1
|
Alves VDPV, Mouzaki M, Xanthakos SA, Zhang B, Tkach JA, Ouyang J, Dillman JR, Trout AT. Longitudinal evaluation of pediatric and young adult metabolic dysfunction-associated steatotic liver disease defined by MR elastography. Eur Radiol 2025; 35:2474-2486. [PMID: 39438331 DOI: 10.1007/s00330-024-11146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/09/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES To inform clinical monitoring of children and young adults with metabolic dysfunction-associated steatotic liver disease (MASLD) by characterizing the real-world natural history of MASLD and identifying baseline predictors of liver disease progression. MATERIALS AND METHODS This retrospective study included consecutive patients ages < 23 years with MASLD who underwent serial MR elastography (MRE) and/or MR fat fraction (FF) examinations between 09/2009 and 11/2022. Outcomes of MASLD were defined based on maximum ratio values. A relative change ≥ 19% in liver stiffness measures (LSM) and an absolute change ≥ 5% for liver FF were considered clinically meaningful. Random intercept models characterized the yearly rate of change in LSM (kilopascals per year) and FF (percentage per year). RESULTS One hundred twenty-one patients (87 males, mean age at baseline: 12 ± 3 [SD] years) underwent 297 MRE examinations. The mean interval between the first and last MRE was 34 (± 24) months (range: 1-120 months). Among the 114 patients with serial LSM, 33% (38/114) showed progression, 46% (53/114) remained stable, and 21% (23/114) showed regression. Among the 88 patients with serial FF measures, 57% (50/88) showed progression, 2% (2/88) remained stable, and 41% (36/88) showed regression. LSM progression was associated with Hispanic ethnicity, baseline BMI-for-age percentile, baseline mean liver FF, and GGT changes over time. Predictors for liver FF progression included ALT, AST, GGT, and LDL. CONCLUSION In a real-world sample of children and young adults with MASLD who underwent serial liver MRI, a minority of patients demonstrated improvements in liver stiffness or FF over time. KEY POINTS Question In children, there is scarce data regarding the natural history of MASLD. Findings In this retrospective study, most children and young adults with MASLD had either unchanged or worsening liver stiffness (n = 91/114, 79%) and liver fat (n = 52/88, 59%). Clinical relevance Our findings emphasize the need for optimized care in pediatric MASLD. The identified risk factors for the progression of liver fat and stiffness may help to identify children who require interventions beyond changes in lifestyle.
Collapse
Affiliation(s)
- Vinicius de Padua V Alves
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marialena Mouzaki
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stavra A Xanthakos
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bin Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jiarong Ouyang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Wu H, Zhu Z, Li J, Qiu C, Xu P, Glaser KJ, Murphy MC, Venkatesh SK, Yaqoob U, Graham R, Mounajjed T, Manduca A, Winkelmann CT, Yashiro H, Manohar R, Allen AM, Shah VH, Ehman RL, Yin M. Three-Dimensional Vector MR Elastography for Evaluating Tissue Mechanical Heterogeneity to Assess Liver Disease Progression. Radiology 2025; 315:e242349. [PMID: 40167439 DOI: 10.1148/radiol.242349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health challenge, with evidence indicating that hepatic inflammation and fibrosis are heterogeneous processes. Purpose To measure liver mechanical property heterogeneity using MR elastography (MRE) and evaluate its potential as a biomarker for tissue inflammation and fibrosis in patients with MASLD. Materials and Methods Mechanical tissue heterogeneity in MASLD was assessed at three-dimensional vector MRE pixel-wise histogram analysis of shear stiffness and loss modulus in preclinical and clinical studies. The preclinical study involved 25 rats that were examined monthly, whereas the clinical study analyzed data from 179 participants across two prospective studies (September 2015 to November 2022), including some who underwent bariatric surgery at pretreatment and posttreatment MRE examinations. Mean and coefficient of variation (CV) of shear stiffness and loss modulus were calculated for each examination. Nonparametric tests and Spearman correlation coefficient were used to compare MRE-derived tissue mechanics with biopsy-confirmed fibrosis and inflammation and assess correlations with portal pressure and histopathologic hepatic fibrosis. Results The preclinical study showed that, in cirrhotic livers, CV of loss modulus positively correlated with portal pressure and fibrosis area ratio variation (ρ = 0.52 [P = .008] and 0.55 [P = .005], respectively). The clinical study showed that, in 10 healthy volunteers (median age, 36.5 years; IQR, 34.0-38.8 years; five females) and 169 participants with MASLD (median age, 50.1 years; IQR, 41.0-58.2 years; 118 females), CV of sheer stiffness (from 0.12 to 0.30 in healthy participants to participants with stage 4 fibrosis) and loss modulus (from 0.31 to 0.51 in healthy participants to participants with grade 3 inflammation) increased with increasing severity of fibrosis and inflammation, respectively. In 36 participants who underwent bariatric surgery, the CV of sheer stiffness decreased at the 1-year follow-up, from 0.16 (IQR, 0.14-0.18) to 0.14 (IQR, 0.12-0.16) (P = .009). Conclusion Tissue mechanical heterogeneity assessed at MRE positively correlated with progression of MASLD, demonstrating potential as a biomarker for liver disease severity and therapeutic intervention. ClinicalTrials.gov Identifier: NCT02565446 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Moura Cunha in this issue.
Collapse
Affiliation(s)
- Hao Wu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zheng Zhu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Li
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Caixin Qiu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Peng Xu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Matthew C Murphy
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | | | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minn
| | - Rondell Graham
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minn
| | | | - Armando Manduca
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minn
| | | | | | | | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minn
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minn
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Meng Yin
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
3
|
Serai SD, Glenn A, Trout AT, Lerebo WT, Gee MS, Khanna G, Anupindi SA. Spleen stiffness in a healthy pediatric population undergoing liver magnetic resonance elastography. Pediatr Radiol 2025; 55:846-856. [PMID: 39841253 PMCID: PMC11982077 DOI: 10.1007/s00247-024-06107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Splenic stiffness is a potential imaging marker of portal hypertension. Normative spleen stiffness values are needed to define diagnostic thresholds. OBJECTIVE To report stiffness measurements of the spleen in healthy children undergoing liver magnetic resonance (MR) elastography across MRI vendors and field strengths. MATERIALS AND METHODS This was a post-hoc analysis of data collected under a prospective multicenter cross-sectional study. Volunteers aged 7-17.9 years without a known history of liver or spleen disease were recruited for a research MRI between February 2018 and October 2019. Gradient recalled echo (GRE) or spin-echo-echo-planar imaging (SE-EPI) MR elastography was performed on a total of three vendor platforms and at two field strengths (1.5 T (T) and 3 T) with standard right upper quadrant passive driver placement (frequency of 60 Hz). Two independent reviewers measured spleen stiffness, length, and volume. Descriptive statistics, independent sample t-tests or Mann-Whitney test, and Pearson's or Spearman's correlation were used. RESULTS From 101 study volunteers, 72 (34 female) had measurable splenic stiffness. Median age was 12 years (interquartile range [IQR], 9.9-14.9 years). Mean (± SD) spleen stiffness was 4.7 ± 0.9 kPa (IQR, 3.8-5.4 kPa) with 6.1 kPa reflecting the 95th percentile. Strong correlation was observed between reviewers (ICC = 0.89 [95%CI, 0.71-0.93; P < 0.001]). Male volunteers had slightly higher splenic stiffness compared to females: 4.9 ± 0.9 vs. 4.3 ± 0.8 kPa (P = 0.014). There was significant correlation between spleen stiffness and body mass index (r = 0.33 [95%CI, 0.06-0.56; P = 0.024]) but no other measure of patient size (r = 0.15-0.29). No significant difference in spleen stiffness was observed across vendors (P = 0.089) or field strengths (P = 0.236). CONCLUSION MR elastography-based spleen stiffness, measured as part of a liver MR elastography acquisition, is < 6.1 kPa in a healthy pediatric population and does not vary with MRI vendor or field strength.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Andrew T Trout
- University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wondwossen T Lerebo
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Geetika Khanna
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sudha A Anupindi
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Kafali SG, Bolster BD, Shih S, Delgado TI, Deshpande V, Zhong X, Adamos TR, Ghahremani S, Calkins KL, Wu HH. Self-Gated Radial Free-Breathing Liver MR Elastography: Assessment of Technical Performance in Children at 3 T. J Magn Reson Imaging 2025; 61:1271-1283. [PMID: 39036994 PMCID: PMC11751131 DOI: 10.1002/jmri.29541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Conventional liver magnetic resonance elastography (MRE) requires breath-holding (BH) to avoid motion artifacts, which is challenging for children. While radial free-breathing (FB)-MRE is an alternative for quantifying liver stiffness (LS), previous methods had limitations of long scan times, acquiring two slices in 5 minutes, and not resolving motion during reconstruction. PURPOSE To reduce FB-MRE scan time to 4 minutes for four slices and to investigate the impact of self-gated (SG) motion compensation on FB-MRE LS quantification in terms of agreement, intrasession repeatability, and technical quality compared to conventional BH-MRE. STUDY TYPE Prospective. POPULATION Twenty-six children without fibrosis (median age: 12.9 years, 15 females). FIELD STRENGTH/SEQUENCE 3 T; Cartesian gradient-echo (GRE) BH-MRE, research application radial GRE FB-MRE. ASSESSMENT Participants were scanned twice to measure repeatability, without moving the table or changing the participants' position. LS was measured in areas of the liver with numerical confidence ≥90%. Technical quality was examined using measurable liver area (%). STATISTICAL TESTS Agreement of LS between BH-MRE and FB-MRE was evaluated using Bland-Altman analysis for SG acceptance rates of 40%, 60%, 80%, and 100%. LS repeatability was assessed using within-subject coefficient of variation (wCV). The differences in LS and measurable liver area were examined using Kruskal-Wallis and Wilcoxon signed-rank tests. P < 0.05 was considered significant. RESULTS FB-MRE with 60% SG achieved the closest agreement with BH-MRE (mean difference 0.00 kPa). The LS ranged from 1.70 to 1.83 kPa with no significant differences between BH-MRE and FB-MRE with varying SG rates (P = 0.52). All tested methods produced repeatable LS with wCV from 4.4% to 6.5%. The median measurable liver area was smaller for FB-MRE (32%-45%) than that for BH-MRE (91%-93%) (P < 0.05). DATA CONCLUSION FB-MRE with 60% SG can quantify LS with close agreement and comparable repeatability with respect to BH-MRE in children. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Sevgi Gokce Kafali
- Department of Radiological SciencesDavid Geffen School of Medicine, University of California Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Bradley D. Bolster
- US MR R&D CollaborationsSiemens Medical Solutions USA, Inc.Salt Lake CityUtahUSA
| | - Shu‐Fu Shih
- Department of Radiological SciencesDavid Geffen School of Medicine, University of California Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Timoteo I. Delgado
- Department of Radiological SciencesDavid Geffen School of Medicine, University of California Los AngelesLos AngelesCaliforniaUSA
- Physics and Biology in Medicine Interdepartmental Program, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Vibhas Deshpande
- US MR R&D CollaborationsSiemens Medical Solutions USA, Inc.AustinTexasUSA
| | - Xiaodong Zhong
- Department of Radiological SciencesDavid Geffen School of Medicine, University of California Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Physics and Biology in Medicine Interdepartmental Program, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Timothy R. Adamos
- Department of Pediatrics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Shahnaz Ghahremani
- Department of Radiological SciencesDavid Geffen School of Medicine, University of California Los AngelesLos AngelesCaliforniaUSA
| | - Kara L. Calkins
- Department of Pediatrics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Holden H. Wu
- Department of Radiological SciencesDavid Geffen School of Medicine, University of California Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Physics and Biology in Medicine Interdepartmental Program, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Qiu C, Glaser KJ, Owusu N, Li J, Wu H, Venkatesh SK, Manduca A, Ehman RL, Yin M. Acquisition Efficiency and Technical Repeatability of Dual-Frequency 3D Vector MR Elastography of the Liver. J Magn Reson Imaging 2025; 61:1416-1425. [PMID: 38935749 PMCID: PMC11671616 DOI: 10.1002/jmri.29493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND MR elastography (MRE) at 60 Hz is widely used for staging liver fibrosis. MRE with lower frequencies may provide inflammation biomarkers. PURPOSE To establish a practical simultaneous dual-frequency liver MRE protocol at both 30 Hz and 60 Hz during a single examination and validate the occurrence of second harmonic waves at 30 Hz. STUDY TYPE Retrospective. SUBJECTS One hundred six patients (48 females, age: 50.0 ± 13.4 years) were divided as follows: Cohort One (15 patients with chronic liver disease [CLD] and 25 healthy volunteers) with simultaneous dual-frequency MRE. Cohort Two (66 patients with CLD) with second harmonic MRE. FIELD STRENGTH/SEQUENCE 3-T, single- or dual-frequency MRE at 30 Hz and 60 Hz. ASSESSMENT Liver stiffness (LS) in both cohorts was evaluated with manually placed volumetric ROIs by two independent analyzers. Image quality was assessed by three independent readers on a 4-point scale (0-3: none/failed, fair, moderate, excellent) based on the depth of wave propagation with 1/3 incremental penetration. The success rate was derived from the percentage of nonzero quality scores. STATISTICAL TESTS Measurement agreement, bias, and repeatability of LS were assessed using intraclass correlation coefficients (ICCs), Bland-Altman plots, and repeatability coefficient (RC). Mann-Whitney U tests were used to evaluate the differences in image quality between different methods. A P-value <0.05 was considered statistically significant. RESULTS Success rate was 97.5% in Cohort One and 91% success rate for the second harmonic MRE in Cohort Two. The second harmonic and conventional MRE showed excellent agreement in LS (all ICCs >0.90). The quality scores for the second harmonic wave images were lower than those from the conventional MRE (Z = -4.523). DATA CONCLUSION Compared with conventional and second harmonic methods, simultaneous dual-frequency had better image quality, high success rate and the advantage of intrinsic co-registration, while the second harmonic method can be an alternative if custom waveform is not available. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Caixin Qiu
- Department of RadiologyTianjin First Central HospitalTianjinChina
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Nana Owusu
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Jiahui Li
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Hao Wu
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Meng Yin
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Duarte-Rojo A, Taouli B, Leung DH, Levine D, Nayfeh T, Hasan B, Alsawaf Y, Saadi S, Majzoub AM, Manolopoulos A, Haffar S, Dundar A, Murad MH, Rockey DC, Alsawas M, Sterling RK. Imaging-based noninvasive liver disease assessment for staging liver fibrosis in chronic liver disease: A systematic review supporting the AASLD Practice Guideline. Hepatology 2025; 81:725-748. [PMID: 38489521 DOI: 10.1097/hep.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND AND AIMS Transient elastography (TE), shear wave elastography, and/or magnetic resonance elastography (MRE), each providing liver stiffness measurement (LSM), are the most studied imaging-based noninvasive liver disease assessment (NILDA) techniques. To support the American Association for the Study of Liver Diseases guidelines on NILDA, we summarized the evidence on the accuracy of these LSM methods to stage liver fibrosis (F). APPROACH AND RESULTS A comprehensive search for studies assessing LSM by TE, shear wave elastography, or MRE for the identification of significant fibrosis (F2-4), advanced fibrosis (F3-4), or cirrhosis (F4), using histopathology as the standard of reference by liver disease etiology in adults or children from inception to April 2022 was performed. We excluded studies with <50 patients with a single disease entity and mixed liver disease etiologies (with the exception of HCV/HIV coinfection). Out of 9447 studies, 240 with 61,193 patients were included in this systematic review. In adults, sensitivities for the identification of F2-4 ranged from 51% to 95%, for F3-4 from 70% to 100%, and for F4 from 60% to 100% across all techniques/diseases, whereas specificities ranged from 36% to 100%, 74% to 100%, and 67% to 99%, respectively. The largest body of evidence available was for TE; MRE appeared to be the most accurate method. Imaging-based NILDA outperformed blood-based NILDA in most comparisons, particularly for the identification of F3-4/F4. In the pediatric population, imaging-based NILDA is likely as accurate as in adults. CONCLUSIONS LSM from TE, shear wave elastography, and MRE shows acceptable to outstanding accuracy for the detection of liver fibrosis across various liver disease etiologies. Accuracy increased from F2-4 to F3-4 and was the highest for F4. Further research is needed to better standardize the use of imaging-based NILDA, particularly in pediatric liver diseases.
Collapse
Affiliation(s)
- Andres Duarte-Rojo
- Division of Gastroenterology and Hepatology, Northwestern Medicine and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel H Leung
- Department of Pediatrics, Baylor College of Medicine and Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Houston, Texas, USA
| | - Deborah Levine
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tarek Nayfeh
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar Hasan
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Yahya Alsawaf
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Samer Saadi
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Samir Haffar
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayca Dundar
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - M Hassan Murad
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mouaz Alsawas
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard K Sterling
- Section of Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Wang R, Wang Y, Qiu S, Ma S, Yan F, Yang GZ, Li R, Feng Y. A Comparative Study of Three Systems for Liver Magnetic Resonance Elastography. J Magn Reson Imaging 2024; 60:2472-2484. [PMID: 38449389 DOI: 10.1002/jmri.29335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Different MR elastography (MRE) systems may produce different stiffness measurements, making direct comparison difficult in multi-center investigations. PURPOSE To assess the repeatability and reproducibility of liver stiffness measured by three typical MRE systems. STUDY TYPE Prospective. POPULATION/PHANTOMS Thirty volunteers without liver disease history (20 males, aged 21-28)/5 gel phantoms. FIELD STRENGTH/SEQUENCE 3.0 T United Imaging Healthcare (UIH), 1.5 T Siemens Healthcare, 3.0 T General Electric Healthcare (GE)/Echo planar imaging-based MRE sequence. ASSESSMENT Wave images of volunteers and phantoms were acquired by three MRE systems. Tissue stiffness was evaluated by two observers, while phantom stiffness was assessed automatically by code. The reproducibility across three MRE systems was quantified based on the mean stiffness of each volunteer and phantom. STATISTICAL TESTS Intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman analyses were used to assess the interobserver reproducibility, the interscan repeatability, and the intersystem reproducibility. Paired t-tests were performed to assess the interobserver and interscan variation. Friedman tests with Dunn's multiple comparison correction were performed to assess the intersystem variation. P values less than 0.05 indicated significant difference. RESULTS The reproducibility of stiffness measured by the two observers demonstrated consistency with ICC > 0.92, CV < 4.32%, Mean bias < 2.23%, and P > 0.06. The repeatability of measurements obtained using the electromagnetic system for the liver revealed ICC > 0.96, CV < 3.86%, Mean bias < 0.19%, P > 0.90. When considering the range of reproducibility across the three systems for liver evaluations, results ranged with ICCs from 0.70 to 0.87, CVs from 6.46% to 10.99%, and Mean biases between 1.89% and 6.30%. Phantom studies showed similar results. The values of measured stiffness differed across all three systems significantly. DATA CONCLUSION Liver stiffness values measured from different MRE systems can be different, but the measurements across the three MRE systems produced consistent results with excellent reproducibility. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Runke Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Yikun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suhao Qiu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Shengyuan Ma
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Zhong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Feng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Maino C, Vernuccio F, Cannella R, Cristoferi L, Franco PN, Carbone M, Cortese F, Faletti R, De Bernardi E, Inchingolo R, Gatti M, Ippolito D. Non-invasive imaging biomarkers in chronic liver disease. Eur J Radiol 2024; 181:111749. [PMID: 39317002 DOI: 10.1016/j.ejrad.2024.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Chronic liver disease (CLD) is a global and worldwide clinical challenge, considering that different underlying liver entities can lead to hepatic dysfunction. In the past, blood tests and clinical evaluation were the main noninvasive tools used to detect, diagnose and follow-up patients with CLD; in case of clinical suspicion of CLD or unclear diagnosis, liver biopsy has been considered as the reference standard to rule out different chronic liver conditions. Nowadays, noninvasive tests have gained a central role in the clinical pathway. Particularly, liver stiffness measurement (LSM) and cross-sectional imaging techniques can provide transversal information to clinicians, helping them to correctly manage, treat and follow patients during time. Cross-sectional imaging techniques, namely computed tomography (CT) and magnetic resonance imaging (MRI), have plenty of potential. Both techniques allow to compute the liver surface nodularity (LSN), associated with CLDs and risk of decompensation. MRI can also help quantify fatty liver infiltration, mainly with the proton density fat fraction (PDFF) sequences, and detect and quantify fibrosis, especially thanks to elastography (MRE). Advanced techniques, such as intravoxel incoherent motion (IVIM), T1- and T2- mapping are promising tools for detecting fibrosis deposition. Furthermore, the injection of hepatobiliary contrast agents has gained an important role not only in liver lesion characterization but also in assessing liver function, especially in CLDs. Finally, the broad development of radiomics signatures, applied to CT and MR, can be considered the next future approach to CLDs. The aim of this review is to provide a comprehensive overview of the current advancements and applications of both invasive and noninvasive imaging techniques in the evaluation and management of CLD.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy.
| | - Federica Vernuccio
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, Palermo 90127, Italy
| | - Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via del Vespro 129, Palermo 90127, Italy
| | - Laura Cristoferi
- Department of Gastroenterlogy, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Paolo Niccolò Franco
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy
| | - Marco Carbone
- Department of Gastroenterlogy, ASST Grande Ospedale Metropolitano Niguarda, Pizza dell'Ospedale Maggiore 3, 20100 Milano, MI, Italy
| | - Francesco Cortese
- Interventional Radiology Unit, "F. Miulli" General Hospital, Acquaviva delle Fonti 70021, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Elisabetta De Bernardi
- Department of Medicine and Surgery - University of Milano Bicocca, Via Cadore 33, 20090 Monza, MB, Italy
| | - Riccardo Inchingolo
- Interventional Radiology Unit, "F. Miulli" General Hospital, Acquaviva delle Fonti 70021, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, MB, Italy; Department of Medicine and Surgery - University of Milano Bicocca, Via Cadore 33, 20090 Monza, MB, Italy
| |
Collapse
|
9
|
Serai SD, Franchi-Abella S, Syed AB, Tkach JA, Toso S, Ferraioli G. MR and Ultrasound Elastography for Fibrosis Assessment in Children: Practical Implementation and Supporting Evidence- AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024; 223:e2330506. [PMID: 38170833 DOI: 10.2214/ajr.23.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Quantitative MRI and ultrasound biomarkers of liver fibrosis have become important tools in the diagnosis and clinical management of children with chronic liver disease (CLD). In particular, MR elastography is now routinely performed in clinical practice to evaluate the liver for fibrosis. Ultrasound shear-wave elastography has also become widely performed for this purpose, especially in young children. These noninvasive methods are increasingly used to replace liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. Although ultrasound has the advantages of portability and lower equipment cost than MRI, available evidence indicates that MRI may have greater reliability and accuracy in liver fibrosis evaluation. In this AJR Expert Panel Narrative Review, we describe how, why, and when to use MRI- and ultrasound-based elastography methods for liver fibrosis assessment in children. Practical approaches are discussed for adapting and optimizing these methods in children, with consideration of clinical indications, patient preparation, equipment requirements, and acquisition technique, as well as pitfalls and confounding factors. Guidance is provided for interpretation and reporting, and representative case examples are presented.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stéphanie Franchi-Abella
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service de Radiologie Pédiatrique Diagnostique et Interventionnelle, Centre de Référence des Maladies Rares du Foie de L'enfant, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- BIOMAPS, University Paris-Saclay, Orsay, France
| | - Ali B Syed
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Seema Toso
- Department of Pediatric Radiology, University Children's Hospital Geneva, Geneva, Switzerland
| | - Giovanna Ferraioli
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Medical School University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Neilens H, Allgar V, Sorrell L, Chynoweth J, Bailey M, Aspinall P, King A, Parkin T, MacCormick A, Aroori S. Protocol for a feasibility multi-centre randomised controlled trial of a pre-operative two-week very low-calorie diet to reduce steatosis prior to liver resection (RESOLVE). Pilot Feasibility Stud 2024; 10:124. [PMID: 39350306 PMCID: PMC11441117 DOI: 10.1186/s40814-024-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Hepatic steatosis (HS) increases morbidity and mortality associated with liver surgery (LS). Furthermore, patients with HS are more likely to require a blood transfusion, which is associated with worse short and long-term outcomes. Patients with HS requiring LS receive no specific dietary treatment or advice. A very low-calorie diet (VLCD) is commonly used before gallbladder and bariatric surgery to reduce liver volumes and associated intraoperative morbidity. These diets typically provide 800-1200 kcal/day over a 2-4-week period. Limited evidence suggests that a VLCD in patients with LS may result in better outcomes. METHODS This study aims to test the feasibility of delivering a multi-centre randomised clinical trial to compare a dietary intervention (VLCD plus motivational instructions) versus treatment as usual (TAU) in people with HS having LS. This study will provide high-quality data to estimate screening rates, recruitment, randomisation, retention, and intervention adherence. The study will also determine the definitive trial's most clinically relevant primary outcome. The study will also estimate resource use and costs associated with the delivery of the intervention. Seventy-two adults ≥ 18 who are scheduled to undergo elective LS and have a magnetic resonance imaging (MRI) identified HS will be recruited. Acceptability to the dietary intervention will be evaluated with food diaries and focus groups. Clinical and patient-reported outcomes will be collected at baseline, pre- and post-surgery, day of discharge, plus 30- and 90-day follow-up. DISCUSSION This feasibility study will provide data on the acceptability and feasibility of a dietary intervention for patients with HS having LS. The intervention has been developed based on scientific evidence from other clinical areas and patient experience; therefore, it is safe for this patient group. Patients with experience of LS and VLCDs have advised throughout the development of the study protocol. The findings will inform the design of a future definitive study. TRIAL REGISTRATION ISRCTN Number 19701345. Date registered: 20/03/2023. URL: https://www.isrctn.com/ISRCTN19701345 .
Collapse
Affiliation(s)
- Helen Neilens
- Peninsula Clinical Trials Unit, University of Plymouth, Plymouth, UK
| | - Victoria Allgar
- Peninsula Clinical Trials Unit, University of Plymouth, Plymouth, UK
- Medical Statistics Group, University of Plymouth, Plymouth, UK
| | - Lexy Sorrell
- Medical Statistics Group, University of Plymouth, Plymouth, UK
| | - Jade Chynoweth
- Medical Statistics Group, University of Plymouth, Plymouth, UK
| | - Matthew Bailey
- Peninsula Clinical Trials Unit, University of Plymouth, Plymouth, UK
| | - Paigan Aspinall
- Peninsula Clinical Trials Unit, University of Plymouth, Plymouth, UK
| | - Angela King
- Peninsula Clinical Trials Unit, University of Plymouth, Plymouth, UK
| | - Tracey Parkin
- School of Health Professions, University of Plymouth, Plymouth, UK
| | - Andrew MacCormick
- University Hospitals Plymouth NHS Trust, Plymouth, PL6 8DH, England, UK
| | - Somaiah Aroori
- University Hospitals Plymouth NHS Trust, Plymouth, PL6 8DH, England, UK.
| |
Collapse
|
11
|
Kumada T, Toyoda H, Ogawa S, Gotoh T, Yoshida Y, Yamahira M, Hirooka M, Koizumi Y, Hiasa Y, Tamai T, Kuromatsu R, Matsuzaki T, Suehiro T, Kamada Y, Sumida Y, Tanaka J, Shimizu M. Diagnostic performance of shear wave measurement in the detection of hepatic fibrosis: A multicenter prospective study. Hepatol Res 2024; 54:851-858. [PMID: 38349813 DOI: 10.1111/hepr.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
AIM This study aimed to establish the shear wave measurement (SWM) cut-off value for each fibrosis stage using magnetic resonance (MR) elastography values as a reference standard. METHODS We prospectively analyzed 594 patients with chronic liver disease who underwent SWM and MR elastography. Correlation coefficients (were analyzed, and the diagnostic value was evaluated by the area under the receiver operating characteristic curve. Liver stiffness was categorized by MR elastography as F0 (<2.61 kPa), F1 (≥2.61 kPa, <2.97 kPa, any fibrosis), F2 (≥2.97 kPa, <3.62 kPa, significant fibrosis), F3 (≥3.62 kPa, <4.62 kPa, advanced fibrosis), or F4 (≥4.62 kPa, cirrhosis). RESULTS The median SWM values increased significantly with increasing fibrosis stage (p < 0.001). The correlation coefficient between SWM and MR elastography values was 0.793 (95% confidence interval 0.761-0.821). The correlation coefficients between SWM and MR elastography values significantly decreased with increasing body mass index and skin-capsular distance; skin-capsular distance values were associated with significant differences in sensitivity, specificity, accuracy, or positive predictive value, whereas body mass index values were not. The best cut-off values for any fibrosis, significant fibrosis, advanced fibrosis, and cirrhosis were 6.18, 7.09, 8.05, and 10.89 kPa, respectively. CONCLUSIONS This multicenter study in a large number of patients established SWM cut-off values for different degrees of fibrosis in chronic liver diseases using MR elastography as a reference standard. It is expected that these cut-off values will be applied to liver diseases in the future.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Suita, Japan
| | - Masahiro Yamahira
- Department of Clinical Laboratory Medicine, Suita Municipal Hospital, Suita, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tsutomu Tamai
- Department of Gastroenterology, Kagoshima City Hospital, Kagoshima, Japan
| | - Ryoko Kuromatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshio Sumida
- Graduate School of Healthcare Management, International University of Health and Welfare, Minatoku, Tokyo, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Ozkaya E, Kennedy P, Chen J, Bane O, Dillman JR, Jhaveri KS, Ohliger MA, Rossman PJ, Tkach JA, Doucette JT, Venkatesh SK, Ehman RL, Taouli B. Precision and Test-Retest Repeatability of Stiffness Measurement with MR Elastography: A Multicenter Phantom Study. Radiology 2024; 311:e233136. [PMID: 38742971 PMCID: PMC11140535 DOI: 10.1148/radiol.233136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Background MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms. Materials and Methods In this study, three cylindrical phantoms made of polyvinyl chloride gel mimicking different degrees of liver stiffness in humans (phantoms 1-3: soft, medium, and hard stiffness, respectively) were evaluated. Between January 2021 and January 2022, phantoms were circulated between five different centers and scanned with 10 MRE-equipped clinical 1.5-T and 3-T systems from three major vendors, using two-dimensional (2D) gradient-recalled echo (GRE) imaging and/or 2D spin-echo (SE) echo-planar imaging (EPI). Similar MRE acquisition parameters, hardware, and reconstruction algorithms were used at each center. Mean stiffness was measured by a single observer for each phantom and acquisition on a single section. Stiffness measurement precision and same-session test-retest repeatability were assessed using the coefficient of variation (CV) and the repeatability coefficient (RC), respectively. Results The mean precision represented by the CV was 5.8% (95% CI: 3.8, 7.7) for all phantoms and both sequences combined. For all phantoms, 2D GRE achieved a CV of 4.5% (95% CI: 3.3, 5.7) whereas 2D SE EPI achieved a CV of 7.8% (95% CI: 3.1, 12.6). The mean RC of stiffness measurement was 5.8% (95% CI: 3.7, 7.8) for all phantoms and both sequences combined, 4.9% (95% CI: 2.7, 7.0) for 2D GRE, and 7.0% (95% CI: 2.9, 11.2) for 2D SE EPI (all phantoms). Conclusion MRE had excellent in vitro precision and same-session test-retest repeatability in the multicenter setting when similar imaging protocols, hardware, and reconstruction algorithms were used. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Tang in this issue.
Collapse
Affiliation(s)
| | | | - Jun Chen
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Octavia Bane
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Jonathan R. Dillman
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Kartik S. Jhaveri
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Michael A. Ohliger
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Phillip J. Rossman
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Jean A. Tkach
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - John T. Doucette
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Sudhakar K. Venkatesh
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Richard L. Ehman
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| | - Bachir Taouli
- From the BioMedical Engineering and Imaging Institute (E.O., P.K.,
O.B., B.T.) and Departments of Diagnostic, Molecular and Interventional
Radiology (E.O., P.K., O.B., B.T.) Environmental Medicine and Public Health
(J.T.D.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York,
NY 10029; Department of Radiology, Mayo Clinic, Rochester, Minn (J.C., P.J.R.,
S.K.V., R.L.E.); Department of Radiology, Nanjing University Medical School
Affiliated Drum Tower Hospital, Nanjing, China (J.C.); Department of Radiology,
Cincinnati Children’s Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio (J.R.D., J.A.T.); Joint Department of
Medical Imaging, University Health Network, Mount Sinai Hospital, and
Women’s College Hospital, University of Toronto, Toronto, Canada
(K.S.J.); Department of Radiology and Biomedical Imaging, University of
California, San Francisco, Calif (M.A.O.); and Department of Radiology,
Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.)
| |
Collapse
|
13
|
Liu J, Huang M, Zhang Y, Yao F, Zhang X, Yin M, Wang K, Cheng J. Technical Success and Reliability of Magnetic Resonance Elastography in Patients with Hepatic Iron Overload. Acad Radiol 2024; 31:1326-1335. [PMID: 37863778 DOI: 10.1016/j.acra.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/22/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to evaluate the technical success rate and stiffness measurement reliability of two specific hepatic magnetic resonance elastography (MRE) sequences dedicated to solving susceptibility artifacts in patients with various degrees of hepatic iron overload. MATERIALS AND METHODS Thirty-seven patients with iron-overloaded liver confirmed by R2* value measurement who underwent two-dimensional (2D) spin-echo (SE) MRE and 2D SE-echo-planar-imaging (EPI) MRE were reviewed retrospectively. According to four categories based on R2* value (mild, moderate, severe elevation, and extremely severe iron overload), we compared the success rate, quality score, and liver stiffness of the two sequences. In addition, Spearman's correlation was performed to evaluate the relationship between the R2* value and liver stiffness. RESULTS The overall success rates of SE MRE and SE-EPI MRE in patients with hepatic iron overload were 91.89% and 78.38%, respectively, and 100% and 78.57%, respectively, for severe elevation iron overload. In all patients, the MRE quality scores were 54 and 48 for SE MRE and SE-EPI MRE, respectively (P = 0.107). There were no significant differences in liver stiffness measurements between the two MRE methods in patients with mild, moderate, and severe elevation iron-overloaded livers (P > 0.6 for all), respectively. For both MRE methods, R2* value had no significant effect on the liver stiffness measurements (correlation coefficient <0.1, P >0.6 for both). CONCLUSION In the mild and moderate elevation iron-overloaded liver, both SE MRE and fast SE-EPI MRE can provide successful and reliable liver stiffness measurement. In severe elevation iron-overloaded livers, SE MRE may be a better choice than SE-EPI MRE.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of MR Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., M.H., Y.Z., F.Y., X.Z., J.C.).
| | - Mengyue Huang
- Department of MR Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., M.H., Y.Z., F.Y., X.Z., J.C.)
| | - Yong Zhang
- Department of MR Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., M.H., Y.Z., F.Y., X.Z., J.C.)
| | - Feifei Yao
- Department of MR Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., M.H., Y.Z., F.Y., X.Z., J.C.)
| | - Xiaopan Zhang
- Department of MR Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., M.H., Y.Z., F.Y., X.Z., J.C.)
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota (M.Y.)
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, PR China (K.W.)
| | - Jingliang Cheng
- Department of MR Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., M.H., Y.Z., F.Y., X.Z., J.C.)
| |
Collapse
|
14
|
Moura Cunha G, Fan B, Navin PJ, Olivié D, Venkatesh SK, Ehman RL, Sirlin CB, Tang A. Interpretation, Reporting, and Clinical Applications of Liver MR Elastography. Radiology 2024; 310:e231220. [PMID: 38470236 PMCID: PMC10982829 DOI: 10.1148/radiol.231220] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024]
Abstract
Chronic liver disease is highly prevalent and often leads to fibrosis or cirrhosis and complications such as liver failure and hepatocellular carcinoma. The diagnosis and staging of liver fibrosis is crucial to determine management and mitigate complications. Liver biopsy for histologic assessment has limitations such as sampling bias and high interreader variability that reduce precision, which is particularly challenging in longitudinal monitoring. MR elastography (MRE) is considered the most accurate noninvasive technique for diagnosing and staging liver fibrosis. In MRE, low-frequency vibrations are applied to the abdomen, and the propagation of shear waves through the liver is analyzed to measure liver stiffness, a biomarker for the detection and staging of liver fibrosis. As MRE has become more widely used in clinical care and research, different contexts of use have emerged. This review focuses on the latest developments in the use of MRE for the assessment of liver fibrosis; provides guidance for image acquisition and interpretation; summarizes diagnostic performance, along with thresholds for diagnosis and staging of liver fibrosis; discusses current and emerging clinical applications; and describes the latest technical developments.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Boyan Fan
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Patrick J. Navin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Damien Olivié
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Sudhakar K. Venkatesh
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Richard L. Ehman
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Claude B. Sirlin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - An Tang
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| |
Collapse
|
15
|
Kobayashi T, Iwaki M, Nogami A, Kawamura N, Honda Y, Ogawa Y, Imajo K, Yoneda M, Saito S, Nakajima A. Prediction of outcomes in patients with metabolic dysfunction-associated steatotic liver disease based on initial measurements and subsequent changes in magnetic resonance elastography. J Gastroenterol 2024; 59:56-65. [PMID: 37845417 PMCID: PMC10764489 DOI: 10.1007/s00535-023-02049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND The prognosis of metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with liver fibrosis. We aimed to investigate whether liver stiffness measurement (LSM) and changes in LSM (ΔLSM) on magnetic resonance elastography (MRE) can predict clinical events in patients with MASLD. METHODS We included 405 patients with MASLD who underwent at least two MREs. The patients were divided into five groups corresponding to fibrosis stages (0-4) based on initial LSM and classified as progressors (ΔLSM ≥ 19%) or non-progressors (ΔLSM < 19%) based on the difference between the first and last LSM. RESULTS The mean follow-up period was 72.6 months, and the mean interval between MREs was 23.5 months. There were 52 (12.8%) progressors and 353 (87.2%) non-progressors. The initial LSM was significantly associated with the cumulative probabilities of decompensated cirrhosis, hepatocellular carcinoma (HCC), liver-related events, extrahepatic malignancies, and overall mortality but not with cardiovascular disease. Progressors had significantly higher hazard ratios (HRs) for decompensated cirrhosis, HCC, and liver-related events but not for extrahepatic malignancies, cardiovascular disease, or overall mortality. Among patients without cirrhosis, the HR for developing cirrhosis among progressors was 60.15. Progressors had a significantly higher risk of liver-related events, even in the low initial LSM (fibrosis stage 0-2) subgroups. CONCLUSIONS Both initial LSM and ΔLSM can predict liver-related events in patients with MASLD, even for low initial LSM. This integrated assessment can allow more detailed risk stratification compared with single LSM assessments and identify high-risk patients with MASLD among those previously considered as low risk.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Nobuyoshi Kawamura
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Gastroenterology Division, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
- Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| |
Collapse
|
16
|
Kadi D, Loomba R, Bashir MR. Diagnosis and Monitoring of Nonalcoholic Steatohepatitis: Current State and Future Directions. Radiology 2024; 310:e222695. [PMID: 38226882 DOI: 10.1148/radiol.222695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease, with a worldwide prevalence of 25%. NAFLD is a spectrum that includes nonalcoholic fatty liver defined histologically by isolated hepatocytes steatosis without inflammation and nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of NAFLD and is associated with disease progression, development of cirrhosis, and increased rates of liver-specific and overall mortality. The differentiation between NAFLD and NASH as well as staging NASH are important yet challenging clinical problems. Liver biopsy is currently the standard for disease diagnosis and fibrosis staging. However, this procedure is invasive, costly, and cannot be used for longitudinal monitoring. Therefore, several noninvasive quantitative imaging biomarkers have been proposed that can estimate the severity of hepatic steatosis and fibrosis. Despite this, noninvasive diagnosis of NASH and accurate risk stratification remain unmet needs. In this work, the most relevant available imaging biomarkers are reviewed and their application in patients with NAFLD are discussed.
Collapse
Affiliation(s)
- Diana Kadi
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Rohit Loomba
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Mustafa R Bashir
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| |
Collapse
|
17
|
Nishio T, Taura K, Koyama Y, Ishii T, Hatano E. Current status of preoperative risk assessment for posthepatectomy liver failure in patients with hepatocellular carcinoma. Ann Gastroenterol Surg 2023; 7:871-886. [PMID: 37927928 PMCID: PMC10623981 DOI: 10.1002/ags3.12692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 05/03/2023] [Indexed: 11/07/2023] Open
Abstract
Liver resection is an effective therapeutic option for patients with hepatocellular carcinoma. However, posthepatectomy liver failure (PHLF) remains a major cause of hepatectomy-related mortality, and the accurate prediction of PHLF based on preoperative assessment of liver functional reserve is a critical issue. The definition of PHLF proposed by the International Study Group for Liver Surgery has gained acceptance as a standard grading criterion. Liver function can be estimated using a variety of parameters, including routine blood biochemical examinations, clinical scoring systems, dynamic liver function tests, liver stiffness and fibrosis markers, and imaging studies. The Child-Pugh score and model for end-stage liver disease scores are conventionally used for estimating liver decompensation, although the alternatively developed albumin-bilirubin score shows superior performance for predicting hepatic dysfunction. Indocyanine green clearance, a dynamic liver function test mostly used in Japan and other Asian countries, serves as a quantitative estimation of liver function reserve and helps determine indications for surgical procedures according to the estimated risk of PHLF. In an attempt to improve predictive accuracy, specific evaluation of liver fibrosis and portal hypertension has gained popularity, including liver stiffness measurements using ultrasonography or magnetic resonance elastography, as well as noninvasive fibrosis markers. Imaging modalities, including Tc-99m-labeled galactosyl serum albumin scintigraphy and gadolinium-enhanced magnetic resonance imaging, are used for preoperative evaluation in combination with liver volume. This review aims to provide an overview of the usefulness of current options for the preoperative assessment of liver function in predicting PHLF.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kojiro Taura
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Gastroenterological Surgery and OncologyKitano HospitalOsakaJapan
| | - Yukinori Koyama
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
18
|
Wattacheril JJ, Abdelmalek MF, Lim JK, Sanyal AJ. AGA Clinical Practice Update on the Role of Noninvasive Biomarkers in the Evaluation and Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2023; 165:1080-1088. [PMID: 37542503 DOI: 10.1053/j.gastro.2023.06.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 08/07/2023]
Abstract
DESCRIPTION The purpose of this American Gastroenterological Association (AGA) Clinical Practice Update Expert Review is to provide clinicians with guidance on the use of noninvasive tests (NITs) in the evaluation and management of patients with nonalcoholic fatty liver disease (NAFLD). NAFLD affects nearly 30% of the global population and is a growing cause of end-stage liver disease and liver-related health care resource utilization. However, only a minority of all patients with NAFLD experience a liver-related outcome. It is therefore critically important for clinicians to assess prognosis and identify those with increased risk of disease progression and negative clinical outcomes at the time of initial assessment. It is equally important to assess disease trajectory over time, particularly in response to currently available therapeutic approaches. The reference standard for assessment of prognosis and disease monitoring is histologic examination of liver biopsy specimens. There are, however, many limitations of liver biopsies and their reading that have limited their use in routine practice. The utilization of NITs facilitates risk stratification of patients and longitudinal assessment of disease progression for patients with NAFLD. This clinical update provides best practice advice based on a review of the literature on the utilization of NITs in the management of NAFLD for clinicians. Accordingly, a combination of available evidence and consensus-based expert opinion, without formal rating of the strength and quality of the evidence, was used to develop these best practice advice statements. METHODS This Expert Review was commissioned and approved by the AGA Institute Clinical Practice Updates Committee and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership and underwent internal peer review by the Clinical Practice Updates Committee and external peer review through standard procedures of Gastroenterology. These best practice advice statements were drawn from a review of the published literature and from expert opinion. Because systematic reviews were not performed, these best practice advice statements do not carry formal ratings of the quality of evidence or strength of the presented considerations. Best Practice Advice Statements BEST PRACTICE ADVICE 1: NITs can be used for risk stratification in the diagnostic evaluation of patients with NAFLD. BEST PRACTICE ADVICE 2: A Fibrosis 4 Index score <1.3 is associated with strong negative predictive value for advanced hepatic fibrosis and may be useful for exclusion of advanced hepatic fibrosis in patients with NAFLD. BEST PRACTICE ADVICE 3: A combination of 2 or more NITs combining serum biomarkers and/or imaging-based biomarkers is preferred for staging and risk stratification of patients with NAFLD whose Fibrosis 4 Index score is >1.3. BEST PRACTICE ADVICE 4: Use of NITs in accordance with manufacturer's specifications (eg, not in patients with ascites or pacemakers) can minimize risk of discordant results and adverse events. BEST PRACTICE ADVICE 5: NITs should be interpreted with context and consideration of pertinent clinical data (eg, physical examination, biochemical, radiographic, and endoscopic) to optimize positive predictive value in the identification of patients with advanced fibrosis. BEST PRACTICE ADVICE 6: Liver biopsy should be considered for patients with NIT results that are indeterminate or discordant; conflict with other clinical, laboratory, or radiologic findings; or when alternative etiologies for liver disease are suspected. BEST PRACTICE ADVICE 7: Serial longitudinal monitoring using NITs for assessment of disease progression or regression may inform clinical management (ie, response to lifestyle modification or therapeutic intervention). BEST PRACTICE ADVICE 8: Patients with NAFLD and NITs results suggestive of advanced fibrosis (F3) or cirrhosis (F4) should be considered for surveillance of liver complications (eg, hepatocellular carcinoma screening and variceal screening per Baveno criteria). Patients with NAFLD and NITs suggestive of advanced hepatic fibrosis (F3) or (F4), should be monitored with serial liver stiffness measurement; vibration controlled transient elastography; or magnetic resonance elastography, given its correlation with clinically significant portal hypertension and clinical decompensation.
Collapse
Affiliation(s)
- Julia J Wattacheril
- Division of Digestive and Liver Diseases, Columbia University Vagelos College of Physicians and Surgeons, New York, New York; Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York.
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Joseph K Lim
- Section of Digestive Diseases, Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
19
|
Fowler KJ, Venkatesh SK, Obuchowski N, Middleton MS, Chen J, Pepin K, Magnuson J, Brown KJ, Batakis D, Henderson WC, Shankar SS, Kamphaus TN, Pasek A, Calle RA, Sanyal AJ, Loomba R, Ehman R, Samir AE, Sirlin CB, Sherlock SP. Repeatability of MRI Biomarkers in Nonalcoholic Fatty Liver Disease: The NIMBLE Consortium. Radiology 2023; 309:e231092. [PMID: 37815451 PMCID: PMC10625902 DOI: 10.1148/radiol.231092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Background There is a need for reliable noninvasive methods for diagnosing and monitoring nonalcoholic fatty liver disease (NAFLD). Thus, the multidisciplinary Non-invasive Biomarkers of Metabolic Liver disease (NIMBLE) consortium was formed to identify and advance the regulatory qualification of NAFLD imaging biomarkers. Purpose To determine the different-day same-scanner repeatability coefficient of liver MRI biomarkers in patients with NAFLD at risk for steatohepatitis. Materials and Methods NIMBLE 1.2 is a prospective, observational, single-center short-term cross-sectional study (October 2021 to June 2022) in adults with NAFLD across a spectrum of low, intermediate, and high likelihood of advanced fibrosis as determined according to the fibrosis based on four factors (FIB-4) index. Participants underwent up to seven MRI examinations across two visits less than or equal to 7 days apart. Standardized imaging protocols were implemented with six MRI scanners from three vendors at both 1.5 T and 3 T, with central analysis of the data performed by an independent reading center (University of California, San Diego). Trained analysts, who were blinded to clinical data, measured the MRI proton density fat fraction (PDFF), liver stiffness at MR elastography (MRE), and visceral adipose tissue (VAT) for each participant. Point estimates and CIs were calculated using χ2 distribution and statistical modeling for pooled repeatability measures. Results A total of 17 participants (mean age, 58 years ± 8.5 [SD]; 10 female) were included, of which seven (41.2%), six (35.3%), and four (23.5%) participants had a low, intermediate, or high likelihood of advanced fibrosis, respectively. The different-day same-scanner mean measurements were 13%-14% for PDFF, 6.6 L for VAT, and 3.15 kPa for two-dimensional MRE stiffness. The different-day same-scanner repeatability coefficients were 0.22 L (95% CI: 0.17, 0.29) for VAT, 0.75 kPa (95% CI: 0.6, 0.99) for MRE stiffness, 1.19% (95% CI: 0.96, 1.61) for MRI PDFF using magnitude reconstruction, 1.56% (95% CI: 1.26, 2.07) for MRI PDFF using complex reconstruction, and 19.7% (95% CI: 15.8, 26.2) for three-dimensional MRE shear modulus. Conclusion This preliminary study suggests that thresholds of 1.2%-1.6%, 0.22 L, and 0.75 kPa for MRI PDFF, VAT, and MRE, respectively, should be used to discern measurement error from real change in patients with NAFLD. ClinicalTrials.gov registration no. NCT05081427 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kozaka and Matsui in this issue.
Collapse
Affiliation(s)
| | | | - Nancy Obuchowski
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Michael S. Middleton
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Jun Chen
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Kay Pepin
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Jessica Magnuson
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Kathy J. Brown
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Danielle Batakis
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Walter C. Henderson
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Sudha S. Shankar
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Tania N. Kamphaus
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Alex Pasek
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Roberto A. Calle
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Arun J. Sanyal
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Rohit Loomba
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Richard Ehman
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | - Anthony E. Samir
- From the Liver Imaging Group (K.J.F., M.S.M., D.B., W.C.H., C.B.S.)
and Department of Hepatology (R.L.), University of California–San Diego,
6206 Lakewood St, San Diego, CA 92122; Department of Radiology, Mayo Clinic,
Rochester, Minn (S.K.V., J.C., K.P., J.M., K.J.B., R.E.); Department of
Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (N.O.); Pfizer
Research and Development, Pfizer, Inc, Sacramento, Calif (S.S.S.); Foundation
for the National Institutes of Health, North Bethesda, Md (T.N.K., A.P.);
Regeneron Pharmaceuticals, Inc, Tarrytown, NY (R.A.C.); Department of
Gastroenterology, Virginia Commonwealth University, Richmond, Va (A.J.S.);
Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.E.S.);
and Department of Imaging Alliances, Pfizer, Inc, New York, NY (S.P.S.)
| | | | | |
Collapse
|
20
|
Kozaka K, Matsui O. MRI Biomarkers and Their Future Impact on Nonalcoholic Fatty Liver Disease. Radiology 2023; 309:e232420. [PMID: 37815446 DOI: 10.1148/radiol.232420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Affiliation(s)
- Kazuto Kozaka
- From the Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Osamu Matsui
- From the Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
21
|
Jensen LJ, Kim D, Elgeti T, Steffen IG, Schaafs LA, Hamm B, Nagel SN. The role of parametric feature maps to correct different volume of interest sizes: an in vivo liver MRI study. Eur Radiol Exp 2023; 7:48. [PMID: 37670193 PMCID: PMC10480134 DOI: 10.1186/s41747-023-00362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Different volume of interest (VOI) sizes influence radiomic features. This study examined if translating images into feature maps before feature sampling could compensate for these effects in liver magnetic resonance imaging (MRI). METHODS T1- and T2-weighted sequences from three different scanners (two 3-T scanners, one 1.5-T scanner) of 66 patients with normal abdominal MRI were included retrospectively. Three differently sized VOIs (10, 20, and 30 mm in diameter) were drawn in the liver parenchyma (right lobe), excluding adjacent structures. Ninety-three features were extracted conventionally using PyRadiomics. All images were also converted to 93 parametric feature maps using a pretested software. Agreement between the three VOI sizes was assessed with overall concordance correlation coefficients (OCCCs), while OCCCs > 0.85 were rated reproducible. OCCCs were calculated twice: for the VOI sizes of 10, 20, and 30 mm and for those of 20 and 30 mm. RESULTS When extracted from original images, only 4 out of the 93 features were reproducible across all VOI sizes in T1- and T2-weighted images. When the smallest VOI was excluded, 5 features (T1-weighted) and 7 features (T2-weighted) were reproducible. Extraction from parametric maps increased the number of reproducible features to 9 (T1- and T2-weighted) across all VOIs. Excluding the 10-mm VOI, reproducibility improved to 16 (T1-weighted) and 55 features (T2-weighted). The stability of all other features also increased in feature maps. CONCLUSIONS Translating images into parametric maps before feature extraction improves reproducibility across different VOI sizes in normal liver MRI. RELEVANCE STATEMENT The size of the segmented VOI influences the feature quantity of radiomics, while software-based conversion of images into parametric feature maps before feature sampling improves reproducibility across different VOI sizes in MRI of normal liver tissue. KEY POINTS • Parametric feature maps can compensate for different VOI sizes. • The effect seems dependent on the VOI sizes and the MRI sequence. • Feature maps can visualize features throughout the entire image stack.
Collapse
Affiliation(s)
- Laura Jacqueline Jensen
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Damon Kim
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Thomas Elgeti
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ingo Günter Steffen
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Lars-Arne Schaafs
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Bernd Hamm
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sebastian Niko Nagel
- Charité-Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
22
|
Aleef TA, Zeng Q, Moradi H, Mohammed S, Curran T, Honarvar M, Rohling R, Mahdavi SS, Salcudean SE. 3-D Transducer Mounted Shear Wave Absolute Vibro-Elastography: Proof of Concept. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1026-1038. [PMID: 37027576 DOI: 10.1109/tuffc.2023.3249795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Quantitative tissue stiffness characterization using ultrasound (US) has been shown to improve prostate cancer (PCa) detection in multiple studies. Shear wave absolute vibro-elastography (SWAVE) allows quantitative and volumetric assessment of tissue stiffness using external multifrequency excitation. This article presents a proof of concept of a first-of-a-kind 3-D hand-operated endorectal SWAVE system designed to be used during systematic prostate biopsy. The system is developed with a clinical US machine, requiring only an external exciter that can be mounted directly to the transducer. Subsector acquisition of radio frequency (RF) data allows imaging of shear waves with a high effective frame rate (up to 250 Hz). The system was characterized using eight different quality assurance phantoms. Due to the invasive nature of prostate imaging, at this early stage of development, validation of in vivo human tissue was instead carried out by intercostally scanning the livers of n = 7 healthy volunteers. The results are compared with 3-D magnetic resonance elastography (MRE) and an existing 3-D SWAVE system with a matrix array transducer (M-SWAVE). High correlations were found with MRE (99% in phantoms, 94% in liver data) and with M-SWAVE (99% in phantoms, 98% in liver data).
Collapse
|
23
|
Obrzut M, Atamaniuk V, Ehman RL, Yin M, Cholewa M, Gutkowski K, Domka W, Ozga D, Obrzut B. Evaluation of Spleen Stiffness in Young Healthy Volunteers Using Magnetic Resonance Elastography. Diagnostics (Basel) 2023; 13:2738. [PMID: 37685274 PMCID: PMC10486410 DOI: 10.3390/diagnostics13172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE Magnetic resonance elastography (MRE) has been established as the most accurate noninvasive technique for diagnosing liver fibrosis. Recent publications have suggested that the measurement of splenic stiffness is useful in setting where portal hypertension may be present. The goal of the current study was to compile normative data for MRE-assessed stiffness measurements of the spleen in young adults. MATERIALS AND METHODS A total of 100 healthy young Caucasian volunteers (65 females and 35 males) in the age range of 20 to 32 years were enrolled in this study. The participants reported no history of chronic spleen and liver disease, normal alcohol consumption, and a normal diet. The MRE data were acquired by using a 1.5 T whole-body scanner and a 2D GRE pulse sequence with 60 Hz excitation. Spleen stiffness was calculated as a weighted mean of stiffness values in the regions of interest manually drawn by the radiologist on three to five spleen slices. RESULTS Mean spleen stiffness was 5.09 ± 0.65 kPa for the whole group. Male volunteers had slightly higher splenic stiffness compared to females: 5.28 ± 0.78 vs. 4.98 ± 0.51 kPa, however, this difference was not statistically significant (p = 0.12). Spleen stiffness did not correlate with spleen fat content and liver stiffness but a statistically significant correlation with spleen volume was found. CONCLUSIONS The findings of this study provide normative values for 2D MRE-based measurement of spleen stiffness in young adults, a basis for assessing the value of this biomarker in young patients with portal system pathologies.
Collapse
Affiliation(s)
- Marzanna Obrzut
- Institute of Health Sciences, Medical College, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (M.O.)
| | - Vitaliy Atamaniuk
- Department of Biophysics, Institute of Physics, College of Natural Sciences, University of Rzeszow, Prof. Stanisława Pigonia Str. 1, 35-310 Rzeszow, Poland; (V.A.); (M.C.)
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Marian Cholewa
- Department of Biophysics, Institute of Physics, College of Natural Sciences, University of Rzeszow, Prof. Stanisława Pigonia Str. 1, 35-310 Rzeszow, Poland; (V.A.); (M.C.)
| | - Krzysztof Gutkowski
- Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland;
| | - Wojciech Domka
- Department of Otolaryngology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland;
| | - Dorota Ozga
- Institute of Health Sciences, Medical College, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (M.O.)
| | - Bogdan Obrzut
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| |
Collapse
|
24
|
Tipirneni-Sajja A, Brasher S, Shrestha U, Johnson H, Morin C, Satapathy SK. Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms. MAGMA (NEW YORK, N.Y.) 2023; 36:529-551. [PMID: 36515810 DOI: 10.1007/s10334-022-01053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Quantitative magnetic resonance imaging (MRI) techniques are emerging as non-invasive alternatives to biopsy for assessment of diffuse liver diseases of iron overload, steatosis and fibrosis. For testing and validating the accuracy of these techniques, phantoms are often used as stand-ins to human tissue to mimic diffuse liver pathologies. However, currently, there is no standardization in the preparation of MRI-based liver phantoms for mimicking iron overload, steatosis, fibrosis or a combination of these pathologies as various sizes and types of materials are used to mimic the same liver disease. Liver phantoms that mimic specific MR features of diffuse liver diseases observed in vivo are important for testing and calibrating new MRI techniques and for evaluating signal models to accurately quantify these features. In this study, we review the liver morphology associated with these diffuse diseases, discuss the quantitative MR techniques for assessing these liver pathologies, and comprehensively examine published liver phantom studies and discuss their benefits and limitations.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA.
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Sarah Brasher
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Utsav Shrestha
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Cara Morin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sanjaya K Satapathy
- Northwell Health Center for Liver Diseases and Transplantation, Northshore University Hospital/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
25
|
Zheng S, He K, Zhang L, Li M, Zhang H, Gao P. Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging. Eur J Radiol 2023; 165:110912. [PMID: 37290363 DOI: 10.1016/j.ejrad.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Chronic liver disease (CLD) ultimately develops into liver fibrosis and cirrhosis and is a major public health problem globally. The assessment of liver fibrosis is important for patients with CLD for prognostication, treatment decisions, and surveillance. Liver biopsies are traditionally performed to determine the stage of liver fibrosis. However, the risks of complications and technical limitations restrict their application to screening and sequential monitoring in clinical practice. CT and MRI are essential for evaluating cirrhosis-associated complications in patients with CLD, and several non-invasive methods based on them have been proposed. Artificial intelligence (AI) techniques have also been applied to stage liver fibrosis. This review aimed to explore the values of conventional and AI-based CT and MRI quantitative techniques for non-invasive liver fibrosis staging and summarized their diagnostic performance, advantages, and limitations.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Kan He
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Lei Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Mingyang Li
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Huimao Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Pujun Gao
- Department of Hepatology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
26
|
Chen J, Chen J, Heilman JA, Glaser KJ, Grimm RC, Owusu N, Qiu C, Ehman RL, Yin M. Abdominal MR elastography with multiple driver arrays: performance and repeatability. Abdom Radiol (NY) 2023; 48:1945-1954. [PMID: 36928333 PMCID: PMC10201649 DOI: 10.1007/s00261-023-03866-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To evaluate the performance and repeatability assessing liver, spleen, and kidney stiffness with magnetic resonance elastography (MRE), using arrays of pneumatic passive drivers. METHODS An array of four flexible, pneumatically activated passive drivers for abdominal MRE were developed and tested in this study. Multiple MRE acquisitions were performed prospectively in a series of eleven volunteers, with activation of all combinations of the four drivers, individually and simultaneously. MRE exams were repeated three times to study within-day and between-day test-retest repeatability. Semi-quantitative evaluation of wave propagation and penetration, and quantitative assessment of tissue stiffness was conducted for liver, spleen, and kidneys. RESULTS When driver location and amplitude were sufficient to achieve necessary shear wave illumination in any given region of interest, the results showed excellent test-retest repeatability in abdominal organ stiffness with both single and multiple driver configurations. The results confirmed that multiple driver arrays provided suitable shear wave illumination over a larger region of the abdomen, allowing more reliable stiffness measurements in multiple organs. MRE assessment of the spleen was found to be prone to effects of excessive shear wave amplitude, however. CONCLUSION A multiple driver array provides shear wave illumination over a larger region of the abdomen than obtained with a single driver, for MRE assessment of multiple abdominal organs, providing excellent test-retest repeatability in stiffness measurements. However, careful tuning of the location and amplitude of each driver is essential to achieve consistent results.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jun Chen
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jeremiah A Heilman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Roger C Grimm
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nana Owusu
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Caixin Qiu
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Low G, Ferguson C, Locas S, Tu W, Manolea F, Sam M, Wilson MP. Multiparametric MR assessment of liver fat, iron, and fibrosis: a concise overview of the liver "Triple Screen". Abdom Radiol (NY) 2023; 48:2060-2073. [PMID: 37041393 DOI: 10.1007/s00261-023-03887-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Chronic liver disease (CLD) is a common source of morbidity and mortality worldwide. Non-alcoholic fatty liver disease (NAFLD) serves as a major cause of CLD with a rising annual prevalence. Additionally, iron overload can be both a cause and effect of CLD with a negative synergistic effect when combined with NAFLD. The development of state-of-the-art multiparametric MR solutions has led to a change in the diagnostic paradigm in CLD, shifting from traditional liver biopsy to innovative non-invasive methods for providing accurate and reliable detection and quantification of the disease burden. Novel imaging biomarkers such as MRI-PDFF for fat, R2 and R2* for iron, and liver stiffness for fibrosis provide important information for diagnosis, surveillance, risk stratification, and treatment. In this article, we provide a concise overview of the MR concepts and techniques involved in the detection and quantification of liver fat, iron, and fibrosis including their relative strengths and limitations and discuss a practical abbreviated MR protocol for clinical use that integrates these three MR biomarkers into a single simplified MR assessment. Multiparametric MR techniques provide accurate and reliable non-invasive detection and quantification of liver fat, iron, and fibrosis. These techniques can be combined in a single abbreviated MR "Triple Screen" assessment to offer a more complete metabolic imaging profile of CLD.
Collapse
Affiliation(s)
- Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Craig Ferguson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Stephanie Locas
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Wendy Tu
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Florin Manolea
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Medica Sam
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Mitchell P Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada.
| |
Collapse
|
28
|
Mahalingam N, Trout AT, Zhang B, Castro-Rojas C, Miethke AG, Dillman JR. Longitudinal changes in quantitative magnetic resonance imaging metrics in children and young adults with autoimmune liver disease. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:1933-1944. [PMID: 36799997 DOI: 10.1007/s00261-022-03733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 02/18/2023]
Abstract
PURPOSE To assess longitudinal changes in quantitative MRI metrics in pediatric and young adult patients with autoimmune liver disease (AILD). METHODS This prospective, IRB-approved study included 20 children and young adults (median age = 15 years) with primary sclerosing cholangitis (PSC)/autoimmune sclerosing cholangitis (ASC) and 19 (median age = 17 years) with autoimmune hepatitis (AIH). At a field strength of 1.5-T, T2*-corrected T1 mapping (cT1), 3D fast spin-echo MRCP, and 2D gradient recalled echo MR elastography (MRE) were performed at baseline, one year, and two years. cT1 and quantitative MRCP were processed using LiverMultiScan and MRCP + , respectively (Perspectum Ltd, Oxford, UK). Linear mixed models were used to assess longitudinal changes in quantitative MRI metrics. Spearman rank-order correlation was used to assess relationships between changes in quantitative MRI metrics. RESULTS Changes in quantitative MRI metrics greater than established repeatability coefficients were measured in six (cT1) and five (MRE) patients with PSC/ASC as well as in six patients (cT1 and MRE) with AIH, although linear mixed models identified no significant changes for the subgroups as a whole. For PSC/ASC, there were positive correlations between change in liver stiffness and changes in bile duct strictures (ρ = 0.68; p = 0.005) and bile duct dilations (ρ = 0.70; p = 0.004) between baseline and Year 2. CONCLUSION On average, there were no significant changes in quantitative MRI metrics over a two-year period in children and young adults with AILD. However, worsening cholangiopathy was associated with increasing liver stiffness by MRE in patients with PSC/ASC.
Collapse
Affiliation(s)
- Neeraja Mahalingam
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 250 Albert Sabin Way, Cincinnati, OH, 45229, USA.
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 250 Albert Sabin Way, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bin Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cyd Castro-Rojas
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander G Miethke
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 250 Albert Sabin Way, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
29
|
Yu JH, Lee HA, Kim SU. Noninvasive imaging biomarkers for liver fibrosis in nonalcoholic fatty liver disease: current and future. Clin Mol Hepatol 2023; 29:S136-S149. [PMID: 36503205 PMCID: PMC10029967 DOI: 10.3350/cmh.2022.0436] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly prevalent worldwide and becoming a major cause of liver disease-related morbidity and mortality. The presence of liver fibrosis in patients with NAFLD is closely related to prognosis, including the development of hepatocellular carcinoma and other complications of cirrhosis. Therefore, assessment of the presence of significant or advanced liver fibrosis is crucial. Although liver biopsy has been considered the "gold standard" method for evaluating the degree of liver fibrosis, it is not suitable for extensive use in all patients with NAFLD owing to its invasiveness and high cost. Therefore, noninvasive biochemical and imaging biomarkers have been developed to overcome the limitations of liver biopsy. Imaging biomarkers for the stratification of liver fibrosis have been evaluated in patients with NAFLD using different imaging techniques, such as transient elastography, shear wave elastography, and magnetic resonance elastography. Furthermore, artificial intelligence and deep learning methods are increasingly being applied to improve the diagnostic accuracy of imaging techniques and overcome the pitfalls of existing imaging biomarkers. In this review, we describe the usefulness and future prospects of noninvasive imaging biomarkers that have been studied and used to evaluate the degree of liver fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital and School of Medicine, Incheon, Korea
| | - Han Ah Lee
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
30
|
Idilman IS, Karcaaltincaba M. The role of magnetic resonance elastography in the evaluation of nonalcoholic fatty liver disease. HEPATOLOGY FORUM 2023; 4:1-2. [PMID: 36843890 PMCID: PMC9951892 DOI: 10.14744/hf.2023.2023.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Affiliation(s)
- Ilkay S. Idilman
- Corresponding author: Ilkay S. Idilman; Hacettepe Universitesi Tip Fakultesi, Radyoloji Anabilim Dali, Ankara, Turkiye Phone: +90 312 305 11 88; e-mail:
| | | |
Collapse
|
31
|
Semmler G, Thorhauge KH, Reiberger T, Thiele M. Letter to the editor: Change in serial liver stiffness measurement by magnetic resonance elastography and outcomes in NAFLD. Hepatology 2023; 77:E1-E2. [PMID: 35833348 DOI: 10.1002/hep.32670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III , Medical University of Vienna , Vienna , Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III , Medical University of Vienna , Vienna , Austria
| | - Katrine Holtz Thorhauge
- Odense Liver Research Centre, Department of Gastroenterology and Hepatology , Odense University Hospital , Odense , Denmark
- Department of Clinical Research , University of Southern Denmark , Odense , Denmark
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III , Medical University of Vienna , Vienna , Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III , Medical University of Vienna , Vienna , Austria
| | - Maja Thiele
- Odense Liver Research Centre, Department of Gastroenterology and Hepatology , Odense University Hospital , Odense , Denmark
- Department of Clinical Research , University of Southern Denmark , Odense , Denmark
| |
Collapse
|
32
|
Gidener T, Dierkhising R, Mara KC, Therneau TM, Venkatesh SK, Ehman RL, Yin M, Allen AM. Change in serial liver stiffness measurement by magnetic resonance elastography and outcomes in NAFLD. Hepatology 2023; 77:268-274. [PMID: 35642504 PMCID: PMC9712594 DOI: 10.1002/hep.32594] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS The impact of disease progression in NAFLD on liver outcomes remains poorly understood. We aimed to investigate NAFLD progression using longitudinal liver stiffness measurements (LSM) by serial magnetic resonance elastography (MRE) and the association with liver outcomes. APPROACH AND RESULTS All adult patients with NAFLD who underwent at least two serial MREs for clinical evaluation at Mayo Clinic, Rochester, between 2007 and 2019 were identified from the institutional database. Progression and regression were defined based on LSM change of 19% above or below 19% of initial LSM, respectively, based on Quantitative Imaging Biomarker Alliance consensus. The association between change in LSM and liver-related outcomes occurring after the last MRE was examined using time-to-event analysis. A total of 128 participants underwent serial MREs (53% female, median age 59 years). The median time between paired MREs was 3.4 (range 1-10.7) years. NAFLD progression (LSM = +0.61 kPa/year) was identified in 17 patients (13.3%). NAFLD regression (-0.40 kPa/year) occurred in 35 patients (27.3%). Stable LSM was noted in 76 participants (59.4%). In NAFLD without cirrhosis at baseline ( n = 75), cirrhosis development occurred in 14% of LSM progressors and 2.9% of non-progressors ( p = 0.059) over a median 2.7 years of follow-up from the last MRE. Among those with compensated cirrhosis at baseline MRE ( n = 29), decompensation or death occurred in 100% of LSM progressors and 19% of non-progressors ( p < 0.001) over a median 2.5 years of follow-up after the last MRE. CONCLUSIONS Noninvasive monitoring of LSM by conventional MRE is a promising method of longitudinal NAFLD monitoring and risk estimation of liver-related outcomes in NAFLD.
Collapse
Affiliation(s)
- Tolga Gidener
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Ross Dierkhising
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Kristin C. Mara
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Terry M. Therneau
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | | | | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
33
|
Naganuma H, Ishida H. Factors other than fibrosis that increase measured shear wave velocity. World J Gastroenterol 2022; 28:6512-6521. [PMID: 36569278 PMCID: PMC9782834 DOI: 10.3748/wjg.v28.i46.6512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Shear wave elastography (SWE) is now becoming an indispensable diagnostic tool in the routine examination of liver diseases. In particular, accuracy is required for shear wave propagation velocity measurement, which is directly related to diagnostic accuracy. It is generally accepted that the liver shear wave propagation velocity reflects the degree of fibrosis, but there are still few reports on other factors that increase the shear wave propagation velocity. In this study, we reviewed such factors in the literature and examined their mechanisms. Current SWE measures propagation velocity based on the assumption that the medium has a homogeneous structure, uniform density, and is purely elastic. Otherwise, the measurement is subject to error. The other (confounding) factors that we routinely experience are primarily: (1) Conditions that appear to increase the viscous component; and (2) Conditions that appear to increase tissue density. Clinically, the former includes acute hepatitis, congested liver, biliary obstruction, etc, and the latter includes diffuse infiltration of malignant cells, various storage diseases, tissue necrosis, etc. In any case, it is important to evaluate SWE in the context of the entire clinical picture.
Collapse
Affiliation(s)
- Hiroko Naganuma
- Department of Gastroenterology, Yokote Municipal Hospital, Yokote 013-8602, Japan
| | - Hideaki Ishida
- Department of Gastroenterology, Akita Red Cross Hospital, Akita 010-1495, Japan
| |
Collapse
|
34
|
Pagé G, Julea F, Paradis V, Vilgrain V, Valla D, Van Beers BE, Garteiser P. Comparative Analysis of a Locally Resampling
MR
Elastography Reconstruction Algorithm in Liver Fibrosis. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Gwenaël Pagé
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
| | - Felicia Julea
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
| | - Valérie Paradis
- Department of Pathology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Valérie Vilgrain
- Department of Radiology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Dominique Valla
- Department of Hepatology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Bernard E. Van Beers
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
- Department of Radiology AP‐HP, Beaujon University Hospital Paris Nord Clichy France
| | - Philippe Garteiser
- Laboratory of Imaging Biomarkers Université Paris Cité, Inserm, CRI Paris France
| |
Collapse
|
35
|
Ozturk A, Olson MC, Samir AE, Venkatesh SK. Liver fibrosis assessment: MR and US elastography. Abdom Radiol (NY) 2022; 47:3037-3050. [PMID: 34687329 PMCID: PMC9033887 DOI: 10.1007/s00261-021-03269-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Elastography has emerged as a preferred non-invasive imaging technique for the clinical assessment of liver fibrosis. Elastography methods provide liver stiffness measurement (LSM) as a surrogate quantitative biomarker for fibrosis burden in chronic liver disease (CLD). Elastography can be performed either with ultrasound or MRI. Currently available ultrasound-based methods include strain elastography, two-dimensional shear wave elastography (2D-SWE), point shear wave elastography (pSWE), and vibration-controlled transient elastography (VCTE). MR Elastography (MRE) is widely available as two-dimensional gradient echo MRE (2D-GRE-MRE) technique. US-based methods provide estimated Young's modulus (eYM) and MRE provides magnitude of the complex shear modulus. MRE and ultrasound methods have proven to be accurate methods for detection of advanced liver fibrosis and cirrhosis. Other clinical applications of elastography include liver decompensation prediction, and differentiation of non-alcoholic steatohepatitis (NASH) from simple steatosis (SS). In this review, we briefly describe the different elastography methods, discuss current clinical applications, and provide an overview of advances in the field of liver elastography.
Collapse
Affiliation(s)
- Arinc Ozturk
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael C Olson
- Division of Abdominal Imaging, Radiology, Mayo Clinic Rochester, 200, First Street SW, Rochester, MN, 55905, USA
| | - Anthony E Samir
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Sudhakar K Venkatesh
- Division of Abdominal Imaging, Radiology, Mayo Clinic Rochester, 200, First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
36
|
Serai S, Tsitsiou Y, Wilkins B, Ghosh A, Cahill A, Biko D, Rychik J, Rand E, Goldberg D. MR elastography-based staging of liver fibrosis in Fontan procedure associated liver disease is confounded by effects of venous congestion. Clin Radiol 2022; 77:e776-e782. [DOI: 10.1016/j.crad.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
|
37
|
Tang A, Dzyubak B, Yin M, Schlein A, Henderson WC, Hooker JC, Delgado TI, Middleton MS, Zheng L, Wolfson T, Gamst A, Loomba R, Ehman RL, Sirlin CB. MR elastography in nonalcoholic fatty liver disease: inter-center and inter-analysis-method measurement reproducibility and accuracy at 3T. Eur Radiol 2022; 32:2937-2948. [PMID: 34928415 PMCID: PMC9038857 DOI: 10.1007/s00330-021-08381-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess reproducibility and fibrosis classification accuracy of magnetic resonance elastography (MRE)-determined liver stiffness measured manually at two different centers, and by automated analysis software in adults with nonalcoholic fatty liver disease (NAFLD), using histopathology as a reference standard. METHODS This retrospective, cross-sectional study included 91 adults with NAFLD who underwent liver MRE and biopsy. MRE-determined liver stiffness was measured independently for this analysis by an image analyst at each of two centers using standardized manual analysis methodology, and separately by an automated analysis. Reproducibility was assessed pairwise by intraclass correlation coefficient (ICC) and Bland-Altman analysis. Diagnostic accuracy was assessed by receiver operating characteristic (ROC) analyses. RESULTS ICC of liver stiffness measurements was 0.95 (95% CI: 0.93, 0.97) between center 1 and center 2 analysts, 0.96 (95% CI: 0.94, 0.97) between the center 1 analyst and automated analysis, and 0.94 (95% CI: 0.91, 0.96) between the center 2 analyst and automated analysis. Mean bias and 95% limits of agreement were 0.06 ± 0.38 kPa between center 1 and center 2 analysts, 0.05 ± 0.32 kPa between the center 1 analyst and automated analysis, and 0.11 ± 0.41 kPa between the center 2 analyst and automated analysis. The area under the ROC curves for the center 1 analyst, center 2 analyst, and automated analysis were 0.834, 0.833, and 0.847 for distinguishing fibrosis stage 0 vs. ≥ 1, and 0.939, 0.947, and 0.940 for distinguishing fibrosis stage ≤ 2 vs. ≥ 3. CONCLUSION MRE-determined liver stiffness can be measured with high reproducibility and fibrosis classification accuracy at different centers and by an automated analysis. KEY POINTS • Reproducibility of MRE liver stiffness measurements in adults with nonalcoholic fatty liver disease is high between two experienced centers and between manual and automated analysis methods. • Analysts at two centers had similar high diagnostic accuracy for distinguishing dichotomized fibrosis stages. • Automated analysis provides similar diagnostic accuracy as manual analysis for advanced fibrosis.
Collapse
Affiliation(s)
- An Tang
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Bogdan Dzyubak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Schlein
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Walter C Henderson
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jonathan C Hooker
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Timoteo I Delgado
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Michael S Middleton
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Lin Zheng
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
| | - Tanya Wolfson
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
| | - Anthony Gamst
- Department of Mathematics, University of California San Diego, San Diego, CA, USA
- Computational and Applied Statistics Laboratory (CASL), SDSC - University of California, San Diego, CA, USA
| | - Rohit Loomba
- Division of Gastroenterology, Hepatology, and Medicine, University of California San Diego, San Diego, California, USA
| | | | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
38
|
Automated CNN-Based Analysis Versus Manual Analysis for MR Elastography in Nonalcoholic Fatty Liver Disease: Inter-method Agreement and Fibrosis Stage Discriminative Performance. AJR Am J Roentgenol 2022; 219:224-232. [PMID: 35107306 DOI: 10.2214/ajr.21.27135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Histological fibrosis stage is the most important prognostic factor in chronic liver disease. MR elastography (MRE) is the most accurate noninvasive method for detecting and staging liver fibrosis. Although accurate, manual ROI-based MRE analysis is complex, time consuming, requires specialized readers, and prone to methodologic variability and suboptimal inter-reader agreement. Objectives: To develop an automated convolutional neural network (CNN)-based method for liver MRE analysis, evaluate its agreement with manual ROI-based analysis, and assess its discriminative performance for dichotomized fibrosis stages using histology as reference standard. Methods: In this retrospective cross-sectional study, 675 participants who underwent MRE using different MRI systems and field strengths at 28 imaging sites from five multicenter international clinical trials of nonalcoholic steatohepatitis were included for algorithm development and internal testing of agreement between automated CNN- and manual ROI-based analyses. Eighty-one patients (52 women, 29 men; mean age, 54 years) who underwent MRE using a single 3-Tesla system and liver biopsy for clinical purposes at a single institution were included for external testing of agreement and assessment of fibrosis stage discriminative performance. Agreement was evaluated using intra-class correlation coefficients (ICC). 95% CIs were computed using bootstrapping. Discriminative performance of each method for dichotomized histologic fibrosis stage was evaluated by AUC and compared using bootstrapping. Results: Mean CNN- and manual ROI-based stiffness measurements ranged from 3.21 to 3.34 kPa in trial participants and from 3.30 to 3.45 kPa in clinical patients. ICC for CNN- and manual ROI-based measurements was 0.98 (95% CI, 0.978-0.98) in trial participants and 0.99 (95% CI: 0.98-0.99) in clinical patients. AUC for classification of dichotomized fibrosis stage ranged from 0.89-0.93 for CNN- and 0.87-0.93 for manual ROI-based analyses (p=.23-.75). Conclusion: Stiffness measurements using the automated CNN-based method agreed strongly with manual ROIbased analysis across MRI systems and field strengths, with excellent discriminative performance for histology-determined dichotomized fibrosis stages in external testing. Clinical Impact: Given the high incidence of chronic liver disease worldwide, it is important that noninvasive tools to assess fibrosis are applied reliably across different settings. CNN-based analysis is feasible and may reduce reliance on expert image analysts.
Collapse
|
39
|
Pepin KM, Welle CL, Guglielmo FF, Dillman JR, Venkatesh SK. Magnetic resonance elastography of the liver: everything you need to know to get started. Abdom Radiol (NY) 2022; 47:94-114. [PMID: 34725719 PMCID: PMC9538666 DOI: 10.1007/s00261-021-03324-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Magnetic resonance elastography (MRE) of the liver has emerged as the non-invasive standard for the evaluation of liver fibrosis in chronic liver diseases (CLDs). The utility of MRE in the evaluation of different CLD in both adults and children has been demonstrated in several studies, and MRE has been recommended by several clinical societies. Consequently, the clinical indications for evaluation of CLD with MRE have increased, and MRE is currently used as an add-on test during routine liver MRI studies or as a standalone test. To meet the increasing clinical demand, MRE is being installed in many academic and private practice imaging centers. There is a need for a comprehensive practical guide to help these practices to deliver high-quality liver MRE studies as well as troubleshoot the common issues with MRE to ensure smooth running of the service. This comprehensive clinical practice review summarizes the indications and provides an overview on why to use MRE, technical requirements, system set-up, patient preparation, acquiring the data, and interpretation.
Collapse
Affiliation(s)
- Kay M Pepin
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
- Resoundant Inc, Rochester, MN, USA
| | - Christopher L Welle
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | | | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
40
|
Kafali SG, Armstrong T, Shih SF, Kim GJ, Holtrop JL, Venick RS, Ghahremani S, Bolster BD, Hillenbrand CM, Calkins KL, Wu HH. Free-breathing radial magnetic resonance elastography of the liver in children at 3 T: a pilot study. Pediatr Radiol 2022; 52:1314-1325. [PMID: 35366073 PMCID: PMC9192470 DOI: 10.1007/s00247-022-05297-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Magnetic resonance (MR) elastography of the liver measures hepatic stiffness, which correlates with the histopathological staging of liver fibrosis. Conventional Cartesian gradient-echo (GRE) MR elastography requires breath-holding, which is challenging for children. Non-Cartesian radial free-breathing MR elastography is a potential solution to this problem. OBJECTIVE To investigate radial free-breathing MR elastography for measuring hepatic stiffness in children. MATERIALS AND METHODS In this prospective pilot study, 14 healthy children and 9 children with liver disease were scanned at 3 T using 2-D Cartesian GRE breath-hold MR elastography (22 s/slice) and 2-D radial GRE free-breathing MR elastography (163 s/slice). Each sequence was acquired twice. Agreement in the stiffness measurements was evaluated using Lin's concordance correlation coefficient (CCC) and within-subject mean difference. The repeatability was assessed using the within-subject coefficient of variation and intraclass correlation coefficient (ICC). RESULTS Fourteen healthy children and seven children with liver disease completed the study. Median (±interquartile range) normalized measurable liver areas were 62.6% (±26.4%) and 44.1% (±39.6%) for scan 1, and 60.3% (±21.8%) and 43.9% (±44.2%) for scan 2, for Cartesian and radial techniques, respectively. Hepatic stiffness from the Cartesian and radial techniques had close agreement with CCC of 0.89 and 0.94, and mean difference of 0.03 kPa and -0.01 kPa, for scans 1 and 2. Cartesian and radial techniques achieved similar repeatability with within-subject coefficient of variation=1.9% and 3.4%, and ICC=0.93 and 0.92, respectively. CONCLUSION In this pilot study, radial free-breathing MR elastography was repeatable and in agreement with Cartesian breath-hold MR elastography in children.
Collapse
Affiliation(s)
- Sevgi Gokce Kafali
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095 USA ,Department of Bioengineering, University of California Los Angeles, Los Angeles, CA USA
| | - Tess Armstrong
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095 USA
| | - Shu-Fu Shih
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095 USA ,Department of Bioengineering, University of California Los Angeles, Los Angeles, CA USA
| | - Grace J. Kim
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095 USA
| | - Joseph L. Holtrop
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Robert S. Venick
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Shahnaz Ghahremani
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095 USA
| | | | - Claudia M. Hillenbrand
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN USA ,Research Imaging NSW, University of New South Wales, Sydney, Australia
| | - Kara L. Calkins
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Holden H. Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095 USA ,Department of Bioengineering, University of California Los Angeles, Los Angeles, CA USA
| |
Collapse
|
41
|
Kharat A, Vanpully NS, Jeeson JC. Simplified Guide to MR Elastography in Early Detection of Hepatic Fibrosis with Case Reports: The New Norm in Assessing Liver Health. Indian J Radiol Imaging 2021; 31:644-652. [PMID: 34790310 PMCID: PMC8590563 DOI: 10.1055/s-0041-1735929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current unhealthy diets and sedentary lifestyle have led to increase in the prevalence of diabetes and metabolic syndrome globally. Fatty liver is a common occurrence in metabolic syndrome. The liver health is often ignored due to delayed warning signs. Fatty changes of the liver is one of the common findings in ultrasonography. Ultrasound does not detect fibrosis except when cirrhosis is developed. Early stages of fibrosis are asymptomatic with no significant laboratory or preliminary imaging findings. With fibrosis, the elasticity of the liver is reduced and becomes stiffer. Over the years, many techniques have developed to assess the stiffness of the liver, starting from palpation, ultrasonography, and recently developed magnetic resonance elastography (MRE). In this article, we have tried to simplify the concepts of MRE to detect fibrosis and present few case reports. The basic steps involved in generating elastograms and interpretation with some insight on how to incorporate it into the clinical workflow are discussed. MRE is superior to various other available techniques and even offers certain advantages over biopsy. MRE is FDA approved for liver fibrosis since 2009, yet it is hardly used in the Indian setting. MRE is a safe and noninvasive technique to evaluate a large volume of the liver and can be a new norm for the evaluation of fatty liver. Magnetic resonance imaging (MRI)-based elastography techniques hold an exciting future in providing mechanical properties of tissues in various organs like spleen, brain, kidney, and heart.
Collapse
Affiliation(s)
- Amit Kharat
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Nikhith Soman Vanpully
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Jacob Cheeran Jeeson
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
42
|
Chouhan MD, Fitzke HE, Bainbridge A, Atkinson D, Halligan S, Davies N, Lythgoe MF, Mookerjee RP, Menys A, Taylor SA. Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization tagging-preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis. Abdom Radiol (NY) 2021; 46:4660-4670. [PMID: 34148103 DOI: 10.1007/s00261-021-03168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE MR elastography and magnetization-tagging use liver stiffness (LS) measurements to diagnose fibrosis but require physical drivers, specialist sequences and post-processing. Here we evaluate non-rigid registration of dynamic two-dimensional cine MRI images to measure cardiac-induced liver deformation (LD) as a measure of LS by (i) assessing preclinical proof-of-concept, (ii) clinical reproducibility and inter-reader variability, (iii) the effects of hepatic hemodynamic changes and (iv) feasibility in patients with cirrhosis. METHODS Sprague-Dawley rats (n = 21 bile duct ligated (BDL), n = 17 sham-operated controls) and fasted patients with liver cirrhosis (n = 11) and healthy volunteers (HVs, n = 10) underwent spoiled gradient-echo short-axis cardiac cine MRI studies at 9.4 T (rodents) and 3.0 T (humans). LD measurements were obtained from intrahepatic sub-cardiac regions-of-interest close to the diaphragmatic margin. One-week reproducibility and prandial stress induced hemodynamic changes were assessed in healthy volunteers. RESULTS Normalized LD was higher in BDL (1.304 ± 0.062) compared with sham-operated rats (1.058 ± 0.045, P = 0.0031). HV seven-day reproducibility Bland-Altman (BA) limits-of-agreement (LoAs) were ± 0.028 a.u. and inter-reader variability BA LoAs were ± 0.030 a.u. Post-prandial LD increases were non-significant (+ 0.0083 ± 0.0076 a.u., P = 0.3028) and uncorrelated with PV flow changes (r = 0.42, p = 0.2219). LD measurements successfully obtained from all patients were not significantly higher in cirrhotics (0.102 ± 0.0099 a.u.) compared with HVs (0.080 ± 0.0063 a.u., P = 0.0847). CONCLUSION Cardiac-induced LD is a conceptually reasonable approach from preclinical studies, measurements demonstrate good reproducibility and inter-reader variability, are less likely to be affected by hepatic hemodynamic changes and are feasible in patients with cirrhosis.
Collapse
Affiliation(s)
- Manil D Chouhan
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK.
| | - Heather E Fitzke
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
- Wingate Institute of Neurogastroenterology, Neuroscience and Trauma, Queen Mary University of London (QMUL), London, UK
| | - Alan Bainbridge
- Department of Medical Physics, University College London Hospitals NHS Trust, London, UK
| | - David Atkinson
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
| | - Steve Halligan
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
| | - Nathan Davies
- Division of Medicine, Institute for Liver and Digestive Health, University College London (UCL), London, UK
| | - Mark F Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London, UK
| | - Rajeshwar P Mookerjee
- Division of Medicine, Institute for Liver and Digestive Health, University College London (UCL), London, UK
| | - Alex Menys
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
- Motilent, London, UK
| | - Stuart A Taylor
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
| |
Collapse
|
43
|
Garteiser P, Pagé G, d'Assignies G, Leitao HS, Vilgrain V, Sinkus R, Van Beers BE. Necro-inflammatory activity grading in chronic viral hepatitis with three-dimensional multifrequency MR elastography. Sci Rep 2021; 11:19386. [PMID: 34588519 PMCID: PMC8481240 DOI: 10.1038/s41598-021-98726-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to assess the diagnostic value of multifrequency MR elastography for grading necro-inflammation in the liver. Fifty participants with chronic hepatitis B or C were recruited for this institutional review board-approved study. Their liver was examined with multifrequency MR elastography. The storage, shear and loss moduli, and the damping ratio were measured at 56 Hz. The multifrequency wave dispersion coefficient of the shear modulus was calculated. The measurements were compared to reference markers of necro-inflammation and fibrosis with Spearman correlations and multiple regression analysis. Diagnostic accuracy was assessed. At multiple regression analysis, necro-inflammation was the only determinant of the multifrequency dispersion coefficient, whereas fibrosis was the only determinant of the storage, loss and shear moduli. The multifrequency dispersion coefficient had the largest AUC for necro-inflammatory activity A ≥ 2 [0.84 (0.71-0.93) vs. storage modulus AUC: 0.65 (0.50-0.79), p = 0.03], whereas the storage modulus had the largest AUC for fibrosis F ≥ 2 [AUC (95% confidence intervals) 0.91 (0.79-0.98)] and cirrhosis F4 [0.97 (0.88-1.00)]. The measurement of the multifrequency dispersion coefficient at three-dimensional MR elastography has the potential to grade liver necro-inflammation in patients with chronic vial hepatitis.
Collapse
Affiliation(s)
- Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149 Inserm, Université de Paris, 75018, Paris, France.
| | - Gwenaël Pagé
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149 Inserm, Université de Paris, 75018, Paris, France
| | - Gaspard d'Assignies
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149 Inserm, Université de Paris, 75018, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, 92110, Clichy, France
| | - Helena S Leitao
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149 Inserm, Université de Paris, 75018, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, 92110, Clichy, France
| | - Valérie Vilgrain
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149 Inserm, Université de Paris, 75018, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, 92110, Clichy, France
| | - Ralph Sinkus
- Laboratory for Vascular Translational Science, UMR 1148 Inserm, Université de Paris, 75018, Paris, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149 Inserm, Université de Paris, 75018, Paris, France
- Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, 92110, Clichy, France
| |
Collapse
|
44
|
Plaikner M, Kremser C, Zoller H, Kannengiesser S, Henninger B. MR elastography in patients with suspected diffuse liver disease at 1.5T: Intraindividual comparison of gradient-recalled echo versus spin-echo echo-planar imaging sequences and investigation of potential confounding factors. Eur J Radiol 2021; 142:109898. [PMID: 34388628 DOI: 10.1016/j.ejrad.2021.109898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To compare liver stiffness (LS) in patients with suspected diffuse liver disease between gradient-recalled-echo magnetic resonance elastography (GRE-MRE) and different spin-echo echo-planar imaging (SE-EPI-MRE) sequences and to investigate confounding factors including fat, iron, age, and sex. METHOD LS was measured at 1.5T using GRE-MRE, SE-EPI-MRE and short-TE-SE-EPI-MRE (hiSE-EPI-MRE) sequences and compared using Bland-Altman-plots together with concordance correlation coefficients (CCC). Success gradings were evaluated considering possible confounding factors. RESULTS 305 patients (225 male, 80 females, mean age 51.12 years) were included. 109/305 showed hepatic iron overload, 183 hepatic steatosis. The mean difference (bias) in stiffness values between GRE-MRE and SE-EPI-MRE/hiSE-EPI-MRE was 0.15/0.2 kPa (LOA: -0.72,0.41 kPa/-0.94,0.55 kPa), between SE-EPI-MRE and hiSE-EPI-MRE 0.04 kPa (LOA: -0.62,0.53 kPa). The CCC for agreement between stiffness values for GRE-MRE and SE-EPI-MRE was 0.94 (0.92-0.95), 0.89 (0.86-0.91) for hiSE-EPI-MRE and GRE-MRE and 0.94 (0.92-0.95) for SE-EPI-MRE and hiSE-EPI-MRE. Using GRE-MRE, 72/305 showed unusable results whereby all these patients had high iron levels (mean R2*=209.7 1/s). For SE-EPI-MRE and hiSE-EPI-MRE only 10/305 and 8/305 were inconclusive respectively, corresponding to a significantly higher iron load (mean R2*= 549.2 1/s for SE-EPI-MRE and 570.7 1/s for hiSE-EPI-MRE). Concerning fat, age or sex no significant influence on success was observed for all sequences. CONCLUSIONS Good agreement of LS values was observed between GRE-MRE and SE-EPI-MRE sequences. The number of successful exams, however, was considerably lower for GRE-MRE, mainly due to iron content. Study reference number: AN5093.
Collapse
Affiliation(s)
- Michaela Plaikner
- Medical University of Innsbruck, Department of Radiology, Innsbruck, Austria
| | - Christian Kremser
- Medical University of Innsbruck, Department of Radiology, Innsbruck, Austria.
| | - Heinz Zoller
- Medical University of Innsbruck, Department of Internal Medicine, Innsbruck, Austria
| | | | - Benjamin Henninger
- Medical University of Innsbruck, Department of Radiology, Innsbruck, Austria
| |
Collapse
|
45
|
Comparison of the diagnostic performance of 2D and 3D MR elastography in staging liver fibrosis. Eur Radiol 2021; 31:9468-9478. [PMID: 34023968 DOI: 10.1007/s00330-021-08053-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To compare the diagnostic performance and image quality of state-of-the-art 2D MR elastography (MRE) and 3D MRE in the basic application of liver fibrosis staging. METHODS This retrospective study assessed data from 293 patients who underwent 2D and 3D MRE examinations. MRE image quality was assessed with a qualitative 2-point grading system by evaluating artifacts. Two experienced analysts independently measured mean liver stiffness values. The interobserver agreement of liver stiffness measurement was assessed by the intraclass correlation coefficient (ICC). The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance of 2D and 3D MRE and blood-based markers for fibrosis staging using the pathology-proven liver fibrosis stage as the gold standard. RESULTS The image quality provided by 3D MRE was graded as significantly higher than that obtained with the 2D MRE method (p < 0.01). Interobserver agreement in liver stiffness measurements was higher for 3D MRE (ICC: 3D 0.979 vs 2D 0.955). The AUC values for discriminating ≥ F1, ≥ F2, ≥ F3, and F4 fibrosis for 3D MRE (0.89, 0.92, 0.95, and 0.93) were similar to those for 2D MRE (0.89, 0.91, 0.94, and 0.92). Both the 2D and 3D MRE methods provided superior accuracy to the blood-based biomarkers, including APRI, FIB-4, and Forns index, especially for ≥ F2, ≥ F3, and F4 fibrosis stages (all p < 0.01). CONCLUSIONS While 3D MRE offers certain advantages and opportunities for new applications of MRE, current widely deployed 2D MRE technology has comparable performance in the basic application of detecting and staging liver fibrosis. KEY POINTS • 2D MRE and 3D MRE have comparable diagnostic performance in detecting and staging liver fibrosis. • 3D MRE has superior image quality and interobserver agreement compared to 2D MRE.
Collapse
|
46
|
Cardoso AC, A Villela-Nogueira C, de Figueiredo-Mendes C, Leão Filho H, Pinto Silva RA, Valle Tovo C, Perazzo H, Matteoni AC, de Carvalho-Filho RJ, Lisboa Bittencourt P. Brazilian Society of Hepatology and Brazilian College of Radiology practice guidance for the use of elastography in liver diseases. Ann Hepatol 2021; 22:100341. [PMID: 33737252 DOI: 10.1016/j.aohep.2021.100341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
In 2015 the European Association for the Study of Liver Diseases (EASL) and the Asociación Latinoamericana para el Estudio del Hígado (ALEH) published a guideline for the use of non-invasive markers of liver disease. At that time, this guideline focused on the available data regarding ultrasonic-related elastography methods. Since then, much has been published, including new data about XL probe use in transient elastography, magnetic resonance elastography, and non-invasive liver steatosis evaluation. In order to draw evidence-based guidance concerning the use of elastography for non-invasive assessment of fibrosis and steatosis in different chronic liver diseases, the Brazilian Society of Hepatology (SBH) and the Brazilian College of Radiology (CBR) sponsored a single-topic meeting on October 4th, 2019, at São Paulo, Brazil. The aim was to establish specific recommendations regarding the use of imaging-related non-invasive technology to diagnose liver fibrosis and steatosis based on the discussion of evidence-based topics by an organizing committee of experts. It was submitted online to all SBH and CBR members. The present document is the final version of the manuscript that supports the use of this new technology as an alternative to liver biopsy.
Collapse
Affiliation(s)
- Ana Carolina Cardoso
- Internal Medicine Department, School of Medicine and Hepatology Unit, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Cristiane A Villela-Nogueira
- Internal Medicine Department, School of Medicine and Hepatology Unit, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Cristiane Valle Tovo
- Department of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Hugo Perazzo
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
47
|
Serai SD, Panganiban J, Dhyani M, Degnan AJ, Anupindi SA. Imaging Modalities in Pediatric NAFLD. Clin Liver Dis (Hoboken) 2021; 17:200-208. [PMID: 33868666 PMCID: PMC8043697 DOI: 10.1002/cld.994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Suraj D. Serai
- Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA,Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA
| | - Jennifer Panganiban
- Department of Gastroenterology, Hepatology and NutritionThe Children's Hospital of PhiladelphiaPhiladelphiaPA
| | - Manish Dhyani
- Department of RadiologyLahey Hospital and Medical CenterBurlingtonMA
| | - Andrew J. Degnan
- Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Sudha A. Anupindi
- Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA,Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA
| |
Collapse
|
48
|
Chung SR, Choi YJ, Lee SS, Kim SO, Lee SA, Jeon MJ, Kim WG, Lee JH, Baek JH. Interobserver Reproducibility in Sonographic Measurement of Diameter and Volume of Papillary Thyroid Microcarcinoma. Thyroid 2021; 31:452-458. [PMID: 33287640 DOI: 10.1089/thy.2020.0317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Active surveillance is recommended as an alternative to immediate surgery for low-risk papillary thyroid microcarcinoma (PTMC), and determining meaningful changes in diameter and volume on ultrasonography (US) is critical. However, interobserver reproducibility of the sonographic measurement of maximum diameter and volume of PTMC has not been well established. We aimed to determine the reproducibility in the measurement of maximum diameter and volume of PTMC on US. Methods: Consecutive patients who underwent US for pathologically proven PTMC between December 2018 and December 2019 were retrospectively reviewed. Two observers independently performed sonographic measurement of each nodule using standardized measurement methods. Each observer measured maximum transverse, anteroposterior, and longitudinal nodule diameters, and using these, nodule volume was calculated using the ellipsoid formula. Interobserver reproducibility in the measurement of the maximum diameter and volume was assessed using percentage reproducibility coefficient (RC). Z-tests of the intraclass correlation coefficients (ICCs) were used to compare the interobserver reproducibility in subgroups defined according to sonographic characteristics, such as the presence of microcalcification, nodule size, and parenchymal heterogeneity. Results: A total of 197 thyroid nodules from 188 patients were included in the study series. The percentage RCs were 71.8% [95% confidence interval, CI 65.4-79.7%] and 23.7% [CI 21.6-26.3%] for volume and maximum diameter measurements, respectively. There were no significant differences noted in the ICC values according to nodule orientation, presence of calcifications, size, or parenchymal heterogeneity. Conclusion: For PTMC, a difference of up to 24% in the maximum diameter and 72% in the volume may be considered to be within measurement error on US. This value may be used to determine the cutoff for defining meaningful change in the maximum diameter and volume for PTMC during active surveillance.
Collapse
Affiliation(s)
- Sae Rom Chung
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Jun Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seon-Ok Kim
- Department of Clinical Epidemiology and Biostatistics, and Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Ah Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ji Jeon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hyun Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Hwan Baek
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Moura Cunha G, Navin PJ, Fowler KJ, Venkatesh SK, Ehman RL, Sirlin CB. Quantitative magnetic resonance imaging for chronic liver disease. Br J Radiol 2021; 94:20201377. [PMID: 33635729 DOI: 10.1259/bjr.20201377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease (CLD) has rapidly increased in prevalence over the past two decades, resulting in significant morbidity and mortality worldwide. Historically, the clinical gold standard for diagnosis, assessment of severity, and longitudinal monitoring of CLD has been liver biopsy with histological analysis, but this approach has limitations that may make it suboptimal for clinical and research settings. Magnetic resonance (MR)-based biomarkers can overcome the limitations by allowing accurate, precise, and quantitative assessment of key components of CLD without the risk of invasive procedures. This review briefly describes the limitations associated with liver biopsy and the need for non-invasive biomarkers. It then discusses the current state-of-the-art for MRI-based biomarkers of liver iron, fat, and fibrosis, and inflammation.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | | | - Kathryn J Fowler
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | | | | | - Claude B Sirlin
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
50
|
Magnetic resonance elastography to quantify liver disease severity in autosomal recessive polycystic kidney disease. Abdom Radiol (NY) 2021; 46:570-580. [PMID: 32757071 DOI: 10.1007/s00261-020-02694-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/30/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate whether liver and spleen magnetic resonance elastography (MRE) can measure the severity of congenital hepatic fibrosis (CHF) and portal hypertension (pHTN) in individuals with autosomal recessive polycystic kidney disease (ARPKD), and to examine correlations between liver MRE and ultrasound (US) elastography. METHODS Cross-sectional study of nine individuals with ARPKD and 14 healthy controls. MRE was performed to measure mean liver and spleen stiffness (kPa); US elastography was performed to measure point shear wave speed (SWS) in both liver lobes. We compared: (1) MRE liver and spleen stiffness between controls vs. ARPKD; and (2) MRE liver stiffness between participants with ARPKD without vs. with pHTN, and examined correlations between MRE liver stiffness, spleen length, platelet counts, and US elastography SWS. Receiver operating characteristic (ROC) analysis was performed to examine diagnostic accuracy of liver MRE. RESULTS Participants with ARPKD (median age 16.8 [IQR 13.3, 18.9] years) had higher median MRE liver stiffness than controls (median age 14.7 [IQR 9.7, 16.7 years) (2.55 vs. 1.92 kPa, p = 0.008), but MRE spleen stiffness did not differ. ARPKD participants with pHTN had higher median MRE liver stiffness than those without (3.60 kPa vs 2.49 kPa, p = 0.05). Liver MRE and US elastography measurements were strongly correlated. To distinguish ARPKD vs. control groups, liver MRE had 78% sensitivity and 93% specificity at a proposed cut-off of 2.48 kPa [ROC area 0.83 (95% CI 0.63-1.00)]. CONCLUSION Liver MRE may be a useful quantitative method to measure the severity of CHF and pHTN in individuals with ARPKD.
Collapse
|