biochemistry 2017; 56:2175-2183. [PMID: 28332826 DOI: 10.1021/acs.biochem.6b01166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNA genomes of viruses likely undergo multiple functionally important conformational changes during their replication cycles, changes that are poorly understood at present. We used two complementary in-solution RNA structure probing strategies (SHAPE-MaP and RING-MaP) to examine the structure of the RNA genome of satellite tobacco mosaic virus inside authentic virions and in a capsid-free state. Both RNA states feature similar three-domain architectures in which each major replicative function-translation, capsid coding, and genome synthesis-fall into distinct domains. There are, however, large conformational differences between the in-virion and capsid-free states, primarily in one arm of the central T domain. These data support a model in which the packaged capsid-bound RNA is constrained in a local high-energy conformation by the native capsid shell. The removal of the viral capsid then allows the RNA genome to relax into a more thermodynamically stable conformation. The RNA architecture of the central T domain thus likely changes during capsid assembly and disassembly and may play a role in genome packaging.
Collapse
Affiliation(s)
- Bridget C Larman
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
28
|
Abstract
The discoveries of myriad non-coding RNA molecules, each transiting through multiple flexible states in cells or virions, present major challenges for structure determination. Advances in high-throughput chemical mapping give new routes for characterizing entire transcriptomes in vivo, but the resulting one-dimensional data generally remain too information-poor to allow accurate de novo structure determination. Multidimensional chemical mapping (MCM) methods seek to address this challenge. Mutate-and-map (M2), RNA interaction groups by mutational profiling (RING-MaP and MaP-2D analysis) and multiplexed •OH cleavage analysis (MOHCA) measure how the chemical reactivities of every nucleotide in an RNA molecule change in response to modifications at every other nucleotide. A growing body of in vitro blind tests and compensatory mutation/rescue experiments indicate that MCM methods give consistently accurate secondary structures and global tertiary structures for ribozymes, ribosomal domains and ligand-bound riboswitch aptamers up to 200 nucleotides in length. Importantly, MCM analyses provide detailed information on structurally heterogeneous RNA states, such as ligand-free riboswitches that are functionally important but difficult to resolve with other approaches. The sequencing requirements of currently available MCM protocols scale at least quadratically with RNA length, precluding general application to transcriptomes or viral genomes at present. We propose a modify-cross-link-map (MXM) expansion to overcome this and other current limitations to resolving the in vivo 'RNA structurome'.
Collapse
|
29
|
Tom AM, Vemparala S, Rajesh R, Brilliantov NV. Mechanism of Chain Collapse of Strongly Charged Polyelectrolytes. PHYSICAL REVIEW LETTERS 2016; 117:147801. [PMID: 27740827 DOI: 10.1103/physrevlett.117.147801] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 06/06/2023]
Abstract
We perform extensive molecular dynamics simulations of a charged polymer in a good solvent in the regime where the chain is collapsed. We analyze the dependence of the gyration radius R_{g} on the reduced Bjerrum length ℓ_{B} and find two different regimes. In the first one, called a weak electrostatic regime, R_{g}∼ℓ_{B}^{-1/2}, which is consistent only with the predictions of the counterion-fluctuation theory. In the second one, called a strong electrostatic regime, we find R_{g}∼ℓ_{B}^{-1/5}. To explain the novel regime we modify the counterion-fluctuation theory.
Collapse
Affiliation(s)
- Anvy Moly Tom
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Nikolai V Brilliantov
- Department of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
30
|
Reddy T, Sansom MSP. Computational virology: From the inside out. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1610-8. [PMID: 26874202 PMCID: PMC4884666 DOI: 10.1016/j.bbamem.2016.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
Viruses typically pack their genetic material within a protein capsid. Enveloped viruses also have an outer membrane made up of a lipid bilayer and membrane-spanning glycoproteins. X-ray diffraction and cryoelectron microscopy provide high resolution static views of viral structure. Molecular dynamics (MD) simulations may be used to provide dynamic insights into the structures of viruses and their components. There have been a number of simulations of viral capsids and (in some cases) of the inner core of RNA or DNA packaged within them. These simulations have generally focussed on the structural integrity and stability of the capsid and/or on the influence of the nucleic acid core on capsid stability. More recently there have been a number of simulation studies of enveloped viruses, including HIV-1, influenza A, and dengue virus. These have addressed the dynamic behaviour of the capsid, the matrix, and/or of the outer envelope. Analysis of the dynamics of the lipid bilayer components of the envelopes of influenza A and of dengue virus reveals a degree of biophysical robustness, which may contribute to the stability of virus particles in different environments. Significant computational challenges need to be addressed to aid simulation of complex viruses and their membranes, including the need to integrate structural data from a range of sources to enable us to move towards simulations of intact virions. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Tyler Reddy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
31
|
Kelly J, Grosberg AY, Bruinsma R. Sequence Dependence of Viral RNA Encapsidation. J Phys Chem B 2016; 120:6038-50. [PMID: 27116641 DOI: 10.1021/acs.jpcb.6b01964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We develop a Flory mean-field theory for viral RNA (vRNA) molecules that extends the current RNA folding algorithms to include interactions between different sections of the secondary structure. The theory is applied to sequence-selective vRNA encapsidation. The dependence on sequence enters through a single parameter: the largest eigenvalue of the Kramers matrix of the branched polymer obtained by coarse graining the secondary structure. Differences between the work of encapsidation of vRNA molecules and of randomized isomers are found to be in the range of 20 kBT, more than sufficient to provide a strong bias in favor of vRNA encapsidation. The method is applied to a packaging competition experiment where large vRNA molecules compete for encapsidation with two smaller RNA species that together have the same nucleotide sequence as the large molecule. We encounter a substantial, generic free energy bias, that also is of the order of 20 kBT, in favor of encapsidating the single large RNA molecule. The bias is mainly the consequence of the fact that dividing up a large vRNA molecule involves the release of stored elastic energy. This provides an important, nonspecific mechanism for preferential encapsidation of single larger vRNA molecules over multiple smaller mRNA molecules with the same total number of nucleotides. The result is also consistent with recent RNA packaging competition experiments by Comas-Garcia et al.1 Finally, the Flory method leads to the result that when two RNA molecules are copackaged, they are expected to remain segregated inside the capsid.
Collapse
Affiliation(s)
- Joshua Kelly
- Department of Physics and Astronomy, University of California , Los Angeles, California 90095, United States
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University , New York, New York 10003, United States
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California , Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
32
|
Bruinsma RF, Comas-Garcia M, Garmann RF, Grosberg AY. Equilibrium self-assembly of small RNA viruses. Phys Rev E 2016; 93:032405. [PMID: 27078388 DOI: 10.1103/physreve.93.032405] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 12/18/2022]
Abstract
We propose a description for the quasiequilibrium self-assembly of small, single-stranded (ss) RNA viruses whose capsid proteins (CPs) have flexible, positively charged, disordered tails that associate with the negatively charged RNA genome molecules. We describe the assembly of such viruses as the interplay between two coupled phase-transition-like events: the formation of the protein shell (the capsid) by CPs and the condensation of a large ss viral RNA molecule. Electrostatic repulsion between the CPs competes with attractive hydrophobic interactions and attractive interaction between neutralized RNA segments mediated by the tail groups. An assembly diagram is derived in terms of the strength of attractive interactions between CPs and between CPs and the RNA molecules. It is compared with the results of recent studies of viral assembly. We demonstrate that the conventional theory of self-assembly, which does describe the assembly of empty capsids, is in general not applicable to the self-assembly of RNA-encapsidating virions.
Collapse
Affiliation(s)
- R F Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - M Comas-Garcia
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - R F Garmann
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - A Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
| |
Collapse
|
33
|
Mateu MG. Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:83-120. [PMID: 27677510 DOI: 10.1007/978-3-319-39196-0_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses and their protein capsids can be regarded as biologically evolved nanomachines able to perform multiple, complex biological functions through coordinated mechano-chemical actions during the infectious cycle. The advent of nanoscience and nanotechnology has opened up, in the last 10 years or so, a vast number of novel possibilities to exploit engineered viral capsids as protein-based nanoparticles for multiple biomedical, biotechnological or nanotechnological applications. This chapter attempts to provide a broad, updated overview on the self-assembly and engineering of virus capsids, and on applications of virus-based nanoparticles. Different sections provide outlines on: (i) the structure, functions and properties of virus capsids; (ii) general approaches for obtaining assembled virus particles; (iii) basic principles and events related to virus capsid self-assembly; (iv) genetic and chemical strategies for engineering virus particles; (v) some applications of engineered virus particles being developed; and (vi) some examples on the engineering of virus particles to modify their physical properties, in order to improve their suitability for different uses.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain. .,Department of Molecular Biology, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
34
|
Stockley PG, White SJ, Dykeman E, Manfield I, Rolfsson O, Patel N, Bingham R, Barker A, Wroblewski E, Chandler-Bostock R, Weiß EU, Ranson NA, Tuma R, Twarock R. Bacteriophage MS2 genomic RNA encodes an assembly instruction manual for its capsid. BACTERIOPHAGE 2016; 6:e1157666. [PMID: 27144089 PMCID: PMC4836477 DOI: 10.1080/21597081.2016.1157666] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Using RNA-coat protein crosslinking we have shown that the principal RNA recognition surface on the interior of infectious MS2 virions overlaps with the known peptides that bind the high affinity translational operator, TR, within the phage genome. The data also reveal the sequences of genomic fragments in contact with the coat protein shell. These show remarkable overlap with previous predictions based on the hypothesis that virion assembly is mediated by multiple sequences-specific contacts at RNA sites termed Packaging Signals (PSs). These PSs are variations on the TR stem-loop sequence and secondary structure. They act co-operatively to regulate the dominant assembly pathway and ensure cognate RNA encapsidation. In MS2, they also trigger conformational change in the dimeric capsomere creating the A/B quasi-conformer, 60 of which are needed to complete the T=3 capsid. This is the most compelling demonstration to date that this ssRNA virus, and by implications potentially very many of them, assemble via a PS-mediated assembly mechanism.
Collapse
Affiliation(s)
- Peter G. Stockley
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Simon J. White
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Eric Dykeman
- Department of Biology and Mathematics & York Center for Complex Systems Analysis, University of York, York, UK
| | - Iain Manfield
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, University of Iceland Biomedical Center, Reykjavik, Iceland
| | - Nikesh Patel
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Richard Bingham
- Department of Biology and Mathematics & York Center for Complex Systems Analysis, University of York, York, UK
| | - Amy Barker
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Emma Wroblewski
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - Eva U. Weiß
- Department of Biology and Mathematics & York Center for Complex Systems Analysis, University of York, York, UK
| | - Neil A. Ranson
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Roman Tuma
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Reidun Twarock
- Department of Biology and Mathematics & York Center for Complex Systems Analysis, University of York, York, UK
| |
Collapse
|
35
|
Chen NC, Yoshimura M, Guan HH, Wang TY, Misumi Y, Lin CC, Chuankhayan P, Nakagawa A, Chan SI, Tsukihara T, Chen TY, Chen CJ. Crystal Structures of a Piscine Betanodavirus: Mechanisms of Capsid Assembly and Viral Infection. PLoS Pathog 2015; 11:e1005203. [PMID: 26491970 PMCID: PMC4619592 DOI: 10.1371/journal.ppat.1005203] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022] Open
Abstract
Betanodaviruses cause massive mortality in marine fish species with viral nervous necrosis. The structure of a T = 3 Grouper nervous necrosis virus-like particle (GNNV-LP) is determined by the ab initio method with non-crystallographic symmetry averaging at 3.6 Å resolution. Each capsid protein (CP) shows three major domains: (i) the N-terminal arm, an inter-subunit extension at the inner surface; (ii) the shell domain (S-domain), a jelly-roll structure; and (iii) the protrusion domain (P-domain) formed by three-fold trimeric protrusions. In addition, we have determined structures of the T = 1 subviral particles (SVPs) of (i) the delta-P-domain mutant (residues 35−217) at 3.1 Å resolution; and (ii) the N-ARM deletion mutant (residues 35−338) at 7 Å resolution; and (iii) the structure of the individual P-domain (residues 214−338) at 1.2 Å resolution. The P-domain reveals a novel DxD motif asymmetrically coordinating two Ca2+ ions, and seems to play a prominent role in the calcium-mediated trimerization of the GNNV CPs during the initial capsid assembly process. The flexible N-ARM (N-terminal arginine-rich motif) appears to serve as a molecular switch for T = 1 or T = 3 assembly. Finally, we find that polyethylene glycol, which is incorporated into the P-domain during the crystallization process, enhances GNNV infection. The present structural studies together with the biological assays enhance our understanding of the role of the P-domain of GNNV in the capsid assembly and viral infection by this betanodavirus. Betanodaviruses belong to the family Nodaviridae and cause the mortality of numerous larval-stage fish species. Here we report protein crystal structures of a piscine betanodavirus, the Grouper nervous necrosis virus (GNNV), in four different forms. Highlights are two structural features that contribute to the viral molecular mechanisms of the T = 3 and T = 1 capsid assembly: a calcium-associated protrusion domain and a functional arginine-rich motif. These results also shed insights into the structural basis for evolutionary lineage of the family Nodaviridae.
Collapse
Affiliation(s)
- Nai-Chi Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Yu Wang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuko Misumi
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sunney I. Chan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United State of America
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Tzong-Yueh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (TYC); (CJC)
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (TYC); (CJC)
| |
Collapse
|
36
|
Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis. Sci Rep 2015; 5:14825. [PMID: 26442593 PMCID: PMC4595797 DOI: 10.1038/srep14825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023] Open
Abstract
Genome uncoating is a prerequisite for the successful infection of plant viruses in host plants. Thus far, little is known about the genome uncoating of the Carnation mottle virus (CarMV). Here, we obtained two reconstructions of CarMV at pH7 in the presence (Ca-pH7) and absence (EDTA-pH7) of calcium ions by Cryo-EM single particle analysis, which achieved 6.4 Å and 8 Å resolutions respectively. Our results showed that chelation of the calcium ions under EDTA-pH7 resulted in reduced interaction between the subunits near the center of the asymmetric unit but not overall size change of the viral particles, which indicated that the role of the calcium ions in CarMV was not predominantly for the structural preservation. Part of the genomic RNA closest to the capsid was found to be located near the center of the asymmetric unit, which might result from the interaction between genomic RNA and Lys194 residues. Together with the electrostatic potential analysis on the inner surface of the asymmetric unit, the reduced interaction near the center of the asymmetric unit under EDTA-pH7 suggested that the genome release of CarMV might be realized through the center of the asymmetric unit.
Collapse
|
37
|
A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci Rep 2015; 5:13486. [PMID: 26336920 PMCID: PMC4559658 DOI: 10.1038/srep13486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Viral capsids are metastable structures that perform many essential processes; they also act as robust cages during the extracellular phase. Viruses can use multifunctional proteins to optimize resources (e.g., VP3 in avian infectious bursal disease virus, IBDV). The IBDV genome is organized as ribonucleoproteins (RNP) of dsRNA with VP3, which also acts as a scaffold during capsid assembly. We characterized mechanical properties of IBDV populations with different RNP content (ranging from none to four RNP). The IBDV population with the greatest RNP number (and best fitness) showed greatest capsid rigidity. When bound to dsRNA, VP3 reinforces virus stiffness. These contacts involve interactions with capsid structural subunits that differ from the initial interactions during capsid assembly. Our results suggest that RNP dimers are the basic stabilization units of the virion, provide better understanding of multifunctional proteins, and highlight the duality of RNP as capsid-stabilizing and genetic information platforms.
Collapse
|
38
|
Zhao X, Wang X, Dong K, Zhang Y, Hu Y, Zhang X, Chen Y, Wang X, Han C, Yu J, Li D. Phosphorylation of Beet black scorch virus coat protein by PKA is required for assembly and stability of virus particles. Sci Rep 2015; 5:11585. [PMID: 26108567 PMCID: PMC4479801 DOI: 10.1038/srep11585] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Plant virus coat proteins (CPs) play a fundamental role in protection of genomic RNAs, virion assembly, and viral movement. Although phosphorylation of several CPs during virus infection have been reported, little information is available about CP phosphorylation of the spherical RNA plant viruses. Here, we demonstrate that the CP of Beet black scorch virus (BBSV), a member of the genus Necrovirus, can be phosphorylated at threonine-41 (T41) by cAMP-dependent protein kinase (PKA)-like kinase in vivo and in vitro. Mutant viruses containing a T41A non-phosphorylatable alanine substitution, and a T41E glutamic acid substitution to mimic threonine phosphorylation were able to replicate but were unable to move systemically in Nicotiana benthamiana. Interestingly, the T41A and T41E mutants generated unstable 17 nm virus-like particles that failed to package viral genomic (g) RNA, compared with wild-type BBSV with 30 nm virions during viral infection in N. benthamiana. Further analyses showed that the T41 mutations had little effect on the gRNA-binding activity of the CP. Therefore, we propose a model whereby CP phosphorylation plays an essential role in long-distance movement of BBSV that involves formation of stable virions.
Collapse
Affiliation(s)
- Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Hu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
The Role of Packaging Sites in Efficient and Specific Virus Assembly. J Mol Biol 2015; 427:2451-2467. [PMID: 25986309 DOI: 10.1016/j.jmb.2015.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
Abstract
During the life cycle of many single-stranded RNA viruses, including many human pathogens, a protein shell called the capsid spontaneously assembles around the viral genome. Understanding the mechanisms by which capsid proteins selectively assemble around the viral RNA amidst diverse host RNAs is a key question in virology. In one proposed mechanism, short sequences (packaging sites) within the genomic RNA promote rapid and efficient assembly through specific interactions with the capsid proteins. In this work, we develop a coarse-grained particle-based computational model for capsid proteins and RNA that represents protein-RNA interactions arising both from nonspecific electrostatics and from specific packaging site interactions. Using Brownian dynamics simulations, we explore how the efficiency and specificity of assembly depend on solution conditions (which control protein-protein and nonspecific protein-RNA interactions) and the strength and number of packaging sites. We identify distinct regions in parameter space in which packaging sites lead to highly specific assembly via different mechanisms and others in which packaging sites lead to kinetic traps. We relate these computational predictions to in vitro assays for specificity in which cognate viral RNAs compete against non-cognate RNAs for assembly by capsid proteins.
Collapse
|
40
|
Abstract
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.
Collapse
|
41
|
Abstract
We present direct experimental evidence that assembly of a single-stranded RNA virus occurs via a packaging signal-mediated mechanism. We show that the sequences of coat protein recognition motifs within multiple, dispersed, putative RNA packaging signals, as well as their relative spacing within a genomic fragment, act collectively to influence the fidelity and yield of capsid self-assembly in vitro. These experiments confirm that the selective advantages for viral yield and encapsidation specificity, predicted from previous modeling of packaging signal-mediated assembly, are found in Nature. Regions of the genome that act as packaging signals also function in translational and transcriptional enhancement, as well as directly coding for the coat protein, highlighting the density of encoded functions within the viral RNA. Assembly and gene expression are therefore direct molecular competitors for different functional folds of the same RNA sequence. The strongest packaging signal in the test fragment, encodes a region of the coat protein that undergoes a conformational change upon contact with packaging signals. A similar phenomenon occurs in other RNA viruses for which packaging signals are known. These contacts hint at an even deeper density of encoded functions in viral RNA, which if confirmed, would have profound consequences for the evolution of this class of pathogens.
Collapse
|
42
|
Gray S, Cilia M, Ghanim M. Circulative, "nonpropagative" virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 2014; 89:141-99. [PMID: 24751196 DOI: 10.1016/b978-0-12-800172-1.00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.
Collapse
Affiliation(s)
- Stewart Gray
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA.
| | - Michelle Cilia
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA; Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
43
|
Gopal A, Egecioglu DE, Yoffe AM, Ben-Shaul A, Rao ALN, Knobler CM, Gelbart WM. Viral RNAs are unusually compact. PLoS One 2014; 9:e105875. [PMID: 25188030 PMCID: PMC4154850 DOI: 10.1371/journal.pone.0105875] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023] Open
Abstract
A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly.
Collapse
Affiliation(s)
- Ajaykumar Gopal
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Defne E. Egecioglu
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aron M. Yoffe
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Avinoam Ben-Shaul
- Institute of Chemistry & The Fritz Haber Research Center, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Ayala L. N. Rao
- Department of Plant Pathology, University of California Riverside, Riverside, California, United States of America
| | - Charles M. Knobler
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - William M. Gelbart
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hovlid ML, Lau JL, Breitenkamp K, Higginson CJ, Laufer B, Manchester M, Finn MG. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS NANO 2014; 8:8003-14. [PMID: 25073013 PMCID: PMC4148144 DOI: 10.1021/nn502043d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/16/2014] [Indexed: 04/14/2023]
Abstract
Virus-like particles (VLPs) are unique macromolecular structures that hold great promise in biomedical and biomaterial applications. The interior of the 30 nm-diameter Qβ VLP was functionalized by a three-step process: (1) hydrolytic removal of endogenously packaged RNA, (2) covalent attachment of initiator molecules to unnatural amino acid residues located on the interior capsid surface, and (3) atom-transfer radical polymerization of tertiary amine-bearing methacrylate monomers. The resulting polymer-containing particles were moderately expanded in size; however, biotin-derivatized polymer strands were only very weakly accessible to avidin, suggesting that most of the polymer was confined within the protein shell. The polymer-containing particles were also found to exhibit physical and chemical properties characteristic of positively charged nanostructures, including the ability to easily enter mammalian cells and deliver functional small interfering RNA.
Collapse
Affiliation(s)
- Marisa L. Hovlid
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene L. Lau
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kurt Breitenkamp
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Cody J. Higginson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Burkhardt Laufer
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, United States
| | - M. G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- School of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
45
|
Assembly and maturation of a T = 4 quasi-equivalent virus is guided by electrostatic and mechanical forces. Viruses 2014; 6:3348-62. [PMID: 25153346 PMCID: PMC4147699 DOI: 10.3390/v6083348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/17/2022] Open
Abstract
Nudaurelia capensis w virus (NωV) is a eukaryotic RNA virus that is well suited for the study of virus maturation. The virus initially assembles at pH 7.6 into a marginally stable 480-Å procapsid formed by 240 copies of a single type of protein subunit. During maturation, which occurs during apoptosis at pH 5.0, electrostatic forces guide subunit trajectories into a robust 410-Å virion that is buttressed by subunit associated molecular switches. We discuss the competing factors in the virus capsid of requiring near-reversible interactions during initial assembly to avoid kinetic traps, while requiring robust stability to survive in the extra-cellular environment. In addition, viruses have a variety of mechanisms to deliver the genome, which must remain off while still inside the infected cell, yet turn on under the proper conditions of infection. We conclude that maturation is the process that provides a solution to these conflicting requirements through a program that is encoded in the procapsid and that leads to stability and infectivity.
Collapse
|
46
|
Perlmutter JD, Perkett MR, Hagan MF. Pathways for virus assembly around nucleic acids. J Mol Biol 2014; 426:3148-3165. [PMID: 25036288 DOI: 10.1016/j.jmb.2014.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work, we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single-molecule fluorescence correlation spectroscopy or bulk time-resolved small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
47
|
Solving a Levinthal's paradox for virus assembly identifies a unique antiviral strategy. Proc Natl Acad Sci U S A 2014; 111:5361-6. [PMID: 24706827 DOI: 10.1073/pnas.1319479111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the important puzzles in virology is how viruses assemble the protein containers that package their genomes rapidly and efficiently in vivo while avoiding triggering their hosts' antiviral defenses. Viral assembly appears directed toward a relatively small subset of the vast number of all possible assembly intermediates and pathways, akin to Levinthal's paradox for the folding of polypeptide chains. Using an in silico assembly model, we demonstrate that this reduction in complexity can be understood if aspects of in vivo assembly, which have mostly been neglected in in vitro experimental and theoretical modeling assembly studies, are included in the analysis. In particular, we show that the increasing viral coat protein concentration that occurs in infected cells plays unexpected and vital roles in avoiding potential kinetic assembly traps, significantly reducing the number of assembly pathways and assembly initiation sites, and resulting in enhanced assembly efficiency and genome packaging specificity. Because capsid assembly is a vital determinant of the overall fitness of a virus in the infection process, these insights have important consequences for our understanding of how selection impacts on the evolution of viral quasispecies. These results moreover suggest strategies for optimizing the production of protein nanocontainers for drug delivery and of virus-like particles for vaccination. We demonstrate here in silico that drugs targeting the specific RNA-capsid protein contacts can delay assembly, reduce viral load, and lead to an increase of misencapsidation of cellular RNAs, hence opening up unique avenues for antiviral therapy.
Collapse
|
48
|
Feenstra F, van Gennip RGP, van de Water SGP, van Rijn PA. RNA elements in open reading frames of the bluetongue virus genome are essential for virus replication. PLoS One 2014; 9:e92377. [PMID: 24658296 PMCID: PMC3962428 DOI: 10.1371/journal.pone.0092377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9 to 12 genome segments. Bluetongue virus is the prototype orbivirus (family Reoviridae, genus Orbivirus), causing disease in ruminants, and is spread by Culicoides biting midges. Obviously, several steps in the Reoviridae family replication cycle require virus specific as well as segment specific recognition by viral proteins, but detailed processes in these interactions are still barely understood. Recently, we have shown that expression of NS3 and NS3a proteins encoded by genome segment 10 of bluetongue virus is not essential for virus replication. This gave us the unique opportunity to investigate the role of RNA sequences in the segment 10 open reading frame in virus replication, independent of its protein products. Reverse genetics was used to generate virus mutants with deletions in the open reading frame of segment 10. Although virus with a deletion between both start codons was not viable, deletions throughout the rest of the open reading frame led to the rescue of replicating virus. However, all bluetongue virus deletion mutants without functional protein expression of segment 10 contained inserts of RNA sequences originating from several viral genome segments. Subsequent studies showed that these RNA inserts act as RNA elements, needed for rescue and replication of virus. Functionality of the inserts is orientation-dependent but is independent from the position in segment 10. This study clearly shows that RNA in the open reading frame of Reoviridae members does not only encode proteins, but is also essential for virus replication.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - René G. P. van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Sandra G. P. van de Water
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Piet A. van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
49
|
Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc Natl Acad Sci U S A 2013; 110:20063-8. [PMID: 24277846 DOI: 10.1073/pnas.1312128110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During infection, viruses undergo conformational changes that lead to delivery of their genome into host cytosol. In human rhinovirus A2, this conversion is triggered by exposure to acid pH in the endosome. The first subviral intermediate, the A-particle, is expanded and has lost the internal viral protein 4 (VP4), but retains its RNA genome. The nucleic acid is subsequently released, presumably through one of the large pores that open at the icosahedral twofold axes, and is transferred along a conduit in the endosomal membrane; the remaining empty capsids, termed B-particles, are shuttled to lysosomes for degradation. Previous structural analyses revealed important differences between the native protein shell and the empty capsid. Nonetheless, little is known of A-particle architecture or conformation of the RNA core. Using 3D cryo-electron microscopy and X-ray crystallography, we found notable changes in RNA-protein contacts during conversion of native virus into the A-particle uncoating intermediate. In the native virion, we confirmed interaction of nucleotide(s) with Trp(38) of VP2 and identified additional contacts with the VP1 N terminus. Study of A-particle structure showed that the VP2 contact is maintained, that VP1 interactions are lost after exit of the VP1 N-terminal extension, and that the RNA also interacts with residues of the VP3 N terminus at the fivefold axis. These associations lead to formation of a well-ordered RNA layer beneath the protein shell, suggesting that these interactions guide ordered RNA egress.
Collapse
|
50
|
To build a virus on a nucleic acid substrate. Biophys J 2013; 104:1595-604. [PMID: 23561536 DOI: 10.1016/j.bpj.2013.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/10/2013] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Many viruses package their genomes concomitant with assembly. Here, we show that this reaction can be described by three coefficients: association of capsid protein (CP) to nucleic acid (NA), KNA; CP-CP interaction, ω; and α, proportional to the work required to package NA. The value of α can vary as NA is packaged. A phase diagram of average lnα versus lnω identifies conditions where assembly is likely to fail or succeed. NA morphology can favor (lnα > 0) or impede (lnα < 0) assembly. As lnω becomes larger, capsids become more stable and assembly becomes more cooperative. Where (lnα + lnω) < 0, the CP is unable to contain the NA, so that assembly results in aberrant particles. This phase diagram is consistent with quantitative studies of cowpea chlorotic mottle virus, hepatitis B virus, and simian virus 40 assembling on ssRNA and dsDNA substrates. Thus, the formalism we develop is suitable for describing and predicting behavior of experimental studies of CP assembly on NA.
Collapse
|