1
|
Elementary calcium release events in the skeletal muscle cells of the honey bee Apis mellifera. Sci Rep 2021; 11:16731. [PMID: 34408196 PMCID: PMC8373864 DOI: 10.1038/s41598-021-96028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Calcium sparks are involved in major physiological and pathological processes in vertebrate muscles but have never been characterized in invertebrates. Here, dynamic confocal imaging on intact skeletal muscle cells isolated enzymatically from the adult honey bee legs allowed the first spatio-temporal characterization of subcellular calcium release events (CREs) in an insect species. The frequency of CREs, measured in x–y time lapse series, was higher than frequencies usually described in vertebrates. Honey bee CREs had a larger spatial spread at half maximum than their vertebrate counterparts and a slightly ellipsoidal shape, two characteristics that may be related to ultrastructural features specific to invertebrate cells. In line-scan experiments, the histogram of CREs’ duration followed a bimodal distribution, supporting the existence of both sparks and embers. Unlike in vertebrates, embers and sparks had similar amplitudes, a difference that could be related to genomic differences and/or excitation–contraction coupling specificities in honey bee skeletal muscle fibres. The first characterization of CREs from an arthropod which shows strong genomic, ultrastructural and physiological differences with vertebrates may help in improving the research field of sparkology and more generally the knowledge in invertebrates cell Ca2+ homeostasis, eventually leading to a better understanding of their roles and regulations in muscles but also the myotoxicity of new insecticides targeting ryanodine receptors.
Collapse
|
2
|
Abstract
Ryanodine-sensitive intracellular Ca2+ channels (RyRs) open upon binding Ca2+ at cytosolic-facing sites. This results in concerted, self-reinforcing opening of RyRs clustered in specialized regions on the membranes of Ca2+ storage organelles (endoplasmic reticulum and sarcoplasmic reticulum), a process that produces Ca2+-induced Ca2+ release (CICR). The process is optimized to achieve large but brief and localized increases in cytosolic Ca2+ concentration, a feature now believed to be critical for encoding the multiplicity of signals conveyed by this ion. In this paper, I trace the path of research that led to a consensus on the physiological significance of CICR in skeletal muscle, beginning with its discovery. I focus on the approaches that were developed to quantify the contribution of CICR to the Ca2+ increase that results in contraction, as opposed to the flux activated directly by membrane depolarization (depolarization-induced Ca2+ release [DICR]). Although the emerging consensus is that CICR plays an important role alongside DICR in most taxa, its contribution in most mammalian muscles appears to be limited to embryogenesis. Finally, I survey the relevance of CICR, confirmed or plausible, to pathogenesis as well as the multiple questions about activation of release channels that remain unanswered after 50 years.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Physiology and Biophysics, Rush University School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Dorsey SG, Lovering RM, Renn CL, Leitch CC, Liu X, Tallon LJ, Sadzewicz LD, Pratap A, Ott S, Sengamalay N, Jones KM, Barrick C, Fulgenzi G, Becker J, Voelker K, Talmadge R, Harvey BK, Wyatt RM, Vernon-Pitts E, Zhang C, Shokat K, Fraser-Liggett C, Balice-Gordon RJ, Tessarollo L, Ward CW. Genetic deletion of trkB.T1 increases neuromuscular function. Am J Physiol Cell Physiol 2011; 302:C141-53. [PMID: 21865582 DOI: 10.1152/ajpcell.00469.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurotrophin-dependent activation of the tyrosine kinase receptor trkB.FL modulates neuromuscular synapse maintenance and function; however, it is unclear what role the alternative splice variant, truncated trkB (trkB.T1), may have in the peripheral neuromuscular axis. We examined this question in trkB.T1 null mice and demonstrate that in vivo neuromuscular performance and nerve-evoked muscle tension are significantly increased. In vitro assays indicated that the gain-in-function in trkB.T1(-/-) animals resulted specifically from an increased muscle contractility, and increased electrically evoked calcium release. In the trkB.T1 null muscle, we identified an increase in Akt activation in resting muscle as well as a significant increase in trkB.FL and Akt activation in response to contractile activity. On the basis of these findings, we conclude that the trkB signaling pathway might represent a novel target for intervention across diseases characterized by deficits in neuromuscular function.
Collapse
Affiliation(s)
- Susan G Dorsey
- University of Maryland Baltimore School of Nursing, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Prosser BL, Hernández-Ochoa EO, Schneider MF. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium 2011; 50:323-31. [PMID: 21784520 DOI: 10.1016/j.ceca.2011.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/05/2011] [Indexed: 11/16/2022]
Abstract
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation-contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation-contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation-contraction coupling.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology (BioMET), Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
5
|
Bankhead P, Scholfield CN, Curtis TM, McGeown JG. Detecting Ca2+ sparks on stationary and varying baselines. Am J Physiol Cell Physiol 2011; 301:C717-28. [PMID: 21633080 DOI: 10.1152/ajpcell.00032.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies concerning the physiological significance of Ca(2+) sparks often depend on the detection and measurement of large populations of events in noisy microscopy images. Automated detection methods have been developed to quickly and objectively distinguish potential sparks from noise artifacts. However, previously described algorithms are not suited to the reliable detection of sparks in images where the local baseline fluorescence and noise properties can vary significantly, and risk introducing additional bias when applied to such data sets. Here, we describe a new, conceptually straightforward approach to spark detection in linescans that addresses this issue by combining variance stabilization with local baseline subtraction. We also show that in addition to greatly increasing the range of images in which sparks can be automatically detected, the use of a more accurate noise model enables our algorithm to achieve similar detection sensitivities with fewer false positives than previous approaches when applied both to synthetic and experimental data sets. We propose, therefore, that it might be a useful tool for improving the reliability and objectivity of spark analysis in general, and describe how it might be further optimized for specific applications.
Collapse
Affiliation(s)
- Peter Bankhead
- Centre for Vision and Vascular Science, Queen's Univ. of Belfast, United Kingdom
| | | | | | | |
Collapse
|
6
|
Webb SE, Miller AL. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004325. [PMID: 21421918 DOI: 10.1101/cshperspect.a004325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynamic changes in cytosolic and nuclear Ca(2+) concentration are reported to play a critical regulatory role in different aspects of skeletal muscle development and differentiation. Here we review our current knowledge of the spatial dynamics of Ca(2+) signals generated during muscle development in mouse, rat, and Xenopus myocytes in culture, in the exposed myotome of dissected Xenopus embryos, and in intact normally developing zebrafish. It is becoming clear that subcellular domains, either membrane-bound or otherwise, may have their own Ca(2+) signaling signatures. Thus, to understand the roles played by myogenic Ca(2+) signaling, we must consider: (1) the triggers and targets within these signaling domains; (2) interdomain signaling, and (3) how these Ca(2+) signals integrate with other signaling networks involved in myogenesis. Imaging techniques that are currently available to provide direct visualization of these Ca(2+) signals are also described.
Collapse
Affiliation(s)
- Sarah E Webb
- Section of Biochemistry and Cell Biology, and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
7
|
Pessah IN, Cherednichenko G, Lein PJ. Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 2010; 125:260-85. [PMID: 19931307 PMCID: PMC2823855 DOI: 10.1016/j.pharmthera.2009.10.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
Abstract
Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate that PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor-mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
8
|
Lovering RM, Michaelson L, Ward CW. Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling. Am J Physiol Cell Physiol 2009; 297:C571-80. [PMID: 19605736 DOI: 10.1152/ajpcell.00087.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle function is dependent on its highly regular structure. In studies of dystrophic (dy/dy) mice, the proportion of malformed myofibers decreases after prolonged whole muscle stimulation, suggesting that the malformed myofibers are more prone to injury. The aim of this study was to assess morphology and to measure excitation-contraction (EC) coupling (Ca(2+) transients) and susceptibility to osmotic stress (Ca(2+) sparks) of enzymatically isolated muscle fibers of the extensor digitorum longus (EDL) and flexor digitorum brevis (FDB) muscles from young (2-3 mo) and old (8-9 mo) mdx and age-matched control mice (C57BL10). In young mdx EDL, 6% of the myofibers had visible malformations (i.e., interfiber splitting, branched ends, midfiber appendages). In contrast, 65% of myofibers in old mdx EDL contained visible malformations. In the mdx FDB, malformation occurred in only 5% of young myofibers and 11% of old myofibers. Age-matched control mice did not display the altered morphology of mdx muscles. The membrane-associated and cytoplasmic cytoskeletal structures appeared normal in the malformed mdx myofibers. In mdx FDBs with significantly branched ends, an assessment of global, electrically evoked Ca(2+) signals (indo-1PE-AM) revealed an EC coupling deficit in myofibers with significant branching. Interestingly, peak amplitude of electrically evoked Ca(2+) release in the branch of the bifurcated mdx myofiber was significantly decreased compared with the trunk of the same myofiber. No alteration in the basal myoplasmic Ca(2+) concentration (i.e., indo ratio) was seen in malformed vs. normal mdx myofibers. Finally, osmotic stress induced the occurrence of Ca(2+) sparks to a greater extent in the malformed portions of myofibers, which is consistent with deficits in EC coupling control. In summary, our data show that aging mdx myofibers develop morphological malformations. These malformations are not associated with gross disruptions in cytoskeletal or t-tubule structure; however, alterations in myofiber Ca(2+) signaling are evident.
Collapse
Affiliation(s)
- Richard M Lovering
- Univ. of Maryland School of Medicine, Dept. of Physiology, 685 W. Baltimore St., HSF-1, Rm, 580, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
9
|
Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RAB, Garny A, Morphew MK, Hoenger A, Lederer WJ, Kohl P. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res 2009; 104:787-95. [PMID: 19197074 PMCID: PMC3522525 DOI: 10.1161/circresaha.108.193334] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigate acute effects of axial stretch, applied by carbon fibers (CFs), on diastolic Ca2+ spark rate in rat isolated cardiomyocytes. CFs were attached either to both cell ends (to maximize the stretched region), or to the center and one end of the cell (to compare responses in stretched and nonstretched half-cells). Sarcomere length was increased by 8.01+/-0.94% in the stretched cell fraction, and time series of XY confocal images were recorded to monitor diastolic Ca2+ spark frequency and dynamics. Whole-cell stretch causes an acute increase of Ca2+ spark rate (to 130.7+/-6.4%) within 5 seconds, followed by a return to near background levels (to 104.4+/-5.1%) within 1 minute of sustained distension. Spark rate increased only in the stretched cell region, without significant differences in spark amplitude, time to peak, and decay time constants of sparks in stretched and nonstretched areas. Block of stretch-activated ion channels (2 micromol/L GsMTx-4), perfusion with Na+/Ca2+-free solution, and block of nitric oxide synthesis (1 mmol/L L-NAME) all had no effect on the stretch-induced acute increase in Ca2+ spark rate. Conversely, interference with cytoskeletal integrity (2 hours of 10 micromol/L colchicine) abolished the response. Subsequent electron microscopic tomography confirmed the close approximation of microtubules with the T-tubular-sarcoplasmic reticulum complex (to within approximately 10(-8)m). In conclusion, axial stretch of rat cardiomyocytes acutely and transiently increases sarcoplasmic reticulum Ca2+ spark rate via a mechanism that is independent of sarcolemmal stretch-activated ion channels, nitric oxide synthesis, or availability of extracellular calcium but that requires cytoskeletal integrity. The potential of microtubule-mediated modulation of ryanodine receptor function warrants further investigation.
Collapse
Affiliation(s)
- Gentaro Iribe
- University of Oxford, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, Dirksen RT, Dulhunty AF. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 2009; 45:264-74. [PMID: 19131108 DOI: 10.1016/j.ceca.2008.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/05/2008] [Accepted: 11/13/2008] [Indexed: 11/16/2022]
Abstract
Alternative splicing of ASI residues (Ala(3481)-Gln(3485)) in the skeletal muscle ryanodine receptor (RyR1) is developmentally regulated: the residues are present in adult ASI(+)RyR1, but absent in the juvenile ASI(-)RyR1 which is over-expressed in adult myotonic dystrophy type 1 (DM1). Although this splicing switch may influence RyR1 function in developing muscle and DM1, little is known about the properties of the splice variants. We examined excitation-contraction (EC) coupling and the structure and interactions of the ASI domain (Thr(3471)-Gly(3500)) in the splice variants. Depolarisation-dependent Ca(2+) release was enhanced by >50% in myotubes expressing ASI(-)RyR1 compared with ASI(+)RyR1, although DHPR L-type currents and SR Ca(2+) content were unaltered, while ASI(-)RyR1 channel function was actually depressed. The effect on EC coupling did not depend on changes in ASI domain secondary structure. Probing RyR1 function with peptides possessing the ASI domain sequence indicated that the domain contributes to an inhibitory module in RyR1. The action of the peptide depended on a sequence of basic residues and their alignment in an alpha-helix adjacent to the ASI splice site. This is the first evidence that the ASI residues contribute to an inhibitory module in RyR1 that influences EC coupling. Implications for development and DM1 are discussed.
Collapse
Affiliation(s)
- Takashi Kimura
- Hyogo College of Medicine, 1-1 Mukogawa-cho Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Teichmann MDH, Wegner FV, Fink RHA, Chamberlain JS, Launikonis BS, Martinac B, Friedrich O. Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression. PLoS One 2008; 3:e3644. [PMID: 18982068 PMCID: PMC2575405 DOI: 10.1371/journal.pone.0003644] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/17/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca(2+) release events (ECRE) in high Ca(2+) external environments. Such 'uncontrolled' Ca(2+) sparks were suggested to act as dystrophic signals. They may be related to mechanosensitive pathways but the mechanisms are elusive. Also, it is not known whether truncated dystrophins can correct the dystrophic disinhibition. METHODOLOGY/PRINCIPAL FINDINGS We recorded ECRE activity in single intact fibers from adult wt, mdx and mini-dystrophin expressing mice (MinD) under resting isotonic conditions and following hyper-/hypo-osmolar external shock using confocal microscopy and imaging techniques. Isotonic ECRE frequencies were small in wt and MinD fibers, but were markedly increased in mdx fibers. Osmotic challenge dramatically increased ECRE activity in mdx fibers. Sustained osmotic challenge induced marked exponential ECRE activity adaptation that was three times faster in mdx compared to wt and MinD fibers. Rising external Ca(2+) concentrations amplified osmotic ECRE responses. The eliminated ECRE suppression in intact osmotically stressed mdx fibers was completely and reversibly resuscitated by streptomycine (200 microM), spider peptide GsMTx-4 (5 microM) and Gd(3+) (20 microM) that block unspecific, specific cationic and Ca(2+) selective mechanosensitive channels (MsC), respectively. ECRE morphology was not substantially altered by membrane stress. During hyperosmotic challenge, membrane potentials were polarised and a putative depolarisation through aberrant MsC negligible excluding direct activation of ECRE through tubular depolarisation. CONCLUSIONS/SIGNIFICANCE Dystrophin suppresses spontaneous ECRE activity by control of mechanosensitive pathways which are suggested to interact with the inhibitory DHPR loop to the ryanodine receptor. MsC-related disinhibition prevails in dystrophic muscle and can be resuscitated by transgenic mini-dystrophin expression. Our results have important implications for the pathophysiology of DMD where abnormal MsC in dystrophic muscle confer disruption of microdomain Ca(2+) homeostasis. MsC blockers should have considerable therapeutic potential if more muscle specific compounds can be found.
Collapse
MESH Headings
- Adult
- Animals
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Dystrophin/genetics
- Dystrophin/metabolism
- Humans
- Ion Channels/metabolism
- Mechanotransduction, Cellular/physiology
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/physiopathology
- Osmotic Pressure
- Ryanodine Receptor Calcium Release Channel/metabolism
Collapse
Affiliation(s)
- Martin D. H. Teichmann
- Medical Biophysics, Department of Systems Physiology, Institute of Physiology and Pathophysiology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Frederic v. Wegner
- Medical Biophysics, Department of Systems Physiology, Institute of Physiology and Pathophysiology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Rainer H. A. Fink
- Medical Biophysics, Department of Systems Physiology, Institute of Physiology and Pathophysiology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Bradley S. Launikonis
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Boris Martinac
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Oliver Friedrich
- Medical Biophysics, Department of Systems Physiology, Institute of Physiology and Pathophysiology, Ruprecht-Karls-University, Heidelberg, Germany
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
12
|
Csernoch L, Pouvreau S, Ronjat M, Jacquemond V. Voltage-activated elementary calcium release events in isolated mouse skeletal muscle fibers. J Membr Biol 2008; 226:43-55. [PMID: 19015802 PMCID: PMC2796304 DOI: 10.1007/s00232-008-9138-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
The elementary Ca(2+)-release events underlying voltage-activated myoplasmic Ca(2+) transients in mammalian muscle remain elusive. Here, we looked for such events in confocal line-scan (x,t) images of fluo-3 fluorescence taken from isolated adult mouse skeletal muscle fibers held under voltage-clamp conditions. In response to step depolarizations, spatially segregated fluorescence signals could be detected that were riding on a global increase in fluorescence. These discrete signals were separated using digital filtering in the spatial domain; mean values for their spatial half-width and amplitude were 1.99 +/- 0.09 microm and 0.16 +/- 0.005 DeltaF/F(0) (n = 151), respectively. Under control conditions, the duration of the events was limited by the pulse duration. In contrast, in the presence of maurocalcine, a scorpion toxin suspected to disrupt the process of repolarization-induced ryanodine receptor (RyR) closure, events uninterrupted by the end of the pulse were readily detected. Overall results establish these voltage-activated low-amplitude local Ca(2+) signals as inherent components of the physiological Ca(2+)-release process of mammalian muscle and suggest that they result from the opening of either one RyR or a coherently operating group of RyRs, under the control of the plasma membrane polarization.
Collapse
Affiliation(s)
- Laszlo Csernoch
- Department of Physiology
Medical and Health Science CentreUniversity of DebrecenDebrecen,HU
| | - Sandrine Pouvreau
- PICM, Physiologie intégrative, cellulaire et moléculaire
CNRS : UMR5123Université Claude Bernard - Lyon IBât. R. Dubois 43, Bvd du 11 Novembre 1918 69622 VILLEURBANNE CEDEX,FR
| | - Michel Ronjat
- GIN, Grenoble Institut des Neurosciences
INSERM : U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9,FR
| | - Vincent Jacquemond
- PICM, Physiologie intégrative, cellulaire et moléculaire
CNRS : UMR5123Université Claude Bernard - Lyon IBât. R. Dubois 43, Bvd du 11 Novembre 1918 69622 VILLEURBANNE CEDEX,FR
| |
Collapse
|
13
|
Fodor J, Gönczi M, Sztretye M, Dienes B, Oláh T, Szabó L, Csoma E, Szentesi P, Szigeti GP, Marty I, Csernoch L. Altered expression of triadin 95 causes parallel changes in localized Ca2+ release events and global Ca2+ signals in skeletal muscle cells in culture. J Physiol 2008; 586:5803-18. [PMID: 18845610 DOI: 10.1113/jphysiol.2008.160457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 95 kDa triadin (Trisk 95), an integral protein of the sarcoplasmic reticular membrane in skeletal muscle, interacts with both the ryanodine receptor (RyR) and calsequestrin. While its role in the regulation of calcium homeostasis has been extensively studied, data are not available on whether the overexpression or the interference with the expression of Trisk 95 would affect calcium sparks the localized events of calcium release (LCRE). In the present study LCRE and calcium transients were studied using laser scanning confocal microscopy on C2C12 cells and on primary cultures of skeletal muscle. Liposome- or adenovirus-mediated Trisk 95 overexpression and shRNA interference with triadin translation were used to modify the level of the protein. Stable overexpression in C2C12 cells significantly decreased the amplitude and frequency of calcium sparks, and the frequency of embers. In line with these observations, depolarization-evoked calcium transients were also suppressed. Similarly, adenoviral transfection of Trisk 95 into cultured mouse skeletal muscle cells significantly decreased both the frequency and amplitude of spontaneous global calcium transients. Inhibition of endogenous triadin expression by RNA interference caused opposite effects. Primary cultures of rat skeletal muscle cells expressing endogenous Trisk 95 readily generated spontaneous calcium transients but rarely produced calcium sparks. Their transfection with specific shRNA sequence significantly reduced the triadin-specific immunoreactivity. Functional experiments on these cells revealed that while caffeine-evoked calcium transients were reduced, LCRE appeared with higher frequency. These results suggest that Trisk 95 negatively regulates RyR function by suppressing localized calcium release events and global calcium signals in cultured muscle cells.
Collapse
Affiliation(s)
- János Fodor
- Department of Physiology, University of Debrecen, P.O. Box 22, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 2008; 10:688-97. [PMID: 18488020 DOI: 10.1038/ncb1731] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/21/2008] [Indexed: 12/31/2022]
Abstract
It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. However, little is known about STIM1 in excitable cells, such as striated muscle, where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to show SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide insight into the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.
Collapse
|
15
|
Rodney GG. Calmodulin in adult mammalian skeletal muscle: localization and effect on sarcoplasmic reticulum Ca2+ release. Am J Physiol Cell Physiol 2008; 294:C1288-97. [PMID: 18322139 DOI: 10.1152/ajpcell.00033.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calmodulin is a ubiquitous Ca2+ binding protein that binds to ryanodine rectors (RyR) and is thought to modulate its activity. Here we evaluated the effects of recombinant calmodulin on the rate of occurrence and spatial properties of Ca2+ sparks as an assay of activation in saponin-permeabilized mouse myofibers. Control myofibers exhibited a time-dependent increase and subsequent decrease in spark frequency. Recombinant wild-type calmodulin prevented the time-dependent appearance of Ca2+ sparks and decreased the derived Ca2+ flux from the sarcoplasmic reticulum during a spark by approximately 37%. A recombinant Ca2+-insensitive form of calmodulin resulted in an instantaneous increase in spark frequency as well as an increase in the derived Ca2+ flux by approximately 24%. Endogenous calmodulin was found to primarily localize to the Z-line. Surprisingly, removal of endogenous calmodulin did not alter the time dependence of Ca2+ spark appearance. These results indicate that calmodulin may not be essential for RyR1-dependent Ca2+ release in adult mammalian skeletal muscle.
Collapse
Affiliation(s)
- George G Rodney
- Department of Organizational Systems & Adult Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Martins AS, Shkryl VM, Nowycky MC, Shirokova N. Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres. J Physiol 2007; 586:197-210. [PMID: 17974587 DOI: 10.1113/jphysiol.2007.146571] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca(2+) sparks, localized elevations in cytosolic [Ca(2+)], are rarely detected in intact adult mammalian skeletal muscle under physiological conditions. However, they have been observed in permeabilized cells and in intact fibres subjected to stresses, such as osmotic shock and strenuous exercise. Our previous studies indicated that an excess in cellular reactive oxygen species (ROS) generation over the ROS scavenging capabilities could be one of the up-stream causes of Ca(2+) spark appearance in permeabilized muscle fibres. Here we tested whether the cytosolic ROS balance is compromised in intact skeletal muscle fibres that underwent osmotic shock and whether this misbalance contributes to unmasking Ca(2+) sparks. Spontaneous Ca(2+) sparks and the rate of ROS generation were assessed with single photon confocal microscopy and fluorescent indicators fluo-4, CM-H(2)DCFDA and MitoSOX Red. Osmotic shock produced spontaneous Ca(2+) sparks and a concomitant significant increase in ROS production. Preincubation of muscle cells with ROS scavengers (e.g. MnTBAP, Mn-cpx 3, TIRON) nearly eliminated Ca(2+) sparks. In addition, inhibitors of NAD(P)H oxidase (DPI and apocynin) significantly reduced ROS production and suppressed the appearance of Ca(2+) sparks. Taken together, the data suggest that ROS contribute to the abnormal Ca(2+) spark activity in mammalian skeletal muscle subjected to osmotic stress and also indicate that NAD(P)H oxidase is a possible source of ROS. We propose that ROS-dependent Ca(2+) sparks are an important component of adaptive/maladaptive muscle responses under various pathological conditions such as eccentric stretch, osmotic changes during ischaemia and reperfusion, and some muscle diseases.
Collapse
Affiliation(s)
- Adriano S Martins
- Department of Pharmacology and Physiology, UMDNJ, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
17
|
Wang ZM, Zheng Z, Messi ML, Delbono O. Muscle fibers from senescent mice retain excitation-contraction coupling properties in culture. In Vitro Cell Dev Biol Anim 2007; 43:222-34. [PMID: 17712595 DOI: 10.1007/s11626-007-9047-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/11/2007] [Indexed: 11/28/2022]
Abstract
In the present study, we test the hypothesis that mouse skeletal muscle in culture retains the fundamental properties of excitation-sarcoplasmic reticulum Ca(2+) release coupling reported for young-adult (3-4 mo) and senescent (22-23) mice. Dissociated flexor digitorum brevis (FDB) muscles from young-adult and senescent mice were cultured for 7 d in a serum-free medium. During this period, the overall morphology of cultured fibers resembled that exhibited by acutely dissociated cells. In addition, survival analysis revealed that more than 70% of the fibers from both young and old mice remained suitable for electrophysiological studies during this same culture period. Charge movement and intracellular Ca(2+) recordings in FDB fibers, voltage clamped in the whole cell configuration of the patch-clamp technique, reproduced the maximal values, and voltage dependence similarly displayed by acutely dissociated cells for both parameters in young-adult and senescent mice. The analysis of the dihydropyridine receptor by immunoblots confirmed, in the culture system, the age-dependent decrease in the expression of this protein. In conclusion, FDB fibers from young-adult and old mice retain the excitation-contraction coupling phenotype during the course of a week in serum-free medium culture.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
18
|
Ravenscroft G, Nowak KJ, Jackaman C, Clément S, Lyons MA, Gallagher S, Bakker AJ, Laing NG. Dissociated flexor digitorum brevis myofiber culture system—A more mature muscle culture system. ACTA ACUST UNITED AC 2007; 64:727-38. [PMID: 17654606 DOI: 10.1002/cm.20223] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable knowledge regarding skeletal muscle physiology and disease has been gleaned from cultured myoblastic cell lines or isolated primary myoblasts. Such muscle cultures can be induced to differentiate into multinucleated myotubes that become striated. However they in general do not fully mature and therefore do not model mature muscle. Contrastingly, fresh and cultured dissociated adult mouse flexor digitorum brevis (FDB) myofibers have been studied for many years. We aimed to investigate the possibility of using the FDB myofiber culture system for drug screening and thus long-term cultures of enzymatically dissociated FDB myofibers were established in 96-well plates. Ca2+ handling experiments were used to investigate the functional state of the myofibers. Imaging of intracellular Ca2+ during electric field stimulation revealed that calcium handling was maintained throughout the culture period of at least 8 days. Western blot and immunostaining analysis showed that the FDB cultures maintained expression of mature proteins throughout the culture period, including alpha-sarcoglycan, dystrophin, fast myosin heavy chain and skeletal muscle alpha-actin. The high levels of the fetal proteins cardiac alpha-actin and utrophin, seen in cultured C2C12 myotubes, were absent in the FDB cultures. The expression of developmentally mature proteins and the absence of fetal proteins, in addition to the maintenance of normal calcium handling, highlights the FDB culture system as a more mature and perhaps more relevant culture system for the study of adult skeletal muscle function. Moreover, it may be a useful system for screening therapeutic agents for the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, West Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The study of Ca2+ sparks has led to extensive new information regarding the gating of the Ca2+ release channels underlying these events in skeletal, cardiac and smooth muscle cells, as well as the possible roles of these local Ca2+ release events in muscle function. Here we review basic procedures for studying Ca2+ sparks in skeletal muscle, primarily from frog, as well as the basic results concerning the properties of these events, their pattern and frequency of occurrence during fiber depolarization and the mechanisms underlying their termination. Finally, we also consider the contribution of different ryanodine receptor (RyR) isoforms to Ca2+ sparks and the number of RyR Ca2+ release channels that may contribute to the generation of a Ca2+ spark. Over the decade since their discovery, Ca2+ sparks have provided a wealth of information concerning the function of Ca2+ release channels within their intracellular environment.
Collapse
Affiliation(s)
- Michael G Klein
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
20
|
Brown LD, Rodney GG, Hernández-Ochoa E, Ward CW, Schneider MF. Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers. Am J Physiol Cell Physiol 2006; 292:C1156-66. [PMID: 17065203 PMCID: PMC2654399 DOI: 10.1152/ajpcell.00397.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) sparks are rare in healthy adult mammalian skeletal muscle but may appear when adult fiber integrity is compromised, and occur in embryonic muscle but decline as the animal develops. Here we used cultured adult mouse flexor digitorum brevis muscle fibers to monitor occurrence of Ca(2+) sparks during maintenance of adult fiber morphology and during eventual fiber morphological dedifferentiation after various times in culture. Fibers cultured for up to 3 days retain normal morphology and striated appearance. Ca(2+) sparks were rare in these fibers. At 5-7 days in culture, many of the original muscle fibers exhibit sprouting and loss of striations, as well as the occurrence of spontaneous Ca(2+) sparks. The average rate of occurrence of Ca(2+) sparks is >10-fold higher after 5-7 days in culture than in days 1-3. With the use of fibers cultured for 7 days, application of the Ca(2+) channel blockers Co(2+) or nifedipine almost completely suppressed the occurrence of Ca(2+) sparks, as previously shown in embryonic fibers, suggesting that Ca(2+) sparks may be generated by similar mechanisms in dedifferentiating cultured adult fibers and in embryonic fibers before final differentiation. The sarcomeric disruption observed under transmitted light microscopy in dedifferentiating fibers was accompanied by morphological changes in the transverse (T) tubular system, as observed by fluorescence confocal imaging of both an extracellular marker dye and membrane staining dyes. Changes in T tubule morphology coincided with the appearance of Ca(2+) sparks, suggesting that Ca(2+) sparks may either be a signal for, or the result of, disruption of DHPR-ryanodine receptor 1 coupling.
Collapse
Affiliation(s)
- Lisa D Brown
- Biology Department, Morgan State University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
21
|
Dorsey SG, Renn CL, Carim-Todd L, Barrick CA, Bambrick L, Krueger BK, Ward CW, Tessarollo L. In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 2006; 51:21-8. [PMID: 16815329 DOI: 10.1016/j.neuron.2006.06.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 01/13/2006] [Accepted: 06/09/2006] [Indexed: 01/02/2023]
Abstract
Imbalances in neurotrophins or their high-affinity Trk receptors have long been reported in neurodegenerative diseases. However, a molecular link between these gene products and neuronal cell death has not been established. In the trisomy 16 (Ts16) mouse there is increased apoptosis in the cortex, and hippocampal neurons undergo accelerated cell death that cannot be rescued by administration of brain-derived neurotrophic factor (BDNF). Ts16 neurons have normal levels of the TrkB tyrosine kinase receptor but an upregulation of the TrkB.T1 truncated receptor isoform. Here we show that restoration of the physiological level of the TrkB.T1 receptor by gene targeting rescues Ts16 cortical cell and hippocampal neuronal death. Moreover, it corrects resting Ca2+ levels and restores BDNF-induced intracellular signaling mediated by full-length TrkB in Ts16 hippocampal neurons. These data provide a direct link between neuronal cell death and abnormalities in Trk neurotrophin receptor levels.
Collapse
Affiliation(s)
- Susan G Dorsey
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Campbell NR, Podugu SP, Ferrari MB. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev Biol 2006; 292:253-64. [PMID: 16460724 DOI: 10.1016/j.ydbio.2005.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Intracellular calcium (Ca(2+)) signals are essential for several aspects of muscle development, including myofibrillogenesis-the terminal differentiation of the sarcomeric lattice. Ryanodine receptor (RyR) Ca(2+) stores must be operative during this period and contribute to the production of spontaneous global Ca(2+) transients of long duration (LDTs; mean duration approximately 80 s). In this study, high-speed confocal imaging of intracellular Ca(2+) in embryonic myocytes reveals a novel class of spontaneous Ca(2+) transient. These short duration transients (SDTs; mean duration approximately 2 s) are blocked by ryanodine, independent of extracellular Ca(2+), insensitive to changes in membrane potential, and propagate in the subsarcolemmal space. SDTs arise from RyR stores localized to the subsarcolemmal space during myofibrillogenesis. While both LDTs and SDTs occur prior to myofibrillogenesis, LDT production ceases and only SDTs persist during a period of rapid sarcomere assembly. However, eliminating SDTs during this period results in only minor myofibril disruption. On the other hand, artificial extension of LDT production completely inhibits sarcomere assembly. In conjunction with earlier work, these results suggest that LDTs have at least two roles during myofibrillogenesis-activation of sarcoplasmic regulatory cascades and regulation of gene expression. The distinct spatiotemporal patterns of LDTs versus SDTs may be utilized for differential regulation of cytosolic cascades, control of nuclear gene expression, and localized activation of assembly events at the sarcolemma.
Collapse
Affiliation(s)
- Nolan R Campbell
- School of Biological Sciences, University of Missouri, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | | | |
Collapse
|
23
|
Zhou J, Yi J, Royer L, Launikonis BS, González A, García J, Ríos E. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 2005; 290:C539-53. [PMID: 16148029 DOI: 10.1152/ajpcell.00592.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca(2+) release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca(2+) release. Murine primary cultures were confocally imaged for Ca(2+) detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca(2+) sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca(2+) saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 microM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca(2+) saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca(2+)] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca(2+)] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca(2+) release channels and/or their susceptibility to Ca(2+)-induced activation, thereby suppressing the production of Ca(2+) sparks.
Collapse
Affiliation(s)
- Jingsong Zhou
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- E Ríos
- Section of Cellular Signalling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Szappanos H, Smida-Rezgui S, Cseri J, Simut C, Sabatier JM, De Waard M, Kovács L, Csernoch L, Ronjat M. Differential effects of maurocalcine on Ca2+ release events and depolarization-induced Ca2+ release in rat skeletal muscle. J Physiol 2005; 565:843-53. [PMID: 15831537 PMCID: PMC1464547 DOI: 10.1113/jphysiol.2005.086074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Maurocalcine (MCa), a 33 amino acid toxin obtained from scorpion venom, has been shown to interact with the isolated skeletal-type ryanodine receptor (RyR1) and to strongly modify its calcium channel gating. In this study, we explored the effects of MCa on RyR1 in situ to establish whether the functional interaction of RyR1 with the voltage-sensing dihydropyridine receptor (DHPR) would modify the ability of MCa to interact with RyR1. In developing skeletal muscle cells the addition of MCa into the external medium induced a calcium transient resulting from RyR1 activation and strongly inhibited the effect of the RyR1 agonist chloro-m-cresol. In contrast, MCa failed to affect the depolarization-induced Ca(2+) release. In intact adult fibres MCa did not induce any change in the cytosolic Ca(2+) concentration. However, when the surface membrane was permeabilized and calcium release events were readily observable, MCa had a time-dependent dual effect: it first increased event frequency, from 0.060 +/- 0.002 to 0.150 +/- 0.007 sarcomere(-1) s(-1), and reduced the amplitude of individual events without modifying their spatial distribution. Later on it induced the appearance of long-lasting events resembling the embers observed in control conditions but having a substantially longer duration. We propose that the functional coupling of DHPRs and RyR1s within a Ca(2+) release unit prevents MCa from either reaching its binding site or from being able to modify the gating not only of the RyR1s physically coupled to DHPRs but all RyR1s within the Ca(2+) release unit.
Collapse
|
26
|
Payne AM, Zheng Z, González E, Wang ZM, Messi ML, Delbono O. External Ca(2+)-dependent excitation--contraction coupling in a population of ageing mouse skeletal muscle fibres. J Physiol 2004; 560:137-55. [PMID: 15297570 PMCID: PMC1665204 DOI: 10.1113/jphysiol.2004.067322] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the present work, we investigate whether changes in excitation-contraction (EC) coupling mode occur in skeletal muscles from ageing mammals by examining the dependence of EC coupling on extracellular Ca(2+). Single intact muscle fibres from flexor digitorum brevis muscles from young (2-6 months) and old (23-30 months) mice were subjected to tetanic contractile protocols in the presence and absence of external Ca(2+). Contractile experiments in the absence of external Ca(2+) show that about half of muscle fibres from old mice are dependent upon external Ca(2+) for maintaining maximal tetanic force output, while young fibres are not. Decreased force in the absence of external Ca(2+) was not due to changes in charge movement as revealed by whole-cell patch-clamp experiments. Ca(2+) transients, measured by fluo-4 fluorescence, declined in voltage-clamped fibres from old mice in the absence of external Ca(2+). Similarly, Ca(2+) transients declined in parallel with tetanic contractile force in single intact fibres. Examination of inward Ca(2+) current and of mRNA and protein assays suggest that these changes in EC coupling mode are not due to shifts in dihydropyridine receptor (DHPR) and/or ryanodine receptor (RyR) isoforms. These results indicate that a change in EC coupling mode occurs in a population of fibres in ageing skeletal muscle, and is responsible for the age-related dependence on extracellular Ca(2+).
Collapse
Affiliation(s)
- Anthony Michael Payne
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Shtifman A, Paolini C, López JR, Allen PD, Protasi F. Ca2+ influx through alpha1S DHPR may play a role in regulating Ca2+ release from RyR1 in skeletal muscle. Am J Physiol Cell Physiol 2004; 286:C73-8. [PMID: 12954602 DOI: 10.1152/ajpcell.00194.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentiated primary myotubes isolated from wild-type mice exhibit ryanodine-sensitive, spontaneous global Ca2+ oscillations as well as spontaneous depolarizations in the plasma membrane. Immunolabeling of these myotubes showed expression of both alpha1S dihydropyridine receptors (DHPRs) and ryanodine-sensitive Ca2+-release channel 1 (RyR1), the two key proteins in skeletal excitation-contraction (E-C) coupling. Spontaneous global Ca2+ oscillations could be inhibited by addition of 0.1 mM CdCl2/0.5 mM LaCl3 or 5 microM nifedipine to the extracellular bathing solution. After either treatment, Ca2+ oscillations could be restored upon extensive washing. Although exposure to DHPR antagonists completely blocked Ca2+ oscillations, normal orthograde signaling between DHPRs and RyRs, such as that elicited by 80 mM KCl depolarization, was still observed. In addition, we showed that spontaneous Ca2+ oscillations were never present in cultured mdg myotubes, which lack the expression of alpha1SDHPRs. These results suggest that under physiological conditions in conjunction with the mechanical coupling between the alpha1SDHPRs and RyR1, the initiation of Ca2+ oscillations in myotubes may be facilitated, in part, by the Ca2+ influx through the alpha1s-subunit of the DHPR.
Collapse
Affiliation(s)
- Alexander Shtifman
- Department of Anesthesia Research, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|