1
|
Kadry MO, Ali H. Fischer's ratio and DNA damage in hypoxemia-induced brain injury in rat model: prophylactic role of quercetin and mexamine supplementation. PLoS One 2025; 20:e0319898. [PMID: 40100888 PMCID: PMC11918368 DOI: 10.1371/journal.pone.0319898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Hypoxemia brain injuries arise when the brain's oxygen supply is restricted. Brain cells gradually die and become impaired as a result of the restricted oxygen flow a diversity of signaling pathways are involved in the pathophysiology of brain damage. One of the main concerns when examining the rate of protein breakdown is the measurement of the serum amino acid ratio. Valine, leucine, and isoleucine make up branched-chain amino acids, while phenylalanine and tyrosine make up aromatic amino acids. A vital tool for assessing the severity of hypoxemia is Fischer's ratio. The goal of this article is to determine how quercetin (QUR) and/or mexamine (MEX) prevented synfat (SN)-induced brain damage in a rat models. It also aimed to elucidate the various cross-linked inflammatory pathways, DNA damage, and Fischer's ratio. Following QUR and MEX therapy, synfat-induced hypoxemia. Hemoglobin (Hb) levels were markedly reduced by synfat-intoxication, and oxidative stress and inflammatory biomarkers, including TNF-??, MDA, interleukin-6 (IL-6), and C -reactive protein (CRP), were elevated. Hemoglobin levels, oxidative stress biomarkers, and the aberrant expression of pro-inflammatory cytokines were all altered by QUR and/or MEX therapy. Similarly, the concentration of γ-aminobutyric acid, serotonine, noradrenaline, and intropin in cerebral tissue is restricted. Similarly, the COMET assay and 8-oxo-7,8-dihydro-2'-deoxyguanosine analysis (8-oxodG) demonstrated that QUR and MEX potentially altered synfat-induced brain DNA damage. The results confirmed the potential impact of this combined strategy as a powerful therapy for brain hypoxemia, concluding that treatment via QUR with MEX was superior therapy in modulating synfat-triggered cerebral injury.
Collapse
Affiliation(s)
- Mai O. Kadry
- Therapeutic Chemistry Department, National Research Centre, El Buhouth St., Dokki, Egypt
| | - Hanaa Ali
- Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| |
Collapse
|
2
|
Yang J, Xu Y, Hu P, Li A, Li J, Huang K, Zeng H, Yue P, Zhang J, Yang M, Gao Y, Xu H, Zheng Q. Exploring the mechanism of action of huoermai essential oil for plateau insomnia based on the camp/CREB/BDNF/gabaergic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119092. [PMID: 39532223 DOI: 10.1016/j.jep.2024.119092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Huoermai therapy is a treatment for insomnia used by the Tibetan people living on the Tibetan plateau in China. This therapy involves the use of Myristica fragrans Houtt. and Carum carvi L., along with fomentation and massage, and has shown significant clinical effects. However, the mechanism of how Huoermai therapy treats plateau insomnia needs further clarification. AIM OF THE STUDY This study aimed to investigate the mechanism of action of Huoermai essential oil (HEO) in treating plateau insomnia, focusing on the cAMP/CREB/BDNF/GABAergic pathway. METHODS The major components of Huoermai essential oil were identified by Gas chromatography-mass spectrometry (GC-MS) for subsequent network pharmacology analysis. Proteomics techniques were employed to pinpoint disparities in brain tissue protein expression in a mouse model of plateau insomnia following Huoermai therapy administration, in conjunction with network pharmacology to forecast pathways related to hypoxia and insomnia. Plateau insomnia mouse model was established and the therapeutic impact of Huoermai essential oil was evaluated. Hematoxylin & Eosin staining(HE) was conducted to observe pathological damage to the cortex, hippocampus, thalamus and hypothalamus structures. Changes in serotonin (5-HT), melatonin (MT), adenosine (AD), cyclic adenosine monophosphate (cAMP) and malondialdehyde (MDA) levels in mouse brain tissue were gauged through enzyme-linked immunosorbent assay (ELISA) to assess sleep status and oxidative stress levels in mice. Molecular docking was employed to anticipate the target binding energy of Huoermai essential oil constituents. ELISA and Western Blot (WB) were used to ascertain the expression of cAMP/CREB/BDNF/GABAergic pathway. RESULTS The results indicated that HEO positively impacted intermittent hypobaric hypoxia-induced plateau insomnia in mice. Histological examination results showed that HEO ameliorated neuronal damage in specific regions of the brain affected by plateau insomnia, such as the cortex, hippocampus, thalamus, and hypothalamus. Through GC-MS analysis, 56 volatile oil components were identified. Subsequently, a combined network pharmacology and proteomics analyses led to selecting the cAMP/CREB/BDNF/GABAergic pathway for further study. ELISA experiments demonstrated that HEO treatment increased GABA and MT levels while significantly reducing 5-HT and adenosine levels in brain tissue of mice with plateau insomnia. WB results revealed that HEO ameliorated plateau insomnia by suppressing the hyperactivation of the cAMP pathway, increasing brain-derived neurotrophic factor (BDNF) levels and B-cell lymphoma-2 (BCL-2) expression, and alleviating hypoxia-induced oxidative stress. Moreover, molecular docking results showed strong binding affinity of all pharmacological components to their targets and proteins in the brain. CONCLUSION These results indicate that HEO significantly prolongs sleep duration in plateau insomniac mice and treats plateau insomnia by modulating levels of sleep-related regulators, modulating the cAMP pathway, increasing GABA receptor expression, and improving neuronal survival and anti-apoptosis.
Collapse
Affiliation(s)
- Jianhao Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; Key Laboratory of Improvement and Innovation of TCM in Jiangxi Province, Nanchang 330004, China
| | - Yuewen Xu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; Key Laboratory of Improvement and Innovation of TCM in Jiangxi Province, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; Key Laboratory of Improvement and Innovation of TCM in Jiangxi Province, Nanchang 330004, China
| | - Ai Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; Key Laboratory of Improvement and Innovation of TCM in Jiangxi Province, Nanchang 330004, China
| | - Jiaqiao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; Key Laboratory of Improvement and Innovation of TCM in Jiangxi Province, Nanchang 330004, China
| | - Kaifeng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China
| | - Huimin Zeng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Huanhua Xu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China.
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Nanchang 330004, China; Key Laboratory of Improvement and Innovation of TCM in Jiangxi Province, Nanchang 330004, China.
| |
Collapse
|
3
|
Ditmer M, Gabryelska A, Turkiewicz S, Gajewski A, Białasiewicz P, Chałubiński M, Strzelecki D, Witkowska A, Sochal M. The Influence of Serotonergic Signaling on Quality of Life, Depression, Insomnia, and Hypoxia in Obstructive Sleep Apnea Patients: Cross-Sectional Study. J Clin Med 2025; 14:445. [PMID: 39860451 PMCID: PMC11766041 DOI: 10.3390/jcm14020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Serotonin and the serotonin transporter (SERT) may have a multifaceted, but not fully understood, role in obstructive sleep apnea (OSA) and its impact on mental health in this group of patients. This study aimed to investigate changes in serotonin and the serotonin transporter (SERT) and their association with depressive and insomnia symptoms. Methods: This study included 76 participants (OSA group: n = 36, control group (CG): n = 40) who underwent polysomnography, while venous blood samples (evening and morning) were analyzed for serotonin and the SERT using ELISA. SERT mRNA expression in peripheral leukocytes was measured via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Participants were evaluated for depression, insomnia, and quality of life (QoL). Results: This study found no significant differences in SERT mRNA or serotonin between the OSA group and CG. In the CG, individuals without mood disorders had higher baseline SERT levels and evening/morning SERT ratios than those with depression. Among the OSA participants, those with good QoL had elevated serotonin levels in the evening (p = 0.028) and morning (p = 0.043) compared to those with poor QoL. Baseline SERT protein levels were higher in the CG than in the OSA group for insomnia, while SERT mRNA expression was higher in the OSA group. Linear regression models showed 13.3% and 13.1% for non-rapid eye movement sleep (NREM) apnea/hypopnea index (AHI) and AHI variability, respectively, which was accounted for by the morning SERT level, while 30.8% of the arousal index variability was explained by the morning serotonin level. Conclusions: Serotonergic signaling may influence quality of life, depression, and insomnia in OSA, as well as the severity of the disease itself. Stratifying patients by clinical and laboratory phenotypes could enable more personalized treatment.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Gstir C, Schurr T, Ehlers R, Burtscher J, Sperner-Unterweger B, Hüfner K. Is it Possible for Individuals with Pre-Existing Mental Disorders to Perform Mountain Sports at High Altitude-First Evidence from a Pilot Cross-Sectional Questionnaire Study. High Alt Med Biol 2024. [PMID: 39383092 DOI: 10.1089/ham.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Gstir, Claudia, Timo Schurr, Roxana Ehlers, Johannes Burtscher, Barbara Sperner-Unterweger, and Katharina Hüfner. Is it possible for individuals with pre-existing mental disorders to perform mountain sports at high altitude-First evidence from a pilot cross-sectional questionnaire study. High Alt Med Biol. 00:00-00, 2024. Introduction: Mountain sports at high altitude (HA) are gaining increasing popularity, but little is known about the effect of such activities on mental health, despite a great prevalence of mental disorders. Methods: Data were collected using an online self-report questionnaire assessing mental and somatic disorders in individuals performing mountain sports at HA (>2,500 m above sea level [ASL]) as well as their symptom change. Nonparametric tests were used for analyses. Results: 251 individuals without pre-existing disorders (noD), 34 with somatic disorders (somaD), and 38 with mental disorders (mentalD; mainly depressive, eating, and anxiety disorders) participated in this study. Overall, 44.7% of the mentalD group compared with 14.7% of somaD experienced ameliorated symptoms during mountain sports at HA, while 2.6% and 8.8%, respectively, reported a worsening (χ2[2] =8.13, p = 0.017). People in the mentalD compared with somaD group significantly less frequently inform tour partners (41.9% vs. 90.9%; χ2[2]=16.69, p < 0.001) about their condition or consult their physician (2.6% vs. 26.5%; χ2[1]=8.53, p = 0.003) regarding their plans to perform mountain sports at HA. 14.5% of all participants reported mental symptoms at 2,500-3,500 m ASL, 23.5% between >3,500-5,500 m ASL and 31.8% >5,500 m ASL. Conclusion: Individuals with mental disorders often report improved mental health during mountain sports at HA, possibly due to a combination of physical activity, the alpine natural environment, and/or moderate hypoxia. The fact that tour partners and physicians are rarely informed shows the need to reduce the stigma of mental disorders in the mountain sports community. The study was prospectively registered with the German Clinical Trials Registry (DRKS00024949).
Collapse
Affiliation(s)
- Claudia Gstir
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
- Department of Radiotherapy and Radiation Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timo Schurr
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| | - Roxana Ehlers
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Barbara Sperner-Unterweger
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
- Austrian Society of Mountain and High-Altitude Medicine, Mieming, Austria
| |
Collapse
|
5
|
Gao Y, Zhang J, Tang T, Liu Z. Hypoxia Pathways in Parkinson's Disease: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2024; 25:10484. [PMID: 39408813 PMCID: PMC11477385 DOI: 10.3390/ijms251910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The human brain is highly dependent on oxygen, utilizing approximately 20% of the body's oxygen at rest. Oxygen deprivation to the brain can lead to loss of consciousness within seconds and death within minutes. Recent studies have identified regions of the brain with spontaneous episodic hypoxia, referred to as "hypoxic pockets". Hypoxia can also result from impaired blood flow due to conditions such as heart disease, blood clots, stroke, or hemorrhage, as well as from reduced oxygen intake or excessive oxygen consumption caused by factors like low ambient oxygen, pulmonary diseases, infections, inflammation, and cancer. Severe hypoxia in the brain can manifest symptoms similar to Parkinson's disease (PD), including cerebral edema, mood disturbances, and cognitive impairments. Additionally, the development of PD appears to be closely associated with hypoxia and hypoxic pathways. This review seeks to investigate the molecular interactions between hypoxia and PD, emphasizing the pathological role of hypoxic pathways in PD and exploring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Jiarui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| |
Collapse
|
6
|
O Kadry M, Ali HM. Fischer's oligopeptide ratio in ischemic hypoxia: prophylactic amendment of sophoretin and melatonin supplementation. Future Sci OA 2024; 10:FSO911. [PMID: 38827802 PMCID: PMC11140683 DOI: 10.2144/fsoa-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/02/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: The fundamental pathophysiology of ischemic-hypoxia is oxygen depletion. Fischer's ratio is essential for monitoring hypoxia intensity. Methods: the current study highlighted the prophylactic role of sophoretin (QRC) and/or melatonin (MLN) versus sodium nitrite (SN) brain hypoxia. Results: Prophylactic treatment with sophoretin and MLN, was preceded with hypoxia-induction via sodium nitrite (60 mg/kg, S.C.). SN decreased hemoglobin (Hb), elevated HIF-α, HSP-70, IL-6 and TNF-α. Sophoretin and/or MLN restored the ameliorated inflammatory biomarkers, modulated norepinephrine, dopamine, serotonin and gamma-aminobutyric acid (GABA). Similarly, single-cell gel electrophoresis (SCGE or COMET) DNA damage assay confirmed this finding. Conclusion: Treatment via sophoretin and MLN was the most effective therapy for improving sodium nitrite-induced brain injury.
Collapse
Affiliation(s)
- Mai O Kadry
- Therapeutic Chemistry Department, National Research Centre, El Buhouth St., Dokki, 12622, Egypt
| | - Hanaa Mahmoud Ali
- Department of Genetics & Cytology, National Research Centre, Dokki, 12622, Egypt
| |
Collapse
|
7
|
Nguyen LTH, Nguyen NPK, Tran KN, Shin HM, Yang IJ. Intranasal administration of the essential oil from Perillae Folium ameliorates social defeat stress-induced behavioral impairments in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117775. [PMID: 38224793 DOI: 10.1016/j.jep.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perillae Folium, the leaves and twigs of Perilla frutescens (L.) Britton, has been included in many traditional Chinese medicine herbal formulas to treat depression. However, the precise antidepressant mechanism of the essential oil from Perillae Folium (PFEO) has not been fully investigated. AIM OF THE STUDY To assess the effects and potential mechanisms of PFEO on depression using animal models and network pharmacology analysis. MATERIALS AND METHODS PFEO was intranasally administered to a mouse model of social defeat stress (SDS). The antidepressant effects of PFEO on SDS-induced mice were evaluated using behavioral tests. Enzyme-linked immunosorbent assay (ELISA) and western blot were performed to measure the levels of depression-related biomarkers in the hippocampus and serum of the mice. The chemical compounds of PFEO were determined using gas chromatography-mass spectrometry (GC-MS). Network pharmacology and molecular docking analyses were conducted to investigate the potential bioactive components of PFEO and the mechanisms underlying the antidepressant effects. To validate the mechanisms of the bioactive compounds, in vitro models using PC12 and BV2 cells were established and the blood-brain barrier (BBB) permeability was evaluated. RESULTS The intranasal administration of PFEO suppressed SDS-induced depression in mice by increasing the time spent in the social zone and the social interactions in the social interaction test and by decreasing the immobility time in the tail suspension and forced swimming tests. Moreover, the PFEO treatment reduced the SDS-induced anxiety-like behavior, as inferred from the increased activity in the central zone observed in the open field test and in the open arms observed in the elevated plus maze test. PFEO administration recovered the SDS-induced decrease in the levels of 5-HT, NE, gamma-aminobutyric acid (GABA), and p-ERK in the hippocampus of mice. Furthermore, the increased serum corticosterone level was also attenuated by the PFEO treatment. A total of 21 volatile compounds were detected in PFEO using GC-MS, among which elemicin (15.52%), apiol (15.16%), and perillaldehyde (12.79%) were the most abundant ones. The PFEO compounds targeted 32 depression-associated genes, which were mainly related to neural cells and neurotransmission pathways. Molecular docking indicated good binding affinities between the bioactive components of PFEO (apiol, β-caryophyllene, elemicin, and myristicin) and the key targets, including ACHE, IL1B, IL6, MAOB, SLC6A2, SLC6A3, SLC6A4, and tumor necrosis factor. Among the four compounds, β-caryophyllene, elemicin, and myristicin were more effective in reducing neurotoxicity and neuroinflammation. Elemicin showed the highest BBB permeability rate. CONCLUSIONS This study shows the antidepressant activities of PFEO in an SDS-induced mouse model and suggests its potential mechanisms of action: regulation of the corticosterone levels, hippocampal neurotransmitters, and ERK signaling. Apiol, β-caryophyllene, elemicin, and myristicin may be the main contributors to the observed effects induced by PFEO. Further studies are needed to fully elucidate the underlying mechanisms and the main PFEO bioactive components.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Khoa Nguyen Tran
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Heung-Mook Shin
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - In-Jun Yang
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
8
|
Zeng Z, Zhou Y, Li L. Acute mountain sickness predicts the emotional state of amateur mountaineers. Sci Rep 2024; 14:4799. [PMID: 38413690 PMCID: PMC10899259 DOI: 10.1038/s41598-024-55291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Research on amateur mountaineers is scarce, and this study aims to delve into the emotional experiences of ten amateur mountaineers during their ascent using the "Befindlichkeitsskala" (BFS) and Lake Louise Acute Mountain Sickness scoring system (LLS). These subjects were exposed to altitudes of 3140 m, 4300 m, and 5276 m, respectively. We found that LLS scores were negatively correlated with positive emotions (β = -27.54, p < 0.05) and positively correlated with negative emotions (β = 21.97, p < 0.05). At an altitude of 4300 m, individuals with AMS exhibited significant differences in depression, anger, excitement, and inactivity compared to climbers without AMS. Upon returning to 3140 m after completing the climb, significant differences were observed in emotions such as happiness, calmness, anger, excitement, and depression. Throughout the three-day climb, noteworthy differences emerged in activity, happiness, calmness, inactivity, positive emotions (p < 0.01), negative emotions, and overall emotional scores (p < 0.05). Our study suggests a decline in the emotional well-being of amateur climbers with increasing altitude, highlighting AMS as a pivotal predictive factor for emotional experiences while climbing.
Collapse
Affiliation(s)
- Zhengyang Zeng
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, 430074, Hubei, China
| | - Yun Zhou
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, 430074, Hubei, China
| | - Lun Li
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, 430074, Hubei, China.
| |
Collapse
|
9
|
Ando S, Tsukamoto H, Stacey BS, Washio T, Owens TS, Calverley TA, Fall L, Marley CJ, Iannetelli A, Hashimoto T, Ogoh S, Bailey DM. Acute hypoxia impairs posterior cerebral bioenergetics and memory in man. Exp Physiol 2023; 108:1516-1530. [PMID: 37898979 PMCID: PMC10988469 DOI: 10.1113/ep091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Hypoxia has the potential to impair cognitive function; however, it is still uncertain which cognitive domains are adversely affected. We examined the effects of acute hypoxia (∼7 h) on central executive (Go/No-Go) and non-executive (memory) tasks and the extent to which impairment was potentially related to regional cerebral blood flow and oxygen delivery (CDO2 ). Twelve male participants performed cognitive tasks following 0, 2, 4 and 6 h of passive exposure to both normoxia and hypoxia (12% O2 ), in a randomized block cross-over single-blinded design. Middle cerebral artery (MCA) and posterior cerebral artery (PCA) blood velocities and corresponding CDO2 were determined using bilateral transcranial Doppler ultrasound. In hypoxia, MCA DO2 was reduced during the Go/No-Go task (P = 0.010 vs. normoxia, main effect), and PCA DO2 was attenuated during memorization (P = 0.005 vs. normoxia) and recall components (P = 0.002 vs. normoxia) in the memory task. The accuracy of the memory task was also impaired in hypoxia (P = 0.049 vs. normoxia). In contrast, hypoxia failed to alter reaction time (P = 0.19 vs. normoxia) or accuracy (P = 0.20 vs. normoxia) during the Go/No-Go task, indicating that selective attention and response inhibition were preserved. Hypoxia did not affect cerebral blood flow or corresponding CDO2 responses to cognitive activity (P > 0.05 vs. normoxia). Collectively, these findings highlight the differential sensitivity of cognitive domains, with memory being selectively vulnerable in hypoxia. NEW FINDINGS: What is the central question of this study? We sought to examine the effects of acute hypoxia on central executive (selective attention and response inhibition) and non-executive (memory) performance and the extent to which impairments are potentially related to reductions in regional cerebral blood flow and oxygen delivery. What is the main finding and its importance? Memory was impaired in acute hypoxia, and this was accompanied by a selective reduction in posterior cerebral artery oxygen delivery. In contrast, selective attention and response inhibition remained well preserved. These findings suggest that memory is selectively vulnerable to hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and EngineeringThe University of Electro‐CommunicationsTokyoJapan
| | - Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
- Faculty of Sports ScienceWaseda UniversitySaitamaJapan
| | - Benjamin S. Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Takuro Washio
- Department of Biomedical EngineeringToyo UniversityKawagoeSaitamaJapan
| | - Thomas S. Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Thomas A. Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Lewis Fall
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Christopher J. Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | | | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
- Department of Biomedical EngineeringToyo UniversityKawagoeSaitamaJapan
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| |
Collapse
|
10
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
11
|
Zailani H, Satyanarayanan SK, Liao WC, Hsu YT, Huang SY, Gałecki P, Su KP, Chang JPC. Roles of Omega-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2023; 15:4363. [PMID: 37892438 PMCID: PMC10609799 DOI: 10.3390/nu15204363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) contributes significantly to the death of people worldwide, especially the elderly. An essential feature of COPD is pulmonary inflammation, which results from long-term exposure to noxious substances from cigarette smoking and other environmental pollutants. Pulmonary inflammatory mediators spill over to the blood, leading to systemic inflammation, which is believed to play a significant role in the onset of a host of comorbidities associated with COPD. A substantial comorbidity of concern in COPD patients that is often overlooked in COPD management is cognitive impairment. The exact pathophysiology of cognitive impairment in COPD patients remains a mystery; however, hypoxia, oxidative stress, systemic inflammation, and cerebral manifestations of these conditions are believed to play crucial roles. Furthermore, the use of medications to treat cognitive impairment symptomatology in COPD patients has been reported to be associated with life-threatening adverse effects, hence the need for alternative medications with reduced side effects. In this Review, we aim to discuss the impact of cognitive impairment in COPD management and the potential mechanisms associated with increased risk of cognitive impairment in COPD patients. The promising roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in improving cognitive deficits in COPD patients are also discussed. Interestingly, ω-3 PUFAs can potentially enhance the cognitive impairment symptomatology associated with COPD because they can modulate inflammatory processes, activate the antioxidant defence system, and promote amyloid-beta clearance from the brain. Thus, clinical studies are crucial to assess the efficacy of ω-3 PUFAs in managing cognitive impairment in COPD patients.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 109-2320-B-039-066, 110-2321-B-006-004, 111-2321-B-006-008, 110-2811-B-039-507, 110-2320-B-039-048-MY2, and 110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, and 111-28 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, CMU108-SR-106, CMU110-N-17, CMU110-SR-73 China Medical University, Taichung, Taiwan
- CRS-108-048, DMR-105-053, DMR-109-102, DMR-109-244, DMR-HHC-109-11, DMR-HHC-109-12, DMR-HHC-110-10, DMR-110-124, DMR-111-245 and DMR-HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 717, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
12
|
Masè M, Viziano A, Strapazzon G, Alessandrini M, Micarelli A. Auditory function in humans at high altitude. A scoping review. PLoS One 2023; 18:e0291919. [PMID: 37733697 PMCID: PMC10513325 DOI: 10.1371/journal.pone.0291919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE High-altitude (HA) affects sensory organ response, but its effects on the inner ear are not fully understood. The present scoping review aimed to collect the available evidence about HA effects on the inner ear with focus on auditory function. METHODS The scoping review was conducted following the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis extension for scoping reviews. PubMed, Scopus, and Web of Science electronic databases were systematically searched to identify studies conducted in the last 20 years, which quantified in healthy subjects the effects of HA on auditory function. RESULTS The systematic search identified 17 studies on a total population of 888 subjects (88.7% male, age: 27.8 ± 4.1 years; median sample size of 15 subjects). Nine studies were conducted in a simulated environment and eight during real expeditions at HA. To quantify auditory function, six studies performed pure tone audiometry, four studies measured otoacoustic emissions (OAE) and eight studies measured auditory evoked responses (AER). Study protocols presented heterogeneity in the spatio-temporal patterns of HA exposure, with highly varying maximal altitudes and exposure durations. CONCLUSION Most studies reported a reduction of auditory function with HA in terms of either elevation of auditory thresholds, lengthening of AER latencies, reduction of distortion-product and transient-evoked OAEs. Future studies in larger populations, using standardized protocols and multi-technique auditory function evaluation, are needed to further characterize the spatio-temporal pattern of HA effects along the auditory pathways and clarify the pathophysiological implications and reversibility of the observed changes.
Collapse
Affiliation(s)
- Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology–CIBIO, University of Trento, Trento, Italy
| | - Andrea Viziano
- Department of Clinical Sciences and Translational Medicine, ENT Unit, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marco Alessandrini
- Department of Clinical Sciences and Translational Medicine, ENT Unit, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| |
Collapse
|
13
|
Wang L, Zhou B, Yang C, Pan S, Huang Y, Wang J. The Effect of Ultrahigh Altitude on the Mental Health of Civil Servants in Western China Based on Propensity Score Matching. High Alt Med Biol 2023; 24:193-200. [PMID: 34324381 DOI: 10.1089/ham.2020.0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Wang, Luyao, Bo Zhou, Chenghui Yang, Shuya Pan, Yulan Huang, and Jinyu Wang. The effect of ultrahigh altitude on the mental health of civil servants in western China based on propensity score matching. High Alt Med Biol. 24:193-200, 2023. Objective: This study aims to analyze the net effect of ultrahigh altitude on the mental health of civil servants in western China after adjusting for sociodemographic factors. Methods: A cross-sectional study was performed to survey the mental health of 2,939 civil servants working at an altitude of more than 1,500 m in 13 areas of the Tibetan Qiang Autonomous Prefecture of Ngawa using the Insomnia Severity Index Questionnaire, 7-item Generalized Anxiety Disorder Scale, and Patient Health Questionnaire-9. Ultrahigh altitude refers to an area above 3,500 m above sea level, which may have an impact on the sleep and mood of residents. Therefore, our research was divided into two groups based on altitude (ultrahigh altitude >3,500 m; high altitude = 1,500-3,400 m). Propensity score matching (PSM) was used to control for sociodemographic factors and compare the differences in mental health between the two groups. Results: After kernel matching, the mean bias of the covariates was reduced from 21.6 to 1.8. The severity of insomnia, depression, and anxiety in civil servants at ultrahigh altitudes was still significantly greater than that in civil servants at high altitudes after controlling for sociodemographic factors, and the average treatment effects on the treated were 1.39, 1.35, and 0.80, respectively; the results were significant (α < 0.01). PSM regression analysis further showed that for every 100 m increase in altitude, the severity of anxiety, depression, and insomnia increased by 0.042 points (p < 0.001), 0.063 points (p < 0.001), and 0.070 points (p < 0.001), respectively, all of which were higher than those obtained with ordinary least squares regression. Conclusion: Ultrahigh altitude significantly increases the severity of insomnia, depression, and anxiety after adjusting for sociodemographic factors.
Collapse
Affiliation(s)
- Luyao Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chenghui Yang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shuya Pan
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yulan Huang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jinyu Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
14
|
Wieckiewicz M, Martynowicz H, Lavigne G, Lobbezoo F, Kato T, Winocur E, Wezgowiec J, Danel D, Wojakowska A, Mazur G, Smardz J. An exploratory study on the association between serotonin and sleep breathing disorders. Sci Rep 2023; 13:11800. [PMID: 37479853 PMCID: PMC10362063 DOI: 10.1038/s41598-023-38842-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
This exploratory observational study aimed to evaluate whether the blood levels of serotonin and enzymes involved in serotonin synthesis are associated with sleep breathing parameters. A total of 105 patients were included in this study, who were subjected to single-night polysomnography with simultaneous audio-video recordings. Peripheral blood samples were collected to estimate the serum levels of serotonin, tryptophan hydroxylase 1 (TPH1), and aromatic l-amino acid decarboxylase (AADC). Results showed a negative correlation between blood serotonin levels, and oxygen desaturation index (ODI) (p = 0.027), central apnea (p = 0.044) and obstructive apnea (OA) (p = 0.032) scores. Blood TPH1 levels were negatively correlated with average (p = 0.003) and minimal saturation (p = 0.035) and positively correlated with apnea-hypopnea index (p = 0.010), OA (p = 0.049), and hypopnea index (p = 0.007) scores. A tendency to sleep-disordered breathing seemed to co-occur with lower blood serotonin and higher TPH1 levels.Clinical Trial Registration : www.ClinicalTrials.gov , identifier NCT04214561.
Collapse
Affiliation(s)
- Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Helena Martynowicz
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Gilles Lavigne
- Faculty of Dental Medicine, Universite de Montreal, CIUSSS Nord Ile de Montreal and CHUM, Montreal, Canada
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Efraim Winocur
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Danel
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Wojakowska
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Jin Y, Li J, Ye J, Luo X, Wilson A, Mu L, Zhou P, Lv Y, Wang Y. Mapping associations between anxiety and sleep problems among outpatients in high-altitude areas: a network analysis. BMC Psychiatry 2023; 23:341. [PMID: 37189050 PMCID: PMC10184966 DOI: 10.1186/s12888-023-04767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Anxiety and sleep problems are common comorbidities among outpatients living in high-altitude areas. Network analysis is a novel method to investigate the interaction and the association between symptoms across diverse disorders. This study used network analysis to investigate the network structure symptoms of anxiety and sleep problems among outpatients in high-altitude areas, and to explore the differences in symptom associations in various sex, age, educational levels and employment groups. METHODS The data was collected from the Sleep Medicine Center of The First People's Hospital of Yunnan Province from November 2017 to January 2021 with consecutive recruitment (N = 11,194). Anxiety and sleep problems were measured by the Chinese version of the seven-item Generalized Anxiety Disorder Scale (GAD-7) and the Pittsburgh Sleep Quality Index (PSQI) respectively. Central symptoms were identified based on centrality indices and bridge symptoms were identified with bridge indices. The difference of network structures in various sex, age, educational levels and employment groups were also explored. RESULTS Among all the cases, 6,534 (58.37%; 95% CI: 57.45-59.29%) reported experiencing anxiety (GAD-7 total scores ≥ 5), and 7,718 (68.94%; 95% CI: 68.08-69.80%) reported experiencing sleep problems (PSQI total scores ≥ 10). Based on the results of network analysis, among participants, "Nervousness", "Trouble relaxing", "Uncontrollable worry" were the most critical central symptoms and bridge symptoms within the anxiety and sleep problems network structure. The adjusted network model after controlling for covariates was significantly correlated with the original (r = 0.75, P = 0.46). Additionally, there were significant differences in edge weights in the comparisons between sex, age and educational levels groups (P < 0.001), while the employed and unemployed groups did not show significant differences in edge weights (P > 0.05). CONCLUSIONS In the anxiety and sleep problems network model, among outpatients living in high-altitude areas, nervousness, uncontrollable worry, and trouble relaxing were the most central symptoms and bridge symptoms. Moreover, there were significant differences between various sex, age and educational levels. These findings can be used to provide clinical suggestions for psychological interventions and measures targeting to reduce symptoms that exacerbate mental health.
Collapse
Affiliation(s)
- Yu Jin
- College of Education for the Future, Beijing Normal University, Beijing, China
| | - Jiaqi Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Ye
- Department of Sleep Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xianyu Luo
- College of Education for the Future, Beijing Normal University, Beijing, China
| | - Amanda Wilson
- Division of Psychology, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Lanxue Mu
- Department of Sleep Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Pinyi Zhou
- Department of Sleep Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yunhui Lv
- Department of Sleep Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| | - Yuanyuan Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
16
|
Zailani H, Satyanarayanan SK, Liao WC, Liao HF, Huang SY, Gałecki P, Su KP, Chang JPC. Omega-3 Polyunsaturated Fatty Acids in Managing Comorbid Mood Disorders in Chronic Obstructive Pulmonary Disease (COPD): A Review. J Clin Med 2023; 12:jcm12072653. [PMID: 37048736 PMCID: PMC10095486 DOI: 10.3390/jcm12072653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third-leading cause of mortality globally, significantly affecting people over 40 years old. COPD is often comorbid with mood disorders; however, they are frequently neglected or undiagnosed in COPD management, thus resulting in unintended treatment outcomes and higher mortality associated with the disease. Although the exact link between COPD and mood disorders remains to be ascertained, there is a broader opinion that inflammatory reactions in the lungs, blood, and inflammation-induced changes in the brain could orchestrate the onset of mood disorders in COPD. Although the current management of mood disorders such as depression in COPD involves using antidepressants, their use has been limited due to tolerability issues. On the other hand, as omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a vital role in regulating inflammatory responses, they could be promising alternatives in managing mood disorders in COPD. This review discusses comorbid mood disorders in COPD as well as their influence on the progression and management of COPD. The underlying mechanisms of comorbid mood disorders in COPD will also be discussed, along with the potential role of n-3 PUFAs in managing these conditions.
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsien-Feng Liao
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 833, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
17
|
Kotsyuba E, Dyachuk V. Role of the Neuroendocrine System of Marine Bivalves in Their Response to Hypoxia. Int J Mol Sci 2023; 24:ijms24021202. [PMID: 36674710 PMCID: PMC9865615 DOI: 10.3390/ijms24021202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Mollusks comprise one of the largest phylum of marine invertebrates. With their great diversity of species, various degrees of mobility, and specific behavioral strategies, they haveoccupied marine, freshwater, and terrestrial habitats and play key roles in many ecosystems. This success is explained by their exceptional ability to tolerate a wide range of environmental stresses, such as hypoxia. Most marine bivalvemollusksare exposed to frequent short-term variations in oxygen levels in their marine or estuarine habitats. This stressfactor has caused them to develop a wide variety of adaptive strategies during their evolution, enabling to mobilize rapidly a set of behavioral, physiological, biochemical, and molecular defenses that re-establishing oxygen homeostasis. The neuroendocrine system and its related signaling systems play crucial roles in the regulation of various physiological and behavioral processes in mollusks and, hence, can affect hypoxiatolerance. Little effort has been made to identify the neurotransmitters and genes involved in oxygen homeostasis regulation, and the molecular basis of the differences in the regulatory mechanisms of hypoxia resistance in hypoxia-tolerant and hypoxia-sensitive bivalve species. Here, we summarize current knowledge about the involvement of the neuroendocrine system in the hypoxia stress response, and the possible contributions of various signaling molecules to this process. We thusprovide a basis for understanding the molecular mechanisms underlying hypoxic stress in bivalves, also making comparisons with data from related studies on other species.
Collapse
|
18
|
Liu H, Shi R, Liao R, Liu Y, Che J, Bai Z, Cheng N, Ma H. Machine Learning Based on Event-Related EEG of Sustained Attention Differentiates Adults with Chronic High-Altitude Exposure from Healthy Controls. Brain Sci 2022; 12:brainsci12121677. [PMID: 36552137 PMCID: PMC9775506 DOI: 10.3390/brainsci12121677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Objective: The aim of this study was to examine the effect of high altitude on inhibitory control processes that underlie sustained attention in the neural correlates of EEG data, and explore whether the EEG data reflecting inhibitory control contain valuable information to classify high-altitude chronic hypoxia and plain controls. (2) Methods: 35 chronic high-altitude hypoxic adults and 32 matched controls were recruited. They were required to perform the go/no-go sustained attention task (GSAT) using event-related potentials. Three machine learning algorithms, namely a support vector machine (SVM), logistic regression (LR), and a decision tree (DT), were trained based on the related ERP components and neural oscillations to build a dichotomous classification model. (3) Results: Behaviorally, we found that the high altitude (HA) group had lower omission error rates during all observation periods than the low altitude (LA) group. Meanwhile, the ERP results showed that the HA participants had significantly shorter latency than the LAs for sustained potential (SP), indicating vigilance to response-related conflict. Meanwhile, event-related spectral perturbation (ERSP) analysis suggested that lowlander immigrants exposed to high altitudes may have compensatory activated prefrontal cortexes (PFC), as reflected by slow alpha, beta, and theta frequency-band neural oscillations. Finally, the machine learning results showed that the SVM achieved the optimal classification F1 score in the later stage of sustained attention, with an F1 score of 0.93, accuracy of 92.54%, sensitivity of 91.43%, specificity of 93.75%, and area under ROC curve (AUC) of 0.97. The results proved that SVM classification algorithms could be applied to identify chronic high-altitude hypoxia. (4) Conclusions: Compared with other methods, the SVM leads to a good overall performance that increases with the time spent on task, illustrating that the ERPs and neural oscillations may provide neuroelectrophysiological markers for identifying chronic plateau hypoxia.
Collapse
Affiliation(s)
- Haining Liu
- Psychology Department, Chengde Medical University, Chengde 067000, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde 067000, China
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde 067000, China
| | - Ruijuan Shi
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China
| | - Runchao Liao
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
| | - Yanli Liu
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
- Correspondence: (Y.L.); (H.M.); Tel.: +86-187-3246-7083 (Y.L.); +86-150-8905-6060 (H.M.)
| | - Jiajun Che
- Psychology Department, Chengde Medical University, Chengde 067000, China
| | - Ziyu Bai
- Psychology Department, Chengde Medical University, Chengde 067000, China
| | - Nan Cheng
- Psychology Department, Chengde Medical University, Chengde 067000, China
| | - Hailin Ma
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde 067000, China
- Correspondence: (Y.L.); (H.M.); Tel.: +86-187-3246-7083 (Y.L.); +86-150-8905-6060 (H.M.)
| |
Collapse
|
19
|
Wang CB, Zhao M, Wang J, Shi JT, Wang WF, Zhang Y, Meng XH, Sang CY, Zhu LL, Yang JL. Gypenosides (GPs) alleviates hypoxia-induced injury in PC12 cells and enhances tolerance to anoxia in C57BL/6 mice. J Food Biochem 2022; 46:e14448. [PMID: 36226816 DOI: 10.1111/jfbc.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023]
Abstract
Oxygen is a necessary substance for life activities, but reduced oxygen utilization due to high altitude exposure and respiratory dysfunction diseases could lead to pathological changes in the organisms. Herein gypenosides, the active ingredients in the food and medicine resource plant Gynostemma pentaphyllum (Thunb.) Makino were found to alleviate hypoxia-induced injury in PC12 cells. Moreover, hypoxia induced an increase in Ca2+ and reactive oxygen species content, and such patterns were both significantly reduced by gypenosides treatment. At the same time, gypenosides significantly blocked the decrease of both NO content and mitochondrial membrane potential caused by hypoxia. Furthermore, gypenosides gavage treatment significantly prolonged the survival time of C57BL/6 mice in confinement up to 24.3% and enhanced the locomotor ability of mice. Therefore, gypenosides have good neuroprotective effects and hypoxia tolerance activity and have the prospect of being developed as a preventive and therapeutic drug for hypoxia-related diseases. PRACTICAL APPLICATIONS: Gypenosides can enhance tolerance of cells and mice to hypoxia and have the potential to be developed into hypoxia-resistant health food and drugs.
Collapse
Affiliation(s)
- Cheng-Bo Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jun Wang
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, China
| | - Jiao-Tai Shi
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, China
| | - Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Ling-Ling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
20
|
Kim E, Park S, Kim S, Choi Y, Cho JH, Kim G. Is altitude a determinant of the health benefits of nature exposure? A systematic review and meta-analysis. Front Public Health 2022; 10:1021618. [PMID: 36504926 PMCID: PMC9732270 DOI: 10.3389/fpubh.2022.1021618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Nature exposure is a widely accepted option for promoting public health owing to the recent surge of scientific evidence. However, the actual settings to facilitate this initiative is yet to be extensively reviewed. In this systematic review, we have aimed to provide an up-to-date summary of interventional studies investigating the psycho-physiological effects of forests and urban forests, including details on their physical settings, and investigate an effect-modifying role of altitude and summarize data on the magnitude and shape of the association. Methods A keyword search using five electronic academic databases (PubMed, Embase, PsycINFO, Web of Science, and Scopus) was conducted to identify relevant articles published in English from the inception year to the end of February 2022. The methodological quality was evaluated using the ROBINS-I or ROB2 tool, depending on the study design. Meta-regression and random effects model were jointly used to examine the relationship between altitude and health outcomes. Results We included 27 eligible studies and 31 cases extracted from 19 studies were used for the meta-analysis. In the meta-regression, we observed a non-linear association between altitude and psycho-physiological effects. Altitude had a positive quadratic association with anxiety (p < 0.000, adjusted R 2 = 96.79%), depression (p < 0.000, adjusted R 2 = 98.78%), and fatigue (p < 0.000, adjusted R 2 = 64.74%) alleviating effects. Conversely, altitude demonstrated a negative non-linear association with the blood pressure-lowering effect (p = 0.009, adjusted R 2 = 32.83%). Additionally, the thermal index (THI) and illuminance (lx) levels were significantly associated with effect sizes of psychological restoration. Discussion This review provides moderate-certainty evidence for an effect-modifying role of altitude. The meta-regression results suggested the optimal and minimal altitude ranges for psychological restoration and physiological relaxation, respectively. Despite some limitations, the study findings provide a significant basis for utilizing altitude, which is easily accessible and simple, to promote the health benefits of nature-based initiatives. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022310894, identifier: CRD42022310894.
Collapse
|
21
|
Gu C, Ma M, Xu J, Yuan W, Li R, Guo H, Gao H, Feng W, Guo H, Zheng L, Zhang Y. Association between pulmonary ventilatory function and mild cognitive impairment: A population-based study in rural China. Front Public Health 2022; 10:1038576. [PMID: 36408049 PMCID: PMC9666756 DOI: 10.3389/fpubh.2022.1038576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mild cognitive impairment (MCI), a reversible intermediate state, plays an important role in the development and prevention of dementia. The relationship between pulmonary function and MCI risk has not yet been well-elucidated. Methods We included 2,947 rural Chinese residents aged ≥35 years who were free from a history of stroke, dementia, or other brain diseases and measured pulmonary ventilatory function using calibrated spirometry according to the recommended method. MCI was assessed with the Montreal Cognitive Assessment-Basic for Chinese scale. Logistic regression models and restricted cubic splines with covariate adjustment were performed to explore the association between pulmonary function and MCI risk. Results The prevalence of MCI increased with decreasing pulmonary function, from the lowest quartile to the highest quartile of pulmonary function: 63.9, 50.5, 43.8, and 43.6%, respectively. After adjustment for confounding factors, participants in the first quartile had a significantly increased risk of MCI (ORs, 1.691, 95% CI, 1.267-2.258), with the highest quartile as the reference. In the subgroup analysis, a significant association of pulmonary function and MCI was found in females and those with low physical activity. Meanwhile, we observed an L-shaped relationship between pulmonary function and MCI (P non-linear = 0.032). Conclusions Poor pulmonary function was associated with an increased risk of MCI among rural Chinese adults, and presented a non-linear relationship. These findings remind us of the need for early cognitive assessment in local populations with lower pulmonary function.
Collapse
Affiliation(s)
- Cuiying Gu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingfeng Ma
- Department of Cardiology, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jiahui Xu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wei Yuan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Ruixue Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Hui Guo
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Hanshu Gao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wenjing Feng
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Haiqiang Guo
- Department of Health Statistics, China Medical University, Shenyang, China
| | - Liqiang Zheng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Liqiang Zheng
| | - Yao Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China,Yao Zhang
| |
Collapse
|
22
|
Chen C, Lu Z, Wang X, Zhang J, Zhang D, Li S. The chain mediating role of C-reactive protein and triglyceride-glucose index between lung function and cognitive function in a systemic low-grade inflammation state. J Psychiatr Res 2022; 155:380-386. [PMID: 36182767 DOI: 10.1016/j.jpsychires.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study examined whether serum C-reactive protein (CRP) level and triglyceride-glucose index (TyG) explained the association between lung function and subsequent cognitive function in middle-aged and older adults with a systemic low-grade inflammation state. DESIGN A prospective cohort study. SETTING AND PARTICIPANTS The sample consisted of 1, 742 participants recruited from the English Longitudinal Study of Ageing (ELSA). METHODS Lung function and covariates were measured at baseline (wave 4, 2008/09). Serum CRP level and TyG were examined at a four-year follow-up (wave 6, 2012/13). Cognitive function was assessed at eight years post baseline (wave 8, 2016/17) in the main interview. The mediation was initially assessed using multivariate linear regression models. Indirect effects were assessed using the structural equation modeling and the bootstrap method. RESULTS We observed that serum CRP level and TyG significantly mediated the relationships between lung function (forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC)) and cognitive function (immediate recall and delay recall). Moreover, serum CRP level mediated the association between lung function (FEV1 and FVC) and TyG. Our finding also suggested that FEV1 (1.19% mediated) and FVC (1.72% mediated) might influence cognitive function partly through the chain mediating role of both serum CRP level and TyG. CONCLUSIONS AND IMPLICATIONS The present study revealed that serum CRP level and TyG play a chain mediating role in the relationship between lung function at baseline and subsequent cognitive impairment in a nationally representative cohort of middle-aged and older adults with a systemic low-grade inflammation state.
Collapse
Affiliation(s)
- Chen Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, China
| | - Zhonghai Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, China
| | - Xueyan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, China
| | - Jiesong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, China
| | - Suyun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, China.
| |
Collapse
|
23
|
Drew PJ. Neurovascular coupling: motive unknown. Trends Neurosci 2022; 45:809-819. [PMID: 35995628 PMCID: PMC9768528 DOI: 10.1016/j.tins.2022.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
In the brain, increases in neural activity drive changes in local blood flow via neurovascular coupling. The common explanation for increased blood flow (known as functional hyperemia) is that it supplies the metabolic needs of active neurons. However, there is a large body of evidence that is inconsistent with this idea. Baseline blood flow is adequate to supply oxygen needs even with elevated neural activity. Neurovascular coupling is irregular, absent, or inverted in many brain regions, behavioral states, and conditions. Increases in respiration can increase brain oxygenation without flow changes. Simulations show that given the architecture of the brain vasculature, areas of low blood flow are inescapable and cannot be removed by functional hyperemia. As discussed in this article, potential alternative functions of neurovascular coupling include supplying oxygen for neuromodulator synthesis, brain temperature regulation, signaling to neurons, stabilizing and optimizing the cerebral vascular structure, accommodating the non-Newtonian nature of blood, and driving the production and circulation of cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Patrick J Drew
- Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery, Biology, and Biomedical Engineering, The Pennsylvania State University, W-317 Millennium Science Complex, University Park, PA 16802, USA.
| |
Collapse
|
24
|
Dutta A, Sarkar P, Shrivastava S, Chattopadhyay A. Effect of Hypoxia on the Function of the Human Serotonin 1A Receptor. ACS Chem Neurosci 2022; 13:1456-1466. [PMID: 35467841 DOI: 10.1021/acschemneuro.2c00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cellular hypoxia causes numerous pathophysiological conditions associated with the disruption of oxygen homeostasis. Under oxygen-deficient conditions, cells adapt by controlling the cellular functions to facilitate the judicious use of available oxygen, such as cessation of cell growth and proliferation. In higher eukaryotes, the process of cholesterol biosynthesis is intimately coupled to the availability of oxygen, where the synthesis of one molecule of cholesterol requires 11 molecules of O2. Cholesterol is an essential component of higher eukaryotic membranes and is crucial for the physiological functions of several membrane proteins and receptors. The serotonin1A receptor, an important neurotransmitter G protein-coupled receptor associated with cognition and memory, has previously been shown to depend on cholesterol for its signaling and function. In this work, in order to explore the interdependence of oxygen levels, cholesterol biosynthesis, and the function of the serotonin1A receptor, we developed a cellular hypoxia model to explore the function of the human serotonin1A receptor heterologously expressed in Chinese hamster ovary cells. We observed cell cycle arrest at G1/S phase and the accumulation of lanosterol in cell membranes under hypoxic conditions, thereby validating our cellular model. Interestingly, we observed a significant reduction in ligand binding and disruption of downstream cAMP signaling of the serotonin1A receptor under hypoxic conditions. To the best of our knowledge, our results represent the first report linking the function of the serotonin1A receptor with hypoxia. From a broader perspective, these results contribute to our overall understanding of the molecular basis underlying neurological conditions often associated with hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Aritri Dutta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
25
|
Rivas-Vazquez RA, Rey G, Quintana A, Rivas-Vazquez AA. Assessment and Management of Long COVID. JOURNAL OF HEALTH SERVICE PSYCHOLOGY 2022; 48:21-30. [PMID: 35572152 PMCID: PMC9086152 DOI: 10.1007/s42843-022-00055-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Almost two years into the pandemic, the scientific and healthcare communities continue to learn a great deal regarding COVID-19, the disease produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Broad variability during acute COVID-19 infection is seen, ranging from asymptomatic presentation to death. The vast majority of individuals who develop COVID-19 return to their pre-COVID-19 baseline within several weeks. However, a portion of patients will develop a post-COVID-19 syndrome of persistent cognitive, somatic, and behavioral symptoms. This syndrome, designated as post-acute sequelae of SARS-CoV-2 infection, is more commonly known as long COVID. The objectives of this paper are to inform psychologists regarding our current understanding of the underlying pathophysiology of COVID-19, review criteria for range of severity during acute illness, present clinical manifestations of long haul phenomena, and discuss the emerging literature base of evidence-based treatment and management approaches.
Collapse
|
26
|
Nguyen KT, Gates CA, Hassell JE, Foxx CL, Salazar SN, Luthens AK, Arnold AL, Elam BL, Elsayed AI, Leblanc M, Adams SC, Lowry CA, Reuter JD. Evaluation of the effects of altitude on biological signatures of inflammation and anxiety- and depressive-like behavioral responses. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110331. [PMID: 33891978 DOI: 10.1016/j.pnpbp.2021.110331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Over sixteen million people suffer from a depressive episode annually in the United States, with females affected at twice the rate of males. Little is known about the effects of exposure to high altitude on the risk of development of major depressive disorder, despite reports of higher suicide rates at higher altitudes. We hypothesize that exposure to hypobaric hypoxia at high altitude increases endophenotypes of self-directed suicidal violence, including biological signatures of chronic inflammation and vulnerability to anxiety-like and depressive-like behavioral responses in a sex-specific manner. Biological signatures of inflammation, including granulocyte:lymphocyte ratios, monocyte cell counts, and monocyte:lymphocyte ratios were assessed using complete blood count data, anhedonia, and anxiety- and depressive-like behavioral responses were evaluated. We assessed biological signatures of inflammation and behavioral responses in the open-field test, sucrose preference test, and modified Porsolt forced swim test in young adult male and female Long-Evans and Sprague Dawley rats. All tests were conducted near sea level (374 ft [114 m] elevation) and at moderate-high altitude (5430 ft [1655 m] elevation) during acclimation periods of one, two, three, four, and five weeks following shipment from a sea level animal breeding facility (N = 320, n = 8 per group). Exposure to moderate-high altitude induced a biological signature of increased inflammation, as evidenced by main effects of altitude for: 1) increased granulocyte:lymphocyte ratio; 2) increased count and relative abundance of circulating monocytes; and 3) increased monocyte:lymphocyte ratios. Exposure to moderate-high altitude also increased anhedonia as assessed in the sucrose preference test in both male and female rats, when data were collapsed across strain and time. Among male and female Long Evans rats, exposure to moderate-high altitude increased immobility in the forced swim test, without changing anxiety-like behaviors in the open-field test. Finally, granulocyte:lymphocyte ratios were correlated with anhedonia in the sucrose preference test. These data are consistent with the hypothesis that hypobaric hypoxia at moderate-high altitude induces persistent endophenotypes of self-directed suicidal violence including biological signatures of inflammation, anhedonia, and depressive-like behavioral responses.
Collapse
Affiliation(s)
- Kadi T Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Chloé A Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christine L Foxx
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Stephanie N Salazar
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Amalia K Luthens
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Andrea L Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Brooke L Elam
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Mathias Leblanc
- Animal Resources Department, Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Sean C Adams
- Animal Resources Department, Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA.
| | - Jon D Reuter
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Office of Animal Resources, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
27
|
Urrunaga-Pastor D, Chambergo-Michilot D, Runzer-Colmenares FM, Pacheco-Mendoza J, Benites-Zapata VA. Prevalence of Cognitive Impairment and Dementia in Older Adults Living at High Altitude: A Systematic Review and Meta-Analysis. Dement Geriatr Cogn Disord 2021; 50:124-134. [PMID: 34139687 DOI: 10.1159/000514471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Dementia is a chronic disease with a variable prevalence throughout the world; however, this could be higher at high-altitude populations. We aimed to summarize the prevalence of cognitive impairment and dementia in older adults living at high altitude. METHODS We searched in PubMed, Medline, Scopus, Web of Science, and Embase and included the studies published from inception to July 20, 2020, with no language restriction, which reported the frequency of cognitive impairment or dementia in older adults living at high-altitude populations. Random-effects meta-analyses were performed to calculate the overall prevalence and 95% confidence intervals (95% CI) of cognitive impairment and dementia. The risk of bias was evaluated using the Newcastle-Ottawa Scale (NOS) adapted for cross-sectional studies. RESULTS Six studies were included (3,724 participants), and 5 of the 6 included studies were carried out in Latin America. The altitude ranged from 1,783 to 3,847 m, the proportion of women included varied from 38.7 to 65.6%, and the proportion of participants with elementary or illiterate educational level ranged from 71.7 to 97.6%. The overall prevalence of cognitive impairment was 22.0% (95% CI: 8-40, I2: 99%), and the overall prevalence of dementia was 11.0% (95% CI: 6-17, I2: 92%). In a subgroup analysis according to the instrument used to evaluate cognitive impairment, the prevalence of cognitive impairment was 21.0% (95% CI: 5-42, I2: 99%) in the MMSE group while the prevalence was 29.0% (95% CI: 0-78) in the non-MMSE group. CONCLUSIONS The prevalence of cognitive impairment and dementia in older adults living at high altitude is almost twice the number reported in some world regions.
Collapse
Affiliation(s)
- Diego Urrunaga-Pastor
- Facultad de Ciencias de la Salud, Carrera de Medicina Humana, Universidad Científica del Sur, Lima, Peru
| | - Diego Chambergo-Michilot
- Facultad de Ciencias de la Salud, Carrera de Medicina Humana, Universidad Científica del Sur, Lima, Peru.,Department of Cardiology Research, Torres de Salud National Research Center, Lima, Peru.,Red Latinoamericana de Cardiología, Lima, Peru
| | | | | | - Vicente A Benites-Zapata
- Universidad San Ignacio de Loyola, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| |
Collapse
|
28
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Nutrients to Improve Mitochondrial Function to Reduce Brain Energy Deficit and Oxidative Stress in Migraine. Nutrients 2021; 13:nu13124433. [PMID: 34959985 PMCID: PMC8707228 DOI: 10.3390/nu13124433] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms of migraine pathogenesis are not completely clear, but 31P-nuclear magnetic resonance studies revealed brain energy deficit in migraineurs. As glycolysis is the main process of energy production in the brain, mitochondria may play an important role in migraine pathogenesis. Nutrition is an important aspect of migraine pathogenesis, as many migraineurs report food-related products as migraine triggers. Apart from approved anti-migraine drugs, many vitamins and supplements are considered in migraine prevention and therapy, but without strong supportive evidence. In this review, we summarize and update information about nutrients that may be important for mitochondrial functions, energy production, oxidative stress, and that are related to migraine. Additionally, we present a brief overview of caffeine and alcohol, as they are often reported to have ambiguous effects in migraineurs. The nutrients that can be considered to supplement the diet to prevent and/or ameliorate migraine are riboflavin, thiamine, magnesium ions, niacin, carnitine, coenzyme Q10, melatonin, lipoic acid, pyridoxine, folate, and cobalamin. They can supplement a normal, healthy diet, which should be adjusted to individual needs determined mainly by the physiological constitution of an organism. The intake of caffeine and alcohol should be fine-tuned to the history of their use, as withdrawal of these agents in regular users may become a migraine trigger.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
29
|
Sex-based changes in rat brain serotonin and behavior in a model of altitude-related vulnerability to treatment-resistant depression. Psychopharmacology (Berl) 2021; 238:2867-2881. [PMID: 34159421 DOI: 10.1007/s00213-021-05902-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE Rates of depression and suicide increase with altitude. In our animal model, rats housed at moderate altitude vs. at sea level exhibit increased depressive symptoms in the forced swim test (FST) and lack of response to selective serotonin reuptake inhibitors (SSRIs). Depression and SSRI resistance are linked to disrupted serotonergic function, and hypobaric hypoxia may reduce the oxygen-dependent synthesis of serotonin. We therefore tested brain serotonin in rats housed at altitude. METHODS Sprague-Dawley rats were housed at altitude (4,500 ft, 10,000 ft) vs. sea level for 7-36 days. Brain serotonin was measured by ELISA, or behavior evaluated in the FST, sucrose preference (SPT), or open-field tests (OFT). RESULTS After 2 weeks at 4,500 ft or 10,000ft vs. sea level, serotonin levels decreased significantly at altitude in the female prefrontal cortex, striatum, hippocampus, and brainstem, but increased with altitude in the male hippocampus and brainstem. Female brain serotonin decreased from 7 to 36 days at 4,500 ft, but males did not vary. At 2 weeks and 24 days, females at altitude exhibit lower brain serotonin and increased depressive symptoms in the FST and SPT, with motor behavior unaltered. In males, serotonin, passive coping in the FST and OFT immobility increased with altitude at 2 weeks, but not at 24 days. Male SPT behavior did not change with altitude. CONCLUSIONS Females may be more vulnerable to depressive symptoms at altitude, while males may be resilient. Chronic hypoxic stress at altitudes as low as 4,500 ft may cause a brain serotonin imbalance to worsen vulnerability to depression and SSRI resistance, and potentially worsen suicide risk.
Collapse
|
30
|
Rahman MS, Thomas P. Molecular Characterization and Expression of Cytochrome P450 Aromatase in Atlantic Croaker Brain: Regulation by Antioxidant Status and Nitric Oxide Synthase During Hypoxia Stress. Front Physiol 2021; 12:720200. [PMID: 34434121 PMCID: PMC8381199 DOI: 10.3389/fphys.2021.720200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously shown that nitric oxide synthase (NOS, an enzyme) is significantly increased during hypoxic stress in Atlantic croaker brains and modulated by an antioxidant (AOX). However, the influence of NOS and AOX on cytochrome P450 aromatase (AROM, CYP19a1, an enzyme) activity on vertebrate brains during hypoxic stress is largely unknown. In this study, we characterized brain AROM (bAROM, CYP19a1b) cDNA in croaker and examined the interactive effects of hypoxia and a NOS-inhibitor or AOX on AROM activity. The amino acid sequence of croaker bAROM cDNA is highly homologous (76–80%) to other marine teleost bAROM cDNAs. Both real-time PCR and Northern blot analyses showed that bAROM transcript (size: ∼2.8 kb) is highly expressed in the preoptic-anterior hypothalamus (POAH). Hypoxia exposure (dissolved oxygen, DO: 1.7 mg/L for 4 weeks) caused significant decreases in hypothalamic AROM activity, bAROM mRNA and protein expressions. Hypothalamic AROM activity and mRNA levels were also decreased by pharmacological treatment with N-ethylmaleimide (NEM, an alkylating drug that modifies sulfhydryl groups) of fish exposed to normoxic (DO: ∼6.5 mg/L) conditions. On the other hand, treatments with Nω-nitro-L-arginine methyl ester (NAME, a competitive NOS-inhibitor) or vitamin-E (Vit-E, a powerful AOX) prevented the downregulation of hypothalamic AROM activity and mRNA levels in hypoxic fish. Moreover, NAME and Vit-E treatments also restored gonadal growth in hypoxic fish. Double-labeled immunohistochemistry results showed that AROM and NOS proteins are co-expressed with NADPH oxidase (generates superoxide anion) in the POAH. Collectively, these results suggest that the hypoxia-induced downregulation of AROM activity in teleost brains is influenced by neuronal NOS activity and AOX status. The present study provides, to the best of our knowledge, the first evidence of restoration of AROM levels in vertebrate brains by a competitive NOS-inhibitor and potent AOX during hypoxic stress.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| |
Collapse
|
31
|
Sen A. Does serotonin deficiency lead to anosmia, ageusia, dysfunctional chemesthesis and increased severity of illness in COVID-19? Med Hypotheses 2021; 153:110627. [PMID: 34139598 PMCID: PMC8180092 DOI: 10.1016/j.mehy.2021.110627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Different mechanisms forwarded to understand anosmia and ageusia in coronavirus patients are not adequate to explain reversible anosmia and ageusia, which are resolved quickly. In addition, the reason behind the impaired chemesthetic sensations in some coronavirus patients remains unknown. In the present paper it is proposed that SARS-CoV-2 patients suffer from depletion of tryptophan, as ACE2, a key element in the process of absorption of tryptophan from the food, is significantly reduced in the patients as coronavirus uses ACE2 as the receptor to enter the host cells. The tryptophan depletion leads to a deficit of serotonin (5-HT) in SARS-COV-2 patients because tryptophan is the precursor in the synthesis of 5-HT. Such 5-HT deficiency can explain anosmia, ageusia and dysfunctional chemesthesis in COVID-19, given the fact that 5-HT is an important neuromodulator in the olfactory neurons, taste receptor cells and transient receptor potential channels (TRP channels) involved in chemesthesis. In addition, 5-HT deficiency worsens silent hypoxemia and depresses hypoxic pulmonary vasoconstriction leading to increased severity of the disease. Also, the levels of anti-inflammatory melatonin (synthesized from 5-HT) and nicotinamide adenine dinucleotide (NAD+, produced from niacin whose precursor is the tryptophan) might decrease in coronavirus patients resulting in the aggravation of the disease. Interestingly, selective serotonin reuptake inhibitors (SSRIs) may not be of much help in correcting the 5-HT deficiency in COVID-19 patients, as their efficacy goes down significantly when there is depletion of tryptophan in the system. Hence, tryptophan supplementation may herald a radical change in the treatment of COVID-19 and accordingly, clinical trials (therapeutic / prophylactic) should be conducted on coronavirus patients to find out how tryptophan supplementation (oral or parenteral, the latter in severe cases where there is hardly any absorption of tryptophan from the food) helps in curing, relieving or preventing the olfactory, gustatory and chemesthetic dysfunctions and in lessening the severity of the disease.
Collapse
Affiliation(s)
- Amarnath Sen
- 40 Jadunath Sarbovouma Lane, Kolkata 700035, India.
| |
Collapse
|
32
|
Kanekar S, Ettaro R, Hoffman MD, Ombach HJ, Brown J, Lynch C, Sheth CS, Renshaw PF. Sex-Based Impact of Creatine Supplementation on Depressive Symptoms, Brain Serotonin and SSRI Efficacy in an Animal Model of Treatment-Resistant Depression. Int J Mol Sci 2021; 22:ijms22158195. [PMID: 34360959 PMCID: PMC8348220 DOI: 10.3390/ijms22158195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Rates of major depressive disorder (MDD) increase with living at altitude. In our model, rats housed at moderate altitude (in hypobaric hypoxia) exhibit increased depression-like behavior, altered brain serotonin and a lack of antidepressant response to most selective serotonin reuptake inhibitors (SSRIs). A forebrain deficit in the bioenergetic marker creatine is noted in people living at altitude or with MDD. Methods: Rats housed at 4500 ft were given dietary creatine monohydrate (CRMH, 4% w/w, 5 weeks) vs. un-supplemented diet, and impact on depression-like behavior, brain bioenergetics, serotonin and SSRI efficacy assessed. Results: CRMH significantly improved brain creatine in a sex-based manner. At altitude, CRMH increased serotonin levels in the female prefrontal cortex and striatum but reduced male striatal and hippocampal serotonin. Dietary CRMH was antidepressant in the forced swim test and anti-anhedonic in the sucrose preference test in only females at altitude, with motor behavior unchanged. CRMH improved fluoxetine efficacy (20 mg/kg) in only males at altitude: CRMH + SSRI significantly improved male striatal creatine and serotonin vs. CRMH alone. Conclusions: Dietary CRMH exhibits sex-based efficacy in resolving altitude-related deficits in brain biomarkers, depression-like behavior and SSRI efficacy, and may be effective clinically for SSRI-resistant depression at altitude. This is the first study to link CRMH treatment to improving brain serotonin.
Collapse
Affiliation(s)
- Shami Kanekar
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Correspondence: ; Tel.: +1-801-587-1477 or +1-801-585-5375
| | - Robert Ettaro
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Michael D. Hoffman
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Hendrik J. Ombach
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Jadeda Brown
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Cayla Lynch
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Chandni S. Sheth
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Perry F. Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
33
|
Alfaro TM, Robalo Cordeiro C. Comorbidity in idiopathic pulmonary fibrosis - what can biomarkers tell us? Ther Adv Respir Dis 2021; 14:1753466620910092. [PMID: 32167024 PMCID: PMC7074506 DOI: 10.1177/1753466620910092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive parenchymal scarring, leading to dyspnoea, respiratory failure and premature death. Although IPF is confined to the lungs, the importance of IPF comorbidities such as pulmonary hypertension and ischaemic heart disease, lung cancer, emphysema/chronic obstructive pulmonary disease, gastroesophageal reflux, sleep apnoea and depression has been increasingly recognized. These comorbidities may be associated with increased mortality and significant loss of quality of life, so their identification and management are vital. The development of good-quality biomarkers could lead to numerous gains in the management of these patients. Biomarkers can be used for the identification of predisposed individuals, early diagnosis, assessment of prognosis, selection of best treatment and assessment of response to treatment. However, the role of biomarkers for IPF comorbidities is still quite limited, and mostly based on evidence coming from populations without IPF. The future development of new biomarker studies could be informed by those that have been studied independently for each of these conditions. For now, clinicians should be mostly attentive to clinical manifestations of IPF comorbidities, and use validated diagnostic methods for diagnosis. As research on biomarkers of most common diseases continues, it is expected that useful biomarkers are developed for these diseases and then validated for IPF populations. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Tiago M Alfaro
- Pneumology Unit, Centro Hospital e Universitário de Coimbra, Coimbra, Portugal.,Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carlos Robalo Cordeiro
- Pneumology Unit, Centro Hospital e Universitário de Coimbra, Praceta Mota Pinto, Coimbra 3000-085, Portugal.,Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Peiffer G, Underner M, Perriot J, Fond G. [COPD, anxiety-depression and cognitive disorders: Does inflammation play a major role?]. Rev Mal Respir 2021; 38:357-371. [PMID: 33820658 DOI: 10.1016/j.rmr.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
COPD is a chronic respiratory disease, often associated with extrapulmonary manifestations. Co-morbidities, including anxiety, depression and cognitive impairment, worsen its progression and quality of life. The prevalence of these disorders is high, yet they are often poorly understood and inadequately managed. In the development of psychological disorders, there is accumulated evidence highlighting the major role of systemic inflammation, as well as chronic disease, genetics, the consequences of smoking, hypoxaemia, oxidative stress, and the gut microbiome In addition to traditional treatments such as bronchodilatator medications, respiratory rehabilitation and smoking cessation, systemic inflammation is an interesting therapeutic target, with the use of anti-inflammatory drugs, anti-cytokines, and nutritional interventions.
Collapse
Affiliation(s)
- G Peiffer
- Service de pneumologie - tabacologie, CHR Metz-Thionville, 57085 Metz cedex 3, France.
| | - M Underner
- Unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 86021 Poitiers, France
| | - J Perriot
- Dispensaire Émile-Roux, CLAT 63, centre de tabacologie, 63100 Clermont-Ferrand, France
| | - G Fond
- CEReSS, hôpital de la Conception, Marseille Université, Assistance publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
35
|
Contributions of animal models of cognitive disorders to neuropsychopharmacology. Therapie 2021; 76:87-99. [PMID: 33589315 DOI: 10.1016/j.therap.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Cognitive disorders and symptoms are key features of many mental and neurological diseases, with a large spectrum of impaired domains. Because of their possible evolution and detrimental functioning impact, they are a major pharmacological target for both symptomatic and disease-modifier drugs, while few cognitive enhancers have been marketed with an insufficient efficiency. It explains the need to model these cognitive disorders beyond the modelization of mental or neurological diseases themselves. According to the experimental strategy used to induce cognitive impairment, three categories of models have been identified: neurotransmission-driven models; pathophysiology-driven models; environment-driven models. These three categories of models reflect different levels of integration of endogenous and exogenous mechanisms underlying cognitive disorders in humans. Their comprehensive knowledge and illustration of their pharmacological modulation could help to propose a renewing strategy of drug development in central nervous system (CNS) field at a time when the academic and industrial invest seems to be declining despite the medical and social burden of brain diseases.
Collapse
|
36
|
Qiao H, Chen M, Li S, Li Y, Sun Y, Wu Y. Poor lung function accelerates cognitive decline in middle-aged and older adults: Evidence from the English Longitudinal Study of Ageing. Arch Gerontol Geriatr 2020; 90:104129. [DOI: 10.1016/j.archger.2020.104129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
|
37
|
Fear memory is impaired in hypobaric hypoxia: Role of synaptic plasticity and neuro-modulators in limbic region. Life Sci 2020; 254:117555. [DOI: 10.1016/j.lfs.2020.117555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
|
38
|
Palma A, Grande S, Ricci-Vitiani L, Luciani AM, Buccarelli M, Biffoni M, Dini V, Cirrone GAP, Ciocca M, Guidoni L, Pallini R, Viti V, Rosi A. Different Mechanisms Underlie the Metabolic Response of GBM Stem-Like Cells to Ionizing Radiation: Biological and MRS Studies on Effects of Photons and Carbon Ions. Int J Mol Sci 2020; 21:ijms21145167. [PMID: 32708312 PMCID: PMC7404344 DOI: 10.3390/ijms21145167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with very poor prognosis, high recurrence rate, and failure of chemo-radiotherapy, mainly due to a small fraction of cells with stem-like properties (GSCs). To study the mechanisms of GSCs resistance to radiation, two GSC lines, named line #1 and line #83, with different metabolic patterns and clinical outcome, were irradiated with photon beams and carbon ions and assessed by 1H Magnetic Resonance Spectroscopy (MRS). Both irradiation modalities induced early cytotoxic effects in line #1 with small effects on cell cycle, whereas a proliferative G2/M cytostatic block was observed in line #83. MR spectroscopy signals from mobile lipids (ML) increased in spectra of line #1 after photon and C-ion irradiation with effects on lipid unsaturation level, whereas no effects were detected in line #83 spectra. Gamma-Aminobutyric Acid (GABA), glutamic acid (glu) and Phosphocreatine (pCr) signals showed a significant variation only for line #1 after carbon ion irradiation. Glucose (glc) level and lactate (Lac) extrusion behaved differently in the two lines. Our findings suggest that the differences in irradiation response of GSCs #1 and #83 lines are likely attributable to their different metabolic fingerprint rather than to the different radiation types.
Collapse
Affiliation(s)
- Alessandra Palma
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Sveva Grande
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Anna Maria Luciani
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.R.-V.); (M.B.); (M.B.)
| | - Valentina Dini
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
- Istituto Nazionale di Fisica Nucleare INFN Sez. di Roma, 00185 Rome, Italy
| | - Giuseppe A. P. Cirrone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy;
| | - Mario Ciocca
- Centro Nazionale di Adroterapia Oncologica (CNAO)-National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Laura Guidoni
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Roberto Pallini
- Department of Neuroscience, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Vincenza Viti
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
| | - Antonella Rosi
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (S.G.); (A.M.L.); (V.D.); (L.G.); (V.V.)
- Correspondence: ; Tel.: +39-06-49903159
| |
Collapse
|
39
|
Sharma P, Tulsawani R. Ganoderma lucidum aqueous extract prevents hypobaric hypoxia induced memory deficit by modulating neurotransmission, neuroplasticity and maintaining redox homeostasis. Sci Rep 2020; 10:8944. [PMID: 32488040 PMCID: PMC7265456 DOI: 10.1038/s41598-020-65812-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 05/11/2020] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress due to hypobaric hypoxia at extreme altitudes causes severe neuronal damage and irreversible cognitive loss. Owing to contraindications of current drug therapies, the aim of the study was to investigate memory enhancing potential of aqueous extract of Ganoderma lucidum (GLAQ) and underlying neuroprotective mechanism using rat hypobaric hypoxia test model. Rats exposed to hypobaric hypoxia showed deranged spatial memory in morris water maze test with hippocampal damage and vasogenic cerebral edema. All these changes were prevented with GLAQ treatment. Blood and biochemical analysis revealed activation of hypoxic ventilatory response, red blood cells induction, reversal of electrolyte and redox imbalance, and restoration of cellular bioenergetic losses in GLAQ treated animals. Notably, GLAQ treatment ameliorated levels of neurotransmitters (catecholamines, serotonin, glutamate), prevented glucocorticoid and α-synuclein surge, improved neuroplasticity by upregulating CREB/p-CREB/BDNF expression via ERK1/ERK2 induction. Further, restoration of nuclear factor erythroid 2-related factor with stabilization of hypoxia inducible factors and inflammatory markers were evidenced in GLAQ treated rats which was additionally established in gene reporter array using an alternative HT22 cell test model. Conclusively, our studies provide novel insights into systemic to molecular level protective mechanism by GLAQ in combating hypobaric hypoxia induced oxidative stress and memory impairment.
Collapse
Affiliation(s)
- Purva Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajkumar Tulsawani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
40
|
Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, Katayama K. The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scand J Med Sci Sports 2019; 30:384-398. [PMID: 31605635 DOI: 10.1111/sms.13573] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Acute moderate intensity exercise has been shown to improve cognitive performance. In contrast, hypoxia is believed to impair cognitive performance. The detrimental effects of hypoxia on cognitive performance are primarily dependent on the severity and duration of exposure. In this review, we describe how acute exercise under hypoxia alters cognitive performance, and propose that the combined effects of acute exercise and hypoxia on cognitive performance are mainly determined by interaction among exercise intensity and duration, the severity of hypoxia, and duration of exposure to hypoxia. We discuss the physiological mechanism(s) of the interaction and suggest that alterations in neurotransmitter function, cerebral blood flow, and possibly cerebral metabolism are the primary candidates that determine cognitive performance when acute exercise is combined with hypoxia. Furthermore, acclimatization appears to counteract impaired cognitive performance during prolonged exposure to hypoxia although the precise physiological mechanism(s) responsible for this amelioration remain to be elucidated. This review has implications for sporting, occupational, and recreational activities at terrestrial high altitude where cognitive performance is essential. Further studies are required to understand physiological mechanisms that determine cognitive performance when acute exercise is performed in hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Mizuki Sudo
- Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yasuki Higaki
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
41
|
Li J, Yang S, Yu F, Ji E, Woodrow Weiss J. Endothelin-1 enhanced carotid body chemosensory activity in chronic intermittent hypoxia through PLC, PKC and p38MAPK signaling pathways. Neuropeptides 2019; 74:44-51. [PMID: 30579678 DOI: 10.1016/j.npep.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/24/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Endothelin-1 (ET-1), as it functions as a neuromodulator, has been associated with hypertension in chronic intermittent hypoxia (CIH) which attribute to enhanced carotid body sensibility to hypoxia. However, the molecular mechanism of ET-1 on carotid body sensibility in CIH is still not clear. Here, effect of ET-1 on carotid body chemosensory stimulation in rats exposed to either CIH or room air (Normoxia) was explored. Furthermore, Phospholipase C (PLC), Protein kinase C (PKC) or p38 MAPK antagonists were adopted to clarify the signalling pathways involved. Results showed that ET-1 induced a higher increase of carotid sinus nerve activity (CSNA) in animals exposed to CIH. Both ETA and ETB receptor expression were up-regulated by CIH exposure, but only ETA is responsible for ET-1 induced CSNA increase. Additional, the increase was inhibited by PLC, PKC, p38 MAPK antagonists and calcium channel blocker. Our findings support that ETA receptor mediates ET-1-induced CSNA increase through PLC, PKC and p38 MAPK signalling pathways in chronic intermittent hypoxia. Also, our study indicated that calcium influx was necessary for enhancing effect of ET-1 on CSNA.
Collapse
Affiliation(s)
- Jieru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Fuyang Yu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - EnSheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - J Woodrow Weiss
- Division of Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
42
|
Abstract
After participating in this activity, learners should be better able to:• Assess epidemiologic evidence that increased altitude of residence is linked to increased risk of depression and suicide• Evaluate strategies to address hypoxia-related depression and suicidal ideation ABSTRACT: Suicide and major depressive disorder (MDD) are complex conditions that almost certainly arise from the influences of many interrelated factors. There are significant regional variations in the rates of MDD and suicide in the United States, suggesting that sociodemographic and environmental conditions contribute. Here, we review epidemiological evidence that increases in the altitude of residence are linked to the increased risk of depression and suicide. We consider the possibility that chronic hypobaric hypoxia (low blood oxygen related to low atmospheric pressure) contributes to suicide and depression, which is suggested by animal models, short-term studies in humans, and the effects of hypoxic medical conditions on suicide and depression. We argue that hypobaric hypoxia could promote suicide and depression by altering serotonin metabolism and brain bioenergetics; both of these pathways are implicated in depression, and both are affected by hypoxia. Finally, we briefly examine treatment strategies to address hypoxia-related depression and suicidal ideation that are suggested by these findings, including creatine monohydrate and the serotonin precursors tryptophan and 5-hydroxytryptophan.
Collapse
|
43
|
Kious BM, Bakian A, Zhao J, Mickey B, Guille C, Renshaw P, Sen S. Altitude and risk of depression and anxiety: findings from the intern health study. Int Rev Psychiatry 2019; 31:637-645. [PMID: 31084447 PMCID: PMC8530170 DOI: 10.1080/09540261.2019.1586324] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Multiple studies suggest that the risks of depression and suicide increase with increasing altitude of residence, but no studies have assessed whether changing altitude changes these risks. To address this gap, this study used data from the Intern Health Study, which follows students from the end of medical school through the first year of residency, recording depression via the 9-item Patient Health Questionnaire (PHQ-9), anxiety via the 7-item Generalized Anxiety Disorder Questionnaire (GAD-7), and multiple risk factors for these symptoms. Data from 3764 medical students representing 46 schools and 282 residencies were available. Odds ratios (OR) representing the effects of altitude on psychiatric symptoms were estimated using generalized linear models. After excluding participants with missing altitude data, 3731 medical students were analyzed. High altitude residence (> 900 m) was significantly associated with PHQ-9 total score (OR = 1.32, 95% CI = 1.001-1.75, p < 0.05), and PHQ-9 suicidal ideation (OR = 1.79, 95% CI = 1.08-0.02, p = 0.02). Moving from low to high altitude was significantly associated with PHQ-9 total score (OR = 1.47, 95% CI = 1.087-1.98, p = 0.01), GAD-7 total score (OR = 1.40, 95% CI = 1.0040-1.95, p < 0.05), and PHQ-9 suicidal ideation (OR = 1.10, 95% CI = 1.01-1.19, p = 0.02). The data suggest that moving from low to high altitude is associated with increasing symptoms of depression, anxiety, and suicidal ideation.
Collapse
Affiliation(s)
- Brent M. Kious
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Amanda Bakian
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Joan Zhao
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Brian Mickey
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Constance Guille
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Perry Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Srijan Sen
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Giampá SQDC, Souza JFTD, Mello MTD, Tufik S, Santos RVTD, Antunes HKM. MAXIMUM EFFORT TRAINING PERFORMED IN HYPOXIA ALTERS THE MOOD PROFILE. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182406133712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Physical exercise at high altitude has become constant. However, the risks associated with this type of exercise represent a major concern, considering the influence of important stressors such as hypoxia and physical exercise on psychobiological and physiological responses. Objective: Analyze the mood state and behavior of physiological variables of volunteers subjected to a progressive loading protocol until they reached maximum volitional exhaustion, both at sea level and at a simulated altitude of 4500 meters. Method: For both conditions studied, the volunteers responded to two instruments that assess mood responses: The Brunel Mood Scale and the Visual Analogue Mood Scale. They also underwent blood sampling to measure blood lactate levels and to evaluate oxygen-hemoglobin saturation. These procedures were performed before, immediately after, and 30 and 60 minutes after the end of the protocol. Results: Hypoxia triggered negative effects on mood responses, especially when compared to sea level conditions. An increase in fatigue level (p=0.02) and mental confusion (p=0.04) was observed immediately after the exercise session, and reduction of vigor (p=0.03) was noted at 30 minutes, accompanied by a reduction in oxygen-hemoglobin saturation immediately after the session and at 30 minutes. There was also an increase in blood lactate levels immediately after the session (p=0.006). Conclusion: The particularities of the hypoxic environment associated with maximum exercise are able to cause a deterioration of mood and physiological responses, which can negatively modulate physical performance. This is a cross-sectional clinical study.
Collapse
Affiliation(s)
| | | | | | | | - Ronaldo Vagner Thomatieli dos Santos
- Universidade Federal de São Paulo, Brazil; Laboratório Interdisciplinar em Fisiologia e Exercício, Brazil; Universidade Federal de São Paulo, Brazil
| | - Hanna Karen Moreira Antunes
- Universidade Federal de São Paulo, Brazil; Laboratório Interdisciplinar em Fisiologia e Exercício, Brazil; Universidade Federal de São Paulo, Brazil
| |
Collapse
|
45
|
Pelgrim CE, Peterson JD, Gosker HR, Schols AMWJ, van Helvoort A, Garssen J, Folkerts G, Kraneveld AD. Psychological co-morbidities in COPD: Targeting systemic inflammation, a benefit for both? Eur J Pharmacol 2018; 842:99-110. [PMID: 30336140 DOI: 10.1016/j.ejphar.2018.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
COPD is a chronic lung disease characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar abnormalities. Furthermore, COPD is often characterized by extrapulmonary manifestations and comorbidities worsening COPD progression and quality of life. A neglected comorbidity in COPD management is mental health impairment defined by anxiety, depression and cognitive problems. This paper summarizes the evidence for impaired mental health in COPD and focuses on current pharmacological intervention strategies. In addition, possible mechanisms in impaired mental health in COPD are discussed with a central role for inflammation. Many comorbidities are associated with multi-organ-associated systemic inflammation in COPD. Considering the accumulative evidence for a major role of systemic inflammation in the development of neurological disorders, it can be hypothesized that COPD-associated systemic inflammation also affects the function of the brain and is an interesting therapeutic target for nutra- and pharmaceuticals.
Collapse
Affiliation(s)
- Charlotte E Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Julia D Peterson
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Harry R Gosker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands
| | - Annemie M W J Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands
| | - Ardy van Helvoort
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, the Netherlands; Nutrition, Metabolism and Muscle Sciences, Nutricia Research, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Platform Immunology, Nutricia Research, Utrecht, the Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Veterinary Pharmacology & Therapeutics, Institute of Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
46
|
Sherchand O, Sapkota N, Chaudhari RK, Khan SA, Baranwal JK, Pokhrel T, Das BKL, Lamsal M. Association between vitamin D deficiency and depression in Nepalese population. Psychiatry Res 2018; 267:266-271. [PMID: 29940458 DOI: 10.1016/j.psychres.2018.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
Recent studies link vitamin D deficiency with depression; however evidences from the Nepalese population are scarce. The current study explored the association between vitamin D deficiency and depression among 300 adults of 18 years and above age residing in eastern Nepal. Validated Nepali version of the Beck Depression Inventory scale (BDI-Ia) was used to determine depressive symptoms and a BDI cutoff score of ≥20 was considered as clinically significant depression. Sociodemographic data were collected using semi-structured questionnaire. Blood samples were collected to measure serum 25‑hydroxy vitamin D (25(OH)D) and classify vitamin D status (deficient, insufficient and sufficient). We used Chi-square test to identify the association of sociodemographic variables and vitamin D status with clinically significant depression. We found a significant association of gender, geographical location of residence, marital status, religion and vitamin D status with clinically significant depression. Binary logistic regression model was used to examine the likelihood of clinically significant depression among vitamin D deficient individuals. Vitamin D deficiency was significantly associated with increased odds of clinically significant depression even after adjusting for confounding variables. This finding suggests Vitamin D deficient people have increased odds of having clinically significant depression.
Collapse
Affiliation(s)
- Ojaswee Sherchand
- Department of Biochemistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal.
| | - Nidesh Sapkota
- Department of Psychiatry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Rajendra K Chaudhari
- Department of Biochemistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Seraj A Khan
- Department of Biochemistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Jouslin K Baranwal
- Department of Biochemistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Tripti Pokhrel
- Department of Biochemistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Binod K L Das
- Department of Biochemistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Madhab Lamsal
- Department of Biochemistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| |
Collapse
|
47
|
Ryan S, Dudley N, Green M, Pruitt C, Jackman G. Altered Mental Status at High Altitude. Pediatrics 2018; 142:peds.2017-3973. [PMID: 29976571 DOI: 10.1542/peds.2017-3973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 11/24/2022] Open
Abstract
Intrathecal baclofen pumps are commonly used in pediatric patients with spastic cerebral palsy. Baclofen binds to γ-aminobutyric acid receptors to inhibit both monosynaptic and polysynaptic reflexes at the spinal cord level. The blockade stops the release of excitatory transmitters and thereby decreases muscle contraction. It is commonly used for lower limb spasticity and has been shown to improve postural ability and functional status. The US Food and Drug Administration has approved baclofen for the treatment of spasticity of cerebral or spinal origin in adult and pediatric patients 4 years or older. Various complications of baclofen pumps are described in the literature. Immediately after surgery, problems from infection can arise and range from superficial skin infections to meningitis and bacteremia. Another early complication includes cerebrospinal fluid leak that can be observed by notable swelling beneath the lumbar incision. Additional problems that arise later are usually from the mechanics of the pump and catheter. Pump-related complications include failure, migration, and flipping. Catheter-related complications include disconnection, occlusion, fracture, or kink. Most of these complications typically lead to baclofen withdrawal, although there are a few case reports of overdose due to mechanical causes. Here we describe 2 cases of individuals experiencing complications of excessive baclofen exposure after significant changes in the atmospheric pressure due to travel involving ambient altitude change. These cases reflect the need to discuss this potential complication with families and patients with baclofen pumps before travel to high elevations.
Collapse
Affiliation(s)
- Sydney Ryan
- Division of Pediatric Emergency Medicine, .,Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake City, Utah; and
| | - Nanette Dudley
- Division of Pediatric Emergency Medicine.,Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake City, Utah; and
| | - Michael Green
- Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake City, Utah; and
| | - Charles Pruitt
- Division of Pediatric Emergency Medicine.,Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake City, Utah; and
| | - Geoffrey Jackman
- Department of Pediatric Emergency Medicine, Rady Children's Hospital, San Diego, California
| |
Collapse
|
48
|
Green AJ, Planchart A. The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:12-19. [PMID: 29199130 PMCID: PMC5936656 DOI: 10.1016/j.cbpc.2017.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The causes of neurodegenerative diseases are complex with likely contributions from genetic susceptibility and environmental exposures over an organism's lifetime. In this review, we examine the role that aquatic models, especially zebrafish, have played in the elucidation of mechanisms of heavy metal toxicity and nervous system function over the last decade. Focus is applied to cadmium, lead, and mercury as significant contributors to central nervous system morbidity, and the application of numerous transgenic zebrafish expressing fluorescent reporters in specific neuronal populations or brain regions enabling high-resolution neurodevelopmental and neurotoxicology research.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Behavior, Animal/drug effects
- Disease Models, Animal
- Gene Expression Regulation, Developmental/drug effects
- Heavy Metal Poisoning, Nervous System/etiology
- Heavy Metal Poisoning, Nervous System/genetics
- Heavy Metal Poisoning, Nervous System/metabolism
- Heavy Metal Poisoning, Nervous System/pathology
- Humans
- Metals, Heavy/toxicity
- Nerve Degeneration
- Nervous System/drug effects
- Nervous System/metabolism
- Nervous System/pathology
- Nervous System/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Risk Assessment
- Water Pollutants, Chemical/toxicity
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Adrian J Green
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Antonio Planchart
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
49
|
Kanekar S, Sheth CS, Ombach HJ, Olson PR, Bogdanova OV, Petersen M, Renshaw CE, Sung YH, D'Anci KE, Renshaw PF. Hypobaric hypoxia exposure in rats differentially alters antidepressant efficacy of the selective serotonin reuptake inhibitors fluoxetine, paroxetine, escitalopram and sertraline. Pharmacol Biochem Behav 2018; 170:25-35. [PMID: 29738811 DOI: 10.1016/j.pbb.2018.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/19/2023]
Abstract
Treatment-resistant depression, a chronic condition that affects 30% of depressed patients on antidepressants, is highly linked to suicidal behavior. Chronic hypoxia exposure via living at altitude (hypobaric hypoxia) or with chronic hypoxic diseases is demographically linked to increased risk for depression and suicide. We previously demonstrated that housing rats at altitude for a week incrementally increases depression-like behavior in the forced swim test (FST) in females, but not males. In animal models, high altitude exposure reduces brain serotonin, and selective serotonin reuptake inhibitors (SSRIs) can lose efficacy when brain serotonin levels are low. To address whether residence at moderate altitude is detrimental to SSRI function, we examined SSRI efficacy in the FST after a week of housing rats at altitudes of 4500 ft. or 10,000 ft. as compared to at sea level. In females, the tricyclic antidepressant desipramine (positive control) functioned well in all groups, increasing latency to immobility and decreasing immobility, by increasing climbing. However, the SSRIs fluoxetine, paroxetine and escitalopram were ineffective in females in all groups: only paroxetine improved swimming in the FST as expected of a SSRI, while all three unexpectedly reduced climbing. Fluoxetine was also ineffective in male rats. Sertraline was the only SSRI with antidepressant efficacy at altitude in both females and males, increasing swimming, climbing and latency to immobility, and reducing immobility. Hypobaric hypoxia thus appears to be detrimental to efficacy of the SSRIs fluoxetine, paroxetine and escitalopram, but not of sertraline. Unlike the other SSRIs, sertraline can improve both serotonergic and dopaminergic transmission, and may be less impacted by a hypoxia-induced serotonin deficit. A targeted approach may thus be necessary for successful antidepressant treatment in patients with depression who live at altitude or with chronic hypoxic diseases, and that sertraline may be the SSRI of choice for prescription for this population.
Collapse
Affiliation(s)
- Shami Kanekar
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States; VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, United States; The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States.
| | - Chandni S Sheth
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Hendrik J Ombach
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Paul R Olson
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States
| | - Olena V Bogdanova
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States
| | - Matthew Petersen
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Chloe E Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Young-Hoon Sung
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | | | - Perry F Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States; VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, United States; The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, United States
| |
Collapse
|
50
|
Sheth C, Ombach H, Olson P, Renshaw PF, Kanekar S. Increased Anxiety and Anhedonia in Female Rats Following Exposure to Altitude. High Alt Med Biol 2018; 19:81-90. [PMID: 29431475 DOI: 10.1089/ham.2017.0125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sheth, Chandni, Hendrik Ombach, Paul Olson, Perry F. Renshaw, and Shami Kanekar. Increased anxiety and anhedonia in female rats following exposure to altitude. High Alt Med Biol. 19:81-90, 2018.-Anxiety disorders are chronic, highly prevalent conditions, often comorbid with depression. Both anxiety and depression form major risk factors for suicide. Living at altitude is associated with higher rates of depression and suicide, leading us to address whether anxiety disorders may also be amplified at altitude. Using a novel translational animal model, we previously showed that depression-like behavior increases with altitude of housing in female, but not male rats. We now use this model to examine the effects of altitude on both anxiety-like behavior and anhedonia, a core symptom of depression. After housing for a week at sea level, 4500 or 10,000 ft, rats were evaluated for anxiety in the open-field test or the elevated plus maze, and anhedonia in the sucrose preference test. Another group was tested at baseline. Anxiety-like behavior increased in females housed at altitude. In females, lower sucrose preference was seen in those housed at 10,000 ft versus those at sea level. Males showed no change in anxiety or anhedonia across groups. These data suggest that living at moderate-high altitude may pose a risk factor for those vulnerable to anxiety disorders, with the potential to be particularly detrimental to females at altitude.
Collapse
Affiliation(s)
- Chandni Sheth
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Hendrik Ombach
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Paul Olson
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Perry F Renshaw
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah.,2 VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC) , Salt Lake City Veterans Health Administration, Salt Lake City, Utah
| | - Shami Kanekar
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah.,2 VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC) , Salt Lake City Veterans Health Administration, Salt Lake City, Utah
| |
Collapse
|