1
|
Makaro A, Świerczyński M, Pokora K, Sarniak B, Kordek R, Fichna J, Salaga M. Empagliflozin attenuates intestinal inflammation through suppression of nitric oxide synthesis and myeloperoxidase activity in in vitro and in vivo models of colitis. Inflammopharmacology 2024; 32:377-392. [PMID: 37086302 PMCID: PMC10907478 DOI: 10.1007/s10787-023-01227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic and relapsing inflammation affecting the gastrointestinal (GI) tract. The incidence and prevalence of IBD are relatively high and still increasing. Additionally, current therapeutic strategies for IBD are not optimal. These facts urge todays' medicine to find a novel way to treat IBD. Here, we focused on the group of anti-diabetic drugs called gliflozins, which inhibit sodium glucose co-transporter type 2 (SGLT-2). Numerous studies demonstrated that gliflozins exhibit pleiotropic effect, including anti-inflammatory properties. In this study, we tested the effect of three gliflozins; empagliflozin (EMPA), dapagliflozin (DAPA), and canagliflozin (CANA) in in vitro and in vivo models of intestinal inflammation. Our in vitro experiments revealed that EMPA and DAPA suppress the production of nitric oxide in LPS-treated murine RAW264.7 macrophages. In in vivo part of our study, we showed that EMPA alleviates acute DSS-induced colitis in mice. Treatment with EMPA reduced macro- and microscopic colonic damage, as well as partially prevented from decrease in tight junction gene expression. Moreover, EMPA attenuated biochemical inflammatory parameters including reduced activity of myeloperoxidase. We showed that SGLT-2 inhibitors act as anti-inflammatory agents independently from their hypoglycemic effects. Our observations suggest that gliflozins alleviate inflammation through their potent effects on innate immune cells.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kacper Pokora
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Barbara Sarniak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Hoşnut FÖ, Janecke AR, Şahin G, Vogel GF, Lafcı NG, Bichler P, Müller T, Huber LA, Valovka T, Aksu AÜ. SLC5A1 Variants in Turkish Patients with Congenital Glucose-Galactose Malabsorption. Genes (Basel) 2023; 14:1359. [PMID: 37510265 PMCID: PMC10379334 DOI: 10.3390/genes14071359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Congenital glucose-galactose malabsorption is a rare autosomal recessive disorder caused by mutations in SLC5A1 encoding the apical sodium/glucose cotransporter SGLT1. We present clinical and molecular data from eleven affected individuals with congenital glucose-galactose malabsorption from four unrelated, consanguineous Turkish families. Early recognition and timely management by eliminating glucose and galactose from the diet are fundamental for affected individuals to survive and develop normally. We identified novel SLC5A1 missense variants, p.Gly43Arg and p.Ala92Val, which were linked to disease in two families. Stable expression in CaCo-2 cells showed that the p.Ala92Val variant did not reach the plasma membrane, but was retained in the endoplasmic reticulum. The p.Gly43Arg variant, however, displayed processing and plasma membrane localization comparable to wild-type SGLT1. Glycine-43 displays nearly invariant conservation in the relevant structural family of cotransporters and exchangers, and localizes to SGLT1 transmembrane domain TM0. p.Gly43Arg represents the first disease-associated variant in TM0; however, the role of TM0 in the SGLT1 function has not been established. In summary, we are expanding the mutational spectrum of this rare disorder.
Collapse
Affiliation(s)
- Ferda Ö. Hoşnut
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, University of Health Sciences, 06080 Ankara, Turkey
| | - Andreas R. Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (T.V.)
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gülseren Şahin
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, University of Health Sciences, 06080 Ankara, Turkey
| | - Georg F. Vogel
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (T.V.)
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Naz G. Lafcı
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
- Department of Medical Genetics, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, University of Health Sciences, 06080 Ankara, Turkey
| | - Paul Bichler
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (T.V.)
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (T.V.)
| | - Lukas A. Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Taras Valovka
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria (T.V.)
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Aysel Ü. Aksu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ankara Bilkent Hospital, University of Health Sciences, 06800 Ankara, Turkey;
| |
Collapse
|
3
|
Sanni O, Terre'Blanche G. Dual A 1 and A 2A adenosine receptor antagonists, methoxy substituted 2-benzylidene-1-indanone, suppresses intestinal postprandial glucose and attenuates hyperglycaemia in fructose-streptozotocin diabetic rats. BMC Endocr Disord 2023; 23:97. [PMID: 37143025 PMCID: PMC10157944 DOI: 10.1186/s12902-023-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND/AIM Recent research suggests that adenosine receptors (ARs) influence many of the metabolic abnormalities associated with diabetes. A non-xanthine benzylidene indanone derivative 2-(3,4-dihydroxybenzylidene)-4-methoxy-2,3-dihydro-1 H-inden-1-one (2-BI), has shown to exhibit higher affinity at A1/A2A ARs compared to caffeine. Due to its structural similarity to caffeine, and the established antidiabetic effects of caffeine, the current study was initiated to explore the possible antidiabetic effect of 2-BI. METHODS The study was designed to assess the antidiabetic effects of several A1 and/or A2A AR antagonists, via intestinal glucose absorption and glucose-lowering effects in fructose-streptozotocin (STZ) induced diabetic rats. Six-week-old male Sprague-Dawley rats were induced with diabetes via fructose and streptozotocin. Rats were treated for 4 weeks with AR antagonists, metformin and pioglitazone, respectively. Non-fasting blood glucose (NFBG) was determined weekly and the oral glucose tolerance test (OGTT) was conducted at the end of the intervention period. RESULTS Dual A1/A2A AR antagonists (caffeine and 2-BI) decreased glucose absorption in the intestinal membrane significantly (p < 0.01), while the selective A2A AR antagonist (Istradefylline), showed the highest significant (p < 0.001) reduction in intestinal glucose absorption. The selective A1 antagonist (DPCPX) had the least significant (p < 0.05) reduction in glucose absorption. Similarly, dual A1/A2A AR antagonists and selective A2A AR antagonists significantly reduced non-fast blood glucose and improved glucose tolerance in diabetic rats from the first week of the treatment. Conversely, the selective A1 AR antagonist did not reduce non-fast blood glucose significantly until the 4th week of treatment. 2-BI, caffeine and istradefylline compared well with standard antidiabetic treatments, metformin and pioglitazone, and in some cases performed even better. CONCLUSION 2-BI exhibited good antidiabetic activity by reducing intestinal postprandial glucose absorption and improving glucose tolerance in a diabetic animal model. The dual antagonism of A1/A2A ARs presents a positive synergism that could provide a new possibility for the treatment of diabetes.
Collapse
Affiliation(s)
- Olakunle Sanni
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences, North-West University (NWU), Potchefstroom, 2357, South Africa.
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences, North-West University (NWU), Potchefstroom, 2357, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University (NWU), Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Keller T, Trinks N, Brand J, Trippmacher S, Stahlhut P, Albrecht K, Papastavrou G, Koepsell H, Sauer M, Groll J. Design of Nanohydrogels for Targeted Intracellular Drug Transport to the Trans-Golgi Network. Adv Healthc Mater 2023; 12:e2201794. [PMID: 36739269 PMCID: PMC11469190 DOI: 10.1002/adhm.202201794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Indexed: 02/06/2023]
Abstract
Nanohydrogels combine advantages of hydrogels and nanoparticles. In particular, they represent promising drug delivery systems. Nanogel synthesis by oxidative condensation of polyglycidol prepolymers, that are modified with thiol groups, results in crosslinking by disulfide bonds. Hereby, biomolecules like the antidiabetic peptide RS1-reg, derived from the regulatory protein RS1 of the Na+ -D-glucose cotransporter SGLT1, can be covalently bound by cysteine residues to the nanogel in a hydrophilic, stabilizing environment. After oral uptake, the acid-stable nanogels protect their loading during gastric passage from proteolytic degradation. Under alkaline conditions in small intestine the nanohydrogels become mucoadhesive, pass the intestinal mucosa and are taken up into small intestinal enterocytes by endocytosis. Using Caco-2 cells as a model for small intestinal enterocytes, by confocal laser scanning microscopy and structured illumination microscopy, the colocalization of fluorescent-labeled RS1-reg with markers of endosomes, lysosomes, and trans-Golgi-network after uptake with polyglycidol-based nanogels formed by precipitation polymerization is demonstrated. This indicates that RS1-reg follows the endosomal pathway. In the following, the design of bespoken nanohydrogels for specific targeting of RS1-reg to its site of action at the trans-Golgi network is described that might also represent a way of targeted transport for other drugs to their targets at the Golgi apparatus.
Collapse
Affiliation(s)
- Thorsten Keller
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Nora Trinks
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jessica Brand
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Steffen Trippmacher
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Georg Papastavrou
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Hermann Koepsell
- Institute of Anatomy and Cell BiologyUniversity of WürzburgKoellikerstraße 697070WürzburgGermany
| | - Markus Sauer
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|
5
|
The Hormetic Effect of Metformin: "Less Is More"? Int J Mol Sci 2021; 22:ijms22126297. [PMID: 34208371 PMCID: PMC8231127 DOI: 10.3390/ijms22126297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Metformin (MTF) is the first-line therapy for type 2 diabetes (T2DM). The euglycemic effect of MTF is due to the inhibition of hepatic glucose production. Literature reports that the principal molecular mechanism of MTF is the activation of 5′-AMP-activated protein kinase (AMPK) due to the decrement of ATP intracellular content consequent to the inhibition of Complex I, although this effect is obtained only at millimolar concentrations. Conversely, micromolar MTF seems to activate the mitochondrial electron transport chain, increasing ATP production and limiting oxidative stress. This evidence sustains the idea that MTF exerts a hormetic effect based on its concentration in the target tissue. Therefore, in this review we describe the effects of MTF on T2DM on the principal target organs, such as liver, gut, adipose tissue, endothelium, heart, and skeletal muscle. In particular, data indicate that all organs, except the gut, accumulate MTF in the micromolar range when administered in therapeutic doses, unmasking molecular mechanisms that do not depend on Complex I inhibition.
Collapse
|
6
|
Shan X, Wang X, Jiang H, Cai C, Hao J, Yu G. Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na +/Glucose Cotransporter 1 Activity. Mar Drugs 2020; 18:E485. [PMID: 32971911 PMCID: PMC7551602 DOI: 10.3390/md18090485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that fucoidan with a type II structure inhibited postprandial hyperglycemia by suppressing glucose uptake, but the mechanism remains elusive. Here, we aimed to assess whether the effect of glucose absorption inhibition was related to the basic structure of fucoidans and preliminarily clarified the underlying mechanism. Fucoidans with type II structure and type I structure were prepared from Ascophyllumnodosum (AnF) or Laminariajaponica (LjF) and Kjellmaniellacrassifolia (KcF), respectively. The effects of various fucoidans on suppressing postprandial hyperglycemia were investigated using in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model), and in vivo (oral glucose tolerance test, OGTT) assays. The results showed that only AnF with a type II structure, but not LjF or KcF with type I structure, could inhibit the glucose transport in the Caco-2 monolayer and everted gut sac models. A similar result was seen in the OGTT of Kunming mice and leptin receptor-deficient (db/db) mice, where only AnF could effectively inhibit glucose transport into the bloodstream. Furthermore, AnF (400 mg/kg/d) treatment decreased the fasting blood glucose, HbA1c, and fasting insulin levels, while increasing the serum glucagon-like peptide-1 (GLP-1) level in obese leptin receptor-deficient (db/db) mice. Furthermore, surface plasmon resonance (SPR) analysis revealed the specific binding of AnF to Na+/glucose cotransporter 1 (SGLT1), which indicated the effect of AnF on postprandial hyperglycemia could be due to its suppression on SGLT1 activity. Taken together, this study suggests that AnF with a type II structure can be a promising candidate for hyperglycemia treatment.
Collapse
Affiliation(s)
- Xindi Shan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
7
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
8
|
Daily expression of sodium-dependent glucose cotransporter-1 protein in jejunum during rat ontogeny. ACTA ACUST UNITED AC 2019; 5:290-296. [PMID: 31528732 PMCID: PMC6737494 DOI: 10.1016/j.aninu.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/17/2019] [Accepted: 04/02/2019] [Indexed: 11/21/2022]
Abstract
It is widely known that intestinal capacities such as the enzymatic hydrolysis of carbohydrates, lipids and proteins, and the subsequent absorption of the hydrolyzed products, are evolutionary matched to dietary loads and feeding behaviors. In this study, we demonstrate that the protein expression of apically located sodium-dependent glucose cotransporter-1 (SGLT-1) throughout rat ontogeny is daily adjusted to afford glucose uptake when the load of this metabolically essential monosaccharide in the intestinal lumen is maximum. The jejunal expression of SGLT-1 protein in 14 one-day-old suckling pups was found to increase at dark and early light phase (P < 0.05), when they have a better access to mother milk. In weaning 21-d-old and juvenile 28-d-old rats, the cotransporter expression was high throughout the entire day (P < 0.05). Finally, adult 90-d-old rats showed a well-developed circadian rhythm for SGLT-1 protein (P < 0.05), whose expression increased at late light and dark phase when the highest intestinal glucose load was achieved. To our knowledge, these results are the first reporting the daily profile of SGLT-1 expression during rat early developmental stage and may contribute to understand the biological significance of a well-established molecular capacity to deal with the crucial increase of glucose load in the diet during the weaning process.
Collapse
|
9
|
Sunilkumar S, Ford SM. Elevated glucose concentration in culture media decreases membrane trafficking of SGLT2 in LLC-PK 1 cells via a cAMP/PKA-dependent pathway. Am J Physiol Cell Physiol 2019; 316:C913-C924. [PMID: 30943059 DOI: 10.1152/ajpcell.00433.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na+-dependent glucose reabsorption in the renal proximal tubule is dynamically regulated by changes in blood glucose levels. There is, however, a disparity in reports studying the relationship between hyperglycemia and Na+-glucose-linked transporter (SGLT) function and expression. Similarly, manipulation of the glucose content in growth media of cultured renal cells has been shown to influence SGLT activity. In this investigation, SGLT activity was significantly lower in proximal tubule LLC-PK1 cells cultured in medium containing 17.5 than 5 mM glucose. α-Methyl d-glucopyranoside (AMG) transport kinetics showed reduced apparent Vmax and Km in cells grown in 17.5 mM glucose. SGLT2 was identified as the isoform responsible for glucose transport, and protein expression analyses showed decreased apical membrane localization of SGLT2 in cells grown in 17.5 mM glucose, explaining the reduced activity. Multiple signaling pathways have been implicated in regulation of SGLT activity and trafficking. Elevated media glucose decreased intracellular cAMP and PKA activation, leading to decreased SGLT2 trafficking into the plasma membrane, which was reversed after treatment with 1 µM forskolin. The effects of media glucose on SGLT activity were found to be dependent on p38 MAPK activation due to PKA-mediated signaling. Glucose-modulated AMG uptake is reversible and was associated with altered SGLT2 membrane trafficking and cAMP alterations. In summary, elevated glucose concentrations in culture medium decrease SGLT activity in LLC-PK1 cells by reducing membrane trafficking of SGLT2 via decreasing intracellular cAMP, resulting in a lowered PKA-dependent phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
| | - Sue M Ford
- Department of Pharmaceutical Sciences, St. John's University , Queens, New York
| |
Collapse
|
10
|
Zhang M, Peng Y, Wang M, Gao B, Zhao L, Li X. The influence of compatibility of Si-Ni decoction with metabolism in intestinal bacteria on transports of toxic diterpenoid alkaloids from processed aconite root across Caco-2 monolayers. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:164-178. [PMID: 30223050 DOI: 10.1016/j.jep.2018.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, processed aconite root (lateral root of Aconitum carmichaelii Debx.) is used as the principle herb of the Si-Ni decoction (SND) formula due to its cardiotonic effect, while its cardiotoxicity and neurotoxicity caused by diester and monoester diterpenoid alkaloids are reduced by compatibility of dried ginger and honey-processed liquorice in SND. AIM OF THE STUDY To investigate the detoxification of processed aconite root by compatibility of SND from the perspective of intestinal absorption with metabolism in intestinal bacteria. MATERIALS AND METHODS Decoctions of processed aconite root (AD), processed aconite root and honey-processed liquorice (ALD), and SND with the same amount of each herb were prepared, then were incubated in human intestinal bacteria juice (IBJ) in vitro for different durations. Bidirectional transmembrane transports of these decoctions and their IBJ-incubated decoctions were conducted on Caco-2 monolayers. Correlation between efflux ratios changes of benzoylmesaconine, benzoylaconine, benzoylhypaconine (monoester-diterpenoid alkaloids, MDAs) and hypaconitine (diester-diterpenoid alkaloids) from processed aconite root, and metabolic trends of compounds from honey-processed liquorice and dried ginger were also performed. RESULTS The absorption of MDAs from processed aconite root was increased by combination with honey-processed liquorice in ALD, but they were decreased significantly by the addition of dried ginger in SND. Take benzoylhypaconine for example, the Papp, AP to BL soared from (3.13 ± 0.18) × 10-7 cm/s in AD to (23.32 ± 3.51) × 10-7 cm/s in ALD, while it dropped to (1.12 ± 0.17) × 10-7 cm/s in SND. When herb combined decoctions metabolised by intestinal bacteria for 12 h, the efflux ratio of benzoylhypaconine were both increased from 0.56 to 1.21 in ALD and from 1.10 to 2.61 in SND, which was correlative with the generation of davidigenin and glycyrrhetic acid (the metabolites of chalcones and pentacyclic triterpenoids from liquorice) in ALD and with the metabolism of [6]-gingerol (the major compound from dried ginger) in SND, respectively. CONCLUSIONS Compatibility of SND altered the intestinal absorption of toxic MDAs and hypaconitine from processed aconite root. In SND, dried ginger rather than honey-processed liquorice played the role of detoxification of these toxic compounds in the intestinal absorption. The intestinal detoxification of SND was significantly and strongly correlative with metabolism of dried ginger and honey-processed liquorice by intestinal bacteria, simultaneously.
Collapse
Affiliation(s)
- Min Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Beibei Gao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Lijuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
11
|
Jensen VF, Mølck AM, Lykkesfeldt J, Bøgh IB. Effect of maternal hypoglycaemia during gestation on materno-foetal nutrient transfer and embryo-foetal development: Evidence from experimental studies focused primarily on the rat. Reprod Toxicol 2018; 77:1-24. [DOI: 10.1016/j.reprotox.2018.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/07/2017] [Accepted: 01/30/2018] [Indexed: 01/14/2023]
|
12
|
Richter JW, Shull GM, Fountain JH, Guo Z, Musselman LP, Fiumera AC, Mahler GJ. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster. Nanotoxicology 2018; 12:390-406. [PMID: 29600885 DOI: 10.1080/17435390.2018.1457189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanosized titanium dioxide (TiO2) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO2, a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO2 nanoparticle ingestion may have physiological consequences.
Collapse
Affiliation(s)
- Jonathan W Richter
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Gabriella M Shull
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - John H Fountain
- b Department of Biological Sciences , Binghamton University , Binghamton , NY , USA
| | - Zhongyuan Guo
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Laura P Musselman
- b Department of Biological Sciences , Binghamton University , Binghamton , NY , USA
| | - Anthony C Fiumera
- b Department of Biological Sciences , Binghamton University , Binghamton , NY , USA
| | - Gretchen J Mahler
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| |
Collapse
|
13
|
Steffansen B, Pedersen MD, Laghmoch AM, Nielsen CU. SGLT1-Mediated Transport in Caco-2 Cells Is Highly Dependent on Cell Bank Origin. J Pharm Sci 2017; 106:2664-2670. [DOI: 10.1016/j.xphs.2017.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
|
14
|
Jensen VFH, Mølck AM, Chapman M, Alifrangis L, Andersen L, Lykkesfeldt J, Bøgh IB. Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain. Int J Endocrinol 2017; 2017:7861236. [PMID: 28421113 PMCID: PMC5379133 DOI: 10.1155/2017/7861236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/18/2022] Open
Abstract
The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30-50% (4-6 mM versus 7-9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.
Collapse
Affiliation(s)
- Vivi F. H. Jensen
- Department of Veterinary Disease Biology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Toxicology, Safety Pharm and Pathology, Novo Nordisk A/S, Maaloev, Denmark
- *Vivi F. H. Jensen:
| | - Anne-Marie Mølck
- Department of Toxicology, Safety Pharm and Pathology, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Lene Alifrangis
- Department of Development DMPK, Novo Nordisk A/S, Maaloev, Denmark
| | - Lene Andersen
- Department of Development Bioanalysis, Novo Nordisk A/S, Maaloev, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid B. Bøgh
- Department of Toxicology, Safety Pharm and Pathology, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
15
|
Guo Z, Martucci NJ, Moreno-Olivas F, Tako E, Mahler GJ. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine. NANOIMPACT 2017; 5:70-82. [PMID: 28944308 PMCID: PMC5604471 DOI: 10.1016/j.impact.2017.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902
| | - Nicole J. Martucci
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902
| | | | - Elad Tako
- Plant, Soil and Nutrition Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Ithaca, NY
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902
- Correspondence to Gretchen Mahler, PhD, Binghamton University, Department of Biomedical Engineering, 2608 Biotechnology Building, Binghamton, NY 13902, Phone: 607-777-5238, Fax: 607-777-5780,
| |
Collapse
|
16
|
Chintalapati C, Keller T, Mueller TD, Gorboulev V, Schäfer N, Zilkowski I, Veyhl-Wichmann M, Geiger D, Groll J, Koepsell H. Protein RS1 (RSC1A1) Downregulates the Exocytotic Pathway of Glucose Transporter SGLT1 at Low Intracellular Glucose via Inhibition of Ornithine Decarboxylase. Mol Pharmacol 2016; 90:508-521. [PMID: 27555600 DOI: 10.1124/mol.116.104521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/16/2016] [Indexed: 02/14/2025] Open
Abstract
Na+-d-glucose cotransporter 1 (SGLT1) is rate-limiting for glucose absorption in the small intestine. Shortly after intake of glucose-rich food, SGLT1 abundance in the luminal membrane of the small intestine is increased. This upregulation occurs via glucose-induced acceleration of the release of SGLT1-containing vesicles from the trans-Golgi network (TGN), which is regulated by a domain of protein RS1 (RSC1A1) named RS1-Reg. Dependent on phosphorylation, RS1-Reg blocks release of vesicles containing SGLT1 or concentrative nucleoside transporter 1. The hypothesis has been raised that RS1-Reg binds to different receptor proteins at the TGN, which trigger release of vesicles with different transporters. To identify the presumed receptor proteins, two-hybrid screening was performed. Interaction with ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme of polyamine synthesis, was observed and verified by immunoprecipitation. Binding of RS1-Reg mutants to ODC1 was characterized using surface plasmon resonance. Inhibition of ODC1 activity by RS1-Reg mutants and the ODC1 inhibitor difluoromethylornithine (DFMO) was measured in the absence and presence of glucose. In addition, short-term effects of DFMO, RS1-Reg mutants, the ODC1 product putrescine, and/or glucose on SGLT1 expressed in oocytes of Xenopus laevis were investigated. High-affinity binding of RS1-Reg to ODC1 was demonstrated, and evidence for a glucose binding site in ODC1 was provided. Binding of RS1-Reg to ODC1 inhibits the enzymatic activity at low intracellular glucose, which is blunted at high intracellular glucose. The data suggest that generation of putrescine by ODC1 at the TGN stimulates release of SGLT1-containing vesicles. This indicates a biomedically important role of ODC1 in regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Chakravarthi Chintalapati
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Thorsten Keller
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Thomas D Mueller
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Valentin Gorboulev
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Nadine Schäfer
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Ilona Zilkowski
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Maike Veyhl-Wichmann
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Dietmar Geiger
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Jürgen Groll
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| |
Collapse
|
17
|
Yamazaki Y, Yasui K, Hashizume T, Suto A, Mori A, Murata Y, Yamaguchi M, Ikari A, Sugatani J. Involvement of a cyclic adenosine monophosphate-dependent signal in the diet-induced canalicular trafficking of adenosine triphosphate-binding cassette transporter g5/g8. Hepatology 2015; 62:1215-26. [PMID: 25999152 DOI: 10.1002/hep.27914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/20/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. CONCLUSION These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery.
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Kenta Yasui
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Takahiro Hashizume
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Arisa Suto
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Ayaka Mori
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Yuzuki Murata
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Masahiko Yamaguchi
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Junko Sugatani
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
18
|
Date K, Satoh A, Iida K, Ogawa H. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation. J Biol Chem 2015; 290:17439-50. [PMID: 26023238 DOI: 10.1074/jbc.m114.594937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/17/2022] Open
Abstract
α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na(+)/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104-23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption stage in the intestine.
Collapse
Affiliation(s)
- Kimie Date
- From the Graduate School of Humanities and Sciences and
| | - Ayano Satoh
- the Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kaoruko Iida
- From the Graduate School of Humanities and Sciences and
| | - Haruko Ogawa
- From the Graduate School of Humanities and Sciences and Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan and
| |
Collapse
|
19
|
Grefner NM, Gromova LV, Gruzdkov AA, Komissarchik YY. Interaction of glucose transporters SGLT1 and GLUT2 with cytoskeleton in enterocytes and Caco2 cells during hexose absorption. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Investigation of effects ofGiardia duodenalison transcellular and paracellular transport in enterocytes usingin vitroUssing chamber experiments. Parasitology 2014; 142:691-7. [DOI: 10.1017/s0031182014001772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARYThe mechanisms by which different genotypes ofGiardia duodenalisresult in different symptoms remain unresolved. In particular, we lack detailed knowledge on which transport mechanisms (transcellular or paracellular) are affected by differentGiardiaisolates. Using horse radish peroxidase (HRP) and creatinine as transcellular and paracellular probes, respectively, we developed a robust assay that can be used with an Ussing chamber to investigate epithelial transport, as well as short-circuit current as an indicator of net ion transport. We investigated 2Giardiaisolates, both Assemblage A, one a lab-adapted strain and the other a field isolate. Results indicate that products from sonicatedGiardiatrophozoites increase both transcellular and paracellular transport. A non-significant increase in transepithelial electrical resistance (TEER) and short-circuit current were also noted. The paracellular transport was increased significantly more in the field isolate than in the lab-adapted strain. Our results indicate that while both transcellular and paracellular transport mechanisms may be increased following exposure of cells toGiardiatrophozoite sonicate, perhaps by inducing non-specific increases in cellular traffic, it is important thatin vitrostudies ofGiardiapathophysiology are conducted with differentGiardiaisolates, not just lab-attenuated strains.
Collapse
|
21
|
Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 2014; 467:1881-98. [PMID: 25304002 DOI: 10.1007/s00424-014-1619-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 02/08/2023]
Abstract
Novel affinity-purified antibodies against human SGLT1 (hSGLT1) and SGLT2 (hSGLT2) were used to localize hSGLT2 in human kidney and hSGLT1 in human kidney, small intestine, liver, lung, and heart. The renal locations of both transporters largely resembled those in rats and mice; hSGLT2 and SGLT1 were localized to the brush border membrane (BBM) of proximal tubule S1/S2 and S3 segments, respectively. Different to rodents, the renal expression of hSGLT1 was absent in thick ascending limb of Henle (TALH) and macula densa, and the expression of both hSGLTs was sex-independent. In small intestinal enterocytes, hSGLT1 was localized to the BBM and subapical vesicles. Performing double labeling with glucagon-like peptide 1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP), hSGLT1 was localized to GLP-1-secreting L cells and GIP-secreting K cells as has been shown in mice. In liver, hSGLT1 was localized to biliary duct cells as has been shown in rats. In lung, hSGLT1 was localized to alveolar epithelial type 2 cells and to bronchiolar Clara cells. Expression of hSGLT1 in Clara cells was verified by double labeling with the Clara cell secretory protein CC10. Double labeling of human heart with aquaporin 1 immunolocalized the hSGLT1 protein in heart capillaries rather than in previously assumed myocyte sarcolemma. The newly identified locations of hSGLT1 implicate several extra renal functions of this transporter, such as fluid absorption in the lung, energy supply to Clara cells, regulation of enteroendocrine cells secretion, and release of glucose from heart capillaries. These functions may be blocked by reversible SGLT1 inhibitors which are under development.
Collapse
|
22
|
Thorsen K, Drengstig T, Ruoff P. Transepithelial glucose transport and Na+/K+ homeostasis in enterocytes: an integrative model. Am J Physiol Cell Physiol 2014; 307:C320-37. [PMID: 24898586 DOI: 10.1152/ajpcell.00068.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The uptake of glucose and the nutrient coupled transcellular sodium traffic across epithelial cells in the small intestine has been an ongoing topic in physiological research for over half a century. Driving the uptake of nutrients like glucose, enterocytes must have regulatory mechanisms that respond to the considerable changes in the inflow of sodium during absorption. The Na-K-ATPase membrane protein plays a major role in this regulation. We propose the hypothesis that the amount of active Na-K-ATPase in enterocytes is directly regulated by the concentration of intracellular Na(+) and that this regulation together with a regulation of basolateral K permeability by intracellular ATP gives the enterocyte the ability to maintain ionic Na(+)/K(+) homeostasis. To explore these regulatory mechanisms, we present a mathematical model of the sodium coupled uptake of glucose in epithelial enterocytes. Our model integrates knowledge about individual transporter proteins including apical SGLT1, basolateral Na-K-ATPase, and GLUT2, together with diffusion and membrane potentials. The intracellular concentrations of glucose, sodium, potassium, and chloride are modeled by nonlinear differential equations, and molecular flows are calculated based on experimental kinetic data from the literature, including substrate saturation, product inhibition, and modulation by membrane potential. Simulation results of the model without the addition of regulatory mechanisms fit well with published short-term observations, including cell depolarization and increased concentration of intracellular glucose and sodium during increased concentration of luminal glucose/sodium. Adding regulatory mechanisms for regulation of Na-K-ATPase and K permeability to the model show that our hypothesis predicts observed long-term ionic homeostasis.
Collapse
Affiliation(s)
- Kristian Thorsen
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway; and
| | - Tormod Drengstig
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway; and
| | - Peter Ruoff
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| |
Collapse
|
23
|
Jensen VFH, Bøgh IB, Lykkesfeldt J. Effect of insulin-induced hypoglycaemia on the central nervous system: evidence from experimental studies. J Neuroendocrinol 2014; 26:123-50. [PMID: 24428753 DOI: 10.1111/jne.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Insulin-induced hypoglycaemia (IIH) is a major acute complication in type 1 as well as in type 2 diabetes, particularly during intensive insulin therapy. The brain plays a central role in the counter-regulatory response by eliciting parasympathetic and sympathetic hormone responses to restore normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from experimental studies on nondiabetic IIH, this review outlines the central mechanisms behind the counter-regulatory response to IIH, as well as cerebral adaption to avoid sequelae of cerebral neuroglycopaenia, including seizures and coma.
Collapse
Affiliation(s)
- V F H Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Diabetes Toxicology and Safety Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | | | | |
Collapse
|
24
|
Klinger S, Zurich M, Schröder B, Breves G. Effects of dietary starch source on electrophysiological intestinal epithelial properties and intestinal glucose uptake in growing goats. Arch Anim Nutr 2013; 67:289-300. [DOI: 10.1080/1745039x.2013.821796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Cai Z, Huang J, Luo H, Lei X, Yang Z, Mai Y, Liu Z. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability. J Drug Target 2013; 21:574-80. [DOI: 10.3109/1061186x.2013.778263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Grefner NM, Gromova LV, Gruzdkov AA, Komissarchik YY. Caco2 cell culture as an intestinal epithelium model to study hexose transport. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Klinger S, Noci B, Müller K, Breves G. Intestinal glucose absorption in calves as affected by different carbohydrate sources. J Anim Physiol Anim Nutr (Berl) 2012; 97:342-52. [PMID: 22369577 DOI: 10.1111/j.1439-0396.2012.01277.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
From numerous recent studies, it has been demonstrated that the development of the forestomach system in ruminants and thus microbial carbohydrate fermentation do not exclude the potential of the small intestines for enzymatic carbohydrate digestion and subsequent monosaccharide absorption. However, the role of regulatory nutritional factors is still under discussion. Therefore, we investigated the kinetic parameters of intestinal Na(+) -dependent glucose absorption and SGLT1 expression using isolated brush border membrane vesicles (BBMV) from the jejunum of 10-week-old calves kept on either hay, concentrate or corn silage-based diets in addition to milk replacer. While the maximal transport capacity was significantly higher for concentrate and corn silage-fed animals, SGLT1 protein expression was highest in BBMV isolated from hay-fed animals. This observation differs from the prevalent conception that induction of Na(+) -dependent glucose uptake via SGLT1 is based on an increased number of transporters at the brush border membrane.
Collapse
Affiliation(s)
- S Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, Hannover, Germany
| | | | | | | |
Collapse
|
28
|
Raja M, Puntheeranurak T, Hinterdorfer P, Kinne R. SLC5 and SLC2 transporters in epithelia-cellular role and molecular mechanisms. CURRENT TOPICS IN MEMBRANES 2012. [PMID: 23177983 DOI: 10.1016/b978-0-12-394316-3.00002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the SLC5 and SLC2 family are prominently involved in epithelial sugar transport. SGLT1 (sodium-glucose transporter) and SGLT2, as representatives of the former, mediate sodium-dependent uptake of sugars into intestinal and renal cells. GLUT2 (glucose transporter), as representative of the latter, facilitates the sodium-independent exit of sugars from cells. SGLT has played a major role in the formulation and experimental proof for the existence of sodium cotransport systems. Based on the sequence data and biochemical and biophysical analyses, the role of extramembranous loops in sugar and inhibitor binding can be delineated. Crystal structures and homology modeling of SGLT reveal that the sugar translocation involves operation of two hydrophobic gates and intermediate exofacial and endofacial occluded states of the carrier in an alternating access model. The same basic model is proposed for GLUT1. Studies on GLUT1 have pioneered the isolation of eukaryotic transporters by biochemical methods and the development of transport kinetics and transporter models. For GLUT1, results from extensive mutagenesis, cysteine substitution and accessibility studies can be incorporated into a homology model with a barrel-like structure in which accessibility to the extracellular and intracellular medium is altered by pinching movements of some of the helices. For SGLT1 and GLUT1, the extensive hydrophilic and hydrophobic interactions between sugars and binding sites of the various intramembrane helices occur and lead to different substrate specificities and inhibitor affinities of the two transporters. A complex network of regulatory steps adapts the transport activity to the needs of the body.
Collapse
Affiliation(s)
- Mobeen Raja
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | | |
Collapse
|
29
|
Puntheeranurak T, Neundlinger I, Kinne RKH, Hinterdorfer P. Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nat Protoc 2011; 6:1443-52. [PMID: 21886107 DOI: 10.1038/nprot.2011.370] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atomic force microscopy (AFM) has proven to be a powerful tool in biological sciences. Its particular advantage over other high-resolution methods commonly used is that biomolecules can be investigated not only under physiological conditions but also while they perform their biological functions. Single-molecule force spectroscopy with AFM tip-modification techniques can provide insight into intermolecular forces between individual ligand-receptor pairs of biological systems. Here we present protocols for force spectroscopy of living cells, including cell sample preparation, tip chemistry, step-by-step AFM imaging, force spectroscopy and data analysis. We also delineate critical steps and describe limitations that we have experienced. The entire protocol can be completed in 12 h. The model studies discussed here demonstrate the power of AFM for studying transmembrane transporters at the single-molecule level.
Collapse
|
30
|
Azevedo MF, Lima CF, Fernandes-Ferreira M, Almeida MJ, Wilson JM, Pereira-Wilson C. Rosmarinic acid, major phenolic constituent of Greek sage herbal tea, modulates rat intestinal SGLT1 levels with effects on blood glucose. Mol Nutr Food Res 2011; 55 Suppl 1:S15-25. [PMID: 21433280 DOI: 10.1002/mnfr.201000472] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/08/2010] [Accepted: 01/24/2011] [Indexed: 11/08/2022]
Abstract
SCOPE Previous results suggested that the effects of Salvia fruticosa tea (SFT) drinking on glucose regulation might be at the intestinal level. Here we aim to characterize the effects of SFT treatment and of its main phenolic constituent--rosmarinic acid (RA)--on the levels and localization of the intestinal Na+/glucose cotransporter-1 (SGLT1), the facilitative glucose transporter 2 and glucagon-like peptide-1 (GLP-1). METHODS AND RESULTS Two models of SGLT1 induction in rats were used: through diabetes induction with streptozotocin (STZ) and through dietary carbohydrate manipulation. Drinking water was replaced with SFT or RA and blood parameters, liver glycogen and the levels of different proteins in enterocytes quantified. Two weeks of SFT treatment stabilized fasting blood glucose levels in STZ-diabetic animals. The increase in SGLT1 localized to the enterocyte brush-border membrane (BBM) induced by STZ treatment was significantly abrogated by treatment with SFT, without significant changes in total cellular transporter protein levels. No effects were observed on glucose transporter 2, Na(+) /K(+) -ATPase or glucagon-like peptide-1 levels by SFT. Additionally, SFT and RA for 4 days significantly inhibited the carbohydrate-induced adaptive increase of SGLT1 in BBM. CONCLUSION SFT and RA modulate the trafficking of SGLT1 to the BBM and may contribute to the control of plasma glucose.
Collapse
Affiliation(s)
- Marisa F Azevedo
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
31
|
Skov M, Tønnesen CK, Hansen GH, Danielsen EM. Dietary cholesterol induces trafficking of intestinal Niemann-Pick Type C1 Like 1 from the brush border to endosomes. Am J Physiol Gastrointest Liver Physiol 2011; 300:G33-40. [PMID: 21051527 DOI: 10.1152/ajpgi.00344.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transmembrane protein Niemann-Pick C1 Like 1 (NPC1L1) belongs to the Niemann-Pick C1 (NPC1) family of cholesterol transporters and is mainly expressed in the liver and the small intestine. NPC1L1 is believed to be the main transporter responsible for the absorption of dietary cholesterol. Like NPC1, NPC1L1 contains a sterol sensing domain, suggesting that it might be sensitive to dietary cholesterol. To test this hypothesis, mucosal explants were cultured in the presence or absence of cholesterol. In the absence of cholesterol NPC1L1 was localized mainly in the brush border of the enterocyte, colocalizing with the brush border enzyme aminopeptidase N (APN), and only a minor part was present in intracellular compartments. In contrast, following culture in the presence of cholesterol a major part of NPC1L1 was found in intracellular compartments positive for the early endosomal marker early endosome antigen 1, whereas only a minor fraction was left in the brush border. Neither APN, lactase, nor sucrase-isomaltase was endocytosed in parallel, demonstrating that this is a selective cholesterol-induced endocytosis of NPC1L1. Conceivably either the induced internalization could be due to NPC1L1 acting as an endocytic cholesterol receptor or it could be a mechanism to reduce the cholesterol uptake. The fluorescent cholesterol analog NBD-cholesterol readily labeled the cytoplasm also under conditions nonpermissible for endocytosis, arguing against a receptor-mediated uptake. We therefore propose that cholesterol is absorbed by NPC1L1 acting as a membrane transporter and that NPC1L1 is internalized to an endosomal compartment to reduce the absorption of cholesterol.
Collapse
Affiliation(s)
- Marianne Skov
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
32
|
Beloto-Silva O, Machado UF, Oliveira-Souza M. Glucose-induced regulation of NHEs activity and SGLTs expression involves the PKA signaling pathway. J Membr Biol 2010; 239:157-65. [PMID: 21140140 DOI: 10.1007/s00232-010-9334-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 11/24/2022]
Abstract
The effect of glucose on the intracellular pH (pH(i)) recovery rate (dpH(i)/dt) and Na(+)-glucose transporter (SGLT) localization was investigated in HEK-293 cells, a cell line that expresses endogenous NHE1, NHE3, SGLT1, and SGLT2 proteins. The activity of the Na(+)/H(+) exchangers (NHEs) was evaluated by using fluorescence microscopy. The total and membrane protein expression levels were analyzed by immunoblotting. In cells cultivated in 5 mM glucose, the pH(i) recovery rate was 0.169 ± 0.020 (n = 6). This value did not change in response to the acute presence of glucose at 2 or 10 mM, but decreased with 25 mM glucose, an effect that was not observed with 25 mM mannitol. Conversely, the chronic effect of high glucose (25 mM) increased the pH(i) recovery rate (~40%, P < 0.05), without changes in the total levels of NHE1, NHE3, or SGLT1 expression, but increasing the total cellular (~50%, P < 0.05) and the plasma membrane (~100%, P < 0.01) content of SGLT2. Treatment with H-89 (10(-6) M) prevented the stimulatory effect of chronic glucose treatment on the pH(i) recovery rate and SGLT2 expression in the plasma membrane. Our results indicate that the effect of chronic treatment with a high glucose concentration is associated with increased NHEs activity and plasma membrane expression of SGLT2 in a protein kinase A-dependent way. The present results reveal mechanisms of glucotoxicity and may contribute to understanding the diabetes-induced damage of this renal epithelial cell.
Collapse
Affiliation(s)
- Olívia Beloto-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | | | |
Collapse
|
33
|
Banerjee SK, Wang DW, Alzamora R, Huang XN, Pastor-Soler NM, Hallows KR, McGaffin KR, Ahmad F. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol 2010; 49:683-92. [PMID: 20600102 PMCID: PMC2932762 DOI: 10.1016/j.yjmcc.2010.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 01/04/2023]
Abstract
Human mutations in the gene PRKAG2 encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) cause a glycogen storage cardiomyopathy. Transgenic mice (TG(T400N)) with the human T400N mutation exhibit inappropriate activation of AMPK and consequent glycogen storage in the heart. Although increased glucose uptake and activation of glycogen synthesis have been documented in PRKAG2 cardiomyopathy, the mechanism of increased glucose uptake has been uncertain. Wildtype (WT), TG(T400N), and TG(alpha2DN) (carrying a dominant negative, kinase dead alpha2 catalytic subunit of AMPK) mice were studied at ages 2-8 weeks. Cardiac mRNA expression of sodium-dependent glucose transporter 1 (SGLT1), but not facilitated-diffusion glucose transporter 1 (GLUT1) or GLUT4, was increased approximately 5- to 7-fold in TG(T400N) mice relative to WT. SGLT1 protein was similarly increased at the cardiac myocyte sarcolemma in TG(T400N) mice. Phlorizin, a specific SGLT1 inhibitor, attenuated cardiac glucose uptake in TG(T400N) mice by approximately 40%, but not in WT mice. Chronic phlorizin treatment reduced cardiac glycogen content by approximately 25% in TG(T400N) mice. AICAR, an AMPK activator, increased cardiac SGLT1 mRNA expression approximately 3-fold in WT mice. Relative to TG(T400N) mice, double transgenic (TG(T400N)/TG(alpha2DN)) mice had decreased ( approximately 50%) cardiac glucose uptake and decreased (approximately 70%) cardiac SGLT1 expression. TG(T400N) hearts had increased binding activity of the transcription factors HNF-1 and Sp1 to the promoter of the gene encoding SGLT1. Our data suggest that upregulation of cardiac SGLT1 is responsible for increased cardiac glucose uptake in the TG(T400N) mouse. Increased AMPK activity leads to upregulation of SGLT1, which in turn mediates increased cardiac glucose uptake.
Collapse
Affiliation(s)
- Sanjay K. Banerjee
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - David W. Wang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rodrigo Alzamora
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xueyin N. Huang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Núria M. Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kenneth R. Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Ferhaan Ahmad
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
34
|
Grefner NM, Gromova LV, Gruzdkov AA, Komissarchik YY. Comparative analysis of SGLT1 and GLUT2 transporters distribution in rat small-intestine enterocytes and Caco-2 cells during hexose absorption. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1990519x10040085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Evidence for Na+-glucose cotransporter in type I alveolar epithelium. Histochem Cell Biol 2010; 134:129-36. [PMID: 20625908 DOI: 10.1007/s00418-010-0725-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
Functional evidence of Na(+)-glucose cotransport in rat lung has been provided by Basset et al. (J. Physiol. 384:325-345, 1987). By autoradiography [(3)H]phloridzin binding has been found confined to alveolar epithelial type II cells in mouse and rabbit lungs (Boyd, J. Physiol. 422: 44P, 1990). In this research we checked by immunofluorescence whether Na(+)-glucose cotransporter (SGLT1) is also expressed in alveolar type I cells. Lungs of anesthetized rats and lambs were fixed by paraformaldehyde, perfused in pulmonary artery, or instilled into a bronchus, respectively. Tissue blocks embedded in paraffin or frozen were sectioned. Two specific anti-SGLT1 antibodies for rat recognizing aminoacid sequence 402-420, and 546-596 were used in both species. Bound primary antibody was detected by secondary antibody conjugated to fluorescein isothiocianate or Texas red, respectively. In some sections cellular nuclei were also stained. In rats alveolar type I cells were identified by fluorescent Erythrina cristagalli lectin. Sections were examined by confocal laser-scanning microscope. Both in rats and lambs alveolar epithelium was stained by either antibody; no labeling occurred in negative controls. Hence, SGLT1 appears to be also expressed in alveolar type I cells. This is functionally relevant because type I cells provide 95-97% of alveolar surface, and SGLT1, besides contributing to removal of lung liquid under some circumstances, keeps low glucose concentration in lining liquid, which is useful to prevent lung infection.
Collapse
|
36
|
Castaneda-Sceppa C, Subramanian S, Castaneda F. Protein kinase C mediated intracellular signaling pathways are involved in the regulation of sodium-dependent glucose co-transporter SGLT1 activity. J Cell Biochem 2010; 109:1109-17. [PMID: 20069550 DOI: 10.1002/jcb.22489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sodium-dependent glucose co-transporter (SGLT1) is regulated by protein kinases. The aim of the present study was to examine the role of protein kinase C (PKC) in the regulation of rabbit (rb) SGLT1 activity as determined by alpha-methyl-D-glucopyranoside (AMG) uptake and to identify the cellular mechanisms involved in this process. For this purpose Chinese hamster ovary cells expressing rbSGLT1 (CHO-G6D3) were treated with PKC activators and inhibitors. PKC activators did not exert any effect on AMG uptake, as corroborated by mutation of the putative phosphorylation sites of PKC. In contrast, the PKC inhibitor bisindolylmaleimide I (BIM) increased AMG uptake. This effect was associated with translocation of rbSGLT1 from the intracellular pool to the plasma membrane demonstrated by pre-treatment of G6D3 cells with cytochalasin D that abolished the effect of BIM. In addition, intracellular signaling pathways (p38/MAPK, ERK/MAPK, JNK/MAPK, and PI3K/Akt/mTOR) were associated with PKC-regulated AMG uptake. Moreover, rbSGLT1 mRNA level was higher in BIM-treated cells than in untreated, control cells. This effect was completely abolished by actinomycin D treatment. The present study demonstrates that PKC regulates rbSGLT1 activity via a complex intracellular mechanism that involves sorting and transcriptional regulation of rbSGLT1. The study findings suggest the involvement of two complementary opposite mechanism of action, in which the balance between two antagonistic effects, namely stimulation and inhibition of the transporter, regulates the activity of rbSGLT1 by PKC.
Collapse
|
37
|
Rooj AK, Kimura Y, Buddington RK. Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells. BMC Microbiol 2010; 10:16. [PMID: 20089192 PMCID: PMC2835675 DOI: 10.1186/1471-2180-10-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 01/20/2010] [Indexed: 11/12/2022] Open
Abstract
Background Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 μM) glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM) with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. Results Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%), mannose (by 90%), fructose (by 55%), and ribose (by 16%), but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h) and stationary (72 h) growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. Conclusion The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN, 38152-3480, USA
| | | | | |
Collapse
|
38
|
Xiong J, Sun M, Guo J, Huang L, Wang S, Meng B, Ping Q. Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of sodium-dependent glucose co-transporter 1. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.03.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
Our previous study suggested that adrenaline (epinephrine) could be an effective absorption enhancer for ginsenoside Rg1 (Rg1). This study focused on the transport mechanism of Rg1 and the role of sodium-dependent glucose co-transporter 1 in the regulation of Rg1 uptake after exposure to adrenaline.
Methods
Caco-2 cells were used as an in-vitro model to assess the absorption mechanism of Rg1. Also the effect of D-glucose on adrenaline-induced absorption of Rg1 was investigated in vivo in rats.
Key findings
Results showed that the uptake of Rg1 was temperature-dependent. The transport from the basolateral side to the apical side was significantly lower compared with that from the apical to the basolateral side (P < 0.01). The transport of Rg1 was concentration dependent (Km was 41.60 mM, Vmax was 353.75 mol/cm2/min). Cells incubated with D-glucose-free medium exhibited significantly greater Rg1 uptake (+ 62.6%) compared with cells in D-glucose-containing medium. The data indicated that sodium-dependent glucose co-transporter 1 was involved in the transport of Rg1. Adrenaline-induced uptake of Rg1 was significantly inhibited in the presence of phlorizin and the absence of Na+. In the in-vivo study in rats, it was found that after co-administration with D-glucose, the adrenaline-induced absorption of Rg1 was inhibited. The area under the concentration-time curve (AUC0→∞) value was significantly decreased from 64.57 ± 27.08 to 1.37 ± 0.42 μg/ml h (P < 0.001).
Conclusions
The data suggested that adrenaline enhanced the absorption of Rg1 by regulating sodium-dependent glucose co-transporter 1.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | - Minjie Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianxin Guo
- Technology Department, Talecris Biotherapeutics, Clayton, North Corolina, USA
| | - Luosheng Huang
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, P.R. China
| | - Shujing Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | - Boyu Meng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | - Qineng Ping
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
39
|
Fatima J, Iqbal CW, Houghton SG, Kasparek MS, Duenes JA, Zheng Y, Sarr MG. Hexose transporter expression and function in mouse small intestine: role of diurnal rhythm. J Gastrointest Surg 2009; 13:634-41. [PMID: 19082670 PMCID: PMC3426922 DOI: 10.1007/s11605-008-0776-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 11/24/2008] [Indexed: 01/31/2023]
Abstract
BACKGROUND Expression and function of hexose transporters vary diurnally in rat small intestine; however, this subject remains unexplored in mice. AIM The aim of the study was to investigate the diurnal expression and function of hexose transporters SGLT1, GLUT2, and GLUT5 in mouse small bowel. METHODS Twenty-four c57bl6 mice maintained in a 12-h light/dark room (6 AM: -6 PM: ) were sacrificed at 9 AM: , 3 PM: , 9 PM: , and 3 AM: (n = 6 each). In duodenal, jejunal, and ileal mucosa, total cellular mRNA and protein levels were quantitated by real-time PCR and semiquantitative Western blotting, respectively. The everted sleeve technique measured transporter-mediated glucose uptake at 9 AM: and 9 PM: . RESULTS mRNA expression of SGLT1, GLUT2, and GLUT5 varied diurnally in all three intestinal segments (p <or= 0.03). SGLT1, GLUT2, and GLUT5 protein levels varied diurnally in duodenum and jejunum (p < 0.05) but not in ileum. Transporter-mediated glucose uptake was greater at 9 PM: than 9 AM: (p <or= 0.04) in all three segments. V (max) was greater in duodenum (10 vs 6 nmol/cm/s) and jejunum (8 vs 5 nmol/cm/s) at 9 PM: compared to 9 AM: (p = 0.01); K (m) remained unchanged. mRNA levels of intestinal hexose transporters varied diurnally. Protein levels peaked 6-12 h later during dark cycle when >70% of food intake occurred; glucose transport followed a similar pattern with increased uptake at 9 PM: . CONCLUSION Hexose transporter expression and function vary diurnally with nocturnal feeding patterns of mice.
Collapse
|
40
|
Subramanian S, Glitz P, Kipp H, Kinne RK, Castaneda F. Protein kinase-A affects sorting and conformation of the sodium-dependent glucose co-transporter SGLT1. J Cell Biochem 2009; 106:444-52. [DOI: 10.1002/jcb.22025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Balen D, Ljubojević M, Breljak D, Brzica H, Z̆lender V, Koepsell H, Sabolić I. Revised immunolocalization of the Na+-d-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Physiol Cell Physiol 2008; 295:C475-89. [DOI: 10.1152/ajpcell.00180.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previously, we characterized localization of Na+-glucose cotransporter SGLT1 ( Slc5a1) in the rat kidney using a polyclonal antibody against the synthetic COOH-terminal peptide of the rat protein (Sabolić I, Škarica M, Gorboulev V, Ljubojević M, Balen D, Herak-Kramberger CM, Koepsell H. Am J Physiol Renal Physiol 290: 913–926, 2006). However, the antibody gave some false-positive reactions in immunochemical studies. Using a shortened peptide for immunization, we have presently generated an improved, more specific anti-rat SGLT1 antibody (rSGLT1-ab), which in immunochemical studies with isolated membranes and tissue cryosections from male (M) and female (F) rats exhibited 1) in kidneys and small intestine, labeling of a major protein band of ∼75 kDa; 2) in kidneys of adult animals, localization of rSGLT1 to the proximal tubule (PT) brush-border membrane (S1 < S2 < S3) and intracellular organelles (S1 > S2 > S3), with zonal (cortex < outer stripe) and sex differences (M < F) in the protein expression, which correlated well with the tissue expression of its mRNA in RT-PCR studies; 3) in kidneys of castrated adult M rats, upregulation of the protein expression; 4) in kidneys of prepubertal rats, weak and sex-independent labeling of the 75-kDa protein band and immunostaining intensity; 5) in small intestine, sex-independent regional differences in protein abundance (jejunum > duodenum = ileum); and 6) thus far unrecognized localization of the transporter in cortical thick ascending limbs of Henle and macula densa in kidney, bile ducts in liver, enteroendocrine cells and myenteric plexus in the small intestine, and initial ducts in the submandibular gland. Our improved rSGLT1-ab may be used to identify novel sites of SGLT1 localization and thus unravel additional physiological functions of this transporter in rat organs.
Collapse
|
42
|
Yu LCH, Huang CY, Kuo WT, Sayer H, Turner JR, Buret AG. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol 2008; 38:923-34. [PMID: 18281046 PMCID: PMC2693066 DOI: 10.1016/j.ijpara.2007.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 12/12/2022]
Abstract
Infection with Giardia duodenalis is one of the most common causes of waterborne diarrheal disease worldwide. Mechanisms of pathogenesis and host response in giardiasis remain incompletely understood. Previous studies have shown that exposure to G. duodenalis products induce apoptosis in enterocytes. We recently discovered that sodium-dependent glucose cotransporter (SGLT)-1-mediated glucose uptake modulates enterocytic cell death induced by bacterial lipopolysaccharide. The aim of this study was to examine whether enhanced epithelial SGLT-1 activity may constitute a novel mechanism of host defense against G. duodenalis-induced apoptosis. SGLT-1-transfected Caco-2 cells were exposed to G. duodenalis products in low (5mM) or high (25mM) glucose media. In low glucose environments, G. duodenalis-induced caspase-3 activation and DNA fragmentation in these cells. These apoptotic phenomena were abolished in the presence of high glucose. A soluble proteolytic fraction of G. duodenalis was found to upregulate SGLT-1-mediated glucose uptake in a dose- and time-dependent manner, in association with increased apical SGLT-1 expression on epithelial cells. Kinetic analysis showed that this phenomenon resulted from an increase in the maximal rate of sugar transport (V(max)) by SGLT-1, with no change in the affinity constant (K(m)). The addition of phloridzin (a competitive inhibitor for glucose binding to SGLT-1) abolished the anti-apoptotic effects exerted by high glucose. Together, the findings indicate that SGLT-1-dependent glucose uptake may represent a novel epithelial cell rescue mechanism against G. duodenalis-induced apoptosis.
Collapse
Affiliation(s)
- Linda C H Yu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | | | | | | | | | |
Collapse
|
43
|
Suketa Y. [Expression and regulation of renal sodium-cotransporters and -antiporters, and related-transport proteins]. YAKUGAKU ZASSHI 2008; 128:901-17. [PMID: 18520136 DOI: 10.1248/yakushi.128.901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The authors' researches have been focused on pathogenic, physiological and biochemical mechanisms in hypertension and diabetes. Studies on hypertension were performed using salt-sensitive hypertensive Dahl rats as compared with the corresponding normotensive rats. Especially, implication with mobilization of electrolytes such as sodium, potassium, calcium and magnesium in hypertension gave rise to provocative to the author. Furthermore, complications of diabetes with hypertension were themes for the authors' researches. Thus, sodium-dependent glucose transport has been studied on sodium-dependent glucose transporters such as SGLT1 and SGLT2 using cell lines of porcelain renal cell, LLC-PK(1), and murine renal cell, NRK-52E. Relationship between magnesium mobilization and NO in hypertension has been explored using renal epithelial cell-lines and salt-sensitive hypertensive Dahl rats in the latter half of the author's research life.
Collapse
Affiliation(s)
- Yasunobu Suketa
- Department of Pharmacy, Chiba Institute of Science Faculty of Pharmacy, 3 Shiomi-cho, Choshi City, Japan.
| |
Collapse
|
44
|
Vernaleken A, Veyhl M, Gorboulev V, Kottra G, Palm D, Burckhardt BC, Burckhardt G, Pipkorn R, Beier N, van Amsterdam C, Koepsell H. Tripeptides of RS1 (RSC1A1) inhibit a monosaccharide-dependent exocytotic pathway of Na+-D-glucose cotransporter SGLT1 with high affinity. J Biol Chem 2007; 282:28501-28513. [PMID: 17686765 DOI: 10.1074/jbc.m705416200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human gene RSC1A1 codes for a 67-kDa protein named RS1 that mediates transcriptional and post-transcriptional regulation of Na(+)-D-glucose cotransporter SGLT1. The post-transcriptional regulation occurs at the trans-Golgi network (TGN). We identified two tripeptides in human RS1 (Gln-Cys-Pro (QCP) and Gln-Ser-Pro (QSP)) that induce posttranscriptional down-regulation of SGLT1 at the TGN leading to 40-50% reduction of SGLT1 in plasma membrane. For effective intracellular concentrations IC(50) values of 2.0 nM (QCP) and 0.16 nm (QSP) were estimated. Down-regulation of SGLT1 by tripeptides was attenuated by intracellular monosaccharides including non-metabolized methyl-alpha-D-glucopyranoside and 2-deoxyglucose. In small intestine post-transcriptional regulation of SGLT1 may contribute to glucose-dependent regulation of liver metabolism and intestinal mobility. QCP and QSP are transported by the H(+)-peptide cotransporter PepT1 that is colocated with SGLT1 in small intestinal enterocytes. Using coexpression of SGLT1 and PepT1 in Xenopus oocytes or polarized Caco-2 cells that contain both transporters we demonstrated that the tripeptides were effective when applied to the extracellular compartment. After a 1-h perfusion of intact rat small intestine with QSP, glucose absorption was reduced by 30%. The data indicate that orally applied tripeptides can be used to down-regulate small intestinal glucose absorption, e.g. in diabetes mellitus.
Collapse
Affiliation(s)
- Alexandra Vernaleken
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | - Maike Veyhl
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | - Valentin Gorboulev
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | - Gabor Kottra
- Department of Food and Nutrition, Technical University Munich, 85350 Freising, Germany
| | - Dieter Palm
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | | | - Gerhard Burckhardt
- Institute of Physiology and Pathophysiology, University Göttingen, 37073 Göttingen, Germany
| | | | - Norbert Beier
- Diabetes Research Department of Merck KGaA, 64293 Darmstadt, Germany
| | | | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany.
| |
Collapse
|
45
|
Kipp H, Kinne RKH. Epithelial Transport and Intracellular Trafficking: Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007. [DOI: 10.1007/0-387-23250-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Puntheeranurak T, Kasch M, Xia X, Hinterdorfer P, Kinne RKH. Three surface subdomains form the vestibule of the Na+/glucose cotransporter SGLT1. J Biol Chem 2007; 282:25222-30. [PMID: 17616521 DOI: 10.1074/jbc.m704190200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A combination of biophysical and biochemical approaches was employed to probe the topology, arrangement, and function of the large surface subdomains of SGLT1 in living cells. Using atomic force microscopy on the single molecule level, Chinese hamster ovary cells overexpressing SGLT1 were probed with atomic force microscopy tips carrying antibodies against epitopes of different subdomains. Specific single molecule recognition events were observed with antibodies against loop 6-7, loop 8-9, and loop 13-14, demonstrating the extracellular orientation of these subdomains. The addition of D-glucose in Na+-containing medium decreased the binding probability of the loop 8-9 antibody, suggesting a transport-related conformational change in the region between amino acids 339 and 356. Transport studies with mutants C345A, C351A, C355A, or C361S supported a role for these amino acids in determining the affinity of SGLT1 for D-glucose. MTSET, [2-(trimethylammonium)ethyl] methanethiosulfonate and dithiothreitol inhibition patterns on alpha-methyl-glucoside uptake by COS-7 cells expressing C255A, C560A, or C608A suggested the presence of a disulfide bridge between Cys255 and Cys608. This assumption was corroborated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showing mass differences in peptides derived from transporters biotinylated in the absence and presence of dithiothreitol. These results indicate that loop 6-7 and loop 13-14 are connected by a disulfide bridge. This bridge brings also loop 8-9 into close vicinity with the former subdomains to create a vestibule for sugar binding.
Collapse
Affiliation(s)
- Theeraporn Puntheeranurak
- Department of Biology, Faculty of Science, Mahidol University, and Center of Excellence, National Nanotechnology Center at Mahidol University, Bangkok, 10400, Thailand
| | | | | | | | | |
Collapse
|
47
|
Koda Y, Shiotani K, Toth I, Tsuda Y, Okada Y, Blanchfield JT. Comparison of the in vitro apparent permeability and stability of opioid mimetic compounds with that of the native peptide. Bioorg Med Chem Lett 2007; 17:2043-6. [PMID: 17300932 DOI: 10.1016/j.bmcl.2007.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 12/30/2006] [Accepted: 01/05/2007] [Indexed: 11/28/2022]
Abstract
Three dimethyl-L-tyrosine (Dmt) based peptide analogues were identified in a previous study as excellent agonists for the mu-opioid receptor showing very low K(i) values and good in vivo antinociceptive activity upon intracerebroventricular administration to mice. This activity decreased markedly when the compounds were delivered subcutaneously or orally. To establish the cause of this decrease of activity the apparent permeability across Caco-2 cell monolayers of each compound and their relative stability to the digestive enzymes present in the cell line has been determined and compared to that of the native peptide endomorphin 2. The compounds' permeabilities clearly correlate with their increasing lipophilicity suggesting that the analogues cross the monolayer via passive diffusion and the results show that the compound with high K(i) value for the mu-receptor (K(i)mu=0.114 nM) exhibited the highest permeability suggesting that this may be the better lead compound despite the lower binding affinity than that of compound 2 or 3.
Collapse
Affiliation(s)
- Yasuko Koda
- School of Pharmacy, University of Queensland, St. Lucia, Qld 4072, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Wakabayashi Y, Kipp H, Arias IM. Transporters on Demand: Intracellular Reservoirs and Cycling of Bile Canalicular ABC Transporters. J Biol Chem 2006; 281:27669-73. [PMID: 16737964 DOI: 10.1074/jbc.r600013200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yoshiyuki Wakabayashi
- Unit on Cellular Polarity, Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
49
|
Yu LCH, Turner JR, Buret AG. LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res 2006; 312:3276-86. [PMID: 16860318 DOI: 10.1016/j.yexcr.2006.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 12/12/2022]
Abstract
Recent findings indicate that enhanced glucose uptake protects enterocytes from excessive apoptosis and barrier defects induced by LPS exposure. The aim of this study was to characterize the mechanisms responsible for increased sodium-dependent glucose cotransporter (SGLT)-1 activity in enterocytes challenged with LPS. SGLT-1-transfected Caco-2 cells were incubated with LPS in high glucose media. LPS increased SGLT-1 activity in dose- and time-dependent fashion, and is due to increased V(max) of the cotransporter. Elevated apical expression of SGLT-1 was also demonstrated. This LPS-induced effect was colchicine-inhibitable, suggesting microtubule-dependent translocation of SGLT-1 onto apical surface. Immunofluorescence staining showed expression of CD14 on the apical surface, but no TLR-4, on these cells. Neutralizing anti-CD14 decreased the LPS-induced upregulation of SGLT-1 activity, whereas anti-TLR-4 had no effect. Pharmacological studies indicated that signaling for LPS-mediated SGLT-1 glucose uptake depends on caspase-8 and -9 activation, but occurs independently of caspase-3. The findings describe a novel feedback mechanism within the apoptotic signaling pathway for SGLT-1-dependent cytoprotection. The observation suggests a new function for CD14 on enterocytes, involving the induction of the caspase-dependent SGLT-1 activity, which ultimately leads to cell rescue. The understanding of these signaling events may shed light on enterocytic cytoprotection and homeostasis mechanism upon pro-apoptotic challenges.
Collapse
Affiliation(s)
- Linda C H Yu
- Department of Biological Sciences, BI 117 Mucosal Inflammation Research Group, University of Calgary, 2500 University Dr. N.W., Calgary, AB, T2N 1N4, Canada
| | | | | |
Collapse
|
50
|
Kroiss M, Leyerer M, Gorboulev V, Kühlkamp T, Kipp H, Koepsell H. Transporter regulator RS1 (RSC1A1) coats the trans-Golgi network and migrates into the nucleus. Am J Physiol Renal Physiol 2006; 291:F1201-12. [PMID: 16788147 DOI: 10.1152/ajprenal.00067.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The product of gene RSC1A1, named RS1, is involved in transcriptional and posttranscriptional regulation of sodium-d-glucose cotransporter SGLT1, and removal of RS1 in mice led to an increase of SGLT1 expression in small intestine and to obesity (Osswald C, Baumgarten K, Stümpel F, Gorboulev V, Akimjanova M, Knobeloch K-P, Horak I, Kluge R, Joost H-G, and Koepsell H. Mol Cell Biol 25: 78-87, 2005). Previous data showed that RS1 inhibits transcription of SGLT1 in LLC-PK1 cells derived from porcine kidney. A decrease of the intracellular amount of RS1 protein was observed during cell confluence, which was paralleled by transcriptional upregulation of SGLT1. In the present study, the subcellular distributions of endogenously expressed RS1 and SGLT1 were compared in LLC-PK1 cells and human embryonic kidney (HEK)-293 cells using immunofluorescence microscopy. RS1 was located at the plasma membrane, at the entire trans-Golgi network (TGN), and within the nucleus. Treatment of LLC-PK1 cells with brefeldin A induced rapid release of RS1 from the TGN, and confluence of LLC-PK1 cells was accompanied by reduction of nuclear location of RS1; 84-90% of subconfluent cells and 5-34% of confluent cells contained RS1 in the nuclei. This suggests that confluence-dependent transcriptional inhibition by RS1 is partially regulated by nuclear migration. Furthermore, we assigned SGLT1 to microtubule-associated tubulovesicular structures and dynamin-containing parts of the TGN. The data indicate that RS1 inhibits the dynamin-dependent release of SGLT1-containing vesicles from the TGN.
Collapse
Affiliation(s)
- Matthias Kroiss
- Institut für Anatomie und Zellbiologie der Universität Würzburg, Koellikerstr. 6 97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|