1
|
Scott KJ, Speers LJ, Bilkey DK. Maternal immune activation alters bout structure of rat 50-kHz ultrasonic vocalizations. Behav Brain Res 2025; 488:115596. [PMID: 40252701 DOI: 10.1016/j.bbr.2025.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Dysfunctional sequencing of behaviour and cognition is observed in schizophrenia across multiple domains, including during communication. We examined whether maternal immune activation (MIA), a risk factor for schizophrenia, disrupted the sequential organization of ultrasonic vocalizations (USVs) in a rat model. We analysed the structure of bursts of 50-kHz USVs (bouts) in two independent datasets (paired-rat: 19 control, 18 MIA; reward paradigm: 18 control, 20 MIA), using a Damerau-Levenshtein analysis with a k-fold cross-validation procedure. MIA animals showed greater variability in their bout sequences in both datasets, with lower Levenshtein similarity index (LSI) scores compared to control animals. Notably, MIA set median sequences were more similar to control bout sequences than to their own group's sequences, suggesting a breakdown in sequential organization. Additionally, we found an alteration to 50-kHz USV transitional preferences in MIA in a reward context. While sequence structure was altered, basic call production and call-type distribution remained largely intact across groups. These findings demonstrate that MIA specifically appears to affect the organization of vocal sequences at the bout level, while largely preserving basic vocalization patterns. This work extends our understanding of the effects of maternal infection during pregnancy, and how this can lead to altered communication sequences that are relevant to schizophrenia risk.
Collapse
Affiliation(s)
- K Jack Scott
- Department of Psychology, University of Otago, New Zealand
| | - Lucinda J Speers
- Department of Psychology, University of Otago, New Zealand; Grenoble Institut des Neurosciences, Inserm, France
| | - David K Bilkey
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
2
|
Moseley SM, Meliza CD. A complex acoustical environment is necessary for maintenance and development in the zebra finch auditory pallium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.22.655494. [PMID: 40475434 PMCID: PMC12139932 DOI: 10.1101/2025.05.22.655494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Postnatal experience is critical to auditory development in vertebrates. The zebra finch (Taeniopygia castanotis) provides a valuable model for understanding how complex social-acoustical environments influence development of the neural circuits that support perception of vocal communication signals. We previously showed that zebra finches raised in the rich acoustical environment of a breeding colony (colony-reared, CR) perform twice as well in an operant discrimination task as birds raised with only their families (pair-reared, PR), and we identified deficits in functional properties within the auditory pallium of PR birds that could explain this behavioral difference. Here, using single-unit extracellular recordings from the L3 subdivision of field L and caudomedial nidopallium (NCM) at three developmental timepoints (18-20, 30-35, and 90-110 days post hatch), we tracked how experience affects the emergence of these functional properties. Whereas CR birds showed stable single-unit response properties from fledging to adulthood alongside improvements in population-level encoding, PR birds exhibited progressive deterioration in neural function. Deficits in PR birds began emerging at 18 days for population metrics and by 30 days for single-unit properties, worsening into adulthood. These included altered spike waveforms, firing rates, selectivity, discriminability, coding efficiency, and noise invariance. Notably, these deficits occurred despite PR birds receiving normal exposure to the song of a male tutor, suggesting that learning to sing is robust enough to compensate for impaired auditory processing. Our findings demonstrate that a complex acoustical environment is necessary for both maintenance and development of the cortical-level auditory circuits that decode conspecific vocalizations.
Collapse
Affiliation(s)
- Samantha M Moseley
- Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
| | - C Daniel Meliza
- Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville VA 22904, USA
| |
Collapse
|
3
|
Qing T, Shen D, Fan Y, Shi S, Lu L, Wu Y, Fang G. Modified specific components of conspecific advertisement calls influence behavioral and neural responses in music frogs. Commun Biol 2025; 8:773. [PMID: 40399580 PMCID: PMC12095552 DOI: 10.1038/s42003-025-08170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/05/2025] [Indexed: 05/23/2025] Open
Abstract
Vocal communication plays a critical role in the transfer and exchange of information among animals. However, it remains unclear how modifications to specific call components simultaneously affect behavioral and neural responses. To address these issues, we conducted phonotaxis experiments and neural signal recordings in Emei music frogs (Nidirana daunchina), exposing them to auditory stimuli with varying degrees of information coherence violations. During the electrophysiological recordings, we also presented stimuli with altered physical properties featuring rising intonation. The phonotaxis experiments showed that females exhibited reduced attraction to altered calls with potential information coherence violations, suggesting that information coherence may influence female choice. Similarly, the electrophysiological experiments indicated a correlation between the amplitudes of the N400 and late positive components (LPC) with information incongruity and altered physical properties, respectively. Notably, the N400 amplitudes increased proportionally with the extent of potential information coherence violations. Given that N400 is a well-established neural indicator for prediction error in perceptual processes, including semantic processing in humans, and considering the significant evolutionary conservation of brain structure and function among vertebrates, these findings suggest that information coherence contained in the calls plays a crucial role in anuran vocal communication.
Collapse
Affiliation(s)
- Tao Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.23, Qunxian South Street, Tianfu new area, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, China
| | - Di Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.23, Qunxian South Street, Tianfu new area, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, China
| | - Yanzhu Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.23, Qunxian South Street, Tianfu new area, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, China
| | - Suxin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.23, Qunxian South Street, Tianfu new area, Chengdu, Sichuan, China
| | - Lidi Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.23, Qunxian South Street, Tianfu new area, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, China
| | - Yue Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.23, Qunxian South Street, Tianfu new area, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, China
| | - Guangzhan Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.23, Qunxian South Street, Tianfu new area, Chengdu, Sichuan, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, China.
| |
Collapse
|
4
|
Fernandez AA, Serve N, Fabian SC, Knörnschild M. Maternal behavior influences vocal practice and learning processes in the greater sac-winged bat. eLife 2025; 13:RP99474. [PMID: 40356332 PMCID: PMC12074634 DOI: 10.7554/elife.99474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Learning, particularly vocal learning, is often a social process. In human infants, it is well-established that social interactions influence speech acquisition and are hypothesized to modulate attentiveness and sensory processes, thereby affecting the speech-learning process. However, our understanding of how social interactions shape vocal ontogenetic processes in non-human mammals, particularly those which vocally learn, remains limited. In the bat Saccopteryx bilineata, pups acquire the adult vocal repertoire through a distinctive babbling behavior that shows interesting similarities to human infant babbling. While babbling encompasses many different syllable types, it is particularly noteworthy that pups learn song syllables by imitating adult singing males. The pups' social environment involves frequent interactions with their mothers, whereas adult males mainly serve as the primary source of acoustic input. We monitored the vocal ontogeny of wild pups, investigating whether their social environment influenced three aspects of babbling: the amount of vocal practice, the pups' final syllable repertoire size and the production of the syllable types acquired through vocal learning. The results demonstrate that maternal behavioral displays significantly influence the amount of vocal practice, the presence and versatility of song syllable types in babbling and the percentage of mature song syllables. Our findings show that maternal feedback plays a significant role in the vocal ontogeny and learning processes of S. bilineata, thus enhancing our understanding of the relationship between social feedback and vocal development in mammalian vocal learners.
Collapse
Affiliation(s)
- Ahana Aurora Fernandez
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Free UniversityBerlinGermany
| | - Nora Serve
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Free UniversityBerlinGermany
| | - Sarah-Cecil Fabian
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Free UniversityBerlinGermany
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Smithsonian Tropical Research InstituteBalboaPanama
- Evolutionary Ethology, Institute for Biology, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
5
|
Qi J, Schreiner DC, Martinez M, Pearson J, Mooney R. Dual neuromodulatory dynamics underlie birdsong learning. Nature 2025; 641:690-698. [PMID: 40074907 DOI: 10.1038/s41586-025-08694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Although learning in response to extrinsic reinforcement is theorized to be driven by dopamine signals that encode the difference between expected and experienced rewards1,2, skills that enable verbal or musical expression can be learned without extrinsic reinforcement. Instead, spontaneous execution of these skills is thought to be intrinsically reinforcing3,4. Whether dopamine signals similarly guide learning of these intrinsically reinforced behaviours is unknown. In juvenile zebra finches learning from an adult tutor, dopamine signalling in a song-specialized basal ganglia region is required for successful song copying, a spontaneous, intrinsically reinforced process5. Here we show that dopamine dynamics in the song basal ganglia faithfully track the learned quality of juvenile song performance on a rendition-by-rendition basis. Furthermore, dopamine release in the basal ganglia is driven not only by inputs from midbrain dopamine neurons classically associated with reinforcement learning but also by song premotor inputs, which act by means of local cholinergic signalling to elevate dopamine during singing. Although both cholinergic and dopaminergic signalling are necessary for juvenile song learning, only dopamine tracks the learned quality of song performance. Therefore, dopamine dynamics in the basal ganglia encode performance quality during self-directed, long-term learning of natural behaviours.
Collapse
Affiliation(s)
- Jiaxuan Qi
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Drew C Schreiner
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Miles Martinez
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - John Pearson
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Zhang EQ, Shi ER, Pleyer M. Category Learning as a Cognitive Foundation of Language Evolution. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2025; 16:e70007. [PMID: 40411358 DOI: 10.1002/wcs.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/24/2025] [Accepted: 05/13/2025] [Indexed: 05/26/2025]
Abstract
Category learning gives rise to category formation, which is a crucial ability in human cognition. Category learning is also one of the required learning abilities in language development. Understanding the evolution of category learning thus can shed light on the evolution of human cognition and language. The current paper emphasizes its foundational role in language evolution by reviewing behavioral and neurological studies on category learning across species. In doing so, we first review studies on the critical role of category learning in learning sounds, words, and grammatical patterns of language. Next, from a comparative perspective, we review studies on category learning conducted on different species of nonhuman animals, including invertebrates and vertebrates, suggesting that category learning displays evolutionary continuity. Then, from a neurological perspective, we focus on the prefrontal cortex and the basal ganglia. Reviewing the involvement of these structures in vertebrates and the proposed homologous brain structure to the basal ganglia in invertebrates in category learning, as well as in language processing in humans, suggests that the neural basis of category learning likely has an ancient origin dating back to invertebrates. With evidence from both behavioral and neurological levels in both nonhuman animals and humans, we conclude that category learning lays a crucial cognitive foundation for language evolution.
Collapse
Affiliation(s)
- Elizabeth Qing Zhang
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou, China
| | - Edward Ruoyang Shi
- Department of Translation and Language Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Michael Pleyer
- Center for Language Evolution Studies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
7
|
Kasdin J, Duffy A, Nadler N, Raha A, Fairhall AL, Stachenfeld KL, Gadagkar V. Natural behaviour is learned through dopamine-mediated reinforcement. Nature 2025; 641:699-706. [PMID: 40074908 DOI: 10.1038/s41586-025-08729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Many natural motor skills, such as speaking or locomotion, are acquired through a process of trial-and-error learning over the course of development. It has long been hypothesized, motivated by observations in artificial learning experiments, that dopamine has a crucial role in this process. Dopamine in the basal ganglia is thought to guide reward-based trial-and-error learning by encoding reward prediction errors1, decreasing after worse-than-predicted reward outcomes and increasing after better-than-predicted ones. Our previous work in adult zebra finches-in which we changed the perceived song quality with distorted auditory feedback-showed that dopamine in Area X, the singing-related basal ganglia, encodes performance prediction error: dopamine is suppressed after worse-than-predicted (distorted syllables) and activated after better-than-predicted (undistorted syllables) performance2. However, it remains unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Here we tracked song learning trajectories in juvenile zebra finches and used fibre photometry3 to monitor concurrent dopamine activity in Area X. We found that dopamine was activated after syllable renditions that were closer to the eventual adult version of the song, compared with recent renditions, and suppressed after renditions that were further away. Furthermore, the relationship between dopamine and song fluctuations revealed that dopamine predicted the future evolution of song, suggesting that dopamine drives behaviour. Finally, dopamine activity was explained by the contrast between the quality of the current rendition and the recent history of renditions-consistent with dopamine's hypothesized role in encoding prediction errors in an actor-critic reinforcement-learning model4,5. Reinforcement-learning algorithms6 have emerged as a powerful class of model to explain learning in reward-based laboratory tasks, as well as for driving autonomous learning in artificial intelligence7. Our results suggest that complex natural behaviours in biological systems can also be acquired through dopamine-mediated reinforcement learning.
Collapse
Affiliation(s)
- Jonathan Kasdin
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alison Duffy
- Department of Neurobiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Nathan Nadler
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Arnav Raha
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Adrienne L Fairhall
- Department of Neurobiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Kimberly L Stachenfeld
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Google DeepMind, New York, NY, USA
| | - Vikram Gadagkar
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Neunuebel J. Bird brains help scientists to unveil the secrets of speech. Nature 2025; 640:326-327. [PMID: 40108379 DOI: 10.1038/d41586-025-00680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
|
9
|
Safarcharati Z, Bahramani A, Mokari Amjad P, Ravanbakhsh M, Raoufy MR, Khademian M. Context-dependent modulations in zebra finch distance calls revealed by a novel goal-directed vocalization paradigm. Sci Rep 2025; 15:8572. [PMID: 40075173 PMCID: PMC11903849 DOI: 10.1038/s41598-025-93105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Songbirds are renowned for their complex vocal communication abilities; among them, zebra finches (Taeniopygia guttata) are a key species for studying vocal learning and communication. Zebra finches use various calls with different meanings, including the distance call, which is used for long-distance contact. Whether these calls are static with fixed meanings or flexible remains an open question. In this study we aimed to answer this question by designing a novel behavioral paradigm, in which we trained food-restricted zebra finches to use distance calls for food request. Nine out of ten birds learned this association and used their distance calls to obtain food when they were hungry. We then introduced a visually-separated audience and compared the distance calls used for food requests with those used for communication between birds. Our analyses revealed significant acoustic differences in power, pitch, and other spectral characteristics between the distance calls uttered in these two contexts, with calls directed at conspecifics exhibiting higher amplitude. Our findings suggest that zebra finches can use their distance call for different goals and also acoustically modulate it based on the context. Therefore, it demonstrates a level of vocal control thought to be exclusive to songs. This study enhances our understanding of vocal flexibility and its role in vocal communication.
Collapse
Affiliation(s)
- Zohreh Safarcharati
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 1956836484, Iran.
- Department of Cognitive Neuroscience, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran.
| | - Amirreza Bahramani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 1956836484, Iran
- Department of Electrical Engineering, Sharif University of Technology, Tehran, 1458889694, Iran
- Sharif Brain Center, Sharif University of Technology, Tehran, 1458889694, Iran
| | - Pouya Mokari Amjad
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 1956836484, Iran
| | - Mahsa Ravanbakhsh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 1956836484, Iran
| | - Mohammad Reza Raoufy
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 1956836484, Iran.
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahdi Khademian
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 1956836484, Iran.
| |
Collapse
|
10
|
Soldati A, Fedurek P, Dezecache G, Muhumuza G, Hobaiter C, Zuberbühler K, Call J. Social and individual factors mediate chimpanzee vocal ontogeny. Sci Rep 2025; 15:8529. [PMID: 40074822 PMCID: PMC11903896 DOI: 10.1038/s41598-025-93207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Human language develops in social interactions. In other ape species, the role of social learning in vocal ontogeny can be typically underappreciated, mainly because it has received little empirical attention. Here, we examine the development of pant hoot vocalisations during vocal exchanges in immature wild chimpanzees (Pan troglodytes schweinfurthii) of the Sonso community of the Budongo Forest, Uganda. We investigated how maternal gregariousness, age, sex, and social context are associated with behavioural and vocal responses to other group members' calls. We show that the older sons of gregarious mothers are more likely to orient their attention, respond vocally to the calls of others, and are overall more exposed to others' calls compared to other immature individuals. This effect is strongest in the presence of adult males and when their mothers also respond vocally, suggesting that chimpanzee vocal development is enhanced by social and vocal exposure. Our findings are consistent with a more flexible and socially mediated chimpanzee vocal ontogeny than previously assumed and show some parallels with animal vocal learners and children language acquisition.
Collapse
Affiliation(s)
- Adrian Soldati
- Department of Evolutionary Anthropology, University of Zürich, Zürich, Switzerland.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
- Department of Comparative Cognition, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Pawel Fedurek
- Division of Psychology, University of Stirling, Stirling, UK
| | | | | | - Catherine Hobaiter
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Budongo Conservation Field Station, Masindi, Uganda
| | - Klaus Zuberbühler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Department of Comparative Cognition, University of Neuchâtel, Neuchâtel, Switzerland
- Budongo Conservation Field Station, Masindi, Uganda
| | - Josep Call
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
11
|
Ekström AG, Gärdenfors P, Snyder WD, Friedrichs D, McCarthy RC, Tsapos M, Tennie C, Strait DS, Edlund J, Moran S. Correlates of Vocal Tract Evolution in Late Pliocene and Pleistocene Hominins. HUMAN NATURE (HAWTHORNE, N.Y.) 2025; 36:22-69. [PMID: 40244547 PMCID: PMC12058909 DOI: 10.1007/s12110-025-09487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/18/2025]
Abstract
Despite decades of research on the emergence of human speech capacities, an integrative account consistent with hominin evolution remains lacking. We review paleoanthropological and archaeological findings in search of a timeline for the emergence of modern human articulatory morphological features. Our synthesis shows that several behavioral innovations coincide with morphological changes to the would-be speech articulators. We find that significant reductions of the mandible and masticatory muscles and vocal tract anatomy coincide in the hominin fossil record with the incorporation of processed and (ultimately) cooked food, the appearance and development of rudimentary stone tools, increases in brain size, and likely changes to social life and organization. Many changes are likely mutually reinforcing; for example, gracilization of the hominin mandible may have been maintainable in the lineage because food processing had already been outsourced to the hands and stone tools, reducing selection pressures for robust mandibles in the process. We highlight correlates of the evolution of craniofacial and vocal tract features in the hominin lineage and outline a timeline by which our ancestors became 'pre-adapted' for the evolution of fully modern human speech.
Collapse
Affiliation(s)
- Axel G Ekström
- Speech, Music & Hearing, KTH Royal Institute of Technology, Stockholm, Sweden.
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Peter Gärdenfors
- Department of Philosophy, Lund University, Lund, Sweden
- Paleo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - William D Snyder
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Daniel Friedrichs
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Linguistics Research Infrastructure (LiRI), University of Zurich, Zürich, Switzerland
| | - Robert C McCarthy
- Department of Biological Sciences, Benedictine University, Lisle, IL, US
| | - Melina Tsapos
- Department of Philosophy, Lund University, Lund, Sweden
| | - Claudio Tennie
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - David S Strait
- Paleo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, US
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| | - Jens Edlund
- Speech, Music & Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Steven Moran
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Linguistics Research Infrastructure (LiRI), University of Zurich, Zürich, Switzerland
- Department of Anthropology, University of Miami, Coral Gables, FL, US
| |
Collapse
|
12
|
Drotos AC, Wajdi SZ, Malina M, Silveira MA, Williamson RS, Roberts MT. Neurons in the inferior colliculus use multiplexing to encode features of frequency-modulated sweeps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637492. [PMID: 39990317 PMCID: PMC11844360 DOI: 10.1101/2025.02.10.637492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Within the central auditory pathway, the inferior colliculus (IC) is a critical integration center for ascending sound information. Previous studies have shown that many IC neurons exhibit receptive fields for individual features of auditory stimuli, such as sound frequency, intensity, and location, but growing evidence suggests that some IC neurons may multiplex features of sound. Here, we used in vivo juxtacellular recordings in awake, head-fixed mice to examine how IC neurons responded to frequency-modulated sweeps that varied in speed, direction, intensity, and frequency range. We then applied machine learning methods to determine how individual IC neurons encode features of FM sweeps. We found that individual IC neurons multiplex FM sweep features using various strategies including spike timing, distribution of inter-spike intervals, and first spike latency. In addition, we found that decoding accuracy for sweep direction can vary with sweep speed and frequency range, suggesting the presence of mixed selectivity in single neurons. Accordingly, using static receptive fields for direction alone yielded poor predictions of neuron responses to vocalizations that contain simple frequency changes. Lastly, we showed that encoding strategies varied across individual neurons, resulting in a highly informative population response for FM sweep features. Together, our results suggest that multiplexing sound features is a common mechanism used by IC neurons to represent complex sounds.
Collapse
Affiliation(s)
- Audrey C. Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Z. Wajdi
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael Malina
- Departments of Otolaryngology-Head & Neck Surgery and Neurobiology, University of Pittsburgh, PA, 16260
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Marina A. Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neuroscience, Development and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - Ross S. Williamson
- Departments of Otolaryngology-Head & Neck Surgery and Neurobiology, University of Pittsburgh, PA, 16260
| | - Michael T. Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
13
|
Rolland M, Zai AT, Hahnloser RHR, Del Negro C, Giret N. Visually-guided compensation of deafening-induced song deterioration. Front Psychol 2025; 16:1521407. [PMID: 39981385 PMCID: PMC11839652 DOI: 10.3389/fpsyg.2025.1521407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Human language learning and maintenance depend primarily on auditory feedback but are also shaped by other sensory modalities. Individuals who become deaf after learning to speak (post-lingual deafness) experience a gradual decline in their language abilities. A similar process occurs in songbirds, where deafness leads to progressive song deterioration. However, songbirds can modify their songs using non-auditory cues, challenging the prevailing assumption that auditory feedback is essential for vocal control. In this study, we investigated whether deafened birds could use visual cues to prevent or limit song deterioration. We developed a new metric for assessing syllable deterioration called the spectrogram divergence score. We then trained deafened birds in a behavioral task where the spectrogram divergence score of a target syllable was computed in real-time, triggering a contingent visual stimulus based on the score. Birds exposed to the contingent visual stimulus-a brief light extinction-showed more stable song syllables than birds that received either no light extinction or randomly triggered light extinction. Notably, this effect was specific to the targeted syllable and did not influence other syllables. This study demonstrates that deafness-induced song deterioration in birds can be partially mitigated with visual cues.
Collapse
Affiliation(s)
- Manon Rolland
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Anja T. Zai
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Catherine Del Negro
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| |
Collapse
|
14
|
Fortkord L, Veit L. Social context affects sequence modification learning in birdsong. Front Psychol 2025; 16:1488762. [PMID: 39973966 PMCID: PMC11835814 DOI: 10.3389/fpsyg.2025.1488762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Social interactions are crucial for imitative vocal learning such as human speech learning or song learning in songbirds. Recently, introducing specific learned modifications into adult song by experimenter-controlled reinforcement learning has emerged as a key protocol to study aspects of vocal learning in songbirds. This form of adult plasticity does not require conspecifics as a model for imitation or to provide social feedback on song performance. We therefore hypothesized that social interactions are irrelevant to, or even inhibit, song modification learning. We tested whether social context affects song sequence learning in adult male Bengalese finches (Lonchura striata domestica). We targeted specific syllable sequences in adult birds' songs with negative auditory feedback, which led the birds to reduce the targeted syllable sequence in favor of alternate sequences. Changes were apparent in catch trials without feedback, indicating a learning process. Each experiment was repeated within subjects with three different social contexts (male-male, MM; male-female, MF; and male alone, MA) in randomized order. We found robust learning in all three social contexts, with a nonsignificant trend toward facilitated learning with social company (MF, MM) compared to the single-housed (MA) condition. This effect could not be explained by the order of social contexts, nor by different singing rates across contexts. Our results demonstrate that social context can influence degree of learning in adult birds even in experimenter-controlled reinforcement learning tasks, and therefore suggest that social interactions might facilitate song plasticity beyond their known role for imitation and social feedback.
Collapse
Affiliation(s)
| | - Lena Veit
- Neurobiology of Vocal Communication, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Schönhofer B, Gahr M. [Meaning and Mechanisms of Birdsong: Inspiration for Pneumology]. Pneumologie 2025. [PMID: 39889729 DOI: 10.1055/a-2463-7380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
In contrast to humans, the location where sound is produced in birds is not the larynx, but rather the so-called "vocal box" (scientific term "Syrinx"). In some species the syrinx is located at the bifurcation point of the trachea into the two main bronchi (tracheal vocal head), while in some in the main bronchi (bronchial vocal head). During inspiration, part of the air flows into the lungs, and the part needed for singing flows into the air sacs adjacent to the lungs. During expiration, air leaves the air sacs and flows through the syrinx, where the song is created. When birds sing in two voices at the same time, individual sequences are formed simultaneously in the right and left parts of the syrinx.The song analysis is based on spectrograms (so-called sonagrams), which graphically represent the frequency spectrum of bird song.The song consists of one or more verses, which in turn consist of the variable or constant sequence of motives or syllables. Some songbirds have an enormous repertoire of syllables and verses (max. up to 7000 verses per day). In addition to singing, most bird species also have much simpler begging, contact, threatening, flight, alarm and copulation calls.Male birds sing primarily for two reasons: 1. They use song to woo a potential partner. This song provides the females with important information about the applicant's performance and health. 2. Singing serves to defend the territory.In around 40 % of songbird species, females also sing. Pairs of some species sing in perfect synchronization.A number of songbirds imitate both the voices of other songbirds and ambient noises, and many songbirds have regional dialects.Song development depends on genetics and other factors such as the environment, metabolism and hormonal influences. It proceeds step by step and initially includes relatively primitive sequences (so-called "subsongs"), then leads through more complex intermediate forms ("plastic songs") and finally to the completed singing pattern ("full songs").Young birds learn the song of their species at a time when they are not yet singing themselves, often as nestlings aged 10 to 50 days from older members of the species, usually from their fathers.The song of young birds develops, based on the template of adult song, in a network of sensory-motor neurons in the forebrain.Songbirds, especially the zebra finch, currently offer the best model for the neural basis of human language learning. In birds, the so-called "High Vocal Center" orchestrates all brain regions relevant to songs, with the neural control of song being sensitive to sex hormones.
Collapse
Affiliation(s)
- Bernd Schönhofer
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Manfred Gahr
- Max-Planck-Institut für Biologische Intelligenz, Seewiesen, Deutschland
| |
Collapse
|
16
|
Wan X, Wang AS, Storch DS, Li VY, Sakata JT. Perineuronal nets in motor circuitry regulate the performance of learned vocalizations in songbirds. Commun Biol 2025; 8:86. [PMID: 39827274 PMCID: PMC11743155 DOI: 10.1038/s42003-025-07520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
The accurate and reliable performance of learned vocalizations (e.g., speech and birdsong) modulates the efficacy of communication in humans and songbirds. Consequently, it is critical to understand the factors that regulate the performance of learned vocalizations. Across taxa, neural circuits underlying motor learning and control are replete with perineuronal nets (PNNs), and we analyzed how PNNs in vocal motor circuitry regulate the performance of learned song in zebra finches. We report that developmental increases in PNN expression in vocal circuitry are associated with developmental increases in song stereotypy. We also document that enzymatically degrading PNNs in the motor nucleus HVC acutely altered song structure (changes in syllable sequencing and production). Collectively, our data reveal a causal contribution of PNNs to the performance of learned behaviors and, given the parallels in the regulation of birdsong and speech, suggest that PNNs in motor circuitry could modulate speech performance.
Collapse
Affiliation(s)
- Xinghaoyun Wan
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Angela S Wang
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | - Vivian Y Li
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Centre for Research in Brain, Language and Music, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Zai AT, Rodrigues DI, Stepien AE, Lorenz C, Giret N, Adam I, Hahnloser RHR. Familiarity of an environment prevents song suppression in isolated zebra finches. PLoS One 2025; 20:e0307126. [PMID: 39787086 PMCID: PMC11717181 DOI: 10.1371/journal.pone.0307126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/16/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the wide use of zebra finches as an animal model to study vocal learning and production, little is known about impacts on their welfare caused by routine experimental manipulations such as changing their social context. Here we conduct a post-hoc analysis of singing rate, an indicator of positive welfare, to gain insights into stress caused by social isolation, a common experimental manipulation. We find that isolation in an unfamiliar environment reduces singing rate for several days, indicating the presence of an acute stressor. However, we find no such decrease when social isolation is caused by either removal of a social companion or by transfer to a familiar environment. Furthermore, during repeated brief periods of isolation, singing rate remains high when isolation is induced by removal of social companions, but it fails to recover from a suppressed state when isolation is induced by recurrent transfer to an unknown environment. These findings suggest that stress from social isolation is negligible compared to stress caused by environmental changes and that frequent short visits of an unfamiliar environment are detrimental rather than beneficial. Together, these insights can serve to refine experimental studies and design paradigms maximizing the birds' wellbeing and vocal output.
Collapse
Affiliation(s)
- Anja T. Zai
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Diana I. Rodrigues
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna E. Stepien
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Corinna Lorenz
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, France
| | - Iris Adam
- Department of Biology, University of Southern Denmark, Denmark
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Bistere L, Wilczek S, Vallentin D. Variable and slow-paced neural dynamics in HVC underlie plastic song production in juvenile zebra finches. BMC Neurosci 2024; 25:76. [PMID: 39716055 DOI: 10.1186/s12868-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Zebra finches undergo a gradual refinement of their vocalizations, transitioning from variable juvenile songs to the stereotyped song of adulthood. To investigate the neural mechanisms underlying song crystallization-a critical phase in this developmental process-we performed intracellular recordings in HVC (a premotor nucleus essential for song learning and production) of juvenile birds. We then compared these recordings to previously published electrophysiological data from adult birds. We found that HVC projection neurons in juvenile zebra finches during the song crystallization phase exhibited more variable spiking patterns compared to the precise bursting observed in adult HVC projection neurons. Additionally, subthreshold membrane potential fluctuations in juvenile neurons exhibited longer durations and larger amplitude excitatory postsynaptic potentials. These distinct temporal dynamics in HVC during song crystallization likely play a crucial role in the fine-tuning processes that shape the precise timing and structure of the mature zebra finch song.
Collapse
Affiliation(s)
- Linda Bistere
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
- Graduate School for Systemic Neurosciences GSN-LMU, Munich, Germany
| | - Stefan Wilczek
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
- Graduate School for Systemic Neurosciences GSN-LMU, Munich, Germany.
| |
Collapse
|
19
|
Grönberg DJ, Pinto de Carvalho SL, Dernerova N, Norton P, Wong MMK, Mendoza E. Expression and regulation of SETBP1 in the song system of male zebra finches (Taeniopygia guttata) during singing. Sci Rep 2024; 14:29057. [PMID: 39580495 PMCID: PMC11585544 DOI: 10.1038/s41598-024-75353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 11/25/2024] Open
Abstract
Rare de novo heterozygous loss-of-function SETBP1 variants lead to a neurodevelopmental disorder characterized by speech deficits, indicating a potential involvement of SETBP1 in human speech. However, the expression pattern of SETBP1 in brain regions associated with vocal learning remains poorly understood, along with the underlying molecular mechanisms linking it to vocal production. In this study, we examined SETBP1 expression in the brain of male zebra finches, a well-established model for studying vocal production learning. We demonstrated that zebra finch SETBP1 exhibits a greater number of exons and isoforms compared to its human counterpart. We characterized a SETBP1 antibody and showed that SETBP1 colocalized with FoxP1, FoxP2, and Parvalbumin in key song nuclei. Moreover, SETBP1 expression in neurons in Area X is significantly higher in zebra finches singing alone, than those singing courtship song to a female, or non-singers. Importantly, we found a distinctive neuronal protein expression of SETBP1 and FoxP2 in Area X only in zebra finches singing alone, but not in the other conditions. We demonstrated SETBP1´s regulatory role on FoxP2 promoter activity in vitro. Taken together, these findings provide compelling evidence for SETBP1 expression in brain regions to be crucial for vocal learning and its modulation by singing behavior.
Collapse
Affiliation(s)
- Dana Jenny Grönberg
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | | | - Nikola Dernerova
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Phillip Norton
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4 (Ostertaghaus), 10115, Berlin, Germany
| | - Maggie Mei-Ki Wong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500AH, the Netherlands
| | - Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
20
|
Xia P, Abarbanel HDI. Model of the HVC neural network as a song motor in zebra finch. Front Comput Neurosci 2024; 18:1417558. [PMID: 39635339 PMCID: PMC11614668 DOI: 10.3389/fncom.2024.1417558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
The nucleus HVC within the avian song system produces crystalized instructions which lead to precise, learned vocalization in zebra finches (Taeniopygia guttata). This paper proposes a model of the HVC neural network based on the physiological properties of individual HVC neurons, their synaptic interactions calibrated by experimental measurements, as well as the synaptic signal into this region which triggers song production. This neural network model comprises of two major neural populations in this area: neurons projecting to the nucleus RA and interneurons. Each single neuron model of HVCRA is constructed with conductance-based ion currents of fast Na+ and K+ and a leak channel, while the interneuron model includes extra transient Ca2+ current and hyperpolarization-activated inward current. The synaptic dynamics is formed with simulated delivered neurotransmitter pulses from presynaptic cells and neurotransmitter receptor opening rates of postsynaptic neurons. We show that this network model qualitatively exhibits observed electrophysiological behaviors of neurons independent or in the network, as well as the importance of bidirectional interactions between the HVCRA neuron and the HVCI neuron. We also simulate the pulse input from A11 neuron group to HVC. This signal successfully suppresses the interneuron, which leads to sequential firing of projection neurons that matches measured burst onset, duration, and spike quantities during the zebra finch motif. The result provides a biophysically based model characterizing the dynamics and functions of the HVC neural network as a song motor, and offers a reference for synaptic coupling strength in the avian brain.
Collapse
|
21
|
Kim JL, Jung KM, Han JY. Single-cell RNA sequencing reveals surface markers of primordial germ cells in chicken and zebra finch. Mol Genet Genomics 2024; 299:90. [PMID: 39325237 DOI: 10.1007/s00438-024-02186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Primordial germ cells (PGCs) in avian species exhibit unique developmental features, including the ability to migrate through the bloodstream and colonize the gonads, allowing their isolation at various developmental stages. Several methods have been developed for the isolation of avian PGCs, including density gradient centrifugation, size-dependent separation, and magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS) using a stage-specific embryonic antigen-1 (SSEA-1) antibody. However, these methods present limitations in terms of efficiency and applicability across development stages. In particular, the specificity of SSEA-1 decreases in later developmental stages. Furthermore, surface markers that can be utilized for isolating or utilizing PGCs are lacking for wild birds, including zebra finches, and endangered avian species. To address this, we used single-cell RNA sequencing (scRNA-seq) to uncover novel PGC-specific surface markers in chicken and zebra finch. We screened for genes that were primarily expressed in the PGC population within the gonadal cells. Analyses of gene expression patterns and levels based on scRNA-seq, coupled with validation by RT-PCR, identified NEGR1 and SLC34A2 as novel PGC-specific surface markers in chickens and ESYT3 in zebra finches. Notably, these newly identified genes exhibited sustained expression not only during later developmental stages but also in reproductive tissues.
Collapse
Affiliation(s)
- Jin Lee Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
22
|
Lovčević I, Tsuji S. The developmental pattern of native and non-native speech perception during the 1st year of life in Japanese infants. Infant Behav Dev 2024; 76:101977. [PMID: 39002494 DOI: 10.1016/j.infbeh.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Language development during the 1st year of life is characterized by perceptual attunement: following language-general perception, a decline in the perception of non-native phonemes and a parallel increase in or maintenance of the perception of native phonemes. While this general pattern is well established, there are still many gaps in the literature. First, most evidence documenting these patterns comes from "Minority world countries" with only a limited number of studies from "Majority world countries", limiting the range of languages and contrasts assessed. Second, few studies test both the developmental patterns of native and non-native speech perception in the same group of infants, making it hard to draw conclusions on simultaneous decline in non-native and increase in native speech perception. Such limitations are in part due to the effort that goes into testing developing speech sound perception, where usually only discrimination of one contrast per infant can be tested at a time. The present study thus set out to assess the feasibility of assessing a given infant on their discrimination of two speech sound contrasts during the same lab visit. It leveraged the presence of documented patterns of the improvement of native and the decline of non-native phoneme discrimination abilities in Japanese, therefore assessing native and non-native speech perception in Japanese infants from 6 to 12 months of age. Results demonstrated that 76 % of infants contributed discrimination data for both contrasts. We found a decline in non-native speech perception evident in discrimination of the non-native /ɹ/-/l/ consonant contrast at 9-11, but not at 11-13 months of age. Additionally, a parallel increase in native speech perception was demonstrated evident in an absence of native phonemic vowel length discrimination at 6-7 and 9-11 months and a discrimination of this contrast at 11-13 months of age. These results, based on a simultaneous assessment of native and non-native speech perception in Japanese-learning infants, demonstrate the feasibility of assessing the discrimination of two contrasts in one testing session and corroborate theoretical proposals on two hallmarks of perceptual attunement: a decrease in non-native and a facilitation in native speech perception during the first year of life.
Collapse
Affiliation(s)
- Irena Lovčević
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Studies, Japan.
| | - Sho Tsuji
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Studies, Japan; Laboratoire de Sciences Cognitives et de Psycholinguistique, Département d'Études Cognitives, ENS, EHESS, CNRS, PSL University, France
| |
Collapse
|
23
|
Heim F, Mendoza E, Koparkar A, Vallentin D. Disinhibition enables vocal repertoire expansion after a critical period. Nat Commun 2024; 15:7565. [PMID: 39217170 PMCID: PMC11365960 DOI: 10.1038/s41467-024-51818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of motor skill acquisition is age-dependent, making it increasingly challenging to learn complex manoeuvres later in life. Zebra finches, for instance, acquire a complex vocal motor programme during a developmental critical period after which the learned song is essentially impervious to modification. Although inhibitory interneurons are implicated in critical period closure, it is unclear whether manipulating them can reopen heightened motor plasticity windows. Using pharmacology and a cell-type specific optogenetic approach, we manipulated inhibitory neuron activity in a premotor area of adult zebra finches beyond their critical period. When exposed to auditory stimulation in the form of novel songs, manipulated birds added new vocal syllables to their stable song sequence. By lifting inhibition in a premotor area during sensory experience, we reintroduced vocal plasticity, promoting an expansion of the syllable repertoire without compromising pre-existing song production. Our findings provide insights into motor skill learning capacities, offer potential for motor recovery after injury, and suggest avenues for treating neurodevelopmental disorders involving inhibitory dysfunctions.
Collapse
Affiliation(s)
- Fabian Heim
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Ezequiel Mendoza
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Avani Koparkar
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Indian Institute of Science Education and Research (IISER), Pune, India
- Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
24
|
Koch TMI, Marks ES, Roberts TF. AVN: A Deep Learning Approach for the Analysis of Birdsong. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593561. [PMID: 39229184 PMCID: PMC11370480 DOI: 10.1101/2024.05.10.593561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Deep learning tools for behavior analysis have enabled important new insights and discoveries in neuroscience. Yet, they often compromise interpretability and generalizability for performance, making it difficult to quantitively compare phenotypes across datasets and research groups. We developed a novel deep learning-based behavior analysis pipeline, Avian Vocalization Network (AVN), for the learned vocalizations of the most extensively studied vocal learning model species - the zebra finch. AVN annotates songs with high accuracy across multiple animal colonies without the need for any additional training data and generates a comprehensive set of interpretable features to describe the syntax, timing, and acoustic properties of song. We use this feature set to compare song phenotypes across multiple research groups and experiments, and to predict a bird's stage in song development. Additionally, we have developed a novel method to measure song imitation that requires no additional training data for new comparisons or recording environments, and outperforms existing similarity scoring methods in its sensitivity and agreement with expert human judgements of song similarity. These tools are available through the open-source AVN python package and graphical application, which makes them accessible to researchers without any prior coding experience. Altogether, this behavior analysis toolkit stands to facilitate and accelerate the study of vocal behavior by enabling a standardized mapping of phenotypes and learning outcomes, thus helping scientists better link behavior to the underlying neural processes.
Collapse
Affiliation(s)
- Therese M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas TX, USA
| | - Ethan S Marks
- Department of Neuroscience, UT Southwestern Medical Center, Dallas TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas TX, USA
| |
Collapse
|
25
|
Yeom D, Haslam N, Tan YT, McPherson GE, Wilson SJ. Twin Data Support a Sensitive Period for Singing Ability. Twin Res Hum Genet 2024; 27:204-214. [PMID: 39355955 DOI: 10.1017/thg.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
As with many other musical traits, the social environment is a key influence on the development of singing ability. While the familial singing environment is likely to be formative, its role relative to other environmental influences such as training is unclear. We used structural equation modeling to test relationships among demographic characteristics, familial environmental variables (early and current singing with family), vocal training, and singing ability in a large, previously documented sample of Australian twins (N = 1163). Notably, early singing with family, and to a lesser extent vocal training, predicted singing ability, whereas current singing with family did not. Early familial singing also mediated the relationship between sex and singing ability, with men who sang less with family during childhood showing poorer ability. Bivariate twin models between early familial singing and singing ability showed the phenotypic correlation was largely explained by shared environmental influences. This raises the possibility of a sensitive period for singing ability, with sociocultural expectations around singing potentially differentiating the developmental trajectories of this skill for men and women.
Collapse
Affiliation(s)
- Daniel Yeom
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Nick Haslam
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Ting Tan
- Melbourne Conservatorium of Music, University of Melbourne, Melbourne, Victoria, Australia
| | - Gary E McPherson
- Melbourne Conservatorium of Music, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah J Wilson
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Dahlin CR, Smith-Vidaurre G, Genes MK, Wright TF. Widespread cultural change in declining populations of Amazon parrots. Proc Biol Sci 2024; 291:20240659. [PMID: 39163980 PMCID: PMC11335405 DOI: 10.1098/rspb.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Species worldwide are experiencing anthropogenic environmental change, and the long-term impacts on animal cultural traditions such as vocal dialects are often unknown. Our prior studies of the yellow-naped amazon (Amazona auropalliata) revealed stable vocal dialects over an 11-year period (1994-2005), with modest shifts in geographic boundaries and acoustic structure of contact calls. Here, we examined whether yellow-naped amazons maintained stable dialects over the subsequent 11-year time span from 2005 to 2016, culminating in 22 years of study. Over this same period, this species suffered a dramatic decrease in population size that prompted two successive uplists in IUCN status, from vulnerable to critically endangered. In this most recent 11-year time span, we found evidence of geographic shifts in call types, manifesting in more bilingual sites and introgression across the formerly distinct North-South acoustic boundary. We also found greater evidence of acoustic drift, in the form of new emerging call types and greater acoustic variation overall. These results suggest cultural traditions such as dialects may change in response to demographic and environmental conditions, with broad implications for threatened species.
Collapse
Affiliation(s)
- Christine R. Dahlin
- Departments of Biology and Environmental Studies, University of Pittsburgh at Johnstown, Johnstown, PA, USA
| | - Grace Smith-Vidaurre
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Rockefeller University Field Research Center, Millbrook, NY, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Departments of Integrative Biology and Computational Mathematics, Michigan State University, East Lansing, MI, USA
| | - Molly K. Genes
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Timothy F. Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
27
|
Park S, Ko SY, Frankland PW, Josselyn SA. Comparing behaviours induced by natural memory retrieval and optogenetic reactivation of an engram ensemble in mice. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230227. [PMID: 38853560 PMCID: PMC11343273 DOI: 10.1098/rstb.2023.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 06/11/2024] Open
Abstract
Memories are thought to be stored within sparse collections of neurons known as engram ensembles. Neurons active during a training episode are allocated to an engram ensemble ('engram neurons'). Memory retrieval is initiated by external sensory or internal cues present at the time of training reactivating engram neurons. Interestingly, optogenetic reactivation of engram ensemble neurons alone in the absence of external sensory cues is sufficient to induce behaviour consistent with memory retrieval in mice. However, there may exist differences between the behaviours induced by natural retrieval cues or artificial engram reactivation. Here, we compared two defensive behaviours (freezing and the syllable structure of ultrasonic vocalizations, USVs) induced by sensory cues present at training (natural memory retrieval) and optogenetic engram ensemble reactivation (artificial memory retrieval) in a threat conditioning paradigm in the same mice. During natural memory recall, we observed a strong positive correlation between freezing levels and distinct USV syllable features (characterized by an unsupervised algorithm, MUPET (Mouse Ultrasonic Profile ExTraction)). Moreover, we observed strikingly similar behavioural profiles in terms of freezing and USV characteristics between natural memory recall and artificial memory recall in the absence of sensory retrieval cues. Although our analysis focused on two behavioural measures of threat memory (freezing and USV characteristics), these results underscore the similarities between threat memory recall triggered naturally and through optogenetic reactivation of engram ensembles. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Sungmo Park
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, OntarioM5G 1X8, Canada
| | - Sang Yoon Ko
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, OntarioM5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5G 1X8, Canada
| | - Paul W. Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, OntarioM5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, OntarioM5G 1X8, Canada
| | - Sheena A. Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, OntarioM5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, OntarioM5G 1X8, Canada
| |
Collapse
|
28
|
Imoto K, Ishikawa Y, Aso Y, Funke J, Tanaka R, Kamikouchi A. Neural-circuit basis of song preference learning in fruit flies. iScience 2024; 27:110266. [PMID: 39040064 PMCID: PMC11260866 DOI: 10.1016/j.isci.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.
Collapse
Affiliation(s)
- Keisuke Imoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
29
|
Pisanski K, Reby D, Oleszkiewicz A. Humans need auditory experience to produce typical volitional nonverbal vocalizations. COMMUNICATIONS PSYCHOLOGY 2024; 2:65. [PMID: 39242947 PMCID: PMC11332021 DOI: 10.1038/s44271-024-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/16/2024] [Indexed: 09/09/2024]
Abstract
Human nonverbal vocalizations such as screams and cries often reflect their evolved functions. Although the universality of these putatively primordial vocal signals and their phylogenetic roots in animal calls suggest a strong reflexive foundation, many of the emotional vocalizations that we humans produce are under our voluntary control. This suggests that, like speech, volitional vocalizations may require auditory input to develop typically. Here, we acoustically analyzed hundreds of volitional vocalizations produced by profoundly deaf adults and typically-hearing controls. We show that deaf adults produce unconventional and homogenous vocalizations of aggression and pain that are unusually high-pitched, unarticulated, and with extremely few harsh-sounding nonlinear phenomena compared to controls. In contrast, fear vocalizations of deaf adults are relatively acoustically typical. In four lab experiments involving a range of perception tasks with 444 participants, listeners were less accurate in identifying the intended emotions of vocalizations produced by deaf vocalizers than by controls, perceived their vocalizations as less authentic, and reliably detected deafness. Vocalizations of congenitally deaf adults with zero auditory experience were most atypical, suggesting additive effects of auditory deprivation. Vocal learning in humans may thus be required not only for speech, but also to acquire the full repertoire of volitional non-linguistic vocalizations.
Collapse
Affiliation(s)
- Katarzyna Pisanski
- ENES Bioacoustics Research Laboratory, CRNL Center for Research in Neuroscience in Lyon, University of Saint-Étienne, 42023, Saint-Étienne, France.
- CNRS French National Centre for Scientific Research, DDL Dynamics of Language Lab, University of Lyon 2, 69007, Lyon, France.
- Institute of Psychology, University of Wrocław, 50-527, Wrocław, Poland.
| | - David Reby
- ENES Bioacoustics Research Laboratory, CRNL Center for Research in Neuroscience in Lyon, University of Saint-Étienne, 42023, Saint-Étienne, France
- Institut Universitaire de France, Paris, France
| | - Anna Oleszkiewicz
- Institute of Psychology, University of Wrocław, 50-527, Wrocław, Poland.
- Department of Otorhinolaryngology, Smell and Taste Clinic, Carl Gustav Carus Medical School, Technische Universitaet Dresden, 01307, Dresden, Germany.
| |
Collapse
|
30
|
Taheri A. The partial upward migration of the laryngeal motor cortex: A window to the human brain evolution. Brain Res 2024; 1834:148892. [PMID: 38554798 DOI: 10.1016/j.brainres.2024.148892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The pioneer cortical electrical stimulation studies of the last century did not explicitly mark the location of the human laryngeal motor cortex (LMC), but only the "vocalization area" in the lower half of the lateral motor cortex. In the final years of 2010́s, neuroimaging studies did demonstrate two human cortical laryngeal representations, located at the opposing ends of the orofacial motor zone, therefore termed dorsal (LMCd) and ventral laryngeal motor cortex (LMCv). Since then, there has been a continuing debate regarding the origin, function and evolutionary significance of these areas. The "local duplication model" posits that the LMCd evolved by a duplication of an adjacent region of the motor cortex. The "duplication and migration model" assumes that the dorsal LMCd arose by a duplication of motor regions related to vocalization, such as the ancestry LMC, followed by a migration into the orofacial region of the motor cortex. This paper reviews the basic arguments of these viewpoints and suggests a new explanation, declaring that the LMCd in man is rather induced through the division of the unitary LMC in nonhuman primates, upward shift and relocation of its motor part due to the disproportional growth of the head, face, mouth, lips, and tongue motor areas in the ventral part of the human motor homunculus. This explanation may be called "expansion-division and relocation model".
Collapse
Affiliation(s)
- Abbas Taheri
- Neuroscience Razi, Berlin, Germany; Former Assistant Professor of Neurosurgery, Humboldt University, Berlin, Germany
| |
Collapse
|
31
|
Shibata Y, Toji N, Wang H, Go Y, Wada K. Expansion of learning capacity elicited by interspecific hybridization. SCIENCE ADVANCES 2024; 10:eadn3409. [PMID: 38896617 PMCID: PMC11186503 DOI: 10.1126/sciadv.adn3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Learned behavior, a fundamental adaptive trait in fluctuating environments, is shaped by species-specific constraints. This phenomenon is evident in songbirds, which acquire their species-specific songs through vocal learning. To explore the neurogenetic mechanisms underlying species-specific song learning, we generated F1 hybrid songbirds by crossing Taeniopygia guttata with Aidemosyne modesta. These F1 hybrids demonstrate expanded learning capacities, adeptly mimicking songs from both parental species and other heterospecific songs more extensively than their parental counterparts. Despite the conserved size of brain regions and neuron numbers in the neural circuits for song learning and production, single-cell transcriptomics reveals distinctive transcriptional characteristics in the F1 hybrids, especially in vocal-motor projection neurons. These neurons exhibit enrichment for nonadditively expressed genes, particularly those related to ion channel activity and cell adhesion, which are associated with the degree of song learning among F1 individuals. Our findings provide insights into the emergence of altered learning capabilities through hybridization, linked to cell type-specific transcriptional changes.
Collapse
Affiliation(s)
- Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
| | - Noriyuki Toji
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hongdi Wang
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0497, Japan
| | - Yasuhiro Go
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
32
|
Kraft FLH, Crino OL, Adeniran-Obey SO, Moraney RA, Clayton DF, George JM, Buchanan KL. Parental developmental experience affects vocal learning in offspring. Sci Rep 2024; 14:13787. [PMID: 38877207 PMCID: PMC11178867 DOI: 10.1038/s41598-024-64520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.
Collapse
Affiliation(s)
- Fanny-Linn H Kraft
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Ondi L Crino
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Raven A Moraney
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - David F Clayton
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Julia M George
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
33
|
Kaplan G. The evolution of social play in songbirds, parrots and cockatoos - emotional or highly complex cognitive behaviour or both? Neurosci Biobehav Rev 2024; 161:105621. [PMID: 38479604 DOI: 10.1016/j.neubiorev.2024.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/04/2024] [Accepted: 03/09/2024] [Indexed: 04/20/2024]
Abstract
Social play has been described in many animals. However, much of this social behaviour among birds, particularly in adults, is still relatively unexplored in terms of the environmental, psychological, and social dynamics of play. This paper provides an overview of what we know about adult social play in birds and addresses areas in which subtleties and distinctions, such as in play initiation and social organisation and its relationship to expressions of play, are considered in detail. The paper considers emotional, social, innovative, and cognitive aspects of play, then the environmental conditions and affiliative bonds, suggesting a surprisingly complex framework of criteria awaiting further research. Adult social play has so far been studied in only a small number of avian species, exclusively in those with a particularly large brain relative to body size without necessarily addressing brain functions and lateralization. When lateralization of brain function is considered, it can further illuminate a possibly significant relevance of play behaviour to the evolution of cognition, to management of emotions, and the development of sociality.
Collapse
Affiliation(s)
- Gisela Kaplan
- University of New England, Armidale, NSW, Australia.
| |
Collapse
|
34
|
Kuhl PK. Birds and babies: Ontogeny of vocal learning. Proc Natl Acad Sci U S A 2024; 121:e2405626121. [PMID: 38722815 PMCID: PMC11127051 DOI: 10.1073/pnas.2405626121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Affiliation(s)
- Patricia K. Kuhl
- Department of Speech and Hearing Sciences, Institute for Learning & Brain Sciences, University of Washington, Seattle, WA98195
| |
Collapse
|
35
|
Heim F, Scharff C, Fisher SE, Riebel K, Ten Cate C. Auditory discrimination learning and acoustic cue weighing in female zebra finches with localized FoxP1 knockdowns. J Neurophysiol 2024; 131:950-963. [PMID: 38629163 DOI: 10.1152/jn.00228.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition.
Collapse
Affiliation(s)
- Fabian Heim
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics,Nijmegen, The Netherlands
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics,Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Carel Ten Cate
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
36
|
Leitão A, Gahr M. Babbling opens the sensory phase for imitative vocal learning. Proc Natl Acad Sci U S A 2024; 121:e2312323121. [PMID: 38621117 PMCID: PMC11067029 DOI: 10.1073/pnas.2312323121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/07/2024] [Indexed: 04/17/2024] Open
Abstract
Zebra finches, a species of songbirds, learn to sing by creating an auditory template through the memorization of model songs (sensory learning phase) and subsequently translating these perceptual memories into motor skills (sensorimotor learning phase). It has been traditionally believed that babbling in juvenile birds initiates the sensorimotor phase while the sensory phase of song learning precedes the onset of babbling. However, our findings challenge this notion by demonstrating that testosterone-induced premature babbling actually triggers the onset of the sensory learning phase instead. We reveal that juvenile birds must engage in babbling and self-listening to acquire the tutor song as the template. Notably, the sensory learning of the template in songbirds requires motor vocal activity, reflecting the observation that prelinguistic babbling in humans plays a crucial role in auditory learning for language acquisition.
Collapse
Affiliation(s)
- Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| |
Collapse
|
37
|
Pedretti G, Canori C, Costantini E, Palme R, Valsecchi P, Marshall-Pescini S. Intra and interspecific audience effect on domestic dogs' behavioural displays and facial expressions. Sci Rep 2024; 14:9546. [PMID: 38664496 PMCID: PMC11045831 DOI: 10.1038/s41598-024-58757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of the current study was to investigate the influence of both intra- and interspecific audiences on dogs' facial expressions and behaviours. Forty-six dogs were exposed to three test conditions in which a food reward, initially available, was denied when in the presence of either a human (Human condition) or a dog audience (Dog condition), or in the absence of a visible audience (Non-social condition). Salivary cortisol was collected to evaluate the stress/arousal activation in the different conditions. Compared to the Non-social condition, the presence of a conspecific evoked more facial expressions, according to the DogFACS (Facial Action Coding System, an anatomically based tool to analyze facial expressions in domestic dogs), (EAD105-Ears downward), displacement behaviours (AD137-Nose licking, AD37-Lip wiping), tail wagging, whining, and panting (AD126). When facing a conspecific, dogs assumed a more avoidant attitude, keeping a distance and not looking at the stimuli, compared to when in the presence of the human partner. Dogs also exhibited more facial expressions (EAD102-Ears Adductor, EAD104-Ears Rotator), displacement behaviours (AD137-Nose licking, AD37-Lip wiping), panting (AD126) and whining when facing the conspecific than the human partner. Post-test cortisol was not influenced by any condition, and no association between pre-test cortisol and behavioural variables was found, thus strong differences in the levels of stress/arousal were unlikely to be responsible for differences in behavior between conditions. Considering the current results in the context of the available literature, we suggest that the higher displacement behaviors exhibited with the conspecifics were likely due to an increased level of uncertainty regarding the situations.
Collapse
Affiliation(s)
- Giulia Pedretti
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Viale Delle Scienze 17/A, 43124, Parma, Italy.
| | - Chiara Canori
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Viale Delle Scienze 17/A, 43124, Parma, Italy
| | - Elisa Costantini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Viale Delle Scienze 17/A, 43124, Parma, Italy
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Paola Valsecchi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Viale Delle Scienze 17/A, 43124, Parma, Italy
| | - Sarah Marshall-Pescini
- Domestication Lab, Konrad-Lorenz-Institute for Ethology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
38
|
Döppler JF, Atencio M, Amador A, Mindlin GB. Synthesizing avian dreams. CHAOS (WOODBURY, N.Y.) 2024; 34:043103. [PMID: 38558050 DOI: 10.1063/5.0194301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
During sleep, sporadically, it is possible to find neural patterns of activity in areas of the avian brain that are activated during the generation of the song. It has recently been found that in the vocal muscles of a sleeping bird, it is possible to detect activity patterns during these silent replays. In this work, we employ a dynamical systems model for song production in suboscine birds in order to translate the vocal muscles activity during sleep into synthetic songs. Besides allowing us to translate muscle activity into behavior, we argue that this approach poses the biomechanics as a unique window into the avian brain, with biophysical models as its probe.
Collapse
Affiliation(s)
- Juan F Döppler
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- INFINA, CONICET, Buenos Aires 1428, Argentina
| | - Melina Atencio
- Departamento de Ecología, Genética y Evolución & IEGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Ana Amador
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- INFINA, CONICET, Buenos Aires 1428, Argentina
| | - Gabriel B Mindlin
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- INFINA, CONICET, Buenos Aires 1428, Argentina
- Universidad Rey Juan Carlos, Madrid 28008, Spain
| |
Collapse
|
39
|
Wirthlin ME, Schmid TA, Elie JE, Zhang X, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu T, Lim BK, Azim E, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements. Science 2024; 383:eabn3263. [PMID: 38422184 PMCID: PMC11313673 DOI: 10.1126/science.abn3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
Collapse
Affiliation(s)
- Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Amanda Kowalczyk
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Ruby Redlich
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Varvara A. Shvareva
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ashley Rakuljic
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Maria B. Ji
- Department of Psychology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ninad S. Bhat
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Alyssa J. Lawler
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Andrew Z. Wang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Siddharth Annaldasula
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tianyu Lu
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Byung Kook Lim
- Neurobiology section, Division of Biological Science, University of California, San Diego; La Jolla, CA 92093, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Nathan L. Clark
- Department of Biological Sciences, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University; Bethlehem, PA 18015, USA
| | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| |
Collapse
|
40
|
Frank SY, Hunt JL, Bae AJ, Chirathivat N, Lotfi S, Raja SC, Gobes SMH. Hemispheric dominance in HVC is experience-dependent in juvenile male zebra finches. Sci Rep 2024; 14:5781. [PMID: 38461197 PMCID: PMC10924951 DOI: 10.1038/s41598-024-55987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
Juvenile male zebra finches (Taeniopygia guttata) must be exposed to an adult tutor during a sensitive period to develop normal adult song. The pre-motor nucleus HVC (acronym used as a proper name), plays a critical role in song learning and production (cf. Broca's area in humans). In the human brain, left-side hemispheric dominance in some language regions is positively correlated with proficiency in linguistic skills. However, it is unclear whether this pattern depends upon language learning, develops with normal maturation of the brain, or is the result of pre-existing functional asymmetries. In juvenile zebra finches, even though both left and right HVC contribute to song production, baseline molecular activity in HVC is left-dominant. To test if HVC exhibits hemispheric dominance prior to song learning, we raised juvenile males in isolation from adult song and measured neuronal activity in the left and right HVC upon first exposure to an auditory stimulus. Activity in the HVC was measured using the immediate early gene (IEG) zenk (acronym for zif-268, egr-1, NGFI-a, and krox-24) as a marker for neuronal activity. We found that neuronal activity in the HVC of juvenile male zebra finches is not lateralized when raised in the absence of adult song, while normally-reared juvenile birds are left-dominant. These findings show that there is no pre-existing asymmetry in the HVC prior to song exposure, suggesting that lateralization of the song system depends on learning through early exposure to adult song and subsequent song-imitation practice.
Collapse
Affiliation(s)
- Sophia Y Frank
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Jesse L Hunt
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Andrea J Bae
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Napim Chirathivat
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sima Lotfi
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sahitya C Raja
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
41
|
Montgomery JC. Roles for cerebellum and subsumption architecture in central pattern generation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:315-324. [PMID: 37130955 PMCID: PMC10994996 DOI: 10.1007/s00359-023-01634-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Within vertebrates, central pattern generators drive rhythmical behaviours, such as locomotion and ventilation. Their pattern generation is also influenced by sensory input and various forms of neuromodulation. These capabilities arose early in vertebrate evolution, preceding the evolution of the cerebellum in jawed vertebrates. This later evolution of the cerebellum is suggestive of subsumption architecture that adds functionality to a pre-existing network. From a central-pattern-generator perspective, what additional functionality might the cerebellum provide? The suggestion is that the adaptive filter capabilities of the cerebellum may be able to use error learning to appropriately repurpose pattern output. Examples may include head and eye stabilization during locomotion, song learning, and context-dependent alternation between learnt motor-control sequences.
Collapse
Affiliation(s)
- John C Montgomery
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
42
|
Wilbrecht L, Davidow JY. Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nat Rev Neurosci 2024; 25:176-194. [PMID: 38263216 DOI: 10.1038/s41583-023-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Juliet Y Davidow
- Department of Psychology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
43
|
Oesch N. Social Brain Perspectives on the Social and Evolutionary Neuroscience of Human Language. Brain Sci 2024; 14:166. [PMID: 38391740 PMCID: PMC10886718 DOI: 10.3390/brainsci14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Human language and social cognition are two key disciplines that have traditionally been studied as separate domains. Nonetheless, an emerging view suggests an alternative perspective. Drawing on the theoretical underpinnings of the social brain hypothesis (thesis of the evolution of brain size and intelligence), the social complexity hypothesis (thesis of the evolution of communication), and empirical research from comparative animal behavior, human social behavior, language acquisition in children, social cognitive neuroscience, and the cognitive neuroscience of language, it is argued that social cognition and language are two significantly interconnected capacities of the human species. Here, evidence in support of this view reviews (1) recent developmental studies on language learning in infants and young children, pointing to the important crucial benefits associated with social stimulation for youngsters, including the quality and quantity of incoming linguistic information, dyadic infant/child-to-parent non-verbal and verbal interactions, and other important social cues integral for facilitating language learning and social bonding; (2) studies of the adult human brain, suggesting a high degree of specialization for sociolinguistic information processing, memory retrieval, and comprehension, suggesting that the function of these neural areas may connect social cognition with language and social bonding; (3) developmental deficits in language and social cognition, including autism spectrum disorder (ASD), illustrating a unique developmental profile, further linking language, social cognition, and social bonding; and (4) neural biomarkers that may help to identify early developmental disorders of language and social cognition. In effect, the social brain and social complexity hypotheses may jointly help to describe how neurotypical children and adults acquire language, why autistic children and adults exhibit simultaneous deficits in language and social cognition, and why nonhuman primates and other organisms with significant computational capacities cannot learn language. But perhaps most critically, the following article argues that this and related research will allow scientists to generate a holistic profile and deeper understanding of the healthy adult social brain while developing more innovative and effective diagnoses, prognoses, and treatments for maladies and deficits also associated with the social brain.
Collapse
Affiliation(s)
- Nathan Oesch
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
44
|
Toji N, Sawai A, Wang H, Ji Y, Sugioka R, Go Y, Wada K. A predisposed motor bias shapes individuality in vocal learning. Proc Natl Acad Sci U S A 2024; 121:e2308837121. [PMID: 38198530 PMCID: PMC10801888 DOI: 10.1073/pnas.2308837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
The development of individuality during learned behavior is a common trait observed across animal species; however, the underlying biological mechanisms remain understood. Similar to human speech, songbirds develop individually unique songs with species-specific traits through vocal learning. In this study, we investigate the developmental and molecular mechanisms underlying individuality in vocal learning by utilizing F1 hybrid songbirds (Taeniopygia guttata cross with Taeniopygia bichenovii), taking an integrating approach combining experimentally controlled systematic song tutoring, unbiased discriminant analysis of song features, and single-cell transcriptomics. When tutoring with songs from both parental species, F1 hybrid individuals exhibit evident diversity in their acquired songs. Approximately 30% of F1 hybrids selectively learn either song of the two parental species, while others develop merged songs that combine traits from both species. Vocal acoustic biases during vocal babbling initially appear as individual differences in songs among F1 juveniles and are maintained through the sensitive period of song vocal learning. These vocal acoustic biases emerge independently of the initial auditory experience of hearing the biological father's and passive tutored songs. We identify individual differences in transcriptional signatures in a subset of cell types, including the glutamatergic neurons projecting from the cortical vocal output nucleus to the hypoglossal nuclei, which are associated with variations of vocal acoustic features. These findings suggest that a genetically predisposed vocal motor bias serves as the initial origin of individual variation in vocal learning, influencing learning constraints and preferences.
Collapse
Affiliation(s)
- Noriyuki Toji
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Sapporo060-0810, Japan
| | - Azusa Sawai
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Hongdi Wang
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Yu Ji
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Rintaro Sugioka
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki444-8585, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Kazuhiro Wada
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo060-8638, Japan
| |
Collapse
|
45
|
McLean CR, Mata A, Kline RJ, Berg KS. Early corticosterone increases vocal complexity in a wild parrot: An organizational role of the hypothalamic-pituitary-adrenal axis in vocal learning? J Neuroendocrinol 2024:e13365. [PMID: 38200690 DOI: 10.1111/jne.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The neuroendocrinology of vocal learning is exceptionally well known in passerine songbirds. Despite huge life history, genetic and ecological variation across passerines, song learning tends to occur as a result of rises in gonadal and non-gonadal sex steroids that shape telencephalic vocal control circuits and song. Parrots are closely related but independently evolved different cerebral circuits for vocal repertoire acquisition in both sexes that serve a broader suite of social functions and do not appear to be shaped by early androgens or estrogens; instead, parrots begin a plastic phase in vocal development at an earlier life history stage that favors the growth, maturation, and survival functions of corticosteroids. As evidence, corticosterone (CORT) supplements given to wild green-rumped parrotlets (Forpus passerinus) during the first week of vocal babbling resulted in larger vocal repertoires in both sexes in the remaining days before fledging. Here, we replicate this experiment but began treatment 1 week before in development, analyzing both experiments in one model and a stronger test of the organizational effects of CORT on repertoire acquisition. Early CORT treatment resulted in significantly larger repertoires compared to late treatment. Both treatment groups showed weak negative effects on the early, reduplicated stage of babbling and strong, positive effects of CORT on the later, variegated stage. Results are consistent with more formative effects of corticosteroids at earlier developmental stages and a role of the hypothalamic-pituitary-adrenal axis (HPA) in vocal repertoire acquisition. Given the early emergence of speech in human ontogeny, parrots are a promising model for understanding the putative role of the HPA axis in the construction of neural circuits that support language acquisition.
Collapse
Affiliation(s)
- Celia R McLean
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Astolfo Mata
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
- Centre National de la Recherche Scientifique, Universite de Strasbourg, Strasbourg, France
| | - Richard J Kline
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
- School of Earth Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Karl S Berg
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
46
|
Adam I, Riebel K, Stål P, Wood N, Previs MJ, Elemans CPH. Daily vocal exercise is necessary for peak performance singing in a songbird. Nat Commun 2023; 14:7787. [PMID: 38086817 PMCID: PMC10716414 DOI: 10.1038/s41467-023-43592-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Vocal signals, including human speech and birdsong, are produced by complicated, precisely coordinated body movements, whose execution is fitness-determining in resource competition and mate choice. While the acquisition and maintenance of motor skills generally requires practice to develop and maintain both motor circuitry and muscle performance, it is unknown whether vocal muscles, like limb muscles, exhibit exercise-induced plasticity. Here, we show that juvenile and adult zebra finches (Taeniopygia castanotis) require daily vocal exercise to first gain and subsequently maintain peak vocal muscle performance. Experimentally preventing male birds from singing alters both vocal muscle physiology and vocal performance within days. Furthermore, we find females prefer song of vocally exercised males in choice experiments. Vocal output thus contains information on recent exercise status, and acts as an honest indicator of past exercise investment in songbirds, and possibly in all vocalising vertebrates.
Collapse
Affiliation(s)
- Iris Adam
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Katharina Riebel
- Institute of Biology, Animal Sciences & Health, Leiden University, Leiden, The Netherlands
| | - Per Stål
- Department of Integrative Medical Biology, Umea University, Umeå, Sweden
| | - Neil Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
47
|
Schlinger HD. Contrasting Accounts of Early Speech Perception and Production. Perspect Behav Sci 2023; 46:561-583. [PMID: 38144545 PMCID: PMC10733268 DOI: 10.1007/s40614-023-00371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 12/26/2023] Open
Abstract
Language researchers have historically either dismissed or ignored completely behavioral accounts of language acquisition while at the same time acknowledging the important role of experience in language learning. Many language researchers have also moved away from theories based on an innate generative universal grammar and promoted experience-dependent and usage-based theories of language. These theories suggest that hearing and using language in its context is critical for learning language. However, rather than appealing to empirically derived principles to explain the learning, these theories appeal to inferred cognitive mechanisms. In this article, I describe a usage-based theory of language acquisition as a recent example of a more general cognitive linguistic theory and note both logical and methodological problems. I then present a behavior-analytic theory of speech perception and production and contrast it with cognitive theories. Even though some researchers acknowledge the role of social feedback (they rarely call it reinforcement) in vocal learning, they omit the important role played by automatic reinforcement. I conclude by describing automatic reinforcement as the missing link in a parsimonious account of vocal development in human infants and making comparisons to vocal development in songbirds.
Collapse
|
48
|
Furest Cataldo B, Yang L, Cabezas B, Ovetsky J, Vicario DS. Novel sound exposure drives dynamic changes in auditory lateralization that are associated with perceptual learning in zebra finches. Commun Biol 2023; 6:1205. [PMID: 38012325 PMCID: PMC10681987 DOI: 10.1038/s42003-023-05567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Songbirds provide a model for adult plasticity in the auditory cortex as a function of recent experience due to parallels with human auditory processing. As for speech processing in humans, activity in songbirds' higher auditory cortex (caudomedial nidopallium, NCM) is lateralized for complex vocalization sounds. However, in Zebra finches exposed to a novel heterospecific (canary) acoustic environment for 4-9 days, the typical pattern of right-lateralization is reversed. We now report that, in birds passively exposed to a novel heterospecific environment for extended periods (up to 21 days), the right-lateralized pattern of epidural auditory potentials first reverses transiently then returns to the typical pattern. Using acute, bilateral multi-unit electrophysiology, we confirm that this dynamic pattern occurs in NCM. Furthermore, extended exposure enhances discrimination for heterospecific stimuli. We conclude that lateralization is functionally labile and, when engaged by novel sensory experience, contributes to discrimination of novel stimuli that may be ethologically relevant. Future studies seek to determine whether, (1) the dynamicity of lateralized processes engaged by novel sensory experiences recurs with every novel challenge in the same organism; (2) the dynamic pattern extends to other cortical, thalamic or midbrain structures; and (3) the phenomenon generalizes across sensory modalities.
Collapse
Affiliation(s)
| | - Lillian Yang
- The City College of New York (CUNY), Physiology, Pharmacology and Neuroscience Department, New York, NY, 10031, USA
| | - Bryan Cabezas
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - Jonathan Ovetsky
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - David S Vicario
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA.
| |
Collapse
|
49
|
Susoy V, Samuel ADT. Evolutionarily conserved behavioral plasticity enables context-dependent mating in C. elegans. Curr Biol 2023; 33:4532-4537.e3. [PMID: 37769659 PMCID: PMC10615801 DOI: 10.1016/j.cub.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Behavioral plasticity helps humans and animals to achieve their goals by adapting their behaviors to different environments.1,2 Although behavioral plasticity is ubiquitous, many innate species-specific behaviors, such as mating, are often assumed to be stereotyped and unaffected by plasticity or learning, especially in invertebrates. Here, we describe a novel case of behavioral plasticity in the nematode C. elegans. Under standard lab conditions (agar plates with bacterial food), the male performs parallel mating,3,4,5 a largely two-dimensional behavioral strategy where his body and tail remain flat on the surface and slide alongside the partner's body from initial contact to copulation. But when placed in liquid media, the male performs spiral mating, a distinctly three-dimensional behavioral strategy where he winds around the partner's body in a helical embrace. The performance of spiral mating does not require a long-term change in growing conditions, but it does improve with experience. This experience-dependent improvement appears to involve a critical period-a time window around the L4 larval stage to the early adult stage-which coincides with the development of most male-specific neurons. We tested several wild isolates of C. elegans and other Caenorhabditis species and found that most were capable of parallel mating on surfaces and spiral mating in liquids. We suggest that two- and three-dimensional mating strategies in Caenorhabditis are plastic, conditionally expressed phenotypes conserved across the genus, which can be genetically "fixed" in some species.
Collapse
Affiliation(s)
- Vladislav Susoy
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
50
|
James LS, Wang AS, Bertolo M, Sakata JT. Learning to pause: Fidelity of and biases in the developmental acquisition of gaps in the communicative signals of a songbird. Dev Sci 2023; 26:e13382. [PMID: 36861437 DOI: 10.1111/desc.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
The temporal organization of sounds used in social contexts can provide information about signal function and evoke varying responses in listeners (receivers). For example, music is a universal and learned human behavior that is characterized by different rhythms and tempos that can evoke disparate responses in listeners. Similarly, birdsong is a social behavior in songbirds that is learned during critical periods in development and used to evoke physiological and behavioral responses in receivers. Recent investigations have begun to reveal the breadth of universal patterns in birdsong and their similarities to common patterns in speech and music, but relatively little is known about the degree to which biological predispositions and developmental experiences interact to shape the temporal patterning of birdsong. Here, we investigated how biological predispositions modulate the acquisition and production of an important temporal feature of birdsong, namely the duration of silent pauses ("gaps") between vocal elements ("syllables"). Through analyses of semi-naturally raised and experimentally tutored zebra finches, we observed that juvenile zebra finches imitate the durations of the silent gaps in their tutor's song. Further, when juveniles were experimentally tutored with stimuli containing a wide range of gap durations, we observed biases in the prevalence and stereotypy of gap durations. Together, these studies demonstrate how biological predispositions and developmental experiences differently affect distinct temporal features of birdsong and highlight similarities in developmental plasticity across birdsong, speech, and music. RESEARCH HIGHLIGHTS: The temporal organization of learned acoustic patterns can be similar across human cultures and across species, suggesting biological predispositions in acquisition. We studied how biological predispositions and developmental experiences affect an important temporal feature of birdsong, namely the duration of silent intervals between vocal elements ("gaps"). Semi-naturally and experimentally tutored zebra finches imitated the durations of gaps in their tutor's song and displayed some biases in the learning and production of gap durations and in gap variability. These findings in the zebra finch provide parallels with the acquisition of temporal features of speech and music in humans.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montréal, Quebec, Canada
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Angela S Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Mila Bertolo
- Centre for Research in Brain, Language and Music, McGill University, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montréal, Quebec, Canada
- Centre for Research in Brain, Language and Music, McGill University, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| |
Collapse
|