1
|
Zhong Q, Ren L, Wang T, An Z, Hua Y. The association between circadian syndrome and possible sarcopenia in an aging population: A 4-year follow-up study. PLoS One 2025; 20:e0323211. [PMID: 40359225 PMCID: PMC12074653 DOI: 10.1371/journal.pone.0323211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION Recently, circadian syndrome (CircS) is proposed as a novel risk cluster based on sleep disorder, depression, dyslipidemia, hyperglycemia, hypertension and abdominal obesity. To investigate the association between CircS and possible sarcopenia, this study was performed. METHODS Possible sarcopenia is defined according to Asian Working Group for Sarcopenia in 2019, which includes measures of muscle strength and physical performance. In the baseline survey, 7,905 participants aged ≥ 40 years from the China Health and Retirement Longitudinal Study were included. Multivariate logistic regression was used to evaluate the association between CircS and possible sarcopenia. Subgroup and interactive analyses were adopted to verify the findings in the overall population and identify potential interactive effects. The obese population was excluded and the missing values were interpolated using multivariate imputation by chained equations as sensitivity analyses. In addition, the participants were followed up for four years to explore the longitudinal association between CircS and incident possible sarcopenia. RESULTS As per one increase of CircS components, participants had a 1.11-fold (95% CI = 1.07-1.14, P < 0.001) risk of prevalent possible sarcopenia in the full model. The CircS group was associated with a 1.30-fold (95% CI = 1.17-1.44) risk of prevalent possible sarcopenia (P < 0.001). No significant interactive effects of covariates on the association between CircS and prevalent possible sarcopenia were detected (all P for interaction > 0.05). All the subgroup and sensitivity analyses supported the positive association between CircS and possible sarcopenia. In the longitudinal follow-up, the odd ratio was 1.06 (95% CI = 1.00-1.13, P < 0.05) as per one increase of CircS components in the full model. The CircS group was also found to have an elevated risk of incident possible sarcopenia (odd ratio = 1.24, 95% CI = 1.03-1.50, P < 0.05) after adjusting all the covariates. CONCLUSIONS CircS is a risk factor for possible sarcopenia, which may serve as a predictor of possible sarcopenia for early identification and intervention.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Ren
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tianhong Wang
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinical Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Yusi Hua
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Tice AL, Lee C, Hickner RC, Steiner JL. Scheduled Exercise Partially Offsets Alcohol-Induced Clock Dysfunction in Skeletal Muscle and Liver of Female Mice. J Biol Rhythms 2025; 40:208-228. [PMID: 39924857 DOI: 10.1177/07487304241312461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, n = 26), control-exercise (CON EX, n = 28), alcohol-sedentary (ETOH SED, n = 27), or alcohol-exercise (ETOH EX, n = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Robert C Hickner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
3
|
Smith HA, Templeman I, Davis M, Slater T, Clayton DJ, Varley I, James LJ, Middleton B, Johnston JD, Karagounis LG, Tsintzas K, Thompson D, Gonzalez JT, Walhin JP, Betts JA. Characterizing 24-Hour Skeletal Muscle Gene Expression Alongside Metabolic and Endocrine Responses Under Diurnal Conditions. J Clin Endocrinol Metab 2025; 110:e1017-e1030. [PMID: 38779872 PMCID: PMC11913097 DOI: 10.1210/clinem/dgae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Skeletal muscle plays a central role in the storage, synthesis, and breakdown of nutrients, yet little research has explored temporal responses of this human tissue, especially with concurrent measures of systemic biomarkers of metabolism. OBJECTIVE To characterize temporal profiles in skeletal muscle expression of genes involved in carbohydrate metabolism, lipid metabolism, circadian clocks, and autophagy and descriptively relate them to systemic metabolites and hormones during a controlled laboratory protocol. METHODS Ten healthy adults (9M/1F, [mean ± SD] age 30 ± 10 years; BMI 24.1 ± 2.7 kg·m-2) rested in the laboratory for 37 hours with all data collected during the final 24 hours (08:00-08:00 hours). Participants ingested hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 22:00 to 07:00 hours. Blood samples were collected hourly for endocrine and metabolite analyses, with muscle biopsies occurring every 4 hours from 12:00 to 08:00 hours the following day to quantify gene expression. RESULTS Plasma insulin displayed diurnal rhythmicity peaking at 18:04 hours. Expression of skeletal muscle genes involved in carbohydrate metabolism (Name, Acrophase [hours]: GLUT4, 14:40; PPARGC1A, 16:13; HK2, 18:24) and lipid metabolism (FABP3, 12:37; PDK4, 05:30; CPT1B, 12:58) displayed 24-hour rhythmicity that reflected the temporal rhythm of insulin. Equally, circulating glucose (00:19 hours), nonesterified fatty acids (04:56), glycerol (04:32), triglyceride (23:14), urea (00:46), C-terminal telopeptide (05:07), and cortisol (22:50) concentrations also all displayed diurnal rhythmicity. CONCLUSION Diurnal rhythms were present in human skeletal muscle gene expression as well systemic metabolites and hormones under controlled diurnal conditions. The temporal patterns of genes relating to carbohydrate and lipid metabolism alongside circulating insulin are consistent with diurnal rhythms being driven in part by the diurnal influence of cyclic feeding and fasting.
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Iain Templeman
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Max Davis
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Tommy Slater
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK, LE11 3TU
| | - Benita Middleton
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Jonathan D Johnston
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Leonidas G Karagounis
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University (ACU), Melbourne, VIC 3000, Australia
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK, NG7 2UH
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| |
Collapse
|
4
|
Parrotta ME, Colangeli L, Scipione V, Vitale C, Sbraccia P, Guglielmi V. Time Restricted Eating: A Valuable Alternative to Calorie Restriction for Addressing Obesity? Curr Obes Rep 2025; 14:17. [PMID: 39899119 PMCID: PMC11790783 DOI: 10.1007/s13679-025-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE OF REVIEW In this review, we summarize the molecular effects of time-restricted eating (TRE) and its possible role in appetite regulation. We also discuss the potential clinical benefits of TRE in obesity. RECENT FINDINGS TRE is an emerging dietary approach consisting in limiting food intake to a specific window of time each day. The rationale behind this strategy is to restore the circadian misalignment, commonly seen in obesity. Preclinical studies have shown that restricting food intake only during the active phase of the day can positively influence several cellular functions including senescence, mitochondrial activity, inflammation, autophagy and nutrients' sensing pathways. Furthermore, TRE may play a role by modulating appetite and satiety hormones, though further research is needed to clarify its exact mechanisms. Clinical trials involving patients with obesity or type 2 diabetes suggest that TRE can be effective for weight loss, but its broader effects on improving other clinical outcomes, such as cardiovascular risk factors, remain less certain. The epidemic proportions of obesity cause urgency to find dietary, pharmacological and surgical interventions that can be effective in the medium and long term. According to its molecular effects, TRE can be an interesting alternative to caloric restriction in the treatment of obesity, but the considerable variability across clinical trials regarding population, intervention, and follow-up duration makes it difficult to reach definitive conclusions.
Collapse
Affiliation(s)
| | - Luca Colangeli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Scipione
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carolina Vitale
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Avital-Cohen N, Chapnik N, Froy O. Resveratrol Induces Myotube Development by Altering Circadian Metabolism via the SIRT1-AMPK-PP2A Axis. Cells 2024; 13:1069. [PMID: 38920697 PMCID: PMC11201382 DOI: 10.3390/cells13121069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.
Collapse
Affiliation(s)
| | | | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (N.A.-C.); (N.C.)
| |
Collapse
|
6
|
Dobbins TW, Swanson RM, Dennis AA, Rivera JD, Dinh TTN, Lemley CO, Burnett DD. Melatonin supplementation to sows in mid to late gestation affects offspring circadian, myogenic, and growth factor transcript abundance in pre and postnatal skeletal muscle. J Anim Sci 2024; 102:skae377. [PMID: 39679952 DOI: 10.1093/jas/skae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/15/2024] [Indexed: 12/17/2024] Open
Abstract
The neuroendocrine hormone melatonin is associated with circadian rhythms and has antioxidant and vasodilative properties. In cattle, melatonin rescues fetal growth during maternal nutrient restriction in a seasonally dependent manner, but melatonin research in swine is limited. The objective of this study was to evaluate the effects of dietary melatonin supplementation during mid to late gestation on circadian rhythm and muscle growth and development of the longissimus dorsi in utero and postnatally. Sows received 20 mg of dietary melatonin daily (MEL) or no melatonin supplement (CON). Experiment 1 supplemented sows from gestational age (dGA) 38 ± 1 to 99 ± 1, experiment 2 supplemented sows from 41 to 106 ± 1 dGA, and experiment 3 supplemented sows from 60 dGA to farrowing. At harvest, morphometric measurements of all fetuses were taken, while the small (SM), medium (MED), and large (LG) piglets from each litter were used for further analysis. Prenatal data were analyzed using the MIXED procedure of SAS, and postnatal data were analyzed using the GLIMMIX procedure. Fetal morphometrics were analyzed for fixed the effect of treatment, and transcript abundance was analyzed for treatment, time, and size. Postnatal parameters were analyzed for fixed effects of treatment, size, and production stage. In experiment 1, MEL increased (P = 0.016) Period 1 (PER1) transcript abundance in the evening (PM) compared to the morning (AM). In experiment 1, myogenin (MYOG) transcript abundance was increased (P = 0.033) in MEL fetuses in the AM compared to MEL in the PM. Myogenic factor 5 (MYF5) and paired box 7 (PAX7) were increased (P = 0.016) in the PM. Fetuses from MEL-treated sows had increased (P < 0.05) BW, curve crown-rump length, and head circumference in experiment 2. In experiment 2, MEL increased (P = 0.012) PER1 and Period 2 (PER2) transcript abundance in the PM. In experiment 2, myoblast differentiation 1 (MYOD) was increased (P = 0.016) in SM and MED fetuses, while MYF5 and PAX7 were increased (P = 0.019) in SM fetuses. Postnatal BW was increased (P = 0.025) in MED and LG MEL-treated offspring compared to CON. Insulin-like growth factor 1 (IGF1) was downregulated (P = 0.050) in MEL-treated offspring, while insulin-like growth factor 1 receptor (IGF1R) was upregulated (P = 0.009) in MEL offspring. These results indicate that maternal melatonin supplementation during gestation modulates fetal circadian regulatory genes and alters myogenic genes during growth.
Collapse
Affiliation(s)
- Thomas W Dobbins
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Rebecca M Swanson
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Amberly A Dennis
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - J Daniel Rivera
- Department of Animal Science, University of Arkansas System Division of Agriculture, Southwest Research and Extension Center, Hope, AR 71801, USA
| | - Thu T N Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
7
|
Nomura S, Hosono T, Ono M, Daikoku T, Michihiro M, Kagami K, Iizuka T, Chen Y, Shi Y, Morishige JI, Fujiwara T, Fujiwara H, Ando H. Desynchronization between Food Intake and Light Stimulations Induces Uterine Clock Quiescence in Female Mice. J Nutr 2023; 153:2283-2290. [PMID: 37336322 DOI: 10.1016/j.tjnut.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Dysmenorrhea is associated with breakfast skipping in young women, suggesting that fasting in the early active phase disrupts uterine functions. OBJECTIVES To investigate the possible involvement of the uterine clock system in fasting-induced uterine dysfunction, we examined core clock gene expressions in the uterus using a 28-h interval-fed mouse model. METHODS Young female mice (8 wk of age) were divided into 3 groups: group I (ad libitum feeding), group II (time-restricted feeding, initial 4 h of the active period every day), and group III (time-restricted feeding for 8 h with a 28-h cycle). Groups II and III have the same fasting interval of 20 h. After analyzing feeding and wheel running behaviors during 2 wk of dietary restriction, mice were sacrificed at 4-h intervals, and the expression profiles of clock genes in the uterus and liver were examined by qPCR. RESULTS The mice in group I took food mainly during the dark phase and those in group II during the initial 4 h of the dark phase, whereas those in group III delayed feeding time by 4 h per cycle. In all groups, spontaneous wheel running was observed during the dark phase. There was no difference in the quantity of feeding and the amount of running exercise among the 3 groups during the second week. The mRNA expressions of peripheral clock genes, Bmal1, Clock, Per1, Per2, Cry1, Nr1d1, and Dbp and a clock-controlled gene, Fabp1, in the uterus showed rhythmic oscillations with normal sequential expression cascade in groups I and II, whereas their expressions decreased and circadian cycles disappeared in group III. In contrast, liver core clock genes in group III showed clear circadian cycles. CONCLUSIONS Fluctuations in the timing of the first food intake impair the uterine clock oscillator system to reduce clock gene expressions and abolish their circadian rhythms.
Collapse
Affiliation(s)
- Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan.
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mieda Michihiro
- Department of Integrative Neurophysiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuchen Chen
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yifan Shi
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
8
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
9
|
Tiwari A, Rathor P, Trivedi PK, Ch R. Multi-Omics Reveal Interplay between Circadian Dysfunction and Type2 Diabetes. BIOLOGY 2023; 12:301. [PMID: 36829576 PMCID: PMC9953493 DOI: 10.3390/biology12020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Type 2 diabetes is one of the leading threats to human health in the 21st century. It is a metabolic disorder characterized by a dysregulated glucose metabolism resulting from impaired insulin secretion or insulin resistance. More recently, accumulated epidemiological and animal model studies have confirmed that circadian dysfunction caused by shift work, late meal timing, and sleep loss leads to type 2 diabetes. Circadian rhythms, 24-h endogenous biological oscillations, are a fundamental feature of nearly all organisms and control many physiological and cellular functions. In mammals, light synchronizes brain clocks and feeding is a main stimulus that synchronizes the peripheral clocks in metabolic tissues, such as liver, pancreas, muscles, and adipose tissues. Circadian arrhythmia causes the loss of synchrony of the clocks of these metabolic tissues and leads to an impaired pancreas β-cell metabolism coupled with altered insulin secretion. In addition to these, gut microbes and circadian rhythms are intertwined via metabolic regulation. Omics approaches play a significant role in unraveling how a disrupted circadian metabolism causes type 2 diabetes. In the present review, we emphasize the discoveries of several genes, proteins, and metabolites that contribute to the emergence of type 2 diabetes mellitus (T2D). The implications of these discoveries for comprehending the circadian clock network in T2D may lead to new therapeutic solutions.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Priya Rathor
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Prabodh Kumar Trivedi
- Department of Biotechnology, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
| | - Ratnasekhar Ch
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
10
|
Luo X, Yang X, Yang Y, Li H, Cui H, Cao X. The interrelationship between inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms. Arch Physiol Biochem 2022; 128:1559-1565. [PMID: 32608270 DOI: 10.1080/13813455.2020.1782435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Circadian rhythms affect a variety of physiological processes. Disruption of circadian rhythms causes many diseases, most of which are associated with inflammation. Disruption of circadian rhythms has a detrimental impact on the function of immune system. It is common to find that circulatory LPS are increased. LPS induces immune cells to produce inflammatory cytokines. Inflammatory cytokines play a role in skeletal muscle decay. Rev-erbβ has been identified as a critical regulator of circadian rhythms and a factor in inflammation. Another effect of disruption is a concomitant disturbance of glucose-insulin metabolism, which skeletal muscle likely contributes to considering it is a key metabolic tissue. Disruption of circadian rhythms is also related to obesity. Obesity can cause an increase expression of inflammatory cytokines. Maybe obesity with skeletal muscle decay is one of major characteristics. Future studies are needed to obtain a comprehensive understanding of inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms.
Collapse
Affiliation(s)
- Xuguang Luo
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, PR China
| | - Xinhua Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Yanping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Hairong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Huilin Cui
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Ximei Cao
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
11
|
The circadian rhythm regulates branched-chain amino acids metabolism in fast muscle of Chinese perch ( Siniperca chuatsi) during short-term fasting by Clock-KLF15-Bcat2 pathway. Br J Nutr 2022:1-12. [PMID: 36373572 DOI: 10.1017/s0007114522003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.
Collapse
|
12
|
Miao L, Batty KR, Jackson AN, Pieno HA, Rhoades MW, Kojima S. Genetic and environmental perturbations alter the rhythmic expression pattern of a circadian long non-coding RNA, Per2AS, in mouse liver. F1000Res 2022; 11:1073. [PMID: 36250003 PMCID: PMC9551389 DOI: 10.12688/f1000research.125628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play a wide variety of biological roles without encoding a protein. Although the functions of many lncRNAs have been uncovered in recent years, the regulatory mechanism of lncRNA expression is still poorly understood despite that the expression patterns of lncRNAs are much more specific compared to mRNAs. Here, we investigated the rhythmic expression of Per2AS, a novel lncRNA that regulates circadian rhythms. Given that Per2AS expression is antiphasic to Period2 ( Per2), a core circadian clock gene, and transcribed from the antisense strand of Per2, we hypothesized that the rhythmic Per2AS expression is driven either by its own promoter or by the rhythmic Per2 transcription via transcriptional interference. Methods: We leveraged existing circadian RNA-seq datasets and analyzed the expression patterns of Per2AS and Per2 in response to the genetic or environmental disruption of the circadian rhythm in mouse liver. We tested our hypotheses by comparing the changes in the expression patterns of Per2AS and Per2. Conclusions: We found that, in some cases, Per2AS expression is independently controlled by other circadian transcription factors. In other cases, the pattern of expression change is consistent with both transcriptional interference and independent regulation hypotheses. Although additional experiments will be necessary to distinguish these possibilities, findings from this work contribute to a deeper understanding of the mechanism of how the expression of lncRNA is regulated.
Collapse
Affiliation(s)
- Lin Miao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kyle R. Batty
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ayana N. Jackson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather A. Pieno
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maisy W. Rhoades
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA,
| |
Collapse
|
13
|
Pickel L, Lee JH, Maughan H, Shi IQ, Verma N, Yeung C, Guttman D, Sung H. Circadian rhythms in metabolic organs and the microbiota during acute fasting in mice. Physiol Rep 2022; 10:e15393. [PMID: 35851583 PMCID: PMC9295129 DOI: 10.14814/phy2.15393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 04/16/2023] Open
Abstract
The circadian clock regulates metabolism in anticipation of regular changes in the environment. It is found throughout the body, including in key metabolic organs such as the liver, adipose tissues, and intestine, where the timing of the clock is set largely by nutrient signaling. However, the circadian clocks of these tissues during the fasted state have not been completely characterized. Moreover, the sufficiency of a functioning host clock to produce diurnal rhythms in the composition of the microbiome in fasted animals has not been explored. To this end, mice were fasted 24 h prior to collection of key metabolic tissues and fecal samples for the analysis of circadian clock gene expression and microbiome composition. Rhythm characteristics were determined using CircaCompare software. We identify tissue-specific changes to circadian clock rhythms upon fasting, particularly in the brown adipose tissue, and for the first time demonstrate the rhythmicity of the microbiome in fasted animals.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | | | - Irisa Qianwen Shi
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Navkiran Verma
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - Christy Yeung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - David Guttman
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoOntarioUSA
| | - Hoon‐Ki Sung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| |
Collapse
|
14
|
Chang SW, Yoshihara T, Tsuzuki T, Natsume T, Kakigi R, Machida S, Naito H. Circadian rhythms modulate the effect of eccentric exercise on rat soleus muscles. PLoS One 2022; 17:e0264171. [PMID: 35213577 PMCID: PMC8880858 DOI: 10.1371/journal.pone.0264171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
We investigated whether time-of-day dependent changes in the rat soleus (SOL) muscle size, after eccentric exercises, operate via the mechanistic target of rapamycin (mTOR) signaling pathway. For our first experiment, we assigned 9-week-old male Wistar rats randomly into four groups: light phase (zeitgeber time; ZT6) non-trained control, dark phase (ZT18) non-trained control, light phase-trained, and dark phase-trained. Trained animals performed 90 min of downhill running once every 3 d for 8 weeks. The second experiment involved dividing 9-week-old male Wistar rats to control and exercise groups. The latter were subjected to 15 min of downhill running at ZT6 and ZT18. The absolute (+12.8%) and relative (+9.4%) SOL muscle weights were higher in the light phase-trained group. p70S6K phosphorylation ratio was 42.6% higher in the SOL muscle of rats that had exercised only in light (non-trained ZT6). Collectively, the degree of muscle hypertrophy in SOL is time-of-day dependent, perhaps via the mTOR/p70S6K signaling.
Collapse
Affiliation(s)
- Shuo-wen Chang
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Physical Education, National University of Tainan, Tainan, Taiwan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Takamasa Tsuzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Toshiharu Natsume
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- School of Medicine, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Sciences, Josai International University, Chiba, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- * E-mail:
| |
Collapse
|
15
|
Nissinen TA, Hentilä J, Fachada V, Lautaoja JH, Pasternack A, Ritvos O, Kivelä R, Hulmi JJ. Muscle follistatin gene delivery increases muscle protein synthesis independent of periodical physical inactivity and fasting. FASEB J 2021; 35:e21387. [PMID: 33559263 DOI: 10.1096/fj.202002008r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Blocking of myostatin and activins effectively counteracts muscle atrophy. However, the potential interaction with physical inactivity and fasting in the regulation of muscle protein synthesis is poorly understood. We used blockade of myostatin and activins by recombinant adeno-associated virus (rAAV)-mediated follistatin (FS288) overexpression in mouse tibialis anterior muscle. To investigate the effects on muscle protein synthesis, muscles were collected 7 days after rAAV-injection in the nighttime or in the daytime representing high and low levels of activity and feeding, respectively, or after overnight fasting, refeeding, or ad libitum feeding. Muscle protein synthesis was increased by FS288 independent of the time of the day or the feeding status. However, the activation of mTORC1 signaling by FS288 was attenuated in the daytime and by overnight fasting. FS288 also increased the amount of mTOR colocalized with lysosomes, but did not alter their localization toward the sarcolemma. This study shows that FS288 gene delivery increases muscle protein synthesis largely independent of diurnal fluctuations in physical activity and food intake or feeding status, overriding the physiological signals. This is important for eg cachectic and sarcopenic patients with reduced physical activity and appetite. The FS288-induced increase in mTORC1 signaling and protein synthesis may be in part driven by increased amount of mTOR colocalized with lysosomes, but not by their localization toward sarcolemma.
Collapse
Affiliation(s)
- Tuuli A Nissinen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Hentilä
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Vasco Fachada
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juulia H Lautaoja
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
16
|
Rossi R, Falzarano MS, Osman H, Armaroli A, Scotton C, Mantuano P, Boccanegra B, Cappellari O, Schwartz E, Yuryev A, Mercuri E, Bertini E, D'Amico A, Mora M, Johansson C, Al-Khalili Szigyarto C, De Luca A, Ferlini A. Circadian Genes as Exploratory Biomarkers in DMD: Results From Both the mdx Mouse Model and Patients. Front Physiol 2021; 12:678974. [PMID: 34305639 PMCID: PMC8300012 DOI: 10.3389/fphys.2021.678974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disease due to dystrophin gene mutations which cause progressive weakness and muscle wasting. Circadian rhythm coordinates biological processes with the 24-h cycle and it plays a key role in maintaining muscle functions, both in animal models and in humans. We explored expression profiles of circadian circuit master genes both in Duchenne muscular dystrophy skeletal muscle and in its animal model, the mdx mouse. We designed a customized, mouse-specific Fluidic-Card-TaqMan-based assay (Fluid-CIRC) containing thirty-two genes related to circadian rhythm and muscle regeneration and analyzed gastrocnemius and tibialis anterior muscles from both unexercised and exercised mdx mice. Based on this first analysis, we prioritized the 7 most deregulated genes in mdx mice and tested their expression in skeletal muscle biopsies from 10 Duchenne patients. We found that CSNK1E, SIRT1, and MYOG are upregulated in DMD patient biopsies, consistent with the mdx data. We also demonstrated that their proteins are detectable and measurable in the DMD patients’ plasma. We suggest that CSNK1E, SIRT1, and MYOG might represent exploratory circadian biomarkers in DMD.
Collapse
Affiliation(s)
- Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Hana Osman
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Annarita Armaroli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | | | - Eugenio Mercuri
- Pediatric Neurology Unit, Catholic University and Nemo Center, Policlinico Universitario Gemelli, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Johansson
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, Institute of Child Health, London, United Kingdom
| |
Collapse
|
17
|
Ruby CL, Major RJ, Hinrichsen RD. Regulation of tissue regeneration by the circadian clock. Eur J Neurosci 2021; 53:3576-3597. [PMID: 33893679 DOI: 10.1111/ejn.15244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Circadian rhythms are regulated by a highly conserved transcriptional/translational feedback loop that maintains approximately 24-hr periodicity from cellular to organismal levels. Much research effort is being devoted to understanding how the outputs of the master clock affect peripheral oscillators, and in turn, numerous biological processes. Recent studies have revealed roles for circadian timing in the regulation of numerous cellular behaviours in support of complex tissue regeneration. One such role involves the interaction between the circadian clockwork and the cell cycle. The molecular mechanisms that control the cell cycle create a system of regulation that allows for high fidelity DNA synthesis, mitosis and apoptosis. In recent years, it has become clear that clock gene products are required for proper DNA synthesis and cell cycle progression, and conversely, elements of the cell cycle cascade feedback to influence molecular circadian timing mechanisms. It is through this crosstalk that the circadian system orchestrates stem cell proliferation, niche exit and control of the signalling pathways that govern differentiation and self-renewal. In this review, we discuss the evidence for circadian control of tissue homeostasis and repair and suggest new avenues for research.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Robert J Major
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | | |
Collapse
|
18
|
Liang Y, Huang R, Chen Y, Zhong J, Deng J, Wang Z, Wu Z, Li M, Wang H, Sun Y. Study on the Sleep-Improvement Effects of Hemerocallis citrina Baroni in Drosophila melanogaster and Targeted Screening to Identify Its Active Components and Mechanism. Foods 2021; 10:foods10040883. [PMID: 33920660 PMCID: PMC8072781 DOI: 10.3390/foods10040883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Hemerocallis citrina Baroni (HC) is an edible plant in Asia, and it has been traditionally used for sleep-improvement. However, the bioactive components and mechanism of HC in sleep-improvement are still unclear. In this study, the sleep-improvement effect of HC hydroalcoholic extract was investigated based on a caffeine-induced insomnia model in Drosophila melanogaster (D. melanogaster), and the ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-ESI-Orbitrap-MS) and network pharmacology strategy were further combined to screen systematically the active constituents and mechanism of HC in sleep-improvement. The results suggested HC effectively regulated the number of nighttime activities and total sleep time of D. melanogaster in a dose-dependent manner and positively regulated the sleep bouts and sleep duration of D. melanogaster. The target screening suggested that quercetin, luteolin, kaempferol, caffeic acid, and nicotinic acid were the main bioactive components of HC in sleep-improvements. Moreover, the core targets (Akt1, Cat, Ple, and Sod) affected by HC were verified by the expression of the mRNA of D. melanogaster. In summary, this study showed that HC could effectively regulate the sleep of D. melanogaster and further clarifies the multi-component and multi-target features of HC in sleep-improvement, which provides a new insight for the research and utilization of HC.
Collapse
|
19
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
Wang M, Yu D, Zheng L, Hong B, Li H, Hu X, Zhang K, Mou Y. Mechanical Stress Affects Circadian Rhythm in Skeletal Muscle (C2C12 Myoblasts) by Reducing Per/Cry Gene Expression and Increasing Bmal1 Gene Expression. Med Sci Monit 2021; 27:e928359. [PMID: 33444293 PMCID: PMC7814509 DOI: 10.12659/msm.928359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Circadian rhythm can modulate normal activity of humans in adapting to daily environment changes. Mechanical stress loading affects skeletal muscle development and bio-functions. This study aimed to investigate the effects of mechanical stress loading on circadian rhythm in skeletal muscle (C2C12 cells) and to explore the associated mechanism. MATERIAL AND METHODS C2C12 myoblasts were cultured and treated with mechanical stress loading. After mechanical stress loading for 6 h,12 h, and 24 h, we observed the C2C12 myoblasts and determined gene transcription and protein expression of Clock genes, including Clock, Bmal1, Per, and Cry using RT-PCR and western blot assay. RESULTS Mechanical stress loading triggered C2C12 cells growing by force direction and enhanced the cell proliferation at 6 h, 12 h, and 24 h. Gene transcription and protein expression of the core Clock-associated molecules, Clock and Bmal1, increased from start of loading to 12 h, and decreased from 12 h to 24 h. Gene transcription and protein expression of core Clock-associated molecules, Cry and Per, decreased in the first 12 h (from 6 h to 12 h) and increased in the last 12 h (from 12 h to 24 h). CONCLUSIONS Our study revealed that mechanical stress loading affected circadian rhythm in skeletal muscle (C2C12 myoblasts) through reducing Per/Cry and enhancing Clock/Bmal1 gene expression. This study provides insights for investigating circadian rhythm and associated bio-functions of humans.
Collapse
Affiliation(s)
- Mengjia Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Da Yu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Bing Hong
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Xiaobei Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Kun Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
21
|
Zhang H, Liang J, Chen N. Do not neglect the role of circadian rhythm in muscle atrophy. Ageing Res Rev 2020; 63:101155. [PMID: 32882420 DOI: 10.1016/j.arr.2020.101155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
In addition to its role in movement, human skeletal muscle also plays important roles in physiological activities related to metabolism and the endocrine system. Aging and disease onset and progression can induce the reduction of skeletal muscle mass and function, thereby exacerbating skeletal muscle atrophy. Recent studies have confirmed that skeletal muscle atrophy is mainly controlled by the balance between protein synthesis and degradation, the activation of satellite cells, and mitochondrial quality in skeletal muscle. Circadian rhythm is an internal rhythm related to an organism's adaptation to light-dark or day-night cycles of the planet, and consists of a core biological clock and a peripheral biological clock. Skeletal muscle, as the most abundant tissue in the human body, is an essential part of the peripheral biological clock in humans. Increasing evidence has confirmed that maintaining a normal circadian rhythm can be beneficial for increasing protein content, improving mitochondrial quality, and stimulating regeneration and repairing of cells in skeletal muscle to prevent or alleviate skeletal muscle atrophy. In this review, we summarize the roles and underlying mechanisms of circadian rhythm in delaying skeletal muscle atrophy, which will provide a theoretical reference for incorporating aspects of circadian rhythm to the prevention and treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hu Zhang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
22
|
Fernandez‐Gonzalo R, Tesch PA, Lundberg TR, Alkner BA, Rullman E, Gustafsson T. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures. FASEB J 2020; 34:7958-7969. [DOI: 10.1096/fj.201902976r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Rodrigo Fernandez‐Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Per A. Tesch
- Department of Physiology & Pharmacology Karolinska Institutet Stockholm Sweden
| | - Tommy R. Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Björn A. Alkner
- Department of Orthopaedics Region Jönköping County Eksjö Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
23
|
Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, Huynh T, Ballabio A, Baldi P, Masri S, Sassone-Corsi P. Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Rep 2019; 25:3299-3314.e6. [PMID: 30566858 DOI: 10.1016/j.celrep.2018.11.077] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 09/08/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The circadian clock operates as intrinsic time-keeping machinery to preserve homeostasis in response to the changing environment. While food is a known zeitgeber for clocks in peripheral tissues, it remains unclear how lack of food influences clock function. We demonstrate that the transcriptional response to fasting operates through molecular mechanisms that are distinct from time-restricted feeding regimens. First, fasting affects core clock genes and proteins, resulting in blunted rhythmicity of BMAL1 and REV-ERBα both in liver and skeletal muscle. Second, fasting induces a switch in temporal gene expression through dedicated fasting-sensitive transcription factors such as GR, CREB, FOXO, TFEB, and PPARs. Third, the rhythmic genomic response to fasting is sustainable by prolonged fasting and reversible by refeeding. Thus, fasting imposes specialized dynamics of transcriptional coordination between the clock and nutrient-sensitive pathways, thereby achieving a switch to fasting-specific temporal gene regulation.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Christophe Magnan
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas Ceglia
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Yu Liu
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Nunzia Pastore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Pierre Baldi
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
24
|
Zhang J, Chatham JC, Young ME. Circadian Regulation of Cardiac Physiology: Rhythms That Keep the Heart Beating. Annu Rev Physiol 2019; 82:79-101. [PMID: 31589825 DOI: 10.1146/annurev-physiol-020518-114349] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.
Collapse
Affiliation(s)
- Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA;
| |
Collapse
|
25
|
Effects of day-time feeding on murine skeletal muscle growth and synthesis. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
26
|
Duglan D, Lamia KA. Clocking In, Working Out: Circadian Regulation of Exercise Physiology. Trends Endocrinol Metab 2019; 30:347-356. [PMID: 31054802 PMCID: PMC6545246 DOI: 10.1016/j.tem.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
Research over the past century indicates that the daily timing of physical activity impacts on both immediate performance and long-term training efficacy. Recently, several molecular connections between circadian clocks and exercise physiology have been identified. Circadian clocks are protein-based oscillators that enable anticipation of daily environmental cycles. Cell-autonomous clocks are present in almost all cells of the body, and their timing is set by a variety of internal and external signals, including hormones and dietary intake. Improved understanding of the relationship between molecular clocks and exercise will benefit professional athletes and public health guidelines for the general population. We discuss here the role of circadian clocks in exercise, and explore time-of-day effects and the proposed molecular and physiological mechanisms.
Collapse
Affiliation(s)
- Drew Duglan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Hodge BA, Zhang X, Gutierrez-Monreal MA, Cao Y, Hammers DW, Yao Z, Wolff CA, Du P, Kemler D, Judge AR, Esser KA. MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. eLife 2019; 8:e43017. [PMID: 30789342 PMCID: PMC6398978 DOI: 10.7554/elife.43017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 01/13/2023] Open
Abstract
In the present study we show that the master myogenic regulatory factor, MYOD1, is a positive modulator of molecular clock amplitude and functions with the core clock factors for expression of clock-controlled genes in skeletal muscle. We demonstrate that MYOD1 directly regulates the expression and circadian amplitude of the positive core clock factor Bmal1. We identify a non-canonical E-box element in Bmal1 and demonstrate that is required for full MYOD1-responsiveness. Bimolecular fluorescence complementation assays demonstrate that MYOD1 colocalizes with both BMAL1 and CLOCK throughout myonuclei. We demonstrate that MYOD1 and BMAL1:CLOCK work in a synergistic fashion through a tandem E-box to regulate the expression and amplitude of the muscle specific clock-controlled gene, Titin-cap (Tcap). In conclusion, these findings reveal mechanistic roles for the muscle specific transcription factor MYOD1 in the regulation of molecular clock amplitude as well as synergistic regulation of clock-controlled genes in skeletal muscle.
Collapse
Affiliation(s)
- Brian A Hodge
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Xiping Zhang
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | | | - Yi Cao
- Department of Bioinformatics and Computational BiologyGenentech IncSouth San FranciscoUnited States
| | - David W Hammers
- Department of Pharmacology and TherapeuticsUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Zizhen Yao
- Allen Institute for Brain ScienceSeattleUnited States
| | - Christopher A Wolff
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Ping Du
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Denise Kemler
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Andrew R Judge
- Department of Physical TherapyUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Karyn A Esser
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| |
Collapse
|
28
|
Taira A, Arita E, Matsumoto E, Oohira A, Iwase K, Hiwasa T, Yokote K, Shibata S, Takiguchi M. Systemic oscillator-driven and nutrient-responsive hormonal regulation of daily expression rhythms for gluconeogenic enzyme genes in the mouse liver. Chronobiol Int 2019; 36:591-615. [PMID: 30714432 DOI: 10.1080/07420528.2019.1570246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gluconeogenesis is de novo glucose synthesis from substrates such as amino acids and is vital when glucose is lacking in the diurnal nutritional fluctuation. Accordingly, genes for hepatic gluconeogenic enzymes exhibit daily expression rhythms, whose detailed regulations under nutritional variations remain elusive. As a first step, we performed general systematic characterization of daily expression profiles of gluconeogenic enzyme genes for phosphoenolpyruvate carboxykinase (PEPCK), cytosolic form (Pck1), glucose-6-phosphatase (G6Pase), catalytic subunit (G6pc), and tyrosine aminotransferase (TAT) (Tat) in the mouse liver. On a standard diet fed ad libitum, mRNA levels of these genes showed robust daily rhythms with a peak or an elevation phase during the late sleep-fasting period in the diurnal feeding/fasting (wake/sleep) cycle. The rhythmicity was preserved in constant darkness, modulated with prolonged fasting, attenuated by Clock mutation, and entrained to varied photoperiods and time-restricted feedings. These results are concordant with the notion that gluconeogenic enzyme genes are under the control of the intrinsic circadian oscillator, which is entrained by the light/dark cycle, and which in turn entrains the feeding/fasting cycle and also drives systemic signaling pathways such as the hypothalamic-pituitary-adrenal axis. On the other hand, time-restricted feedings also showed that the ingestion schedule, when separated from the light/dark cycle, can serve as an independent entrainer to daily expression rhythms of gluconeogenic enzyme genes. Moreover, nutritional changes dramatically modified expression profiles of the genes. In addition to prolonged fasting, a high-fat diet and a high-carbohydrate (no-protein) diet caused modification of daily expression rhythms of the genes, with characteristic changes in profiles of glucoregulatory hormones such as corticosterone, glucagon, and insulin, as well as their modulators including ghrelin, leptin, resistin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1). Remarkably, high-protein (60% casein or soy-protein) diets activated the gluconeogenic enzyme genes atypically during the wake-feeding period, with paradoxical up-regulation of glucagon, which frequently formed correlation networks with other humoral factors. Based on these results, we propose that daily expression rhythms of gluconeogenic enzyme genes are under the control of systemic oscillator-driven and nutrient-responsive hormones.
Collapse
Affiliation(s)
- Akiko Taira
- a Department of Biochemistry and Genetics , Chiba University Graduate School of Medicine , Chiba , Japan.,b Department of Endocrinology, Hematology, and Gerontology , Chiba University Graduate School of Medicine , Chiba , Japan
| | - Emiko Arita
- a Department of Biochemistry and Genetics , Chiba University Graduate School of Medicine , Chiba , Japan
| | - Eriko Matsumoto
- a Department of Biochemistry and Genetics , Chiba University Graduate School of Medicine , Chiba , Japan
| | - Ayano Oohira
- a Department of Biochemistry and Genetics , Chiba University Graduate School of Medicine , Chiba , Japan
| | - Katsuro Iwase
- a Department of Biochemistry and Genetics , Chiba University Graduate School of Medicine , Chiba , Japan
| | - Takaki Hiwasa
- a Department of Biochemistry and Genetics , Chiba University Graduate School of Medicine , Chiba , Japan
| | - Koutaro Yokote
- b Department of Endocrinology, Hematology, and Gerontology , Chiba University Graduate School of Medicine , Chiba , Japan
| | - Shigenobu Shibata
- c Department of Pharmacology , School of Science and Engineering, Waseda University , Shinjuku , Tokyo , Japan
| | - Masaki Takiguchi
- a Department of Biochemistry and Genetics , Chiba University Graduate School of Medicine , Chiba , Japan
| |
Collapse
|
29
|
Wu P, Chu W, Liu X, Guo X, Zhang J. The Influence of Short-term Fasting on Muscle Growth and Fiber Hypotrophy Regulated by the Rhythmic Expression of Clock Genes and Myogenic Factors in Nile Tilapia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:750-768. [PMID: 30182177 DOI: 10.1007/s10126-018-9846-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Circadian clock genes and myogenic factors are tightly integrated to influence muscle growth upon dietary deprivation in animals. In this study, we reported that upon short-term fasting of Nile tilapia juveniles for 7 and 15 days, the growth of the fish stagnated and the size of muscle fibers decreased. To reveal the molecular mechanisms of how starvation affects fish muscle growth, we analyzed the rhythmic expression of circadian clock genes and myogenic factors. After 7 and 15 days of fasting treatment, the muscle tissues were collected for 24 h (at zeitgeber times ZT0, ZT3, ZT6, ZT9, ZT12, ZT18, ZT21, and ZT24) from tilapia juveniles. Among the 27 clock genes, the expression of cyr1b, nr1d1, per1, clocka, clockb, ciarta, and aanat2 displayed a daily rhythmicity in normal daily cycle, while arntl2, cry1a, cry1b, npas2, nr1d2b, per2, per3, rorαb, clocka, clockb, nfil3, cipca, and cipcb exhibited daily rhythmicity in the fasting fish muscles. The transcript levels of clockb showed moderate positive correlation with the aanat2, ciarta, cry1b, and nr1d1 in the muscle tissue of normally fed Nile tilapia juvenile. In comparison of the two treatment modes, the expression levels of clocka, clockb, and cry1b showed the rhythmicity, but clockb expression was significantly decreased and the acrophase had shifted. The transcript levels of fbxo32 and pdk4 had either moderate or strong positive correlations with other daily expression of clock genes except arntl2 in the muscle after 7-day fasting. The expressions of myogenic regulatory factors were also either upregulated or downregulated. These observations demonstrated that dietary starvation might affect fish muscle growth by modulating the differential expression of circadian clock genes and myogenic factors. Thus, our work provides a better understanding of the molecular mechanism of dietary starvation on fish growth and may provide dietary administration in aquiculture.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, Hunan, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, Hunan, China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China.
| | - Xinhong Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China.
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, 410003, Hunan, China.
| |
Collapse
|
30
|
Effects of short-term fasting on the rhythmic expression of core circadian clock and functional genes in skeletal muscle of goldfish (Carassius auratus). Comp Biochem Physiol B Biochem Mol Biol 2018; 226:91-98. [DOI: 10.1016/j.cbpb.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
31
|
Aoyama S, Kojima S, Sasaki K, Ishikawa R, Tanaka M, Shimoda T, Hattori Y, Aoki N, Takahashi K, Hirooka R, Takizawa M, Haraguchi A, Shibata S. Day-Night Oscillation of Atrogin1 and Timing-Dependent Preventive Effect of Weight-Bearing on Muscle Atrophy. EBioMedicine 2018; 37:499-508. [PMID: 30391495 PMCID: PMC6286653 DOI: 10.1016/j.ebiom.2018.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Atrogin1, which is one of the key genes for the promotion of muscle atrophy, exhibits day-night variation. However, its mechanism and the role of its day-night variation are largely unknown in a muscle atrophic context. METHODS The mice were induced a muscle atrophy by hindlimb-unloading (HU). To examine a role of circadian clock, Wild-type (WT) and Clock mutant mice were used. To test the effects of a neuronal effects, an unilateral ablation of sciatic nerve was performed in HU mice. To test a timing-dependent effects of weight-bearing, mice were released from HU for 4 h in a day at early or late active phase (W-EAP and W-LAP groups, respectively). FINDINGS We found that the day-night oscillation of Atrogin1 expression was not observed in Clock mutant mice or in the sciatic denervated muscle. In addition, the therapeutic effects of weight-bearing were dependent on its timing with a better effect in the early active phase. INTERPRETATION These findings suggest that the circadian clock controls the day-night oscillation of Atrogin1 expression and the therapeutic effects of weight-bearing are dependent on its timing. FUND: Council for Science, Technology, and Innovation, SIP, "Technologies for creating next-generation agriculture, forestry, and fisheries".
Collapse
Affiliation(s)
- Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,; Organization for University Research Initiatives, Waseda University, Tokyo, Japan
| | - Shuichi Kojima
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Keisuke Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryosuke Ishikawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mizuho Tanaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takeru Shimoda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Natsumi Aoki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,; Organization for University Research Initiatives, Waseda University, Tokyo, Japan
| | - Kengo Takahashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Rina Hirooka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miku Takizawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,.
| |
Collapse
|
32
|
Wu P, Bao L, Zhang R, Li Y, Liu L, Wu Y, Zhang J, He Z, Chu W. Impact of Short-Term Fasting on The Rhythmic Expression of the Core Circadian Clock and Clock-Controlled Genes in Skeletal Muscle of Crucian Carp ( Carassius auratus). Genes (Basel) 2018; 9:genes9110526. [PMID: 30380676 PMCID: PMC6265890 DOI: 10.3390/genes9110526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The peripheral tissue pacemaker is responsive to light and other zeitgebers, especially food availability. Generally, the pacemaker can be reset and entrained independently of the central circadian structures. Studies involving clock-gene expressional patterns in fish peripheral tissues have attracted considerable attention. However, the rhythmic expression of clock genes in skeletal muscle has only scarcely been investigated. The present study was designed to investigate the core clock and functional gene expression rhythms in crucian carp. Meanwhile, the synchronized effect of food restrictions (short-term fasting) on these rhythms in skeletal muscle was carefully examined. In fed crucian carp, three core clock genes (Clock, Bmal1a, and Per1) and five functional genes (Epo, Fas, IGF1R2, Jnk1, and MyoG) showed circadian rhythms. By comparison, four core clock genes (Clock, Bmal1a, Cry3, and Per2) and six functional genes (Epo, GH, IGF2, Mstn, Pnp5a, and Ucp1) showed circadian rhythms in crucian carp muscle after 7-day fasting. In addition, three core clock genes (Clock, Per1, and Per3) and six functional genes (Ampk1a, Lpl, MyoG, Pnp5a, PPARα, and Ucp1) showed circadian rhythms in crucian carp muscle after 15-day fasting. However, all gene rhythmic expression patterns differed from each other. Furthermore, it was found that the circadian genes could be altered by feed deprivation in crucian carp muscle through the rhythms correlation analysis of the circadian genes and functional genes. Hence, food-anticipatory activity of fish could be adjusted through the food delivery restriction under a light⁻dark cycle. These results provide a potential application in promoting fish growth by adjusting feeding conditions and nutritional state.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Lingsheng Bao
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Ruiyong Zhang
- Aquatic Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Yulong Li
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Li Liu
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Yuanan Wu
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Jianshe Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Zhigang He
- Fisheries Research Institute of Hunan Province, Changsha 410153, China.
| | - Wuying Chu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
33
|
Walter LM, Koch CE, Betts CA, Ahlskog N, Meijboom KE, van Westering TLE, Hazell G, Bhomra A, Claus P, Oster H, Wood MJA, Bowerman M. Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice. Hum Mol Genet 2018; 27:3582-3597. [PMID: 29982483 PMCID: PMC6168969 DOI: 10.1093/hmg/ddy249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | | | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Current affiliations: School of Medicine, Keele University, Staffordshire, UK
- Institute for Science and Technology in Medicine, Stoke-on-Trent, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
| |
Collapse
|
34
|
Hypoxia impairs adaptation of skeletal muscle protein turnover- and AMPK signaling during fasting-induced muscle atrophy. PLoS One 2018; 13:e0203630. [PMID: 30212583 PMCID: PMC6136752 DOI: 10.1371/journal.pone.0203630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/23/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypoxemia in humans may occur during high altitude mountaineering and in patients suffering from ventilatory insufficiencies such as cardiovascular- or respiratory disease including Chronic Obstructive Pulmonary Disease (COPD). In these conditions, hypoxemia has been correlated to reduced appetite and decreased food intake. Since hypoxemia and reduced food intake intersect in various physiological and pathological conditions and both induce loss of muscle mass, we investigated whether hypoxia aggravates fasting-induced skeletal muscle atrophy and evaluated underlying protein turnover signaling. METHODS Mice were kept under hypoxic (8% oxygen) or normoxic conditions (21% oxygen), or were pair-fed to the hypoxia group for 12 days. Following an additional 24 hours of fasting, muscle weight and protein turnover signaling were assessed in the gastrocnemius muscle by RT-qPCR and Western blotting. RESULTS Loss of gastrocnemius muscle mass in response to fasting in the hypoxic group was increased compared to the normoxic group, but not to the pair-fed normoxic control group. Conversely, the fasting-induced increase in poly-ubiquitin conjugation, and expression of the ubiquitin 26S-proteasome E3 ligases, autophagy-lysosomal degradation-related mRNA transcripts and proteins, and markers of the integrated stress response (ISR), were attenuated in the hypoxia group compared to the pair-fed group. Mammalian target of rapamycin complex 1 (mTORC1) downstream signaling was reduced by fasting under normoxic conditions, but sustained under hypoxic conditions. Activation of AMP-activated protein kinase (AMPK) / tuberous sclerosis complex 2 (TSC2) signaling by fasting was absent, in line with retained mTORC1 activity under hypoxic conditions. Similarly, hypoxia suppressed AMPK-mediated glucocorticoid receptor (GR) signaling following fasting, which corresponded with blunted proteolytic signaling responses. CONCLUSIONS Hypoxia aggravates fasting-induced muscle wasting, and suppresses AMPK and ISR activation. Altered AMPK-mediated regulation of mTORC1 and GR may underlie aberrant protein turnover signaling and affect muscle atrophy responses in hypoxic skeletal muscle.
Collapse
|
35
|
Cao R. mTOR Signaling, Translational Control, and the Circadian Clock. Front Genet 2018; 9:367. [PMID: 30250482 PMCID: PMC6139299 DOI: 10.3389/fgene.2018.00367] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Almost all cellular processes are regulated by the approximately 24 h rhythms that are endogenously driven by the circadian clock. mRNA translation, as the most energy consuming step in gene expression, is temporally controlled by circadian rhythms. Recent research has uncovered key mechanisms of translational control that are orchestrated by circadian rhythmicity and in turn feed back to the clock machinery to maintain robustness and accuracy of circadian timekeeping. Here I review recent progress in our understanding of translation control mechanisms in the circadian clock, focusing on a role for the mammalian/mechanistic target of rapamycin (mTOR) signaling pathway in modulating entrainment, synchronization and autonomous oscillation of circadian clocks. I also discuss the relevance of circadian mTOR functions in disease.
Collapse
Affiliation(s)
- Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
36
|
Camera DM. Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm? Front Physiol 2018; 9:569. [PMID: 29875682 PMCID: PMC5974096 DOI: 10.3389/fphys.2018.00569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/30/2018] [Indexed: 02/05/2023] Open
Abstract
It is now well established that resistance exercise stimulates muscle protein synthesis and promotes gains in muscle mass and strength. However, considerable variability exists following standardized resistance training programs in the magnitude of muscle cross-sectional area and strength responses from one individual to another. Several studies have recently posited that alterations in satellite cell population, myogenic gene expression and microRNAs may contribute to individual variability in anabolic adaptation. One emerging factor that may also explain the variability in responses to resistance exercise is circadian rhythms and underlying molecular clock signals. The molecular clock is found in most cells within the body, including skeletal muscle, and principally functions to optimize the timing of specific cellular events around a 24 h cycle. Accumulating evidence investigating the skeletal muscle molecular clock indicates that exercise-induced contraction and its timing may regulate gene expression and protein synthesis responses which, over time, can influence and modulate key physiological responses such as muscle hypertrophy and increased strength. Therefore, the circadian clock may play a key role in the heterogeneous anabolic responses with resistance exercise. The central aim of this Hypothesis and Theory is to discuss and propose the potential interplay between the circadian molecular clock and established molecular mechanisms mediating muscle anabolic responses with resistance training. This article begins with a current review of the mechanisms associated with the heterogeneity in muscle anabolism with resistance training before introducing the molecular pathways regulating circadian function in skeletal muscle. Recent work showing members of the core molecular clock system can regulate myogenic and translational signaling pathways is also discussed, forming the basis for a possible role of the circadian clock in the variable anabolic responses with resistance exercise.
Collapse
Affiliation(s)
- Donny M Camera
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC. mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 2018; 14:e1007369. [PMID: 29750810 PMCID: PMC5965903 DOI: 10.1371/journal.pgen.1007369] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/23/2018] [Accepted: 04/18/2018] [Indexed: 11/19/2022] Open
Abstract
The circadian clock coordinates physiology and metabolism. mTOR (mammalian/mechanistic target of rapamycin) is a major intracellular sensor that integrates nutrient and energy status to regulate protein synthesis, metabolism, and cell growth. Previous studies have identified a key role for mTOR in regulating photic entrainment and synchrony of the central circadian clock in the suprachiasmatic nucleus (SCN). Given that mTOR activities exhibit robust circadian oscillations in a variety of tissues and cells including the SCN, here we continued to investigate the role of mTOR in orchestrating autonomous clock functions in central and peripheral circadian oscillators. Using a combination of genetic and pharmacological approaches we show that mTOR regulates intrinsic clock properties including period and amplitude. In peripheral clock models of hepatocytes and adipocytes, mTOR inhibition lengthens period and dampens amplitude, whereas mTOR activation shortens period and augments amplitude. Constitutive activation of mTOR in Tsc2-/-fibroblasts elevates levels of core clock proteins, including CRY1, BMAL1 and CLOCK. Serum stimulation induces CRY1 upregulation in fibroblasts in an mTOR-dependent but Bmal1- and Period-independent manner. Consistent with results from cellular clock models, mTOR perturbation also regulates period and amplitude in the ex vivo SCN and liver clocks. Further, mTOR heterozygous mice show lengthened circadian period of locomotor activity in both constant darkness and constant light. Together, these results support a significant role for mTOR in circadian timekeeping and in linking metabolic states to circadian clock functions.
Collapse
Affiliation(s)
- Chidambaram Ramanathan
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Nimish D. Kathale
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, United States of America
| | - Choogon Lee
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - David A. Freeman
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - John B. Hogenesch
- Divisions of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (RC); (ACL)
| | - Andrew C. Liu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (RC); (ACL)
| |
Collapse
|
38
|
Mariné-Casadó R, Domenech-Coca C, Del Bas JM, Bladé C, Arola L, Caimari A. The Exposure to Different Photoperiods Strongly Modulates the Glucose and Lipid Metabolisms of Normoweight Fischer 344 Rats. Front Physiol 2018; 9:416. [PMID: 29725308 PMCID: PMC5917113 DOI: 10.3389/fphys.2018.00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023] Open
Abstract
Seasonal variations in day length trigger clear changes in the behavior, growth, food intake, and reproductive status of photoperiod-sensitive animals, such as Fischer 344 rats. However, there is little information about the effects of seasonal fluctuations in day length on glucose and lipid metabolisms and their underlying mechanisms in this model. To gain knowledge on these issues, three groups of male Fischer 344 rats were fed with a standard diet and exposed to different photoperiods for 14 weeks: normal photoperiod (L12, 12 h light/day), long photoperiod (L18, 18 h light/day), and short photoperiod (L6, 6 h light/day). A multivariate analysis carried out with 239 biometric, serum, hepatic and skeletal muscle parameters revealed a clear separation among the three groups. Compared with L12 rats, L6 animals displayed a marked alteration of glucose homeostasis and fatty acid uptake and oxidation, which were evidenced by the following observations: (1) increased circulating levels of glucose and non-esterified fatty acids; (2) a sharp down-regulation of the phosphorylated Akt2 levels, a downstream post-receptor target of insulin, in both the soleus and gastrocnemius muscles; (3) decreased expression in the soleus muscle of the glucose metabolism-related microRNA-194 and lower mRNA levels of the genes involved in glucose metabolism (Irs1, soleus, and Glut2, liver), β-oxidation (Had and Cpt1β, soleus) and fatty acid transport (Cd36, soleus, and liver). L18 animals also displayed higher blood glucose levels than L12 rats and profound changes in other glucose and lipid metabolism-related parameters in the blood, liver, and skeletal muscles. However, the mechanisms that account for the observed effects were less evident than those reported in L6 animals. In conclusion, exposure to different photoperiods strongly modulated glucose and lipid metabolisms in normoweight rats. These findings emphasize the relevance of circannual rhythms in metabolic homeostasis regulation and suggest that Fischer 344 rats are a promising animal model with which to study glucose- and lipid-related pathologies that are influenced by seasonal variations, such as obesity, cardiovascular disease and seasonal affective disorder.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| | - Cristina Domenech-Coca
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep M Del Bas
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís Arola
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antoni Caimari
- Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain
| |
Collapse
|
39
|
de Theije CC, Schols AMWJ, Lamers WH, Ceelen JJM, van Gorp RH, Hermans JJR, Köhler SE, Langen RCJ. Glucocorticoid Receptor Signaling Impairs Protein Turnover Regulation in Hypoxia-Induced Muscle Atrophy in Male Mice. Endocrinology 2018; 159:519-534. [PMID: 29069356 DOI: 10.1210/en.2017-00603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Hypoxemia may contribute to muscle wasting in conditions such as chronic obstructive pulmonary disease. Muscle wasting develops when muscle proteolysis exceeds protein synthesis. Hypoxia induces skeletal muscle atrophy in mice, which can in part be attributed to reduced food intake. We hypothesized that hypoxia elevates circulating corticosterone concentrations by reduced food intake and enhances glucocorticoid receptor (GR) signaling in muscle, which causes elevated protein degradation signaling and dysregulates protein synthesis signaling during hypoxia-induced muscle atrophy. Muscle-specific GR knockout and control mice were subjected to normoxia, normobaric hypoxia (8% oxygen), or pair-feeding to the hypoxia group for 4 days. Plasma corticosterone and muscle GR signaling increased after hypoxia and pair-feeding. GR deficiency prevented muscle atrophy by pair-feeding but not by hypoxia. GR deficiency differentially affected activation of ubiquitin 26S-proteasome and autophagy proteolytic systems by pair-feeding and hypoxia. Reduced food intake suppressed mammalian target of rapamycin complex 1 (mTORC1) activity under normoxic but not hypoxic conditions, and this retained mTORC1 activity was mediated by GR. We conclude that GR signaling is required for muscle atrophy and increased expression of proteolysis-associated genes induced by decreased food intake under normoxic conditions. Under hypoxic conditions, muscle atrophy and elevated gene expression of the ubiquitin proteasomal system-associated E3 ligases Murf1 and Atrogin-1 are mostly independent of GR signaling. Furthermore, impaired inhibition of mTORC1 activity is GR-dependent in hypoxia-induced muscle atrophy.
Collapse
MESH Headings
- Animals
- Autophagy
- Cell Size
- Corticosterone/blood
- Corticosterone/metabolism
- Crosses, Genetic
- Gene Expression Regulation, Enzymologic
- Glucocorticoids/metabolism
- Hypoxia/blood
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Proteasome Endopeptidase Complex/metabolism
- Proteolysis
- Random Allocation
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Chiel C de Theije
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter H Lamers
- Department of Anatomy and Embryology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith J M Ceelen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rick H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - J J Rob Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - S Elonore Köhler
- Department of Anatomy and Embryology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
40
|
Sedliak M, Zeman M, Buzgó G, Cvecka J, Hamar D, Laczo E, Okuliarova M, Vanderka M, Kampmiller T, Häkkinen K, Ahtiainen JP, Hulmi JJ, Nilsen TS, Wiig H, Raastad T. Morphological, molecular and hormonal adaptations to early morning versus afternoon resistance training. Chronobiol Int 2017; 35:450-464. [PMID: 29283292 DOI: 10.1080/07420528.2017.1411360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It has been clearly established that maximal force and power is lower in the morning compared to noon or afternoon hours. This morning neuromuscular deficit can be diminished by regularly training in the morning hours. However, there is limited and contradictory information upon hypertrophic adaptations to time-of-day-specific resistance training. Moreover, no cellular or molecular mechanisms related to muscle hypertrophy adaptation have been studied with this respect. Therefore, the present study examined effects of the time-of-day-specific resistance training on muscle hypertrophy, phosphorylation of selected proteins, hormonal concentrations and neuromuscular performance. Twenty five previously untrained males were randomly divided into a morning group (n = 11, age 23 ± 2 yrs), afternoon group (n = 7, 24 ± 4 yrs) and control group (n = 7, 24 ± 3 yrs). Both the morning and afternoon group underwent hypertrophy-type of resistance training with 22 training sessions over an 11-week period performed between 07:30-08:30 h and 16:00-17:00 h, respectively. Isometric MVC was tested before and immediately after an acute loading exclusively during their training times before and after the training period. Before acute loadings, resting blood samples were drawn and analysed for plasma testosterone and cortisol. At each testing occasion, muscle biopsies from m. vastus lateralis were obtained before and 60 min after the acute loading. Muscle specimens were analysed for muscle fibre cross-sectional areas (CSA) and for phosphorylated p70S6K, rpS6, p38MAPK, Erk1/2, and eEF2. In addition, the right quadriceps femoris was scanned with MRI before and after the training period. The control group underwent the same testing, except for MRI, between 11:00 h and 13:00 h but did not train. Voluntary muscle strength increased significantly in both the morning and afternoon training group by 16.9% and 15.2 %, respectively. Also muscle hypertrophy occurred by 8.8% and 11.9% (MRI, p < 0.001) and at muscle fibre CSA level by 21% and 18% (p < 0.01) in the morning and afternoon group, respectively. No significant changes were found in controls within these parameters. Both pre- and post-training acute loadings induced a significant (p < 0.001) reduction in muscle strength in all groups, not affected by time of day or training. The post-loading phosphorylation of p70S6Thr421/Ser424 increased independent of the time of day in the pre-training condition, whereas it was significantly increased in the morning group only after the training period (p < 0.05). Phosphorylation of rpS6 and p38MAPK increased acutely both before and after training in a time-of-day independent manner (p < 0.05 at all occasions). Phosphorylation of p70S6Thr389, eEF2 and Erk1/2 did not change at any time point. No statistically significant correlations were found between changes in muscle fibre CSA, MRI and cell signalling data. Resting testosterone was not statistically different among groups at any time point. Resting cortisol declined significantly from pre- to post-training in all three groups (p < 0.05). In conclusion, similar levels of muscle strength and hypertrophy could be achieved regardless of time of the day in previously untrained men. However, at the level of skeletal muscle signalling, the extent of adaptation in some parameters may be time of day dependent.
Collapse
Affiliation(s)
- Milan Sedliak
- a Department of Sport Kinanthropology, Faculty of Physical Education and Sports , Comenius University in Bratislava , Bratislava , Slovakia
| | - Michal Zeman
- b Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University in Bratislava , Bratislava , Slovakia
| | - Gabriel Buzgó
- a Department of Sport Kinanthropology, Faculty of Physical Education and Sports , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jan Cvecka
- a Department of Sport Kinanthropology, Faculty of Physical Education and Sports , Comenius University in Bratislava , Bratislava , Slovakia
| | - Dusan Hamar
- a Department of Sport Kinanthropology, Faculty of Physical Education and Sports , Comenius University in Bratislava , Bratislava , Slovakia
| | - Eugen Laczo
- a Department of Sport Kinanthropology, Faculty of Physical Education and Sports , Comenius University in Bratislava , Bratislava , Slovakia
| | - Monika Okuliarova
- b Department of Animal Physiology and Ethology, Faculty of Natural Sciences , Comenius University in Bratislava , Bratislava , Slovakia
| | - Marian Vanderka
- a Department of Sport Kinanthropology, Faculty of Physical Education and Sports , Comenius University in Bratislava , Bratislava , Slovakia
| | - Tomas Kampmiller
- a Department of Sport Kinanthropology, Faculty of Physical Education and Sports , Comenius University in Bratislava , Bratislava , Slovakia
| | - Keijo Häkkinen
- c Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences , University of Jyväskylä , Jyväskylä , Finland
| | - Juha P Ahtiainen
- c Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences , University of Jyväskylä , Jyväskylä , Finland
| | - Juha J Hulmi
- c Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences , University of Jyväskylä , Jyväskylä , Finland
| | - Tormod S Nilsen
- d Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | - Håvard Wiig
- d Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | - Truls Raastad
- d Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| |
Collapse
|
41
|
Liu L, Jiang G, Peng Z, Li Y, Li J, Zou L, He Z, Wang X, Chu W. The effect of high fat diet on daily rhythm of the core clock genes and muscle functional genes in the skeletal muscle of Chinese soft-shelled turtle ( Trionyx sinensis ). Comp Biochem Physiol B Biochem Mol Biol 2017; 213:17-27. [DOI: 10.1016/j.cbpb.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
|
42
|
Salles J, Chanet A, Berry A, Giraudet C, Patrac V, Domingues-Faria C, Rocher C, Guillet C, Denis P, Pouyet C, Bonhomme C, Le Ruyet P, Rolland Y, Boirie Y, Walrand S. Fast digestive, leucine-rich, soluble milk proteins improve muscle protein anabolism, and mitochondrial function in undernourished old rats. Mol Nutr Food Res 2017; 61. [PMID: 28758352 DOI: 10.1002/mnfr.201700287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/03/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
SCOPE One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. METHODS AND RESULTS Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. CONCLUSIONS These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients.
Collapse
Affiliation(s)
- Jérôme Salles
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Audrey Chanet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Alexandre Berry
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Christophe Giraudet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Véronique Patrac
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Carla Domingues-Faria
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | | | - Christelle Guillet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Philippe Denis
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Corinne Pouyet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Cécile Bonhomme
- Lactalis Nutrition Santé, Torcé, France
- Lactalis Research and Development, Retiers, France
| | - Pascale Le Ruyet
- Lactalis Nutrition Santé, Torcé, France
- Lactalis Research and Development, Retiers, France
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse (CHU Toulouse), Toulouse, France
- UMR INSERM 1027, University of Toulouse III, Toulouse, France
| | - Yves Boirie
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clinical Nutrition Department, Clermont-Ferrand, France
| | - Stéphane Walrand
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, Clermont-Ferrand, France
| |
Collapse
|
43
|
Luciano AK, Santana JM, Velazquez H, Sessa WC. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression. J Biol Rhythms 2017; 32:212-221. [PMID: 28452287 DOI: 10.1177/0748730417704534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AKT signaling pathway is important for circadian rhythms in mammals and flies ( Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1-/- mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1-/- aorta, compared with control aorta, follows a distinct pattern. In the Akt1-/- aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms.
Collapse
Affiliation(s)
- Amelia K Luciano
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.,Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Jeans M Santana
- Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Heino Velazquez
- Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - William C Sessa
- Department of Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
44
|
Aoyama S, Shibata S. The Role of Circadian Rhythms in Muscular and Osseous Physiology and Their Regulation by Nutrition and Exercise. Front Neurosci 2017; 11:63. [PMID: 28261043 PMCID: PMC5306200 DOI: 10.3389/fnins.2017.00063] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
The mammalian circadian clock regulates the day and night cycles of various physiological functions. The circadian clock system consists of a central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks in peripheral tissues. According to the results of circadian transcriptomic studies in several tissues, the majority of rhythmic genes are expressed in a tissue-specific manner and are influenced by tissue-specific circadian rhythms. Here we review the diurnal variations of musculoskeletal functions and discuss the impact of the circadian clock on homeostasis in skeletal muscle and bone. Peripheral clocks are controlled by not only photic stimulation from the central clock in the SCN but also by external cues, such as feeding and exercise. In this review, we discuss the effects of feeding and exercise on the circadian clock and diurnal variation of musculoskeletal functions. We also discuss the therapeutic potential of chrono-nutrition and chrono-exercise on circadian disturbances and the failure of homeostasis in skeletal muscle and bone.
Collapse
Affiliation(s)
- Shinya Aoyama
- Organization for University Research Initiatives, Waseda UniversityTokyo, Japan; Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda UniversityTokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University Tokyo, Japan
| |
Collapse
|
45
|
Chang SW, Yoshihara T, Machida S, Naito H. Circadian rhythm of intracellular protein synthesis signaling in rat cardiac and skeletal muscles. Biochem Biophys Rep 2016; 9:153-158. [PMID: 28956001 PMCID: PMC5614553 DOI: 10.1016/j.bbrep.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Intracellular signaling exhibits circadian variation in the suprachiasmatic nucleus and liver. However, it is unclear whether circadian regulation also extends to intracellular signaling pathways in the cardiac and skeletal muscles. Here, we examined circadian variation in the intracellular mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase 1 (p70S6K) and extracellular signal-regulated kinase (ERK) pathways, which regulate protein synthesis in rat cardiac and skeletal muscles. Seven-week-old male Wistar rats were assigned to six groups: Zeitgeber time (ZT) 2, ZT6, ZT10, ZT14, ZT18, and ZT22 (ZT0, lights on; ZT12, lights off). The cardiac, plantaris, and soleus muscles were removed after a 12-h fasting period, and signal transducers involved in protein synthesis (mTOR, p70S6K, and ERK) were analyzed by western blotting. Circadian rhythms of signal transducers were observed in both cardiac (mTOR, p70S6K, and ERK) and plantaris (p70S6K and ERK) muscles (p<0.05), but not in the soleus muscle. In the cardiac muscle, the phosphorylation rate of mTOR was significantly higher at ZT6 (peak) than at ZT18 (bottom), and the phosphorylation rate of p70S6K was significantly higher at ZT2 (peak) than at ZT18 (bottom). In contrast, in the plantaris muscle, the phosphorylation rate of ERK was significantly lower at ZT2 (bottom) than at ZT18 (peak). Our data suggested that protein synthesis via mTOR/p70S6K and ERK signaling molecules exhibits circadian variation in rat cardiac and fast-type plantaris muscles.
Collapse
Affiliation(s)
- Shuo-Wen Chang
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| |
Collapse
|
46
|
White Z, Terrill J, White RB, McMahon C, Sheard P, Grounds MD, Shavlakadze T. Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet Muscle 2016; 6:45. [PMID: 27964759 PMCID: PMC5155391 DOI: 10.1186/s13395-016-0117-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Background There is much interest in the capacity of resistance exercise to prevent the age-related loss of skeletal muscle mass and function, known as sarcopenia. This study investigates the molecular basis underlying the benefits of resistance exercise in aging C57BL/6J mice of both sexes. Results This study is the first to demonstrate that long-term (34 weeks) voluntary resistance wheel exercise (RWE) initiated at middle age, from 15 months, prevents sarcopenia in selected hindlimb muscles and causes hypertrophy in soleus, by 23 months of age in both male and female C57BL/6J mice. Compared with 23-month-old sedentary (SED) controls, RWE (0–6 g of resistance) increased intramuscular mitochondrial density and oxidative capacity (measured by citrate synthase and NADH-TR) and increased LC3II/I ratios (a marker of autophagy) in exercised mice of both sexes. RWE also reduced mRNA expression of Gadd45α (males only) and Runx1 (females only) but had no effect on other markers of denervation including Chrng, Chrnd, Musk, and Myog. RWE increased heart mass in all mice, with a more pronounced increase in females. Significant sex differences were also noted among SED mice, with Murf1 mRNA levels increasing in male, but decreasing in old female mice between 15 and 23 months. Conclusions Overall, long-term RWE initiated from 15 month of age significantly improved some markers of the mitochondrial and autophagosomal pathways and prevented age-related muscle wasting. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0117-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoe White
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, UWA and Harry Perkins Institute of Medical Research, Crawley, 6009, WA, Australia
| | - Jessica Terrill
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia.,School of Chemistry and Biochemistry, UWA, Crawley, 6009, WA, Australia
| | - Robert B White
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | - Phillip Sheard
- Department of Physiology, University of Otago, Dunedin, 9010, New Zealand
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Tea Shavlakadze
- School of Anatomy, Physiology and Human Biology, The University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
47
|
Schiaffino S, Blaauw B, Dyar KA. The functional significance of the skeletal muscle clock: lessons from Bmal1 knockout models. Skelet Muscle 2016; 6:33. [PMID: 27752300 PMCID: PMC5062818 DOI: 10.1186/s13395-016-0107-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
The circadian oscillations of muscle genes are controlled either directly by the intrinsic muscle clock or by extrinsic factors, such as feeding, hormonal signals, or neural influences, which are in turn regulated by the central pacemaker, the suprachiasmatic nucleus of the hypothalamus. A unique feature of circadian rhythms in skeletal muscle is motor neuron-dependent contractile activity, which can affect the oscillation of a number of muscle genes independently of the muscle clock. The role of the intrinsic muscle clock has been investigated using different Bmal1 knockout (KO) models. A comparative analysis of these models reveals that the dramatic muscle wasting and premature aging caused by global conventional KO are not present in muscle-specific Bmal1 KO or in global Bmal1 KO induced in the adult, therefore must reflect the loss of Bmal1 function during development in non-muscle tissues. On the other hand, muscle-specific Bmal1 knockout causes impaired muscle glucose uptake and metabolism, supporting a major role of the muscle clock in anticipating the sleep-to-wake transition, when glucose becomes the predominant fuel for the skeletal muscle.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kenneth A. Dyar
- Molecular Endocrinology, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
48
|
White Z, White RB, McMahon C, Grounds MD, Shavlakadze T. High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. Int J Biochem Cell Biol 2016; 78:10-21. [DOI: 10.1016/j.biocel.2016.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/29/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
|
49
|
Abstract
Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts.
Collapse
Affiliation(s)
- Somik Chatterjee
- Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ke Ma
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
50
|
Soffe Z, Radley-Crabb HG, McMahon C, Grounds MD, Shavlakadze T. Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice. Scand J Med Sci Sports 2015; 26:172-88. [PMID: 25653015 DOI: 10.1111/sms.12416] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 01/05/2023]
Abstract
This study compared the capacity of young and old male C57Bl/6J mice to exercise with increasing resistance over 10 weeks, and its impact on muscle mass. Young mice (aged 15-25 weeks) were subjected to low (LR) and high (HR) resistance exercise, whereas only LR was used for old mice (107-117 weeks). Weekly patterns of voluntary wheel activity, food consumption and body weights were measured. Running patterns changed over time and with age, with two peaks of activity detected for young, but only one for old mice: speed and distance run was also less for old mice. The mass for six limb muscles was measured at the end of the experiment. The most pronounced increase in mass in response to exercise was for the soleus in young and old mice, and also quadriceps and gastrocnemius in young mice. Soleus and quadriceps muscles were analyzed histologically for myofiber number and size. A striking feature was the many small myofibers in response to exercise in young (but not old) soleus, whereas these were not present after exercise in young or old quadriceps. Overall, there was a striking difference in response to exercise between muscles and this was influenced by age.
Collapse
Affiliation(s)
- Z Soffe
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia
| | - H G Radley-Crabb
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia.,School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - C McMahon
- Developmental Biology Group, Agresearch Ltd, Hamilton, New Zealand
| | - M D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia
| | - T Shavlakadze
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia.,Developmental Biology Group, Agresearch Ltd, Hamilton, New Zealand
| |
Collapse
|