1
|
Ning G, Li BN, Wu H, Shi RB, Peng AJ, Wang HY, Zhou X. Regulation of testosterone synthesis by circadian clock genes and its research progress in male diseases. Asian J Androl 2025:00129336-990000000-00298. [PMID: 40101130 DOI: 10.4103/aja20258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
ABSTRACT The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms. Testosterone, as one of the most critical sex hormones, is essential for the development of the reproductive system, maintenance of reproductive function, and the overall health of males. The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes. Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis. We also examined the specific effects of these genes on the occurrence, development, and treatment of common male diseases, including late-onset hypogonadism, erectile dysfunction, male infertility, and prostate cancer.
Collapse
Affiliation(s)
- Gang Ning
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Bo-Nan Li
- Affiliated Changsha Hospital of Hunan Normal University, Changsha 410023, China
| | - Hui Wu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruo-Bing Shi
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - A-Jian Peng
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-Yu Wang
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
2
|
Saetan U, Kornthong N, Duangprom S, Songkoomkrong S, Phanthong P, Sanprick A, Tipbunjong C, Tamtin M, Saetan J. The occurrence of luteinizing hormone-like molecule and its receptor in the blue swimming crab, Portunus pelagicus. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111753. [PMID: 39366546 DOI: 10.1016/j.cbpa.2024.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Knowledge of the neuroendocrine system possibly improves the reproductive performance of captivated crustacean broodstock in aquaculture and it may substitute eyestalk ablation. In this study, we explored the luteinizing hormone (LH)-like molecule and proved the existence of the LH receptor (PpelLHR)-like mRNA in the blue swimming crab, Portunus pelagicus. Using the anti-human LH-β antibody, the immunoreactivities were found in the central nervous system (CNS) and ovary of the crab with the strongest signal in the mature ovary. The full-length PpelLHR-like mRNA sequence contained 4818 bp with deduced protein predicted as seven transmembrane G-protein coupled receptor, made of 1605 amino acids. The phylogenetic tree suggested this protein belonged to the clade of invertebrate LHR/FSHR-like proteins. The PpelLHR-like mRNA expressed in various organs and real-time qPCR revealed significantly higher expression of this mRNA in the brain and lower expression in the ovary of the mature crabs. In situ hybridization of this mRNA was demonstrated in neuronal clusters of the brain, ventral nerve cord, and in the oocyte stage 1-4 of the ovary, respectively. This study was preliminary to prove the existence of LH and its receptor in the blue swimming crab. Functional assay of this receptor should be performed as the next part of experiments to firmly conclude its appearance.
Collapse
Affiliation(s)
- Uraipan Saetan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Amornrat Sanprick
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Montakan Tamtin
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
| |
Collapse
|
3
|
Arimura S, Wong MKS, Inoue R, Kawano M, Shimoyama K, Fujimori C, Tokunaga K, Takagi W, Hyodo S. Functional characterization of follicle-stimulating hormone and luteinizing hormone receptors in cloudy catshark, Scyliorhinus torazame. Gen Comp Endocrinol 2024; 354:114542. [PMID: 38685391 DOI: 10.1016/j.ygcen.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in cloudy catshark were cloned, and recombinant FSHR and LHR were expressed for characterization. Ventral lobe extract (VLE) from the pituitary contains homologous FSH and LH, and it stimulated the cAMP signaling of FSHR and LHR dose-dependently. Two transcript variants of LHR (LHR-L with exon 10 and LHR-S without) were identified, and LHR-S was the dominant form with higher basal cAMP activity without VLE stimulation. Among various developmental stages of follicles, FSHR expression was mainly associated with the pre-vitellogenic and early white follicles. When follicles were recruited into vitellogenesis, the expression of FSHR decreased while of LHR was upregulated reciprocally, suggesting that LHR may also be responsible for the control of vitellogenesis in chondrichthyans. The expression of LHR-L was upregulated among maturing follicles before ovulation, indicating LHR-L could have a specific role in receiving the LH surge signal for final maturation. Plasma LH-like activity was transiently increased prior to the progesterone (P4)-surge and testosterone-drop at the beginning of P4-phase, supporting a pituitary control of follicle-maturation via LH signaling in chondrichthyans. The expression of follicular LHR was downregulated during the P4-phase when LH-like activity was high, indicating that the LH-dependent downregulation of LHR is conserved in chondrichthyans as it is in other vertebrate lineages. (213 words).
Collapse
Affiliation(s)
- Shogo Arimura
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Marty Kwok Shing Wong
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Ryotaro Inoue
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Mai Kawano
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Koya Shimoyama
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Chika Fujimori
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | - Kotaro Tokunaga
- Ibaraki Prefectural Oarai Aquarium, Oarai, Ibaraki 311-1301, Japan.
| | - Wataru Takagi
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
4
|
Baburski AZ, Becin AP, Travicic DZ, Medar MLJ, Andric SA, Kostic TS. REVERBA couples the circadian clock to Leydig cell steroidogenesis. Biofactors 2024; 50:738-749. [PMID: 38147453 DOI: 10.1002/biof.2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
The involvement of the molecular clock in regulating cell physiological processes on a specific time scale is a recognized concept, yet its specific impact on optimizing androgen production in Leydig cells has been unclear. This study aimed to confirm the role of the REVERBA (NR1D1) gene in controlling the transcription of key genes related to Leydig cell steroid production. We investigated daily variations by collecting Leydig cells from rats at various times within a 24-h period. Chromatin immunoprecipitation study showed a time-dependent pattern for genes linked to steroid production (Nur77, Star, Cyp11a1, and Cyp17a1), which closely matched the 24-h REVERBA levels in Leydig cells, peaking between zeitgeber time (ZT) 7-11. To understand the physiological significance of REVERBA's interaction with promoters of steroidogenesis-related genes, Leydig cells from rats at two different times (ZT7 and ZT16; chosen based on REVERBA expression levels), were treated with either an agonist (GSK4112) or an antagonist (SR8278). The results revealed that the REVERBA agonist stimulated gene transcription, while the antagonist inhibited it, but only when REVERBA was sufficiently present, indicating a reliance on REVERBA's circadian fluctuation. Moreover, this REVERBA-dependent stimulation had a clear impact on testosterone production in the culture medium, underscoring REVERBA's involvement in the circadian regulation of testosterone. This study indicates that REVERBA, in addition to being a core component of the cellular clock, plays a key role in regulating androgen production in Leydig cells by influencing the transcription of critical steroidogenesis-related genes.
Collapse
Affiliation(s)
- Aleksandar Z Baburski
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Alisa P Becin
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Dijana Z Travicic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Marija L J Medar
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Silvana A Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Tatjana S Kostic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| |
Collapse
|
5
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
6
|
Constantin S, Sokanovic SJ, Mochimaru Y, Smiljanic K, Sivcev S, Prévide RM, Wray S, Balla T, Stojilkovic SS. Postnatal Development and Maintenance of Functional Pituitary Gonadotrophs Is Dependent on PI4-Kinase A. Endocrinology 2023; 164:bqad168. [PMID: 37935042 PMCID: PMC10652335 DOI: 10.1210/endocr/bqad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Postnatal development of functional pituitary gonadotrophs is necessary for maturation of the hypothalamic-pituitary-gonadal axis, puberty, and reproduction. Here we examined the role of PI4-kinase A, which catalyzes the biosynthesis of PI4P in mouse reproduction by knocking out this enzyme in cells expressing the gonadotropin-releasing hormone (GnRH) receptor. Knockout (KO) mice were infertile, reflecting underdeveloped gonads and reproductive tracts and lack of puberty. The number and distribution of hypothalamic GnRH neurons and Gnrh1 expression in postnatal KOs were not affected, whereas Kiss1/kisspeptin expression was increased. KO of PI4-kinase A also did not alter embryonic establishment and neonatal development and function of the gonadotroph population. However, during the postnatal period, there was a progressive loss of expression of gonadotroph-specific genes, including Fshb, Lhb, and Gnrhr, accompanied by low gonadotropin synthesis. The postnatal gonadotroph population also progressively declined, reaching approximately one-third of that observed in controls at 3 months of age. In these residual gonadotrophs, GnRH-dependent calcium signaling and calcium-dependent membrane potential changes were lost, but intracellular administration of inositol-14,5-trisphosphate rescued this signaling. These results indicate a key role for PI4-kinase A in the postnatal development and maintenance of a functional gonadotroph population.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srdjan J Sokanovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sonja Sivcev
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael M Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Torzone SK, Park AY, Breen PC, Cohen NR, Dowen RH. Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans. PLoS Biol 2023; 21:e3002320. [PMID: 37773960 PMCID: PMC10566725 DOI: 10.1371/journal.pbio.3002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/11/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023] Open
Abstract
Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.
Collapse
Affiliation(s)
- Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aaron Y. Park
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Su J, Song Y, Yang Y, Li Z, Zhao F, Mao F, Wang D, Cao G. Study on the changes of LHR, FSHR and AR with the development of testis cells in Hu sheep. Anim Reprod Sci 2023; 256:107306. [PMID: 37541020 DOI: 10.1016/j.anireprosci.2023.107306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
The process of testis development in mammals is accompanied by the proliferation and maturation of Sertoli, Leydig and germ cells. Spermatogenesis depends on hormone regulation, which must bind to a receptor to exert its biological effects. The changes in Hu sheep testis cell composition and FSHR, LHR and AR expression during different developmental stages are unclear (newborn, puberty and adulthood). To address this, using single-cell RNA sequencing, we analyzed testis cell composition and hormone receptor expression changes during three important developmental stages of Hu sheep. We observed significant changes in the composition of somatic and germ cells in different Hu sheep testis developmental stages. Furthermore, we analyzed the FSHR, LHR and AR distribution and expression changes at three important periods and verified them by qRT-PCR and immunofluorescence. Our results suggest that after birth, the proportion of germ cells increased gradually, peaking in adulthood; the proportion of Sertoli cells decreased gradually, reaching the lowest in adulthood; and the proportion of Leydig cells increased and then decreased, reaching the lowest in adulthood. In addition, FSHR, LHR and AR are mainly located in Sertoli, Leydig and germ cells. LHR and FSHR expression decreased with increasing age, while AR expression increased and then decreased with increasing age.
Collapse
Affiliation(s)
- Jie Su
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Huhhot 010021, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Zhijun Li
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China
| | - Feifei Zhao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Fei Mao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Daqing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China.
| |
Collapse
|
9
|
Martins AD, Ribeiro JC, Ferreira R, Alves MG, Oliveira PF. Understanding the age-related alterations in the testis-specific proteome. Expert Rev Proteomics 2023; 20:331-343. [PMID: 37878493 DOI: 10.1080/14789450.2023.2274857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Fertility rates in developing countries have declined over the past decades, and the trend of delayed fatherhood is rising as societies develop. The reasons behind the decline in male fertility with advancing age remain mysterious, making it a compelling and crucial area for further research. However, the limited number of studies dedicated to unraveling this enigma poses a challenge. Thus, our objective is to illuminate some of the upregulated and downregulated mechanisms in the male testis during the aging process. AREAS COVERED Herein, we present a critical overview of the studies addressing the alterations of testicular proteome through the aging process, starting from sexually matured young males to end-of-life-expectancy aged males. The comparative studies of the proteomic testicular profile of men with and without spermatogenic impairment are also discussed and key proteins and pathways involved are highlighted. EXPERT OPINION The difficulty of making age-comparative studies, especially of advanced-age study subjects, makes this topic of study quite challenging. Another topic worth mentioning is the heterogeneous nature and vast cellular composition of testicular tissue, which makes proteome data interpretation tricky. The cell type sorting and comorbidities testing in the testicular tissue of the studied subjects would help mitigate these problems.
Collapse
Affiliation(s)
- Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João C Ribeiro
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Choi SH, Byambaragchaa M, Kim DJ, Lee JH, Kang MH, Min KS. Specific Signal Transduction of Constitutively Activating (D576G) and Inactivating (R476H) Mutants of Agonist-Stimulated Luteinizing Hormone Receptor in Eel. Int J Mol Sci 2023; 24:ijms24119133. [PMID: 37298083 DOI: 10.3390/ijms24119133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
We investigated the mechanism of signal transduction using inactivating (R476H) and activating (D576G) mutants of luteinizing hormone receptor (LHR) of eel at the conserved regions of intracellular loops II and III, respectively, naturally occurring in mammalian LHR. The expression of D576G and R476H mutants was approximately 58% and 59%, respectively, on the cell surface compared to those of eel LHR-wild type (wt). In eel LHR-wt, cAMP production increased upon agonist stimulation. Cells expressing eel LHR-D576G, a highly conserved aspartic acid residue, exhibited a 5.8-fold increase in basal cAMP response; however, the maximal cAMP response by high-agonist stimulation was approximately 0.62-fold. Mutation of a highly conserved arginine residue in the second intracellular loop of eel LHR (LHR-R476H) completely impaired the cAMP response. The rate of loss in cell-surface expression of eel LHR-wt and D576G mutant was similar to the agonist recombinant (rec)-eel LH after 30 min. However, the mutants presented rates of loss higher than eel LHR-wt did upon rec-eCG treatment. Therefore, the activating mutant constitutively induced cAMP signaling. The inactivating mutation resulted in the loss of LHR expression on the cell surface and no cAMP signaling. These data provide valuable information regarding the structure-function relationship of LHR-LH complexes.
Collapse
Affiliation(s)
- Seung-Hee Choi
- Animal BioScience, School of Animal Life Convergence, Hankyong National University, Ansung 17579, Republic of Korea
| | - Munkhzaya Byambaragchaa
- Institute of Genetic Engineering, Hankyong National University, Ansung 17579, Republic of Korea
| | - Dae-Jung Kim
- Aquaculture Industry Division, South Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Yeosu 59780, Republic of Korea
| | - Jong-Hyuk Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea
| | - Kwan-Sik Min
- Animal BioScience, School of Animal Life Convergence, Hankyong National University, Ansung 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Ansung 17579, Republic of Korea
- Carbon-Neutral Resources Research Center, Hankyong National University, Ansung 17579, Republic of Korea
| |
Collapse
|
11
|
Effect Modification of LHCGR Gene Variant (rs2293275) on Clinico-Biochemical Profile, and Levels of Luteinizing Hormone in Polycystic Ovary Syndrome Patients. Biochem Genet 2023:10.1007/s10528-022-10327-z. [PMID: 36633772 DOI: 10.1007/s10528-022-10327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common multifaceted endocrine disorder among reproductive-aged women. Deranged luteinizing hormone levels and associated downstream signaling cascade mediated by its receptor luteinizing hormone chorionic gonadotropin receptor (LHCGR) are pivotal in the etiopathogenesis of PCOS. Genetic variations in the LHCGR have been associated with PCOS risk. However, the results are mixed and inconclusive. We evaluated the association of the LHCGR rs2293275 polymorphic variant with PCOS risk and its association with clinico-biochemical features of PCOS. 120 confirmed PCOS cases and an equal number of age-matched controls were subjected to clinical, biochemical, and hormonal investigations. Genotyping for rs2293275 was performed using polymerase chain reaction-restriction fragment length polymorphism. Logistic regression models were used to calculate odds ratios (ORs) at 95% confidence intervals (95% CIs). In the current study, PCOS cases reported a lower number of menstrual cycles per year than respective controls. A significantly higher BMI, Ferriman Galway score, levels of serum testosterone, insulin, TSH, FSH, and fasting glucose were observed in cases than in controls (p < 0.01). Compared to GG carriers, we observed a higher risk of developing PCOS in the subjects who harbored GA (OR 10.4, p < 0.0001) or AA (OR 7.73, p = 0.02) genotype. The risk persisted in the dominant model (GA + AA) as well (OR 10.29, p = 0.01). On stratification, a higher risk of developing PCOS was observed in variant genotype carriers who had a family history of either type two diabetes mellitus (OR 117; p < 0.0001) or hirsutism (OR 79; p < 0.0001). We also found significantly elevated levels of serum LH levels in the subject harboring GA and AA genotypes when compared to GG carriers. In the present study, we report a significant association of the LHCGR rs2293275 variant with the PCOS risk.
Collapse
|
12
|
Sokanovic SJ, Constantin S, Lamarca Dams A, Mochimaru Y, Smiljanic K, Bjelobaba I, Prévide RM, Stojilkovic SS. Common and female-specific roles of protein tyrosine phosphatase receptors N and N2 in mice reproduction. Sci Rep 2023; 13:355. [PMID: 36611058 PMCID: PMC9825377 DOI: 10.1038/s41598-023-27497-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Simultaneous knockout of the neuroendocrine marker genes Ptprn and Ptprn2, which encode the protein tyrosine phosphatase receptors N and N2, causes infertility in female mice while males are fertile. To elucidate the mechanism of the sex-specific roles of Ptprn and Ptprn2 in mouse reproduction, we analyzed the effects of their double knockout (DKO) on the hypothalamic-pituitary-gonadal axis. In DKO females, delayed puberty and lack of ovulation were observed, complemented by changes in ovarian gene expression and steroidogenesis. In contrast, testicular gene expression, steroidogenesis, and reproductive organs development were not significantly affected in DKO males. However, in both sexes, pituitary luteinizing hormone (LH) beta gene expression and LH levels were reduced, as well as follicle-stimulating hormone beta gene and gonadotropin-releasing hormone (GnRH) gene, while the calcium-mobilizing and LH secretory actions of GnRH were preserved. Hypothalamic Gnrh1 and Kiss1 gene expression was also reduced in DKO females and males. In parallel, a significant decrease in the density of immunoreactive GnRH and kisspeptin fibers was detected in the hypothalamic arcuate nucleus of DKO females and males. The female-specific kisspeptin immunoreactivity in the rostral periventricular region of the third ventricle was also reduced in DKO females, but not in DKO males. These data indicate a critical role of Ptprn and Ptprn2 in kisspeptin-GnRH neuronal function and sexual dimorphism in the threshold levels of GnRH required to preserve reproductive functions.
Collapse
Affiliation(s)
- Srdjan J Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Aloa Lamarca Dams
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivana Bjelobaba
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia
| | - Rafael M Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
13
|
Single-Step Protocol for Isolating the Recombinant Extracellular Domain of the Luteinizing Hormone Receptor from the Ovis aries Testis. Curr Issues Mol Biol 2022; 44:5718-5727. [DOI: 10.3390/cimb44110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
The luteinizing hormone receptor (LHR) is a glycoprotein member of the G protein-coupled receptors superfamily. It participates in corpus luteum formation and ovulation in females and acts in testosterone synthesis and spermatogenesis in males. In this study, we extracted RNA from sheep testicles and synthetized the cDNA to amplify the gene lhr-bed. This gene consists of 762 bp and encodes 273 amino acids of the extracellular domain of LHR. The lhr-bed was cloned into pJET1.2/blunt, then subcloned into pCOLD II, and finally, transformed in E. coli BL21 (DE3) cells. Because the induced rLHR-Bed protein was found in the insoluble fraction, we followed a modified purification protocol involving induction at 25 °C, subjection to denaturing conditions, and on-column refolding to increase solubility. We confirmed rLHR-Bed expression by means of Western blot and mass spectrometry analysis. It is currently known that the structure stem-loop 5′UTR on pCOLD II vector is stable at 15 °C. We predicted and obtained RNAfold stability at 25 °C. We successfully obtained the recombinant LHR extracellular domain, with protein yields of 0.2 mg/L, and purity levels of approximately 90%, by means of a single chromatographic purification step. The method described here may be used to obtain large quantities of rLHR-Bed in the future.
Collapse
|
14
|
Zhang Y, Han D, Yu X, Shao X, Zong C, Zhang M, Wang J, Liang J, Ge P. MiRNA-190a-5p promotes primordial follicle hyperactivation by targeting PHLPP1 in premature ovarian failure. Front Genet 2022; 13:1034832. [PMID: 36406123 PMCID: PMC9669437 DOI: 10.3389/fgene.2022.1034832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 12/11/2023] Open
Abstract
We previously screened 6 differentially expressed miRNAs in ovarian tissues of 4-vinylcyclohexene diepoxide (VCD)-treated premature ovarian failure (POF) model in SD rats, including miRNA-190a-5p, miRNA-98-5p, miRNA-29a-3p, miRNA-144-5p, miRNA-27b-3p, miRNA-151-5p. In this study, to investigate the mechanisms causing the onset of POF, we first identified miRNAs with earlier differential expression at consecutive time points in the VCD-treated rat POF model and explored the mechanisms by which the target miRNAs promote POF. The SD rats were injected with VCD for 15 days to induce POF. Additionally, we collected rat blood and ovaries at the same time every day for 15 consecutive days, and luteinizing hormone (LH), follicle-stimulating hormone (FSH), Anti-Mullerian hormone (AMH), and estradiol (E2) serum levels were detected by ELISA. Six miRNAs expression were measured in rat ovaries by qRT-PCR. Dual-luciferase reporter gene assays were employed to predict and verify the target gene (PHLPP1) of target miRNAs (miRNA-190a-5p). Western blot was examined to detect the expression levels of PHLPP1, AKT, p-AKT, FOXO3a, p-FOXO3a, and LHR proteins on the target gene PHLPP1 and its participation in the primordial follicular hyperactivation-related pathways (AKT-FOXO3a and AKT-LH/LHR). During the VCD modeling POF rat ovaries, miRNA-190a-5p was the first to show significant differential expression, i.e., 6th of VCD treating, and PHLPP1 was verified to be a direct downstream target of it. Starting from the 6th of VCD treatment, the more significant the up-regulation trend of miRNA-190a-5p expression, the more obvious the down-regulation trend of PHLPP1 and LHR mRNA and protein expression, accompanied by the more severe phosphorylation of AKT and FOXO3a proteins, thus continuously over-activating the rat primordial follicle to promote the development of POF. In conclusion, miRNA-190a-5p may become a potential biomarker for early screening of POF, and it can continuously activate primordial follicles in rats by targeting the expression of PHLPP1 and key proteins in the AKT-FOXO3a and AKT-LH/LHR pathways.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Dongwei Han
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Shao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chuju Zong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang Institute for Drug Control, Harbin, China
| | - Manyu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junzhi Wang
- Department of Dermatology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingwen Liang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pengling Ge
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Medar ML, Andric SA, Kostic TS. Stress alters the transcriptional activity of Leydig cells dependently on the diurnal time. Am J Physiol Cell Physiol 2022; 323:C322-C332. [PMID: 35704696 DOI: 10.1152/ajpcell.00412.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increasing amount of data points to the circadian timing system as an essential part of processes regulating androgen homeostasis. However, the relationship between stress response, timekeeping-, and steroidogenesis-related systems is unexplored. Here, the stress-response of the testosterone-producing rat Leydig cells depending on the time of stressful events was studied. The study analyzes the effects of 3-hour immobilization (IMO) applied at different periods during the day. The IMO performed once (1xIMO) or repeated in 10 consecutive days (10xIMO). Both types of IMO increased corticosterone and decreased testosterone blood level. However, the effect of 10xIMO occurring in the active phase on blood testosterone was less pronounced. This is related to different sensitivity to IMO-events depending on the diurnal time. Most steroidogenesis-related genes (Lhcgr, Cyp11a1, Hsd3b1/2, Cyp17a1) were down-regulated in the inactive but unchanged or even up-regulated in the active phase of the day. Both types of IMO stimulated the expression of clock elements Bmal1/BMAL1, Per1/PER1 regardless of the day's stage and reduced Rev-erba in the inactive phase. The principal-component-analysis (PCA) confirmed a major shift, for both IMO-types, in the transcription of the genes across the passive/active stage. Further, 10xIMO changed a diurnal pattern of the glucocorticoid receptor (Nr3c1/GR) expression while the observed time-dependent IMO-response of the Leydig cells correlated with different corticosterone engagements. Altogether, the Leydig cell's stress-response depends on the daytime of the stressful event, emphasizing the importance of the circadian-system in supporting androgen homeostasis and male fertility.
Collapse
Affiliation(s)
- Marija Lj Medar
- The University of Novi Sad, Faculty of Sciences Novi Sad, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia and Montenegro
| | - Silvana A Andric
- The University of Novi Sad, Faculty of Sciences Novi Sad, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia and Montenegro
| | - Tatjana S Kostic
- The University of Novi Sad, Faculty of Sciences Novi Sad, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia and Montenegro
| |
Collapse
|
16
|
Zheng X, Zheng Y, Qin D, Yao Y, Zhang X, Zhao Y, Zheng C. Regulatory Role and Potential Importance of GDF-8 in Ovarian Reproductive Activity. Front Endocrinol (Lausanne) 2022; 13:878069. [PMID: 35692411 PMCID: PMC9178251 DOI: 10.3389/fendo.2022.878069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Growth differentiation factor-8 (GDF-8) is a member of the transforming growth factor-beta superfamily. Studies in vitro and in vivo have shown GDF-8 to be involved in the physiology and pathology of ovarian reproductive functions. In vitro experiments using a granulosa-cell model have demonstrated steroidogenesis, gonadotrophin responsiveness, glucose metabolism, cell proliferation as well as expression of lysyl oxidase and pentraxin 3 to be regulated by GDF-8 via the mothers against decapentaplegic homolog signaling pathway. Clinical data have shown that GDF-8 is expressed widely in the human ovary and has high expression in serum of obese women with polycystic ovary syndrome. GDF-8 expression in serum changes dynamically in patients undergoing controlled ovarian hyperstimulation. GDF-8 expression in serum and follicular fluid is correlated with the ovarian response and pregnancy outcome during in vitro fertilization. Blocking the GDF-8 signaling pathway is a potential therapeutic for ovarian hyperstimulation syndrome and ovulation disorders in polycystic ovary syndrome. GDF-8 has a regulatory role and potential importance in ovarian reproductive activity and may be involved in folliculogenesis, ovulation, and early embryo implantation.
Collapse
Affiliation(s)
- Xiaoling Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongxu Qin
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunchun Zhao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Caihong Zheng, ; Yunchun Zhao,
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Caihong Zheng, ; Yunchun Zhao,
| |
Collapse
|
17
|
Medar ML, Andric SA, Kostic TS. Stress-induced glucocorticoids alter the Leydig cells' timing and steroidogenesis-related systems. Mol Cell Endocrinol 2021; 538:111469. [PMID: 34601003 DOI: 10.1016/j.mce.2021.111469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
The study aimed to analyze the time-dependent consequences of stress on gene expression responsible for diurnal endocrine Leydig cell function connecting them to the glucocorticoid-signaling. In the first 24h after the stress event, a daily variation of blood corticosterone increased, and testosterone decreased; the testosterone/corticosterone were lowest at the end of the stress session overlapping with inhibition of Leydig cells' steroidogenesis-related genes (Nr3c1/GR, Hsd3b1/2, Star, Cyp17a1) and changed circadian activity of the clock genes (the increased Bmal1/BMAL1 and Per1/2/PER1 and decreased Cry1 and Rev-erba). The glucocorticoid-treated rats showed a similar response. The principal-component-analysis (PCA) displayed an absence of significant differences between treatments especially on Per1 and Rev-erba, the findings confirmed by the in vivo blockade of the testicular glucocorticoid receptor (GR) during stress and ex vivo treatment of the Leydig cells with hydrocortisone and GR-blocker. In summary, stressful stimuli can entrain the clock in the Leydig cells through glucocorticoid-mediated communication.
Collapse
Affiliation(s)
- Marija Lj Medar
- The University of Novi Sad, Faculty of Sciences Novi Sad, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Silvana A Andric
- The University of Novi Sad, Faculty of Sciences Novi Sad, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia
| | - Tatjana S Kostic
- The University of Novi Sad, Faculty of Sciences Novi Sad, Department of Biology and Ecology, Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Novi Sad, Serbia.
| |
Collapse
|
18
|
Mills EG, Yang L, Nielsen MF, Kassem M, Dhillo WS, Comninos AN. The Relationship Between Bone and Reproductive Hormones Beyond Estrogens and Androgens. Endocr Rev 2021; 42:691-719. [PMID: 33901271 PMCID: PMC8599211 DOI: 10.1210/endrev/bnab015] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Reproductive hormones play a crucial role in the growth and maintenance of the mammalian skeleton. Indeed, the biological significance for this hormonal regulation of skeletal homeostasis is best illustrated by common clinical reproductive disorders, such as primary ovarian insufficiency, hypothalamic amenorrhea, congenital hypogonadotropic hypogonadism, and early menopause, which contribute to the clinical burden of low bone mineral density and increased risk for fragility fracture. Emerging evidence relating to traditional reproductive hormones and the recent discovery of newer reproductive neuropeptides and hormones has deepened our understanding of the interaction between bone and the reproductive system. In this review, we provide a contemporary summary of the literature examining the relationship between bone biology and reproductive signals that extend beyond estrogens and androgens, and include kisspeptin, gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone, prolactin, progesterone, inhibin, activin, and relaxin. A comprehensive and up-to-date review of the recent basic and clinical research advances is essential given the prevalence of clinical reproductive disorders, the emerging roles of upstream reproductive hormones in bone physiology, as well as the urgent need to develop novel safe and effective therapies for bone fragility in a rapidly aging population.
Collapse
Affiliation(s)
- Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Morten F Nielsen
- Department of Endocrinology, University Hospital of Odense & institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Moustapha Kassem
- Department of Endocrinology, University Hospital of Odense & institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark.,Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.,Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
19
|
Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res 2021; 14:125. [PMID: 34563259 PMCID: PMC8466925 DOI: 10.1186/s13048-021-00879-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathies affecting the early reproductive age in women, whose pathophysiology perplexes many researchers till today. This syndrome is classically categorized by hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction, bulky multi follicular ovaries on Ultrasonography (USG), and metabolic abnormalities such as hyperinsulinemia, dyslipidemia, obesity. The etiopathogenesis of PCOS is not fully elucidated, but it seems that the hypothalamus-pituitary-ovarian axis, ovarian, and/or adrenal androgen secretion may contribute to developing the syndrome. Infertility and poor reproductive health in women's lives are highly associated with elevated levels of androgens. Studies with ovarian theca cells taken from PCOS women have demonstrated increased androgen production due to augmented ovarian steroidogenesis attributed to mainly altered expression of critical enzymes (Cytochrome P450 enzymes: CYP17, CYP21, CYP19, CYP11A) in the steroid hormone biosynthesis pathway. Despite the heterogeneity of PCOS, candidate gene studies are the widely used technique to delineate the genetic variants and analyze for the correlation of androgen biosynthesis pathway and those affecting the secretion or action of insulin with PCOS etiology. Linkage and association studies have predicted the relationship between genetic variants and PCOS risk among families or populations. Several genes have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or polymorphisms has been discovered, which suggests that PCOS has a vital heritable component. The following review summarizes the influence of polymorphisms in crucial genes of the steroidogenesis pathway leading to intraovarian hyperandrogenism which can result in PCOS.
Collapse
Affiliation(s)
- Hiral Chaudhary
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Jalpa Patel
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Nayan K. Jain
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Rushikesh Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
20
|
Jia X, Li Z, Ren X, Dai P, Li Y, Li C. L-Arginine alleviates the testosterone reduction in heat-treated mice by upregulating LH secretion, the testicular antioxidant system and expression of steroidogenesis-related genes. Reprod Fertil Dev 2021; 32:885-892. [PMID: 32586418 DOI: 10.1071/rd19303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
High temperature can reduce testes function, leading to decreased testosterone secretion. Dietary l-arginine (l-Arg) supplementation improves the semen quality and libido of boars. The present study investigated whether l-Arg could enhance the production of testosterone in mice exposed to high ambient temperature. Twenty-four 6-week-old male ICR mice were randomly divided into three groups: a control group, a heat-treated (HT) group and a group subjected to heat treatment plus 2mg kg-1 l-Arg (HT+Arg). l-Arg was administered to mice by oral gavage for 18 consecutive days, after which the HT and HT+Arg groups were placed into an incubator at 40°C for 30min every day for 5 days. Serum testosterone and LH concentrations were significantly increased in the HT+Arg compared with HT group, as was catalase, total superoxide dismutase and glutathione peroxidase activity and the expression of steroidogenesis-related genes steroidogenic acute regulatory protein (Star), steroidogenic factor-1 (Sf1), 17β-hydroxysteroid dehydrogenase 3 (Hsd17b3) and 17α-hydroxylase/17,20-lyase (Cyp17a1) in the testes. These results demonstrate that l-Arg can alleviate testosterone reductions in heat-treated mice by upregulating LH secretion, enhancing the antioxidant system and increasing the expression of testosterone synthesis-related genes.
Collapse
Affiliation(s)
- Xiao Jia
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojian Li
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Ren
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; and Corresponding author.
| |
Collapse
|
21
|
Lottini T, Iorio J, Lastraioli E, Carraresi L, Duranti C, Sala C, Armenio M, Noci I, Pillozzi S, Arcangeli A. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci Rep 2021; 11:8847. [PMID: 33893331 PMCID: PMC8065064 DOI: 10.1038/s41598-021-87492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
The receptor for the luteinizing hormone (LH-R) is aberrantly over expressed in cancers of the reproductive system. To uncover whether LH-R over expression has a causative role in cancer, we generated a transgenic (TG) mouse which overexpresses the human LH-R (hLH-R) in the female reproductive tract, under the control of the oviduct-specific glycoprotein (OGP) mouse promoter (mogp-1). The transgene was highly expressed in the uterus, ovary and liver, but only in the uterus morphological and molecular alterations (increased proliferation and trans-differentiation in the endometrial layer) were detected. A transcriptomic analysis on the uteri of young TG mice showed an up regulation of genes involved in cell cycle control and a down regulation of genes related to the immune system and the metabolism of xenobiotics. Aged TG females developed tumor masses in the uteri, which resembled an Endometrial Cancer (EC). Microarray and immunohistochemistry data indicated the deregulation of signaling pathways which are known to be altered in human ECs. The analysis of a cohort of 126 human ECs showed that LH-R overexpression is associated with early-stage tumors. Overall, our data led support to conclude that LH-R overexpression may directly contribute to trigger the neoplastic transformation of the endometrium.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | | | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Cesare Sala
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Miriam Armenio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Ivo Noci
- Department of Biochemical, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
- CSDC-Center for the Study of Complex Dynamics, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
22
|
Juel Mortensen L, Lorenzen M, Jørgensen A, Albrethsen J, Jørgensen N, Møller S, Andersson AM, Juul A, Blomberg Jensen M. Possible Relevance of Soluble Luteinizing Hormone Receptor during Development and Adulthood in Boys and Men. Cancers (Basel) 2021; 13:cancers13061329. [PMID: 33809538 PMCID: PMC7999540 DOI: 10.3390/cancers13061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The reproductive hormones luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are both agonists for the luteinizing hormone receptor (LHCGR) and essential for male reproduction during development and adulthood. LHCGR is expressed and stimulates testosterone production from the testicular Leydig cells. In this study, we demonstrate the presence of soluble LHCGR in blood, urine, and seminal fluid in both healthy boys and men, and patients with aberrations in sex-chromosomes. We show how circulating levels of sLHCGR are associated with pubertal development, testicular function, and semen quality and demonstrate that LHCGR is released from fetal human non-gonadal tissue. sLHCGR is released into serum by testis and other organs, which suggests possible extra-gonadal effects of LH or hCG in boys and men. Abstract Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are agonists for the luteinizing hormone receptor (LHCGR) which regulates male reproductive function. LHCGR may be released into body fluids. We wish to determine whether soluble LHCGR is a marker for gonadal function. Cross-sectional, longitudinal, and intervention studies on 195 healthy boys and men and 396 men with infertility, anorchia, or Klinefelter Syndrome (KS) were used to correlate LHCGR measured in serum, seminal fluid, urine, and hepatic/renal artery and vein with gonadal function. LHCGR was determined in fluids from in vitro and in vivo models of human testicular tissue and cell lines, xenograft mouse models, and human fetal kidney and adrenal glands. Western blot showed LHCGR fragments in serum and gonadal tissue of similar size using three different antibodies. The LHCGR-ELISA had no species cross-reactivity or unspecific reaction in mouse serum even after human xenografting. Instead, sLHCGR was released into the media after the culture of a human fetal kidney and adrenal glands. Serum sLHCGR decreased markedly during puberty in healthy boys (p = 0.0001). In healthy men, serum sLHCGR was inversely associated with the Inhibin B/FSH ratio (β −0.004, p = 0.027). In infertile men, seminal fluid sLHCGR was inversely associated with serum FSH (β 0.006, p = 0.009), sperm concentration (β −3.5, p = 0.003) and total sperm count (β −3.2, p = 0.007). The injection of hCG lowered sLHCGR in serum and urine of healthy men (p < 0.01). In conclusion, sLHCGR is released into body-fluids and linked with pubertal development and gonadal function. Circulating sLHCGR in anorchid men suggests that sLHCGR in serum may originate from and possibly exert actions in non-gonadal tissues. (ClinicalTrials: NTC01411527, NCT01304927, NCT03418896).
Collapse
Affiliation(s)
- Li Juel Mortensen
- Group of Skeletal, Mineral and Gonadal Endocrinology, University Department of Growth and Reproduction, Rigshospitalet, 2100 Copenhagen, Denmark; (L.J.M.); (M.L.)
| | - Mette Lorenzen
- Group of Skeletal, Mineral and Gonadal Endocrinology, University Department of Growth and Reproduction, Rigshospitalet, 2100 Copenhagen, Denmark; (L.J.M.); (M.L.)
| | - Anne Jørgensen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark; (A.J.); (J.A.); (N.J.); (A.-M.A.); (A.J.)
| | - Jakob Albrethsen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark; (A.J.); (J.A.); (N.J.); (A.-M.A.); (A.J.)
| | - Niels Jørgensen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark; (A.J.); (J.A.); (N.J.); (A.-M.A.); (A.J.)
| | - Søren Møller
- Center for Functional and Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine 260, Hvidovre Hospital, 2650 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen University, 2200 Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark; (A.J.); (J.A.); (N.J.); (A.-M.A.); (A.J.)
| | - Anders Juul
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark; (A.J.); (J.A.); (N.J.); (A.-M.A.); (A.J.)
- Department of Clinical Medicine, Faculty of Health Sciences, Copenhagen University, 2200 Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral and Gonadal Endocrinology, University Department of Growth and Reproduction, Rigshospitalet, 2100 Copenhagen, Denmark; (L.J.M.); (M.L.)
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +45-3545-5064
| |
Collapse
|
23
|
Motomura K, Romero R, Galaz J, Miller D, Done B, Arenas-Hernandez M, Garcia-Flores V, Tao L, Tarca AL, Gomez-Lopez N. Human Chorionic Gonadotropin Modulates the Transcriptome of the Myometrium and Cervix in Late Gestation. Reprod Sci 2021; 28:2246-2260. [PMID: 33650091 DOI: 10.1007/s43032-020-00454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Human chorionic gonadotropin (hCG) is a critical hormone for the establishment and maintenance of pregnancy. hCG administration prevents the onset of preterm labor in mice; yet, the transcriptomic changes associated with this tocolytic effect that take place in the myometrium and cervix have not been elucidated. Herein, we implemented both discovery and targeted approaches to investigate the transcriptome of the myometrium and cervix after hCG administration. Pregnant mice were intraperitoneally injected with 10 IU of hCG on 13.0, 15.0, and 17.0 days post coitum, and the myometrium and cervix were collected. RNA sequencing was performed to determine differentially expressed genes, enriched biological processes, and impacted KEGG pathways. Multiplex qRT-PCR was performed to investigate the expression of targeted contractility- and inflammation-associated transcripts. hCG administration caused the differential expression of 720 genes in the myometrium. Among the downregulated genes, enriched biological processes were primarily associated with regulation of transcription. hCG administration downregulated key contractility genes, Gja1 and Oxtr, but upregulated the prostaglandin-related genes Ptgfr and Ptgs2 and altered the expression of inflammation-related genes in the myometrium. In the cervix, hCG administration caused differential expression of 3348 genes that were related to inflammation and host defense, among others. The downregulation of key contractility genes and upregulation of prostaglandin-related genes were also observed in the cervix. Thus, hCG exerts tocolytic and immunomodulatory effects in late gestation by altering biological processes in the myometrium and cervix, which should be taken into account when considering hCG as a potential treatment to prevent the premature onset of labor.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
24
|
Oyatogun O, Sandhu M, Barata-Kirby S, Tuller E, Schust DJ. A rational diagnostic approach to the "phantom hCG" and other clinical scenarios in which a patient is thought to be pregnant but is not. Ther Adv Reprod Health 2021; 15:26334941211016412. [PMID: 34179786 PMCID: PMC8207263 DOI: 10.1177/26334941211016412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/19/2021] [Indexed: 12/01/2022] Open
Abstract
The scenario in which a patient tests positive for human chorionic gonadotropin (hCG) in the absence of pregnancy can pose a diagnostic dilemma for clinicians. The term "phantom hCG" refers to persistently positive hCG levels on diagnostic testing in a nonpregnant patient and such results often lead to a false diagnosis of malignancy and subsequent inappropriate treatment with chemotherapy or hysterectomy. There remains a need for a consistent and rational diagnostic approach to the "phantom hCG." This article aims to review the different etiologies of positive serum hCG testing in nonpregnant subjects and concludes with a practical, stepwise diagnostic approach to assist clinicians encountering this clinical dilemma.
Collapse
Affiliation(s)
- Oluwafunmilayo Oyatogun
- Institute for Women’s Health Research and Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, 500 North Keene St Suite 203, Columbia, MO 65201, USA
| | - Mandeep Sandhu
- Institute for Women’s Health Research and Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| | - Stephanie Barata-Kirby
- Institute for Women’s Health Research and Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| | - Erin Tuller
- Institute for Women’s Health Research and Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| | - Danny J. Schust
- Institute for Women’s Health Research and Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
25
|
Marinkovic DZ, Medar MLJ, Becin AP, Andric SA, Kostic TS. Growing Up Under Constant Light: A Challenge to the Endocrine Function of the Leydig Cells. Front Endocrinol (Lausanne) 2021; 12:653602. [PMID: 33796081 PMCID: PMC8008111 DOI: 10.3389/fendo.2021.653602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Abstract
The factors influencing Leydig cell maturity and the acquisition of functional capacity are incompletely defined. Here we analyzed the constant light (LL) influence on Leydig cells' endocrine function during reproductive maturation. Rats were exposed to LL from P21 to P90. Data were collected at juvenile (P35), peri/pubertal (P42, P49), and adult (P90) stages of life. The results proved the effect of LL on rats' physiology by changing of bimodal voluntary activity pattern into free-running. Additionally, the peripheral clock in Leydig cells changed in LL condition, indicating disturbed rhythm: the positive element (Bmal1) increased in pre-/pubertal but decreased in the adult period, while negative elements (Per2 and Reverba) were increased. The effects of LL were most prominent in puberty: pituitary genes encoding gonadotropic hormones (Cga, Lhb, Fshb) decreased; serum corticosterone increased, while serum androgens and mass of testicular and sex accessory organs reduced; markers of Leydig cells maturity/differentiation (Insl3, Lhcgr) and steroidogenesis-related genes (Scarb1, Star, Cyp11a1, Cyp17a1) decreased; the steroidogenic and energetic capacity of the Leydig cell mitochondria decreased; the mtDNA copy number reduced, and mitochondrial dynamics markers changed: fusion decreased (Opa1 and Mfn2), and mitophagy increased (Pink1). In adults, the negative effect of LL on mitochondrial function and steroidogenic capacity persists in adult Leydig cells while other parameters reached control values. Altogether, the results indicate that LL slows down Leydig cells' maturation by reducing the endocrine and energy capacity of cells leading to the delay of reproductive development.
Collapse
|
26
|
Medar MLJ, Marinkovic DZ, Kojic Z, Becin AP, Starovlah IM, Kravic-Stevovic T, Andric SA, Kostic TS. Dependence of Leydig Cell's Mitochondrial Physiology on Luteinizing Hormone Signaling. Life (Basel) 2020; 11:life11010019. [PMID: 33396202 PMCID: PMC7824612 DOI: 10.3390/life11010019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the relationship between steroidogenesis and the regulation of the mitochondrial bioenergetics and dynamics, in steroidogenic cells, is not completely elucidated. Here we employed in vivo and ex vivo experimental models to analyze mitochondrial physiology in Leydig cells depending on the different LH-cAMP environments. Activation of LH-receptor in rat Leydig cells ex and in vivo triggered cAMP, increased oxygen consumption, mitoenergetic and steroidogenic activities. Increased mitoenergetic activity i.e., ATP production is achieved through augmented glycolytic ATP production and a small part of oxidative phosphorylation (OXPHOS). Transcription of major genes responsible for mitochondrial dynamics was upregulated for Ppargc1a (regulator of mitogenesis and function) and downregulated for Drp1 (main fission marker), Prkn, Pink1 and Tfeb (mitophagy markers). Leydig cells from gonadotropin-treated rats show increased mitogenesis confirmed by increased mitochondrial mass, increased mtDNA, more frequent mitochondria observed by a transmission electron microscope and increased expression of subunits of respiratory proteins Cytc/CYTC and COX4. Opposite, Leydig cells from hypogonadotropic-hypogonadal rats characterized by low LH-cAMP, testosterone, and ATP production, reduced markers of mitogenesis and mitofusion (Mfn1/2, Opa1) associated with reduced mtDNA content. Altogether results underline LH-cAMP signaling as an important regulator of mitochondrial physiology arranging mitochondrial dynamics, bioenergetic and steroidogenic function in Leydig cells.
Collapse
Affiliation(s)
- Marija L. J. Medar
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Dijana Z. Marinkovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Zvezdana Kojic
- Institute of Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Alisa P. Becin
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Isidora M. Starovlah
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embriology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Silvana A. Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Tatjana S. Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
- Correspondence: ; Tel.: +381-63-514-716
| |
Collapse
|
27
|
Bahrami-Asl Z, Hajipour H, Rastgar Rezaei Y, Novinbahador T, Latifi Z, Nejabati HR, Farzadi L, Fattahi A, Nouri M, Dominguez F. Cytokines in embryonic secretome as potential markers for embryo selection. Am J Reprod Immunol 2020; 85:e13385. [PMID: 33300214 DOI: 10.1111/aji.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Despite performing certain morphological assessments for selecting the best embryo for transfer, the results have not been satisfactory. Given the global tendency for performing quick and noninvasive tests for embryo selection, great efforts have been made to discover the predictive biomarkers of embryo implantation potential. In recent years, many factors have been detected in embryo culture media as a major source of embryo secretions. Previous studies have evaluated cytokines, miRNAs, extracellular vesicles, and other factors such as leukemia inhibitory factor, colony-stimulating factor, reactive oxygen species, soluble human leukocyte antigen G, amino acids, and apolipoproteins in these media. Given the key role of cytokines in embryo implantation, these factors can be considered promising molecules for predicting the implantation success of assisted reproductive technology (ART). The present study was conducted to review embryo-secreted molecules as potential biomarkers for embryo selection in ART.
Collapse
Affiliation(s)
- Zahra Bahrami-Asl
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Novinbahador
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Institute for Stem Cell and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Francisco Dominguez
- Fundacion Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), ISS LaFe, Valencia, Spain
| |
Collapse
|
28
|
Althumairy D, Zhang X, Baez N, Barisas G, Roess DA, Bousfield GR, Crans DC. Glycoprotein G-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. Diseases 2020; 8:E35. [PMID: 32942611 PMCID: PMC7565105 DOI: 10.3390/diseases8030035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transduction by luteinizing hormone receptors (LHRs) and follicle-stimulating hormone receptors (FSHRs) is essential for the successful reproduction of human beings. Both receptors and the thyroid-stimulating hormone receptor are members of a subset of G-protein coupled receptors (GPCRs) described as the glycoprotein hormone receptors. Their ligands, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and a structurally related hormone produced in pregnancy, human chorionic gonadotropin (hCG), are large protein hormones that are extensively glycosylated. Although the primary physiologic functions of these receptors are in ovarian function and maintenance of pregnancy in human females and spermatogenesis in males, there are reports of LHRs or FSHRs involvement in disease processes both in the reproductive system and elsewhere. In this review, we evaluate the aggregation state of the structure of actively signaling LHRs or FSHRs, their functions in reproduction as well as summarizing disease processes related to receptor mutations affecting receptor function or expression in reproductive and non-reproductive tissues. We will also present novel strategies for either increasing or reducing the activity of LHRs signaling. Such approaches to modify signaling by glycoprotein receptors may prove advantageous in treating diseases relating to LHRs or FSHRs function in addition to furthering the identification of new strategies for modulating GPCR signaling.
Collapse
Affiliation(s)
- Duaa Althumairy
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Biological Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Xiaoping Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Nicholas Baez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - George Barisas
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA;
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| |
Collapse
|
29
|
Smitz J, Platteau P. Influence of human chorionic gonadotrophin during ovarian stimulation: an overview. Reprod Biol Endocrinol 2020; 18:80. [PMID: 32762698 PMCID: PMC7409634 DOI: 10.1186/s12958-020-00639-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
It is widely known that luteinising hormone (LH) and human chorionic gonadotrophin (hCG) are integral in the female reproductive lifecycle. Due to the common binding site and similarity in molecular structure, they were previously thought to have overlapping roles. However, with the development of both purified urinary-derived and recombinant gonadotrophins, the individual characteristics of these molecules have begun to be defined. There is evidence to suggest that LH and hCG preferentially activate different signalling cascades and display different receptor-binding kinetics. The data generated on the two molecules have led to an improved understanding of their distinct physiological functions, resulting in a debate among clinicians regarding the most beneficial use of LH- and hCG-containing products for ovarian stimulation (OS) in assisted reproductive technologies (ARTs). Over the past few decades, a number of trials have generated data supporting the use of hCG for OS in ART. Indeed, the data indicated that hCG plays an important role in folliculogenesis, leads to improved endometrial receptivity and is associated with a higher quality of embryos, while presenting a favourable safety profile. These observations support the increased use of hCG as a method to provide LH bioactivity during OS. This review summarises the molecular and functional differences between hCG and LH, and provides an overview of the clinical trial data surrounding the use of products for OS that contain LH bioactivity, examining their individual effect on outcomes such as endometrial receptivity, oocyte yield and embryo quality, as well as key pregnancy outcomes.
Collapse
Affiliation(s)
- Johan Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Laarbeeklaan, 103, 1090 Brussels, Belgium
| | - Peter Platteau
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
30
|
Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell's clock and is crucial for rhythm robustness of testosterone production†. Biol Reprod 2020; 100:1406-1415. [PMID: 30722003 DOI: 10.1093/biolre/ioz020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/22/2019] [Accepted: 02/03/2019] [Indexed: 12/16/2022] Open
Abstract
In mammals, circadian clock regulates concentration of many reproductive hormones including testosterone. Previously, we characterized pattern of circadian transcription of core clock genes in testosterone-producing Leydig cells. Here, the potential role of luteinizing hormone receptor (LHR)-cAMP signaling in synchronization of Leydig cell's circadian clock and rhythmic testosterone production were examined. Results showed that activation of LHR-cAMP signaling in primary rat Leydig cell culture increased Star/STAR and changed expression of many clock genes (upregulated Per1/PER1, Dec1/2, and Rorb, and downregulated Bmal1 and Rev-erba/b). Inhibition of protein kinase A prevented LHR-triggered increase in transcription of Per1 and Dec1. Effect of stimulated LHR-cAMP signaling on Leydig cell's clock transcription was also confirmed in vivo, using rats treated with single hCG injection. To analyze in vivo effect of low LH-cAMP activity on rhythmical Leydig cell function, rats with experimental hypogonadotropic hypogonadism were used. Characteristics of hypogonadal rats were decreased LH and testosterone secretion without circadian fluctuation; in Leydig cells decreased arrhythmic cAMP and transcription of steroidogenic genes (Cyp11a1 and Cyp17a1) were observed, while decreased Star/STAR expression retains circadian pattern. However, expression of clock genes, despite changes in transcription levels (increased Bmal1, Per2, Cry1, Cry2, Rora, Rorb, Rev-erba/b/REV-ERBB, Dec1, Csnk1e, and decreased Npas2 and PER1) kept circadian patterns observed in control groups. Altogether, the results strengthened the hypothesis about role of LH-cAMP signaling as synchronizer of Leydig cell's clock. However, clock in Leydig cells is not sufficient to sustain rhythmicity of testosterone production in absence of rhythmic activity of LH-cAMP signaling.
Collapse
Affiliation(s)
- Aleksandar Z Baburski
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
31
|
Kiefel CA, Kutzler MA. Assessment of luteinizing hormone receptor expression in structural support tissues of canine hip and femorotibial joints. Am J Vet Res 2020; 81:565-571. [PMID: 32584181 DOI: 10.2460/ajvr.81.7.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether luteinizing hormone receptors (LHRs) are expressed in canine femoral head subchondral bone (FHSB), hip joint round ligament (RL), cranial cruciate ligament (CCL), and femorotibial joint synovium (FJS) specimens. SAMPLE 1 specimen each of the FHSB, RL, CCL, and FJS obtained from the left hind limbs of 19 fresh canine cadavers. PROCEDURES 1 section of each FHSB, RL, CCL, and FJS specimen was processed with rabbit polyclonal IgG anti-human LHR antibody, and 1 section was treated with negative control reagents. Percentage immunoexpression of LHRs in FHSB and FJS sections was analyzed by assessment of 100 bone marrow cells or synoviocytes in 3 adjacent hpf (400×). In each RL and CCL section, immunoexpression of LHRs in fibrocytes was semiquantitatively analyzed on the basis of the mean of the product of percentage staining score (from 0 [no staining] to 3 [> 50% of cells stained]) and staining intensity score (from 0 [no staining] to 2 [moderate to strong staining]) for 3 adjacent hpf. RESULTS All tissues examined had variable LHR expression. Expression of LHRs in FHSB, CCL, or FJS specimens did not differ between sexes or between sexually intact and gonadectomized dogs. However, RL specimens from female dogs had significantly greater LHR expression scores, compared with findings for male dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that LHRs are expressed in structural support tissues of canine hip and femorotibial joints. Further research is required to determine the LHRs' function, mechanism of action, and potential contribution to the pathogenesis of hip dysplasia or CCL rupture in dogs.
Collapse
|
32
|
Bildik G, Akin N, Esmaeilian Y, Hela F, Yakin K, Onder T, Urman B, Oktem O. hCG Improves Luteal Function and Promotes Progesterone Output through the Activation of JNK Pathway in the Luteal Granulosa Cells of the Stimulated IVF Cycles†. Biol Reprod 2020; 102:1270-1280. [PMID: 32163131 DOI: 10.1093/biolre/ioaa034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a luteotropic hormone that promotes the survival and steroidogenic activity of corpus luteum (CL) by acting through luteinizing hormone receptors (LHRs) expressed on luteinized theca and granulosa cells (GCs). Therefore, it is used to support luteal phase in in vitro fertilization (IVF) cycles to improve clinical pregnancy rates and prevent miscarriage. However, the molecular mechanism underlying this action of hCG is not well characterized. To address this question, we designed an in vitro translational research study on the luteal GCs obtained from 58 IVF patients. hCG treatment at different concentrations and time points activated c-Jun N-terminal kinase (JNK) pathway and significantly increased its endogenous kinase activity along with upregulated expression of steroidogenic enzymes (steroidogenic acute regulatory protein (stAR), 3β-Hydroxysteroid dehydrogenase (3β-HSD)) in a dose-dependent manner in the luteal GCs. As a result, in vitro P production of the cells was significantly enhanced after hCG. When JNK pathway was inhibited pharmacologically or knocked-down with small interfering RNA luteal function was compromised, P4 production was declined along with the expression of stAR and 3β-HSD in the cells. Further, hCG treatment after JNK inhibition failed to correct the luteal defect and promote P4 output. Similar to hCG, luteinizing hormone (LH) treatment improved luteal function as well and this action of LH was associated with JNK activation in the luteal GCs. These findings could be important from the perspective of CL biology and luteal phase in human because we for the first time identify a critical role for JNK signaling pathway downstream LHR activation by hCG/LH in luteal GCs. SUMMARY SENTENCE JNK signaling pathway plays a central role in the upregulated expression of the steroidogenic enzymes StAR and 3b-HSD and augmented progesterone production by hCG/LH in human luteal granulosa cells.
Collapse
Affiliation(s)
- Gamze Bildik
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Nazli Akin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Yashar Esmaeilian
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Francesko Hela
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Kayhan Yakin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| | - Tamer Onder
- Department of Molecular Biology and Genetics, School of Medicine, Koc University, Istanbul, Turkey
| | - Bulent Urman
- Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| | - Ozgur Oktem
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
33
|
Zirnask H, Pöllanen P, Suutre S, Kuuslahti M, Kotsar A, Pakarainen T, Kokk K. Expression of LHCG receptors in the human penis. Aging Male 2020; 23:8-13. [PMID: 30322327 DOI: 10.1080/13685538.2018.1514001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of this study is to investigate the expression of the luteinizing hormone/choriogonadotropin (LHCG) receptor in the human penis to see, if the luteinizing hormone (LH) effects are possible in the spongious and cavernous tissue of the penis. The number of men with erection disturbances increases significantly simultaneously with the elevated LH concentrations between 40 and 70 years. It is possible that the elevated LH concentrations may influence locally the erectile mechanisms. The precondition for this is the expression of LHCG receptors in the penis. Penile tissue was obtained from three patients undergoing total or partial penectomy due to a rectal cancer with secondary penile metastasis or squamous cell carcinoma of the penis. Immunohistochemistry was used for the detection of the LHCG receptor. Positive immunoreaction for LHCG receptors was discovered in the endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis, also in the endothelial cells of the capillary walls in all patients. Our results show that LHCG receptor is expressed in the spongious and cavernous tissue of the human penis. This finding suggests that LH can affect the spongious and cavernous tissue in human and play a significant role in the development of erectile dysfunction among the aging men.
Collapse
Affiliation(s)
- Helen Zirnask
- Department of Anatomy, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
| | - Pasi Pöllanen
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
- Department of Administration, CAREA, Kotka, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| | - Siim Suutre
- Department of Anatomy, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Marianne Kuuslahti
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
| | - Andres Kotsar
- Department of Urology, Tampere University Hospital, Tampere, Finland
- Department of Urology, Tartu University Hospital, Tartu, Estonia
| | - Tomi Pakarainen
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Kersti Kokk
- Department of Anatomy, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Anatomy, Institute of Medicine, University of Tampere, Tampere, Finland
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Abstract
Pregnancy, a challenging physiological state, requires shuffling of conventional immune work-sets. Strategies to tolerate the semi-allogenic fetus in normal human pregnancy are multivariate with perfect modulation of the immune cells. Pregnancy is marked by B cell lymphocytopenia accompanied by reduced responsiveness to infectious agents. Besides this old age concept, plenty of research confirms that B cells have other crucial roles in pregnancy and undergo a wide range of modifications in terms of its proliferation, switching between its subtypes, variation in antibody productions, shifting the tides of cytokines as well as regulating other immune cells. B cells establish tolerant environment in pregnancy by producing protective antibodies to encounter the foreign paternal antigens. Regulatory B cells (Bregs) have adopted anti-inflammatory characteristics to sustain normal pregnancy. Moreover, the colossal physiological alterations during human pregnancy also include synchronized changes in the cross-talks between the pregnancy hormones and B cells. These aspects of pregnancy from the view point of B cell functions have so far appeared individually in discrete reports. This review finds its novelty in concisely presenting every facet of association of B cell with human pregnancy.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Jenjarom, Malaysia
| | - Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Malaysia
| |
Collapse
|
35
|
Park JE, Kim YJ, Lee SG, Kim JY, Chung JY, Jeong SY, Koh H, Yun J, Park HT, Yoo YH, Kim JM. Drp1 Phosphorylation Is Indispensable for Steroidogenesis in Leydig Cells. Endocrinology 2019; 160:729-743. [PMID: 30689811 DOI: 10.1210/en.2019-00029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022]
Abstract
The initial steps of steroidogenesis occur in the mitochondria. Dynamic changes in the mitochondria are associated with their fission and fusion. Therefore, understanding the cellular and molecular relationships between steroidogenesis and mitochondrial dynamics is important. The hypothesis of the current study is that mitochondrial fission and fusion are closely associated with steroid hormone synthesis in testicular Leydig cells. Steroid hormone production, induced by dibutyryl cAMP (dbcAMP) in Leydig cells, was accompanied by increased mitochondrial mass. Mitochondrial elongation increased during the dbcAMP-induced steroid production, whereas mitochondrial fragmentation was reduced. Among the mitochondrial-shaping proteins, the level of dynamin-associated protein 1 (Drp1) was altered in response to dbcAMP stimulation. The increase in Drp1 Ser 637 phosphorylation correlated with steroid hormone production in the MA-10 Leydig cells as well as in the primary adult rat Leydig cells. Drp1 was differentially expressed in the Leydig cells during testicular development. Finally, gonadotropin administration altered the status of Drp1 phosphorylation in the Leydig cells of immature rat testes. Overall, mitochondrial dynamics is directly linked to steroidogenesis, and Drp1 plays an important regulatory role during steroidogenesis. This study shows that Drp1 level is regulated by cAMP and that its phosphorylation via protein kinase A (PKA) activation plays a decisive role in mitochondrial shaping by offering an optimal environment for steroid hormone biosynthesis in Leydig cells. Therefore, it is suggested that PKA-mediated Drp1 Ser 637 phosphorylation is indispensable for steroidogenesis in the Leydig cells, and this phosphorylation results in mitochondrial elongation via the relative attenuation of mitochondrial fission during steroidogenesis.
Collapse
Affiliation(s)
- Ji-Eun Park
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Yoon-Jae Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seung Gee Lee
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Ji Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jin-Yong Chung
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Seon-Yong Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hyongjong Koh
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Hwan Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
36
|
Synthesis and Evaluation of 18F-Labeled Peptide for Gonadotropin-Releasing Hormone Receptor Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5635269. [PMID: 30983920 PMCID: PMC6431521 DOI: 10.1155/2019/5635269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) receptor is overexpressed in the majority of tumors of the human reproductive system. The purpose of this study was to develop an 18F-labeled peptide for tumor GnRH receptor imaging. In this study, the GnRH (pGlu1-His2-Trp3-Ser4-Tyr5-Gly6-Leu7-Arg8-Pro9-Gly10-NH2) peptide analogues FP-d-Lys6-GnRH (FP = 2-fluoropropanoyl) and NOTA-P-d-Lys6-GnRH (P = ethylene glycol) were designed and synthesized. The IC50 values of FP-d-Lys6-GnRH and NOTA-P-d-Lys6-GnRH were 2.0 nM and 56.2 nM, respectively. 4-Nitrophenyl-2-[18F]fluoropropionate was conjugated to the ε-amino group of the d-lysine side chain of d-Lys6-GnRH to yield the new tracer [18F]FP-d-Lys6-GnRH with a decay-corrected yield of 8 ± 3% and a specific activity of 20−100 GBq/µmol (n=6). Cell uptake studies of [18F]FP-d-Lys6-GnRH in GnRH receptor-positive PC-3 cells and GnRH receptor-negative CHO-K1 cells indicated receptor-specific accumulation. Biodistribution and PET studies in nude mice bearing PC-3 xenografted tumors showed that [18F]FP-d-Lys6-GnRH was localized in tumors with a higher uptake than in surrounding muscle and heart tissues. Furthermore, the metabolic stability of [18F]FP-d-Lys6-GnRH was determined in mouse blood and PC-3 tumor homogenates at 1 h after tracer injection. The presented results indicated a potential of the novel tracer [18F]FP-d-Lys6-GnRH for tumor GnRH receptor imaging.
Collapse
|
37
|
Theofanakis C, Athanasiou V, Liokari E, Stavrou S, Sakellariou M, Athanassiou AI, Athanassiou A, Drakakis P, Loutradis D. The impact of HCG in IVF Treatment: Does it depend on age or on protocol? J Gynecol Obstet Hum Reprod 2019; 48:341-345. [PMID: 30794953 DOI: 10.1016/j.jogoh.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE to evaluate the effect of the addition of low dose human chorionic gonadotropin (hCG) to human menopausal gonadotropin (HMG) throughout the early follicular phase in controlled ovarian stimulation (COS) conducted with two difference regimens. Gonadotropin-releasing hormone (GnRH) antagonist and short GnRH-agonist protocol were applied in two in vitro fertilization (IVF) clinics. METHODS Clinical study conducted during the period 2014-2016 in two IVF clinics in a cohort of 240 women. In the first group 1 (124 women), a GnRH antagonist protocol with HMG and addition of low dose (100IU/day) h CG was applied. The other group 2 consisted of 116 women who underwent a short GnRH- agonist protocol with HMG and addition of low dose (100IU/day) h CG. RESULTS Multiple logistic regression analysis was performed. The group 2 found to be associated with greater number of follicles and oocytes. The pregnancy rates were 12.1% and 26.7% in group 1 and group 2, respectively (p=0.004). For patients over 40 years, the number of follicles and oocytes retrieved were significant higher in group 2.The pregnancy rate in group 2 was higher than in group 1 (21, 6% vs 5%, p=0.017). CONCLUSIONS Advanced age women are likely to achievepregnancy using the GnRH Short than GnRH antagonist, when HMG/hCG is used, while HMG-hCG gonadotropins have the same potentialas Recombinant follicle stimulating hormone (rFSH)-hCG used in GnRH short protocol.
Collapse
Affiliation(s)
- Charalampos Theofanakis
- IVF Unit, 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece; Fertility Institute, Athens, Greece.
| | - Vasilios Athanasiou
- IVF Athens Center, Athens, Greece; OB/GYN, Reproductive Endocrinology & Infertility Co-founder & Scientific Director, IVF Athens Center, Greece.
| | | | - Sofoklis Stavrou
- IVF Unit, 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece; Fertility Institute, Athens, Greece.
| | | | | | | | - Petros Drakakis
- IVF Unit, 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece; Fertility Institute, Athens, Greece.
| | - Dimitris Loutradis
- IVF Unit, 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece; Fertility Institute, Athens, Greece.
| |
Collapse
|
38
|
Shaaban Z, Khoradmehr A, Jafarzadeh Shirazi MR, Tamadon A. Pathophysiological mechanisms of gonadotropins- and steroid hormones-related genes in etiology of polycystic ovary syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:3-16. [PMID: 30944702 PMCID: PMC6437453 DOI: 10.22038/ijbms.2018.31776.7646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Polycystic ovary syndrome (PCOS) is an endocrinopathy in women, which, unlike its impact on fertility and health of women, there is no clear understanding about the causal mechanisms of this pathogenesis. The aim of this review paper is to investigate the pathophysiological pathways affecting the PCOS etiology, based on functions of gonadotropins- and steroid hormones-related genes. MATERIALS AND METHODS Due to different hormonal and metabolic signs of this complex disorder, different hypotheses are mentioned about etiology of this syndrome. Because of the heterogeneity of the reasons given for this syndrome and the spread of the effective genes in its pathophysiology, most of genes affected by sex-related hormonal imbalances are examined for discriminative diagnosis. For this purpose, published articles and reviews dealing with genetic evaluation of PCOS in women in peer-reviewed journals in PubMed and Google Scholar databases were included in this review. RESULTS In previous studies, it has been well demonstrated that PCOS in some individuals have a genetic origin. Pathophysiological functions of genes are primarily responsible for the synthesis of proteins that have role in PCOS before hyperandrogenism including GnRHR, FSHβ, FSHR, LHCGR, CYP19A1, HSD17B, AR and SHBG, and their effects in PCOS of human have been confirmed. CONCLUSION Hormonal imbalances are the first reason mentioned in PCOS etiology, and usually characterized with menstrual irregularities in PCOS women. Hyperandrogenism and gonadotropin secretion disorders are shown in PCOS condition, which are related to steroidogenesis pathways and hypothalamic-pituitary-ovarian axis disturbances, respectively.
Collapse
Affiliation(s)
- Zahra Shaaban
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
39
|
Aversa A, Duca Y, Condorelli RA, Calogero AE, La Vignera S. Androgen Deficiency and Phosphodiesterase Type 5 Expression Changes in Aging Male: Therapeutic Implications. Front Endocrinol (Lausanne) 2019; 10:225. [PMID: 31110491 PMCID: PMC6499191 DOI: 10.3389/fendo.2019.00225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023] Open
Abstract
The age-related decline of serum T occurs in ~20-30% of adult men and it is today defined as late-onset hypogonadism (LOH). In the elderly, such decline becomes more prevalent (up to 60%) and shows-up with erectile dysfunction (ED) and hypoactive sexual desire. A large body of experimental evidences have shown that the combination of T replacement therapy (TRT) and phosphodiesterase type 5 inhibitors (PDE5i) is, usually, effective in restoring erectile function in patients with LOH and ED who have not responded to monotherapy for sexual disturbances. In fact, PDE5is potentiate the action of nitric oxide (NO) produced by endothelial cells, resulting in a vasodilator effect, while T facilitates PDE5i effects by increasing the expression of PDE5 in corpora cavernosa. Meta-analytic data have recognized to PDE5i a protective role on the cardiovascular health in patients with decreased left ventricular ejection fraction. In addition, several studies have shown pleiotropic beneficial effects of these drugs throughout the body (i.e., on bones, urogenital tract and cerebral, metabolic, and cardiovascular levels). TRT itself is able to decrease endothelial dysfunction, oxidative stress and inflammation, thus lowering the cardiovascular risk. Furthermore, untreated hypogonadism could be the cause of PDE5i ineffectiveness especially in the elderly. For these reasons, aging men complaining ED who have LOH should undergo TRT before or at the moment when PDE5i treatment is started.
Collapse
Affiliation(s)
- Antonio Aversa
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ylenia Duca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- *Correspondence: Sandro La Vignera
| |
Collapse
|
40
|
The Cellular Localization of GnRH and LHR in Aged Female Mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
41
|
Nemer A, Azab AN, Rimon G, Lamprecht S, Ben-Menahem D. Different roles of cAMP/PKA and PKC signaling in regulating progesterone and PGE 2 levels in immortalized rat granulosa cell cultures. Gen Comp Endocrinol 2018; 269:88-95. [PMID: 30144443 DOI: 10.1016/j.ygcen.2018.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Follicular cells from various species secrete steroids and prostaglandins, which are crucial for reproduction, in response to gonadotropins. Here, we examined prostaglandin E2 (PGE2) secretion from immortalized rat granulosa cells derived from preovulaotry follicles expressing the rat follicle stimulating hormone receptor (denoted as FSHR cells) that produce progesterone in response to gonadotropins. The cells were stimulated with a) pregnant mare's serum gonadotropin (PMSG; a rat FSH receptor agonist), b) activators of the protein kinase A (PKA) pathway (forskolin and a cell permeable cAMP analog Dibutyryl-cAMP (DB-cAMP)) and c) protein kinase C (PKC) (12-O-tetradecanoylphorbol 13-acetate; TPA), alone and in combination for 24 h. Thereafter, PGE2 and progesterone levels in the culture media were determined. In accordance with previous studies, while PMSG and the PKA pathway activators induced progesterone accumulation in the media, TPA did not. In contrast, our data indicate that TPA, but neither PMSG, forskolin and DB-cAMP evoked PGE2 accumulation in the media. Western Blot analysis of cell lysate showed a drastic TPA induced increase of COX-2 levels, which was not seen with neither PMSG nor forskolin treatment. This association between the COX-2 and PGE2 levels suggests that the enzyme activity is the likely factor that determines the synthesis and levels of the prostaglandin in the culture media of the granulosa-derived cells. The addition of the PKA inhibitor H-89 to the FSHR cultures suppressed the gonadotropin and forskolin induction of progesterone secretion. Incubation in the presence of GF109203X (a PKC inhibitor) attenuated the TPA induced PGE2 accumulation in the culture media of the cells (a dose dependent reduction of 40-70%). In addition, while TPA inhibited the PMSG and forskolin induced-accumulation of progesterone in the media, the gonadotropin and forskolin inhibited the elevation of PGE2 levels evoked by TPA (a dose dependent decrease of 35-55%). These data suggest that cAMP/PKA and PKC signaling have opposite effects on PGE2 and progesterone synthesis in FSHR cells. We propose that this PKA and PKC interplay on progesterone and PGE2 may be advantageous for the coordination of these key mediators for successful ovulation and luteinization.
Collapse
Affiliation(s)
- Ala Nemer
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abed N Azab
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gilad Rimon
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sergio Lamprecht
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David Ben-Menahem
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
42
|
Fluorescence Observation of Single-Cell cAMP Signaling by G Protein-Coupled Receptors. J Fluoresc 2018; 29:53-60. [PMID: 30386968 DOI: 10.1007/s10895-018-2309-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
We present complementary flow cytometric and microscopic imaging methods, both utilizing a membrane-targeted cAMP sensor protein ICUE3, to examine hormone-dependent signaling by the luteinizing hormone (LH) receptor in individual cells. This receptor, a seven transmembrane domain protein belonging to the GPCR family, signals by activating adenylate cyclase to increase cAMP levels. The ICUE3 sensor protein exhibits fluorescence energy transfer between its CFP and YFP moieties and the ratio of CFP emission to YFP sensitized emission (YFPSE) increases with cAMP concentration. We used multichannel flow cytometry to compare CFP emission and YFPSE from each cell and hence measure that cell's cAMP level. This technique measured changes in cAMP levels in CHO cells expressing LH receptors and stimulated by forskolin or the hormone human chorionic gonadotropin (hCG) and showed that significant cell-to-cell variations exist in such cAMP responses. Because LH receptor behavior may reflect receptor expression levels, we developed a procedure to measure numbers of particular fluorescent cell proteins from measurements of MESF bead standards for slightly different fluorophores. We find that basal cAMP levels increase substantially in cells expressing high numbers mCherry-LH receptors per cell. This suggests activation through increased inter-receptor interactions at high concentrations. We then explored a microscope-based method for single cell measurements so that responses could be correlated with specific cell morphology and with time after treatments. This showed that cell responses to hCG are fully-developed after ~100 s. Taken together, these results demonstrate the utility of fluorescence methods in exploring cAMP signaling in individual cells.
Collapse
|
43
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
44
|
Interaction of positive coactivator 4 with histone 3.3 protein is essential for transcriptional activation of the luteinizing hormone receptor gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:971-981. [PMID: 30496042 DOI: 10.1016/j.bbagrm.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
The luteinizing hormone receptor (LHR) is essential for sexual development and reproduction in mammals. We have established that Sp1 has a central role in derepression of LHR gene transcription induced by Trichostatin A (TSA) in MCF7 cells. Moreover, the co-activator PC4 which associates directly with Sp1 at the LHR promoter is essential for TSA-mediated LHR transcription. This study explores interactions of PC4 with histone proteins, which presumably triggers chromatin modifications during LHR transcriptional activation. TSA treatment of MCF7 cells expressing PC4-Flag protein induces acetylation of histone 3 (H3) and immunoprecipitation (IP) studies revealed its interaction with PC4-Flag protein. MS/MS analysis of the protein complex obtained after IP from TSA treated samples detected H3.3 acetylated at K9, K14, K18, K23 and K27 as a PC4 interacting protein. The association of PC4 with H3.3 was corroborated by IP and re-ChIP using H3.3 antibody. Similarly, IP and re-ChIP showed association of PC4 with H3 acetylated protein. Knockdown of PC4 in MCF7 cells reduced H3.3 enrichment, H3 acetylation at the Lys sites and LHR promoter activity in TSA treated cells despite an increase in H3 and H3.3 protein induced by TSA, linking PC4 to H3 acetylation and LHR transcription. Depletion of H3.3 A/B in MCF7 cells impair chromatin accessibility and enrichment of Pol II and TFIIB at the LHR promoter and its activation, resulting in marked reduction of LHR gene expression. Together, these findings point to the critical role of PC4 and its association with acetylated H3.3 in TSA-induced LHR gene transcription.
Collapse
|
45
|
Basak R, Roy A, Rai U. In silico analysis, temporal expression and gonadotropic regulation of receptors for follicle-stimulating hormone and luteinizing hormone in testis of spotted snakehead Channa punctata. JOURNAL OF FISH BIOLOGY 2018; 93:53-71. [PMID: 29931764 DOI: 10.1111/jfb.13727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
This study in spotted snakehead Channa punctata was aimed to develop a comprehensive understanding of testicular gonadotropin receptors, from their sequence characterization, temporal expression to gonadotropic regulation, in seasonally breeding teleosts. A single form of follicle-stimulating hormone receptor (cpfshra) and luteinizing hormone/choriogonadotropin receptor (cplhcgr), was identified from testicular transcriptome data of C. punctata. Although deduced full-length protein sequence for cpFshra (694 amino acids) and cpLhcgr (691 amino acids) showed homology with their counterparts of other vertebrates, multiple insertion-deletion-substitution of residues suggest marked alterations in their structure and ligand specificity. The absolute quantification of testicular cpfshra and cplhcgr was estimated along the reproductive cycle following real-time PCR. The temporal expression profile showed highest testicular expression of both the gonadotropin receptors during resting phase. Their expression progressively decreased during preparatory and spawning phases concomitant with spermatogonial proliferation and differentiation and spermiogenesis. However, levels of cpfshra and cplhcgr sharply increased during post-spawning when seminiferous lobules were largely devoid of germ cells. To explore gonadotropic regulation of testicular cpfshra and cplhcgr, one group of fish of resting phase was administered with single dose of human chorionic gonadotropin (hCG; 5,000 IU/kg body mass) on day 0 and sacrificed on day 3 and day 5, while another group receiving two injections of hCG (day 0 and day 7) was sacrificed on day 14. The expression pattern of testicular gonadotropin receptors in hCG-treated fish sacrificed after 3, 5 and 14 days was similar to that of preparatory, spawning and postspawning phases, respectively. Likewise, testicular histology of hCG-treated fish sacrificed on day 3, day 5 and day 14 was comparable with that of preparatory, early spawning and late spawning phases, respectively. In light of the fact that gonadotropin receptors are largely expressed on somatic cells, an apparent decrease in testicular cpfshra and cplhcgr levels during preparatory and spawning phases or after 3 and 5 days from first hCG injection might not be due to downregulation of their expression. Rather, this could be due to dilution of somatic cell mRNA by large amount of germ cell mRNA. To verify this assumption, effect of hCG on plasma level of androgens was investigated employing enzyme-linked immunosorbent assay. A marked increase in plasma level of testosterone and 11-ketotestosterone was observed after hCG treatment in C. punctata. This would have been possible only when hCG upregulated the expression of testicular gonadotropin receptors.
Collapse
Affiliation(s)
| | - Alivia Roy
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
46
|
Pradhan A, Nayak M, Samanta M, Panda RP, Rath SC, Giri SS, Saha A. Gonadotropin receptors of Labeo rohita: Cloning and characterization of full-length cDNAs and their expression analysis during annual reproductive cycle. Gen Comp Endocrinol 2018; 263:21-31. [PMID: 29660307 DOI: 10.1016/j.ygcen.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
Abstract
Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), secreted from pituitary, stimulate gonadal function by binding to their cognate receptors FSH receptor (FSHR), and LH/choriogonadotropin receptor (LHCGR). Rohu (Labeo rohita) is a commercially important seasonal breeder freshwater fish species, but till date, the regulation of expression of gonadotropins and their receptors gene during different phases of annual reproductive cycle has not been investigated. We envisaged the critical role of these molecules during seasonal gonadal development in this carp species. We cloned full- length cDNAs of fshra and lhcgrba from rohu testis using RACE (Rapid amplification of cDNA ends) and analyzed their expression along with fsh and lh by quantitative real time PCR (qRT-PCR) assay at various gonadal developmental stages of the annual reproductive cycle. Full-length rohu fshra and lhcgrba cDNA encodes 670 and 716 amino acids respectively, and in adult fish, they were widely expressed in brain, pituitary, gonad, liver, kidney, head kidney, heart, muscle, gill, fin, eye and intestine. In male, both fsh and fshra transcripts showed high level of expression during spermatogenesis, however, in female, expression level was found to be higher in the fully grown oocyte stages. The expression of rohu lh and lhcgrba mRNA increased with increment of gonadosomatic index and showed highest level during spermiation stage in male and fully matured oocyte stage in female. These results together may suggest the involvement of fshra and lhcgrba in regulating function of seasonal gonadal development in rohu.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- Cyprinidae/genetics
- Cyprinidae/metabolism
- DNA, Complementary/isolation & purification
- DNA, Complementary/metabolism
- Female
- Gene Expression Profiling/veterinary
- Gonads/metabolism
- Male
- Pituitary Gland/metabolism
- Receptors, FSH/metabolism
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/isolation & purification
- Receptors, Gonadotropin/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Reproduction/genetics
- Sequence Analysis, DNA/veterinary
- Transcriptome
Collapse
Affiliation(s)
- Avinash Pradhan
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Madhusmita Nayak
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Mrinal Samanta
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Rudra Prasanna Panda
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Suresh Chandra Rath
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Shiba Shankar Giri
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Ashis Saha
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India.
| |
Collapse
|
47
|
Yu L, Zhou J, Zhang G, Huang W, Pei L, Lv F, Zhang Y, Zhang W, Wang H. cAMP/PKA/EGR1 signaling mediates the molecular mechanism of ethanol-induced inhibition of placental 11β-HSD2 expression. Toxicol Appl Pharmacol 2018; 352:77-86. [PMID: 29802914 DOI: 10.1016/j.taap.2018.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
It is known that inhibiting 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression in the placenta can cause fetal over-exposure to maternal glucocorticoids and induce intrauterine growth restriction (IUGR); these effects ultimately increase the risk of adult chronic diseases. This study aimed to investigate the molecular mechanism of the prenatal ethanol exposure (PEE)-induced inhibition of placental 11β-HSD2 expression. Pregnant Wistar rats were intragastrically administered ethanol (4 g/kg/d) from gestational days 9 to 20. The levels of maternal and fetal serum corticosterone and placental 11β-HSD2-related gene expression were analyzed. Furthermore, we investigated the mechanism of reduced placental 11β-HSD2 expression induced by ethanol treatment (15-60 mM) in HTR-8/SVneo cells. In vivo, PEE decreased fetal body weights and increased maternal and fetal serum corticosterone and early growth response factor 1 (EGR1) expression levels. Moreover, histone modification changes (decreased acetylation and increased di-methylation of H3K9) to the HSD11B2 promoter and lower 11β-HSD2 expression levels were observed. In vitro, ethanol decreased cAMP/PKA signaling and 11β-HSD2 expression and increased EGR1 expression in a concentration-dependent manner. A cAMP agonist and EGR1 siRNA reversed the ethanol-induced inhibition of 11β-HSD2 expression. Together, PEE reduced placental 11β-HSD2 expression, and the underlying mechanism is associated with ethanol-induced histone modification changes to the HSD11B2 promoter through the cAMP/PKA/EGR1 pathway.
Collapse
Affiliation(s)
- Luting Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Linguo Pei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Feng Lv
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
48
|
Ben-Menahem D. Preparation, characterization and application of long-acting FSH analogs for assisted reproduction. Theriogenology 2018; 112:11-17. [DOI: 10.1016/j.theriogenology.2017.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
|
49
|
Menon B, Guo X, Garcia N, Gulappa T, Menon KMJ. miR-122 Regulates LHR Expression in Rat Granulosa Cells by Targeting Insig1 mRNA. Endocrinology 2018; 159:2075-2082. [PMID: 29579170 PMCID: PMC5905391 DOI: 10.1210/en.2017-03270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Luteinizing hormone/chorionic gonadotropin receptor (LHR) expression in the ovary is regulated by a messenger RNA (mRNA) binding protein, which specifically binds to the coding region of LHR mRNA. We have shown that miR-122, a short noncoding RNA, mediates LHR mRNA levels by modulating the expression of LHR mRNA-binding protein (LRBP) through the regulation of sterol regulatory element binding protein (SREBP) activation. The present results show that miR-122 regulates LRBP levels by increasing the processing of SREBP through the degradation of Insig1, the anchoring protein of SREBP. We present evidence showing that mRNA and protein levels of Insig1 undergo a time-dependent increase following the treatment of rat granulosa cells with follicle-stimulating hormone (FSH), which leads to a decrease in LRBP levels. Furthermore, overexpression of miR-122 using an adenoviral vector (AdmiR-122) abolished FSH-induced increases in Insig1 mRNA and protein. We further confirmed the role of Insig1 by showing that inhibition of Insig1 using a specific small interfering RNA prior to FSH treatment resulted in the abrogation of LHR upregulation. Silencing of Insig1 also reversed FSH-mediated decreases in SREBP and LRBP activation. These results show that decreased levels of miR-122 increase Insig1 and suppress SREBP processing in response to FSH stimulation of rat granulosa cells.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| | - Xingzi Guo
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Natalia Garcia
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thippeswamy Gulappa
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - K M J Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence: K. M. J. Menon, PhD, 6428 Medical Science Building I, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail: ; or Bindu Menon, PhD, 6436 Medical Sciences Building 1, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
50
|
hCG and Its Disruption by Environmental Contaminants during Human Pregnancy. Int J Mol Sci 2018; 19:ijms19030914. [PMID: 29558393 PMCID: PMC5877775 DOI: 10.3390/ijms19030914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/12/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a hormone of considerable importance in the establishment, promotion and maintenance of human pregnancy. It has been clearly demonstrated that hCG exerts multiple endocrine, paracrine and autocrine actions on a variety of gestational and non-gestational cells and tissues. These actions are directed to promote trophoblast invasiveness and differentiation, placental growth, angiogenesis in uterine vasculature, hormone production, modulation of the immune system at the maternal-fetal interface, inhibition of myometrial contractility as well as fetal growth and differentiation. In recent years, considerable interest has been raised towards the biological effects of environmental contaminants, particularly endocrine disrupting chemicals (EDCs). Emerging evidence suggests that prenatal exposure to selected EDCs can have a deleterious impact on the fetus and long-lasting consequences also in adult life. The results of the in vitro effects of commonly found EDCs, particularly Bisphenol A (BPA) and para-Nonylphenol (p-NP), indicate that these substances can alter hCG production and through this action could exert their fetal damage, suggesting that hCG could represent and become a potentially useful clinical biomarker of an inappropriate prenatal exposure to these substances.
Collapse
|