1
|
Stolwijk JA, Wallner S, Heider J, Kurz B, Pütz L, Michaelis S, Goricnik B, Erl J, Frank L, Berneburg M, Haubner F, Wegener J, Schreml S. GPR4 in the pH-dependent migration of melanoma cells in the tumor microenvironment. Exp Dermatol 2022; 32:479-490. [PMID: 36562556 DOI: 10.1111/exd.14735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Due to its high metastatic potential, malignant melanoma is one of the deadliest skin cancers. In melanoma as well as in other cancers, acidification of the tumor microenvironment (=TME, inverse pH-gradient) is a well-known driver of tumor progression and metastasis. Membrane-bound receptors, such as the proton-sensitive GPCR (pH-GPCR) GPR4, are considered as potential initiators of the signalling cascades relevant to malignant transformation. In this study, we investigated the pH-dependent migration of GPR4 wildtype/overexpressing SK-Mel-28 cells using an impedance-based electrical wounding and migration assay and classical Boyden chamber experiments. Migration of GPR4 overexpressing SK-Mel-28 cells was enhanced in a range of pH 6.5-7.5 as compared to controls in the impedance-based electrical wounding and migration assay. In Boyden chamber experiments, GPR4 overexpression only increased migration at pH 7.5 in a Matrigel-free setup, but not at pH 6.5. Results indicate that GPR4 is involved in the migration of melanoma cells, especially in the tumor periphery, and that this process is affected by pH in the TME.
Collapse
Affiliation(s)
- Judith Anthea Stolwijk
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany.,Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Susanne Wallner
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Judith Heider
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Bernadett Kurz
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Lisa Pütz
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Stefanie Michaelis
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.,Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT, Regensburg, Germany
| | - Barbara Goricnik
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Julia Erl
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Linda Frank
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig Maximilians University Munich, Munich, Germany
| | - Joachim Wegener
- Faculty of Chemistry and Pharmacy, Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.,Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT, Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
4
|
The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010311. [PMID: 35011543 PMCID: PMC8746471 DOI: 10.3390/molecules27010311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3′, 5′-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.
Collapse
|
5
|
Tang C, Liu D, Fan Y, Yu J, Li C, Su J, Wang C. Visualization and bibliometric analysis of cAMP signaling system research trends and hotspots in cancer. J Cancer 2021; 12:358-370. [PMID: 33391432 PMCID: PMC7738981 DOI: 10.7150/jca.47158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is an essential second messenger that widely distributed among prokaryotic and eukaryotic organisms. cAMP can regulate various biological processes, including cell proliferation, differentiation, apoptosis and immune functions. Any dysregulation or alteration of cAMP signaling may cause cell metabolic disorder, immune dysfunction and lead to disease or cancer. This study aimed to conduct a scientometric analysis of cAMP signaling system in cancer field, and explored the research trend, hotspots and frontiers from the past decade. Relevant literatures published from 2009 to 2019 were collected in the Web of Science Core Collection database. EndNote X9 was used to remove duplicate articles, and irrelevant articles were manually filtered. Bibliometric analyses were completed by CiteSpace V. A total of 4306 articles were included in this study. The number of related literatures published each year is gradually increasing. Most of them belong to “Biochemistry & Molecular Biology”, “Oncology”, “Cell Biology”, “Pharmacology & Pharmacy” and “Endocrinology & Metabolism” areas. In the past decade, USA, China, and Japan contributed the most to the research of cAMP signaling system in cancer. The frontiers and hotspots of cAMP signaling pathway system related to cancer fields mainly focused on cancer cell apoptosis, metastasis, and multiple tumors occurrence in patients with Carney complex. Intervention of the cAMP metabolic pathway may be a potential and promising therapeutic strategy for controlling clinical cancer and tumor diseases.
Collapse
Affiliation(s)
- Caoli Tang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, Hubei, China
| | - Duanya Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, Hubei, China
| | - Yongsheng Fan
- Department of Preventive Medicine, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, Hubei, China
| | - Jun Yu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, Hubei, China
| | - Cong Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, Hubei, China
| | - Jianmei Su
- Department of Preventive Medicine, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, Hubei, China.,Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Friendship Avenue 368, Wuhan 430062, Hubei, China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Donghu Road 115, Wuhan 430071, Hubei, China
| |
Collapse
|
6
|
Maeda Y, Kikuchi R, Kawagoe J, Tsuji T, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Anti-cancer strategy targeting the energy metabolism of tumor cells surviving a low-nutrient acidic microenvironment. Mol Metab 2020; 42:101093. [PMID: 33007425 PMCID: PMC7578269 DOI: 10.1016/j.molmet.2020.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tumor cells experience hypoxia, acidosis, and hypoglycemia. Metabolic adaptation to glucose shortage is essential to maintain tumor cells' survival because of their high glucose requirement. This study evaluated the hypothesis that acidosis might promote tumor survival during glucose shortage and if so, explored a novel drug targeting metabolic vulnerability to glucose shortage. METHODS Cell survival and bioenergetics metabolism were assessed in lung cancer cell lines. Our in-house small-molecule compounds were screened to identify those that kill cancer cells under low-glucose conditions. Cytotoxicity against non-cancerous cells was also assessed. Tumor growth was evaluated in vivo using a mouse engraft model. RESULTS Acidosis limited the cellular consumption of glucose and ATP, causing tumor cells to enter a metabolically dormant but energetically economic state, which promoted tumor cell survival during glucose deficiency. We identified ESI-09, a previously known exchange protein directly activated by cAMP (EAPC) inhibitor, as an anti-cancer compound that inhibited cancer cells under low-glucose conditions even when associated with acidosis. Bioenergetic studies showed that independent of EPAC inhibition, ESI-09 was a safer mitochondrial uncoupler than a classical uncoupler and created a futile cycle of mitochondrial respiration, leading to decreased ATP production, increased ATP dissipation, and fuel scavenging. Accordingly, ESI-09 exhibited more cytotoxic effects under low-glucose conditions than under normal glucose conditions. ESI-09 was also more effective than actively proliferating cells on quiescent glucose-restricted cells. Cisplatin showed opposite effects. ESI-09 inhibited tumor growth in lung cancer engraft mice. CONCLUSIONS This study highlights the acidosis-induced promotion of tumor survival during glucose shortage and demonstrates that ESI-09 is a novel potent anti-cancer mitochondrial uncoupler that targets a metabolic vulnerability to glucose shortage even when associated with acidosis. The higher cytotoxicity under lower-than-normal glucose conditions suggests that ESI-09 is safer than conventional chemotherapy, can target the metabolic vulnerability of tumor cells to low-glucose stress, and is applicable to many cancer cell types.
Collapse
Affiliation(s)
- Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Tsuji
- Department of Medicine, Otsuki Municipal Hospital, 1255 Hanasaki, Otsuki-chou, Otsuki-shi, Yamanashi, 401-0015, Japan
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| |
Collapse
|
7
|
Evaluating the Impact of Calcification on Plaque Vulnerability from the Aspect of Mechanical Interaction Between Blood Flow and Artery Based on MRI. Ann Biomed Eng 2020; 49:1169-1182. [PMID: 33079320 DOI: 10.1007/s10439-020-02655-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 01/31/2023]
Abstract
Acute cerebral ischemic events and thrombosis are associated with the rupture/erosion of carotid atherosclerotic plaques. The aim of the present study was to determine the impact of calcification deposition on the wall shear stress (WSS) and stresses within the plaques using 3D fluid-structure interaction (FSI) models. Six patients with calcified carotid atherosclerosis underwent multisequence magnetic resonance imaging (MRI) and were divided into three groups according to the calcification volume. To evaluate the role of the calcification deposition on the stresses, the calcification content was replaced by lipids and arterial tissue, respectively. By comparing the results from the simulation with calcification, and when changing it to lipids there was a significant increment in the stresses at the fibrous cap (p = 0.004). Instead, by changing it to arterial tissue, there was no significant difference (p = 0.07). The calcification shapes that presented the highest stresses were thin concave arc-shaped (AS1) and thin convex arc-shaped (AS3), with mean stress values of 107 ± 54.2 and 99.6 ± 23.4 kPa, respectively. It was also observed that, the calcification shape has more influence on the level of stress than its distance to the lumen. Higher WSS values were associated with the presence of calcification. Calcification shape plays an important role in producing high stresses in the plaque. This work further clarifies the impact of calcification on plaque vulnerability.
Collapse
|
8
|
Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH, Baydoun E. The Role of Epac in Cancer Progression. Int J Mol Sci 2020; 21:ijms21186489. [PMID: 32899451 PMCID: PMC7555121 DOI: 10.3390/ijms21186489] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer continues to be a prime contributor to global mortality. Despite tremendous research efforts and major advances in cancer therapy, much remains to be learned about the underlying molecular mechanisms of this debilitating disease. A better understanding of the key signaling events driving the malignant phenotype of cancer cells may help identify new pharmaco-targets. Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a plethora of biological processes, including those that are characteristic of malignant cells. Over the years, most cAMP-mediated actions were attributed to the activity of its effector protein kinase A (PKA). However, studies have revealed an important role for the exchange protein activated by cAMP (Epac) as another effector mediating the actions of cAMP. In cancer, Epac appears to have a dual role in regulating cellular processes that are essential for carcinogenesis. In addition, the development of Epac modulators offered new routes to further explore the role of this cAMP effector and its downstream pathways in cancer. In this review, the potentials of Epac as an attractive target in the fight against cancer are depicted. Additionally, the role of Epac in cancer progression, namely its effect on cancer cell proliferation, migration/metastasis, and apoptosis, with the possible interaction of reactive oxygen species (ROS) in these phenomena, is discussed with emphasis on the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Hasan Slika
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Suzanne A. Nasser
- Department of Pharmacology, Beirut Arab University, P.O. Box 11-5020 Beirut, Lebanon;
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sharjah, P.O. Box 27272 Sharjah, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Serine Baydoun
- Department of Radiology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| |
Collapse
|
9
|
Tsoyi K, Osorio JC, Chu SG, Fernandez IE, De Frias SP, Sholl L, Cui Y, Tellez CS, Siegfried JM, Belinsky SA, Perrella MA, El-Chemaly S, Rosas IO. Lung Adenocarcinoma Syndecan-2 Potentiates Cell Invasiveness. Am J Respir Cell Mol Biol 2020; 60:659-666. [PMID: 30562054 DOI: 10.1165/rcmb.2018-0118oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Juan C Osorio
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Isis E Fernandez
- 3 Comprehensive Pneumology Centre, Hospital of the Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Lynette Sholl
- 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, and
| | | | - Jill M Siegfried
- 6 Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, and.,7 Pulmonary Fibrosis Group, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| |
Collapse
|
10
|
Massimi M, Ragusa F, Cardarelli S, Giorgi M. Targeting Cyclic AMP Signalling in Hepatocellular Carcinoma. Cells 2019; 8:cells8121511. [PMID: 31775395 PMCID: PMC6952960 DOI: 10.3390/cells8121511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major healthcare problem worldwide, representing one of the leading causes of cancer mortality. Since there are currently no predictive biomarkers for early stage diagnosis, HCC is detected only in advanced stages and most patients die within one year, as radical tumour resection is generally performed late during the disease. The development of alternative therapeutic approaches to HCC remains one of the most challenging areas of cancer. This review focuses on the relevance of cAMP signalling in the development of hepatocellular carcinoma and identifies the modulation of this second messenger as a new strategy for the control of tumour growth. In addition, because the cAMP pathway is controlled by phosphodiesterases (PDEs), targeting these enzymes using PDE inhibitors is becoming an attractive and promising tool for the control of HCC. Among them, based on current preclinical and clinical findings, PDE4-specific inhibitors remarkably demonstrate therapeutic potential in the management of cancer outcomes, especially as adjuvants to standard therapies. However, more preclinical studies are warranted to ascertain their efficacy during the different stages of hepatocyte transformation and in the treatment of established HCC.
Collapse
Affiliation(s)
- Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence: (M.M.); (M.G.); Tel.: +39-0862-433219 (M.M.); +39-06-49912308 (M.G.)
| | - Federica Ragusa
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Silvia Cardarelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.G.); Tel.: +39-0862-433219 (M.M.); +39-06-49912308 (M.G.)
| |
Collapse
|
11
|
Kato Y, Yokoyama U, Fujita T, Umemura M, Kubota T, Ishikawa Y. Epac1 deficiency inhibits basic fibroblast growth factor-mediated vascular smooth muscle cell migration. J Physiol Sci 2019; 69:175-184. [PMID: 30084082 PMCID: PMC11117070 DOI: 10.1007/s12576-018-0631-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023]
Abstract
Vascular smooth muscle cell (VSMC) migration and the subsequent intimal thickening play roles in vascular restenosis. We previously reported that an exchange protein activated by cAMP 1 (Epac1) promotes platelet-derived growth factor (PDGF)-induced VSMC migration and intimal thickening. Because basic fibroblast growth factor (bFGF) also plays a pivotal role in restenosis, we examined whether Epac1 was involved in bFGF-mediated VSMC migration. bFGF-induced lamellipodia formation and migration were significantly decreased in VSMCs obtained from Epac1-/- mice compared to those in Epac1+/+-VSMCs. The bFGF-induced phosphorylation of Akt and glycogen synthase kinase 3β (GSK3β), which play a role in bFGF-induced cell migration, was attenuated in Epac1-/--VSMCs. Intimal thickening induced by the insertion of a large wire was attenuated in Epac1-/- mice, and was accompanied by the decreased phosphorylation of GSK3β. These data suggest that Epac1 deficiency attenuates bFGF-induced VSMC migration, possibly via Akt/GSK3β pathways.
Collapse
Affiliation(s)
- Yuko Kato
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Immunopathology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Tetsuo Kubota
- Department of Immunopathology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
12
|
Zhou D, Ota K, Nardin C, Feldman M, Widman A, Wind O, Simon A, Reilly M, Levin LR, Buck J, Wakamatsu K, Ito S, Zippin JH. Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH. Sci Signal 2018; 11:11/555/eaau7987. [PMID: 30401788 DOI: 10.1126/scisignal.aau7987] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The production of melanin increases skin pigmentation and reduces the risk of skin cancer. Melanin production depends on the pH of melanosomes, which are more acidic in lighter-skinned than in darker-skinned people. We showed that inhibition of soluble adenylyl cyclase (sAC) controlled pigmentation by increasing the pH of melanosomes both in cells and in vivo. Distinct from the canonical melanocortin 1 receptor (MC1R)-dependent cAMP pathway that controls pigmentation by altering gene expression, we found that inhibition of sAC increased pigmentation by increasing the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis, which is more active at basic pH. We demonstrated that the effect of sAC activity on pH and melanin production in human melanocytes depended on the skin color of the donor. Last, we identified sAC inhibitors as a new class of drugs that increase melanosome pH and pigmentation in vivo, suggesting that pharmacologic inhibition of this pathway may affect skin cancer risk or pigmentation conditions.
Collapse
Affiliation(s)
- Dalee Zhou
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Koji Ota
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charlee Nardin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.,Service de Dermatologie, Centre Hospitalier Universitaire, Besançon 25030, France
| | - Michelle Feldman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Adam Widman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Olivia Wind
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Michael Reilly
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
13
|
Kang H, Wu Q, Sun A, Liu X, Fan Y, Deng X. Cancer Cell Glycocalyx and Its Significance in Cancer Progression. Int J Mol Sci 2018; 19:ijms19092484. [PMID: 30135409 PMCID: PMC6163906 DOI: 10.3390/ijms19092484] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a malignant tumor that threatens the health of human beings, and has become the leading cause of death in urban and rural residents in China. The glycocalyx is a layer of multifunctional glycans that covers the surfaces of a variety of cells, including vascular endothelial cells, smooth muscle cells, stem cells, epithelial, osteocytes, as well as cancer cells. The glycosylation and syndecan of cancer cell glycocalyx are unique. However, heparan sulfate (HS), hyaluronic acid (HA), and syndecan are all closely associated with the processes of cancer progression, including cell migration and metastasis, tumor cell adhesion, tumorigenesis, and tumor growth. The possible underlying mechanisms may be the interruption of its barrier function, its radical role in growth factor storage, signaling, and mechanotransduction. In the later sections, we discuss glycocalyx targeting therapeutic approaches reported in animal and clinical experiments. The study concludes that cancer cells’ glycocalyx and its role in cancer progression are beginning to be known by more groups, and future studies should pay more attention to its mechanotransduction of interstitial flow-induced shear stress, seeking promising therapeutic targets with less toxicity but more specificity.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Xiao Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| |
Collapse
|
14
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
15
|
Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem 2018; 447:77-92. [PMID: 29417338 DOI: 10.1007/s11010-018-3294-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Cancer remains a global health problem and approximately 1.7 million new cancer cases are diagnosed every year worldwide. Although diverse molecules are currently being explored as targets for cancer therapy the tumor treatment and therapy is highly tricky. Secondary messengers are important for hormone-mediated signaling pathway. Cyclic AMP (cAMP), a secondary messenger responsible for various physiological processes regulates cell metabolism by activating Protein kinase A (PKA) and by targeting exchange protein directly activated by cAMP (EPAC). EPAC is present in two isoforms EPAC1 and EPAC2, which exhibit different tissue distribution and is involved in GDP/GTP exchange along with activating Rap1- and Rap2-mediated signaling pathways. EPAC is also known for its dual role in cancer as pro- and anti-proliferative in addition to metastasis. Results after perturbing EPAC activity suggests its involvement in cancer cell migration, proliferation, and cytoskeleton remodeling which makes it a potential therapeutic target for cancer treatments.
Collapse
|
16
|
Rodríguez CI, Castro-Pérez E, Prabhakar K, Block L, Longley BJ, Wisinski JA, Kimple ME, Setaluri V. EPAC-RAP1 Axis-Mediated Switch in the Response of Primary and Metastatic Melanoma to Cyclic AMP. Mol Cancer Res 2017; 15:1792-1802. [PMID: 28851815 PMCID: PMC6309370 DOI: 10.1158/1541-7786.mcr-17-0067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
Abstract
Cyclic AMP (cAMP) is an important second messenger that regulates a wide range of physiologic processes. In mammalian cutaneous melanocytes, cAMP-mediated signaling pathways activated by G-protein-coupled receptors (GPCR), like melanocortin 1 receptor (MC1R), play critical roles in melanocyte homeostasis including cell survival, proliferation, and pigment synthesis. Impaired cAMP signaling is associated with increased risk of cutaneous melanoma. Although mutations in MAPK pathway components are the most frequent oncogenic drivers of melanoma, the role of cAMP in melanoma is not well understood. Here, using the Braf(V600E)/Pten-null mouse model of melanoma, topical application of an adenylate cyclase agonist, forskolin (a cAMP inducer), accelerated melanoma tumor development in vivo and stimulated the proliferation of mouse and human primary melanoma cells, but not human metastatic melanoma cells in vitro The differential response of primary and metastatic melanoma cells was also evident upon pharmacologic inhibition of the cAMP effector protein kinase A. Pharmacologic inhibition and siRNA-mediated knockdown of other cAMP signaling pathway components showed that EPAC-RAP1 axis, an alternative cAMP signaling pathway, mediates the switch in response of primary and metastatic melanoma cells to cAMP. Evaluation of pERK levels revealed that this phenotypic switch was not correlated with changes in MAPK pathway activity. Although cAMP elevation did not alter the sensitivity of metastatic melanoma cells to BRAF(V600E) and MEK inhibitors, the EPAC-RAP1 axis appears to contribute to resistance to MAPK pathway inhibition. These data reveal a MAPK pathway-independent switch in response to cAMP signaling during melanoma progression.Implications: The prosurvival mechanism involving the cAMP-EPAC-RAP1 signaling pathway suggest the potential for new targeted therapies in melanoma. Mol Cancer Res; 15(12); 1792-802. ©2017 AACR.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura Block
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Jaclyn A Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
17
|
Abstract
Malignant carcinomas are often characterized by metastasis, the movement of carcinoma cells from a primary site to colonize distant organs. For metastasis to occur, carcinoma cells first must adopt a pro-migratory phenotype and move through the surrounding stroma towards a blood or lymphatic vessel. Currently, there are very limited possibilities to target these processes therapeutically. The family of Rho GTPases is an ubiquitously expressed division of GTP-binding proteins involved in the regulation of cytoskeletal dynamics and intracellular signaling. The best characterized members of the Rho family GTPases are RhoA, Rac1 and Cdc42. Abnormalities in Rho GTPase function have major consequences for cancer progression. Rho GTPase activation is driven by cell surface receptors that activate GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this review, we summarize our current knowledge on Rho GTPase function in the regulation of metastasis. We will focus on key discoveries in the regulation of epithelial-mesenchymal-transition (EMT), cell-cell junctions, formation of membrane protrusions, plasticity of cell migration and adaptation to a hypoxic environment. In addition, we will emphasize on crosstalk between Rho GTPase family members and other important oncogenic pathways, such as cyclic AMP-mediated signaling, canonical Wnt/β-catenin, Yes-associated protein (YAP) and hypoxia inducible factor 1α (Hif1α) and provide an overview of the advancements and challenges in developing pharmacological tools to target Rho GTPase and the aforementioned crosstalk in the context of cancer therapeutics.
Collapse
|
18
|
Oda K, Umemura M, Nakakaji R, Tanaka R, Sato I, Nagasako A, Oyamada C, Baljinnyam E, Katsumata M, Xie LH, Narikawa M, Yamaguchi Y, Akimoto T, Ohtake M, Fujita T, Yokoyama U, Iwatsubo K, Aihara M, Ishikawa Y. Transient receptor potential cation 3 channel regulates melanoma proliferation and migration. J Physiol Sci 2017; 67:497-505. [PMID: 27613608 PMCID: PMC10717062 DOI: 10.1007/s12576-016-0480-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022]
Abstract
Melanoma has an extremely poor prognosis due to its rapidly progressive and highly metastatic nature. Several therapeutic drugs have recently become available, but are effective only against melanoma with specific BRAF gene mutation. Thus, there is a need to identify other target molecules. We show here that Transient receptor potential, canonical 3 (TRPC3) is widely expressed in human melanoma. We found that pharmacological inhibition of TRPC3 with a pyrazole compound, Pyr3, decreased melanoma cell proliferation and migration. Similar inhibition was observed when the TRPC3 gene was silenced with short-hairpin RNA (shRNA). Pyr3 induced dephosphorylation of signal transducer and activator of transcription (STAT) 5 and Akt. Administration of Pyr3 (0.05 mg/kg) to mice implanted with human melanoma cells (C8161) significantly inhibited tumor growth. Our findings indicate that TRPC3 plays an important role in melanoma growth, and may be a novel target for treating melanoma in patients.
Collapse
Affiliation(s)
- Kayoko Oda
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Environmental Immune-Dermatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ryo Tanaka
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Itaru Sato
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Chiaki Oyamada
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Mayumi Katsumata
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Masatoshi Narikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immune-Dermatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Taisuke Akimoto
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Makoto Ohtake
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kousaku Iwatsubo
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- South Miyazaki Kidney Clinic, Miyazaki, Japan
| | - Michiko Aihara
- Department of Environmental Immune-Dermatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
19
|
Almahariq M, Mei FC, Cheng X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys Sin (Shanghai) 2016; 48:75-81. [PMID: 26525949 DOI: 10.1093/abbs/gmv115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/30/2015] [Indexed: 01/03/2023] Open
Abstract
The pleiotropic second messenger adenosine 3',5'-cyclic monophosphate (cAMP) regulates a myriad of biological processes under both physiological and pathophysiological conditions. Exchange protein directly activated by cAMP 1 (EPAC1) mediates the intracellular functions of cAMP by acting as a guanine nucleotide exchange factor for the Ras-like Rap small GTPases. Recent studies suggest that EPAC1 plays important roles in immunomodulation, cancer cell migration/metastasis, and metabolism. These results, coupled with the successful development of EPAC-specific small molecule inhibitors, identify EPAC1 as a promising therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
20
|
Kato Y, Yokoyama U, Yanai C, Ishige R, Kurotaki D, Umemura M, Fujita T, Kubota T, Okumura S, Sata M, Tamura T, Ishikawa Y. Epac1 Deficiency Attenuated Vascular Smooth Muscle Cell Migration and Neointimal Formation. Arterioscler Thromb Vasc Biol 2015; 35:2617-25. [PMID: 26427796 DOI: 10.1161/atvbaha.115.306534] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 09/18/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) migration causes neointima, which is related to vascular remodeling after mechanical injury and atherosclerosis development. We previously reported that an exchange protein activated by cAMP (Epac) 1 was upregulated in mouse arterial neointima and promoted SMC migration. In this study, we examined the molecular mechanisms of Epac1-induced SMC migration and the effect of Epac1 deficiency on vascular remodeling in vivo. APPROACH AND RESULTS Platelet-derived growth factor-BB promoted a 2-fold increase in SMC migration in a primary culture of aortic SMCs obtained from Epac1(+/+) mice (Epac1(+/+)-ASMCs), whereas there was only a 1.2-fold increase in Epac1(-/-)-ASMCs. The degree of platelet-derived growth factor-BB-induced increase in intracellular Ca(2+) was smaller in Fura2-labeled Epac1(-/-)-ASMCs than in Epac1(+/+)-ASMCs. In Epac1(+/+)-ASMCs, an Epac-selective cAMP analog or platelet-derived growth factor-BB increased lamellipodia accompanied by cofilin dephosphorylation, which is induced by Ca(2+) signaling, whereas these effects were rarely observed in Epac1(-/-)-ASMCs. Furthermore, 4 weeks after femoral artery injury, prominent neointima were formed in Epac1(+/+) mice, whereas neointima formation was significantly attenuated in Epac1(-/-) mice in which dephosphorylation of cofilin was inhibited. The chimeric mice generated by bone marrow cell transplantation from Epac1(+/+) into Epac1(-/-) mice and vice versa demonstrated that the genetic background of vascular tissues, including SMCs rather than of bone marrow-derived cells affected Epac1-mediated neointima formation. CONCLUSIONS These data suggest that Epac1 deficiency attenuates neointima formation through, at least in part, inhibition of SMC migration, in which a decrease in Ca(2+) influx and a suppression of cofilin-mediated lamellipodia formation occur.
Collapse
Affiliation(s)
- Yuko Kato
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Utako Yokoyama
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.).
| | - Chiharu Yanai
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Rina Ishige
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Daisuke Kurotaki
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Masanari Umemura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Takayuki Fujita
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Tetsuo Kubota
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Satoshi Okumura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Masataka Sata
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Tomohiko Tamura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Yoshihiro Ishikawa
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.).
| |
Collapse
|
21
|
Brown LM, Rogers KE, Aroonsakool N, McCammon JA, Insel PA. Allosteric inhibition of Epac: computational modeling and experimental validation to identify allosteric sites and inhibitors. J Biol Chem 2014; 289:29148-57. [PMID: 25183009 DOI: 10.1074/jbc.m114.569319] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epac, a guanine nucleotide exchange factor for the low molecular weight G protein Rap, is an effector of cAMP signaling and has been implicated to have roles in numerous diseases, including diabetes mellitus, heart failure, and cancer. We used a computational molecular modeling approach to predict potential binding sites for allosteric modulators of Epac and to identify molecules that might bind to these regions. This approach revealed that the conserved hinge region of the cyclic nucleotide-binding domain of Epac1 is a potentially druggable region of the protein. Using a bioluminescence resonance energy transfer-based assay (CAMYEL, cAMP sensor using YFP-Epac-Rluc), we assessed the predicted compounds for their ability to bind Epac and modulate its activity. We identified a thiobarbituric acid derivative, 5376753, that allosterically inhibits Epac activity and used Swiss 3T3 and HEK293 cells to test the ability of this compound to modulate the activity of Epac and PKA, as determined by Rap1 activity and vasodilator-stimulated phosphoprotein phosphorylation, respectively. Compound 5376753 selectively inhibited Epac in biochemical and cell migration studies. These results document the utility of a computational approach to identify a domain for allosteric regulation of Epac and a novel compound that prevents the activation of Epac1 by cAMP.
Collapse
Affiliation(s)
| | | | | | - J Andrew McCammon
- From the Departments of Pharmacology, Chemistry and Biochemistry, and the Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093
| | - Paul A Insel
- From the Departments of Pharmacology, Medicine and
| |
Collapse
|
22
|
Baljinnyam E, Umemura M, Chuang C, De Lorenzo MS, Iwatsubo M, Chen S, Goydos JS, Ishikawa Y, Whitelock JM, Iwatsubo K. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling. Pigment Cell Melanoma Res 2014; 27:611-20. [PMID: 24725364 PMCID: PMC4283731 DOI: 10.1111/pcmr.12250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2-mediated cell–cell communication.
Collapse
Affiliation(s)
- Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Umemura M, Baljinnyam E, Feske S, De Lorenzo MS, Xie LH, Feng X, Oda K, Makino A, Fujita T, Yokoyama U, Iwatsubo M, Chen S, Goydos JS, Ishikawa Y, Iwatsubo K. Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS One 2014; 9:e89292. [PMID: 24586666 PMCID: PMC3931742 DOI: 10.1371/journal.pone.0089292] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a major mechanism of Ca2+ import from extracellular to intracellular space, involving detection of Ca2+ store depletion in endoplasmic reticulum (ER) by stromal interaction molecule (STIM) proteins, which then translocate to plasma membrane and activate Orai Ca2+ channels there. We found that STIM1 and Orai1 isoforms were abundantly expressed in human melanoma tissues and multiple melanoma/melanocyte cell lines. We confirmed that these cell lines exhibited SOCE, which was inhibited by knockdown of STIM1 or Orai1, or by a pharmacological SOCE inhibitor. Inhibition of SOCE suppressed melanoma cell proliferation and migration/metastasis. Induction of SOCE was associated with activation of extracellular-signal-regulated kinase (ERK), and was inhibited by inhibitors of calmodulin kinase II (CaMKII) or Raf-1, suggesting that SOCE-mediated cellular functions are controlled via the CaMKII/Raf-1/ERK signaling pathway. Our findings indicate that SOCE contributes to melanoma progression, and therefore may be a new potential target for treatment of melanoma, irrespective of whether or not Braf mutation is present.
Collapse
Affiliation(s)
- Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
- * E-mail: (KI); (MU)
| | - Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Mariana S. De Lorenzo
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Xianfeng Feng
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kayoko Oda
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Ayako Makino
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Mizuka Iwatsubo
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Suzie Chen
- Department of Chemical Biology, Susan Lehman Cullen Laboratory of Cancer Research in the Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - James S. Goydos
- Division of Surgical Oncology, Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kousaku Iwatsubo
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail: (KI); (MU)
| |
Collapse
|
24
|
Nikitovic D, Mytilinaiou M, Berdiaki A, Karamanos NK, Tzanakakis GN. Heparan sulfate proteoglycans and heparin regulate melanoma cell functions. Biochim Biophys Acta Gen Subj 2014; 1840:2471-81. [PMID: 24486410 DOI: 10.1016/j.bbagen.2014.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The solid melanoma tumor consists of transformed melanoma cells, and the associated stromal cells including fibroblasts, endothelial cells, immune cells, as well as, soluble macro- and micro-molecules of the extracellular matrix (ECM) forming the complex network of the tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are an important component of the melanoma tumor ECM. Importantly, there appears to be both a quantitative and a qualitative shift in the content of HSPGs, in parallel to the nevi-radial growth phase-vertical growth phase melanoma progression. Moreover, these changes in HSPG expression are correlated to modulations of key melanoma cell functions. SCOPE OF REVIEW This review will critically discuss the roles of HSPGs/heparin in melanoma development and progression. MAJOR CONCLUSIONS We have correlated HSPGs' expression and distribution with melanoma cell signaling and functions as well as angiogenesis. GENERAL SIGNIFICANCE The current knowledge of HSPGs/heparin biology in melanoma provides a foundation we can utilize in the ongoing search for new approaches in designing anti-tumor therapy. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- D Nikitovic
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - M Mytilinaiou
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Ai Berdiaki
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - N K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - G N Tzanakakis
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece.
| |
Collapse
|
25
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
26
|
Choi S, Kang DH, Oh ES. Targeting syndecans: a promising strategy for the treatment of cancer. Expert Opin Ther Targets 2013; 17:695-705. [DOI: 10.1517/14728222.2013.773313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Kwon MJ, Kim Y, Choi Y, Kim SH, Park S, Han I, Kang DH, Oh ES. The extracellular domain of syndecan-2 regulates the interaction of HCT116 human colon carcinoma cells with fibronectin. Biochem Biophys Res Commun 2013; 431:415-20. [PMID: 23333331 DOI: 10.1016/j.bbrc.2012.12.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 12/14/2022]
Abstract
The cell surface heparan sulfate proteoglycan, syndecan-2, is known to play an important role in the tumorigenic activity of colon cancer cells, but the function of its extracellular domain is not yet clear. Cell spreading assays showed that HCT116 human colon cancer cells attached and spread better on fibronectin compared to the other tested extracellular matrixes (ECMs). Notably, syndecan-2 overexpression enhanced the spreading of HCT116 cells on fibronectin, and the opposite effects were observed when syndecan-2 expression was reduced. In addition, an oligomerization-defective syndecan-2 mutant failed to increase cell-ECM interactions and adhesion-related syndecan-2 functions, including migration. Furthermore, analyses using a microfabricated post array detector system revealed that syndecan-2, but not the oligomerization-defective mutant, enhanced the interaction affinity of HCT116 cells on fibronectin. Taken together, these results suggest that the extracellular domain of syndecan-2 regulates the interaction of HCT116 human colon carcinoma cells with fibronectin.
Collapse
Affiliation(s)
- Mi-Jung Kwon
- Department of Life Sciences, Division of Molecular Life Sciences and Center for Cell Signaling Research, Ewha Womans University, Seoul 120-725, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Almahariq M, Tsalkova T, Mei FC, Chen H, Zhou J, Sastry SK, Schwede F, Cheng X. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol 2013; 83:122-8. [PMID: 23066090 PMCID: PMC3533471 DOI: 10.1124/mol.112.080689] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/11/2012] [Indexed: 01/23/2023] Open
Abstract
Exchange protein directly activated by cAMP (EPAC) and cAMP-dependent protein kinase (PKA) are two intracellular receptors that mediate the effects of the prototypic second messenger cAMP. Identifying pharmacological probes for selectively modulating EPAC activity represents a significant unmet need within the research field. Herein, we report the identification and characterization of 3-(5-tert-butyl-isoxazol-3-yl)-2-[(3-chloro-phenyl)-hydrazono]-3-oxo-propionitrile (ESI-09), a novel noncyclic nucleotide EPAC antagonist that is capable of specifically blocking intracellular EPAC-mediated Rap1 activation and Akt phosphorylation, as well as EPAC-mediated insulin secretion in pancreatic β cells. Using this novel EPAC-specific inhibitor, we have probed the functional roles of overexpression of EPAC1 in pancreatic cancer cells. Our studies show that EPAC1 plays an important role in pancreatic cancer cell migration and invasion, and thus represents a potential target for developing novel therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0615, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
van Staveren WCG, Beeckman S, Tomás G, Dom G, Hébrant A, Delys L, Vliem MJ, Trésallet C, Andry G, Franc B, Libert F, Dumont JE, Maenhaut C. Role of Epac and protein kinase A in thyrotropin-induced gene expression in primary thyrocytes. Exp Cell Res 2012; 318:444-52. [PMID: 22240166 DOI: 10.1016/j.yexcr.2011.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 11/28/2011] [Accepted: 12/26/2011] [Indexed: 11/16/2022]
Abstract
cAMP pathway activation by thyrotropin (TSH) induces differentiation and gene expression in thyrocytes. We investigated which partners of the cAMP cascade regulate gene expression modulations: protein kinase A and/or the exchange proteins directly activated by cAMP (Epac). Human primary cultured thyrocytes were analysed by microarrays after treatment with the adenylate cyclase activator forskolin, the protein kinase A (PKA) activator 6-MB-cAMP and the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP (007) alone or combined with 6-MB-cAMP. Profiles were compared to those of TSH. Cultures treated with the adenylate cyclase- or the PKA activator alone or the latter combined with 007 had profiles similar to those induced by TSH. mRNA profiles of 007-treated cultures were highly distinct from TSH-treated cells, suggesting that TSH-modulated gene expressions are mainly modulated by cAMP and PKA and not through Epac in cultured human thyroid cells. To investigate whether the Epac-Rap-RapGAP pathway could play a potential role in thyroid tumorigenesis, the mRNA expressions of its constituent proteins were investigated in two malignant thyroid tumor types. Modulations of this pathway suggest an increased Rap pathway activity in these cancers independent from cAMP activation.
Collapse
Affiliation(s)
- Wilma C G van Staveren
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
O'Connell MP, Weeraratna AT. A spoonful of sugar makes the melanoma go: the role of heparan sulfate proteoglycans in melanoma metastasis. Pigment Cell Melanoma Res 2011; 24:1133-47. [PMID: 21978367 DOI: 10.1111/j.1755-148x.2011.00918.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) have been shown to regulate signaling in many systems and are of increasing interest in cancer. While these are not the only sugars to drive melanoma metastasis, HSPGs play important roles in driving metastatic signaling cascades in melanoma. The ability of these proteins to modulate ligand-receptor interactions in melanoma has been quite understudied. Recent data from several groups indicate the importance of these ligands in modulating key signaling pathways including Wnt and fibroblast growth factor (FGF) signaling. In this review, we summarize the current knowledge regarding the structure and function of these proteoglycans and their role in melanoma. Understanding how HSPGs modulate signaling in melanoma could lead to new therapeutic approaches via the dampening or heightening of key signaling pathways.
Collapse
Affiliation(s)
- M P O'Connell
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
| | | |
Collapse
|
31
|
Gβγ subunits inhibit Epac-induced melanoma cell migration. BMC Cancer 2011; 11:256. [PMID: 21679469 PMCID: PMC3141774 DOI: 10.1186/1471-2407-11-256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/17/2011] [Indexed: 12/11/2022] Open
Abstract
Background Recently we reported that activation of Epac1, an exchange protein activated by cAMP, increases melanoma cell migration via Ca 2+ release from the endoplasmic reticulum (ER). G-protein βγ subunits (Gβγ) are known to act as an independent signaling molecule upon activation of G-protein coupled receptor. However, the role of Gβγ in cell migration and Ca 2+ signaling in melanoma has not been well studied. Here we report that there is crosstalk of Ca 2+ signaling between Gβγ and Epac in melanoma, which plays a role in regulation of cell migration. Methods SK-Mel-2 cells, a human metastatic melanoma cell line, were mainly used in this study. Intracellular Ca 2+ was measured with Fluo-4AM fluorescent dyes. Cell migration was examined using the Boyden chambers. Results The effect of Gβγ on Epac-induced cell migration was first examined. Epac-induced cell migration was inhibited by mSIRK, a Gβγ -activating peptide, but not its inactive analog, L9A, in SK-Mel-2 cells. Guanosine 5', α-β-methylene triphosphate (Gp(CH2)pp), a constitutively active GTP analogue that activates Gβγ, also inhibited Epac-induced cell migration. In addition, co-overexpression of β1 and γ2, which is the major combination of Gβγ, inhibited Epac1-induced cell migration. By contrast, when the C-terminus of β adrenergic receptor kinase (βARK-CT), an endogenous inhibitor for Gβγ, was overexpressed, mSIRK's inhibitory effect on Epac-induced cell migration was negated, suggesting the specificity of mSIRK for Gβγ. We next examined the effect of mSIRK on Epac-induced Ca 2+ response. When cells were pretreated with mSIRK, but not with L9A, 8-(4-Methoxyphenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-pMeOPT), an Epac-specific agonist, failed to increase Ca 2+ signal. Co-overexpression of β1 and γ2 subunits inhibited 8-pMeOPT-induced Ca 2+ elevation. Inhibition of Gβγ with βARK-CT or guanosine 5'-O-(2-thiodiphosphate) (GDPβS), a GDP analogue that inactivates Gβγ, restored 8-pMeOPT-induced Ca 2+ elevation even in the presence of mSIRK. These data suggested that Gβγ inhibits Epac-induced Ca 2+ elevation. Subsequently, the mechanism by which Gβγ inhibits Epac-induced Ca 2+ elevation was explored. mSIRK activates Ca 2+ influx from the extracellular space. In addition, W-5, an inhibitor of calmodulin, abolished mSIRK's inhibitory effects on Epac-induced Ca 2+ elevation, and cell migration. These data suggest that, the mSIRK-induced Ca 2+ from the extracellular space inhibits the Epac-induced Ca 2+ release from the ER, resulting suppression of cell migration. Conclusion We found the cross talk of Ca 2+ signaling between Gβγ and Epac, which plays a major role in melanoma cell migration.
Collapse
|
32
|
Baljinnyam E, Umemura M, De Lorenzo MS, Iwatsubo M, Chen S, Goydos JS, Iwatsubo K. Epac1 promotes melanoma metastasis via modification of heparan sulfate. Pigment Cell Melanoma Res 2011; 24:680-7. [DOI: 10.1111/j.1755-148x.2011.00863.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Syndecan-2 cytoplasmic domain regulates colon cancer cell migration via interaction with syntenin-1. Biochem Biophys Res Commun 2011; 409:148-53. [PMID: 21569759 DOI: 10.1016/j.bbrc.2011.04.135] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/28/2011] [Indexed: 11/22/2022]
Abstract
The cell surface heparan sulfate proteoglycan, syndecan-2, is crucial for the tumorigenic activity of colon cancer cells. However, the role played by the cytoplasmic domain of the protein remains unclear. Using colon cancer cells transfected with various syndecan-2-encoding genes with deletions in the cytoplasmic domain, it was shown that syndecan-2-induced migration activity requires the EFYA sequence of the C-terminal region; deletion of these residues abolished the rise in cell migration seen when the wild-type gene was transfected and syndecan-2 interaction with syntenin-1, suggesting that syntenin-1 functioned as a cytosolic signal effector downstream from syndecan-2. Colon cancer cells transfected with the syntenin-1 gene showed increased migratory activity, whereas migration was decreased in cells in which syntenin-1 was knock-down using small inhibitory RNA. In addition, syntenin-1 expression potentiated colon cancer cell migration induced by syndecan-2, and syndecan-2-mediated cell migration was reduced when syntenin-1 expression diminished. However, syntenin-1-mediated migration enhancement was not noted in colon cancer cells transfected with a gene encoding a syndecan-2 mutant lacking the cytoplasmic domain. Furthermore, in line with the increase in cell migration, syntenin-1 mediated Rac activation stimulated by syndecan-2. Together, the data suggest that the cytoplasmic domain of syndecan-2 regulates colon cancer cell migration via interaction with syntenin-1.
Collapse
|
34
|
Yoshie M, Kaneyama K, Kusama K, Higuma C, Nishi H, Isaka K, Tamura K. Possible role of the exchange protein directly activated by cyclic AMP (Epac) in the cyclic AMP-dependent functional differentiation and syncytialization of human placental BeWo cells. Hum Reprod 2010; 25:2229-38. [PMID: 20663796 DOI: 10.1093/humrep/deq190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The mononuclear villous cytotrophoblast (CTB) differentiates and fuses to the multinucleated syncytiotrophoblast (STB), which produces hCG and progesterone. cAMP-mediated intracellular pathways are involved in the process of endocrine differentiation and fusion (syncytialization). The exchange protein directly activated by cAMP (Epac) is a mediator of cAMP signaling. We examined the differential roles of Epac and protein kinase A (PKA) signaling in the cell fusion and differentiation of trophoblast-derived BeWo cells. METHODS Epac1 and Epac2 were localized in human placental tissue (n = 9) by immunohistochemistry. The PKA-selective cAMP analog (N(6)-phenyl-cAMP, Phe) or Epac-selective cAMP analog (CPT) was tested for effects on hCG and progesterone production, and syncytialization in BeWo cells. The effect of knockdown of Epac or its downstream target molecule (Rap1) on syncytialization was evaluated. RESULTS Epac1 and Epac2 proteins were expressed in villous CTB, STB, stroma, blood vessels and extravillous CTB of the placenta. Phe increased the expression of hCG alpha/beta mRNA and secretion of hCG protein in BeWo cells (P < 0.01 versus control). CPT-stimulated production of hCG (P < 0.05), albeit to a lesser extent than Phe. Progesterone production was also enhanced by Phe or CPT (P < 0.01 and P < 0.05, respectively). CPT or a stable cAMP analog (dibutyryl-cAMP: Db) increased the number of syncytialized BeWo cells (P < 0.01), whereas Phe did not stimulate fusion. CPT- or Db-induced syncytialization was observed, even in the presence of a PKA inhibitor. Knockdown of Epac1 or Rap1 repressed the Db-, CPT- or forskolin-induced cell fusion. CONCLUSIONS The Epac signaling pathway may be associated with the cAMP-mediated functional differentiation and syncytialization of human trophoblasts.
Collapse
Affiliation(s)
- Mikihiro Yoshie
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Baljinnyam E, De Lorenzo MS, Xie LH, Iwatsubo M, Chen S, Goydos JS, Nowycky MC, Iwatsubo K. Exchange protein directly activated by cyclic AMP increases melanoma cell migration by a Ca2+-dependent mechanism. Cancer Res 2010; 70:5607-17. [PMID: 20551063 DOI: 10.1158/0008-5472.can-10-0056] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma has a poor prognosis due to its strong metastatic ability. Although Ca(2+) plays a major role in cell migration, little is known about the role of Ca(2+) in melanoma cell migration. We recently found that the exchange protein directly activated by cyclic AMP (Epac) increases melanoma cell migration via a heparan sulfate-related mechanism. In addition to this mechanism, we also found that Epac regulates melanoma cell migration by a Ca(2+)-dependent mechanism. An Epac agonist increased Ca(2+) in several different melanoma cell lines but not in melanocytes. Ablation of Epac1 with short hairpin RNA inhibited the Epac agonist-induced Ca(2+) elevation, suggesting the critical role of Epac1 in Ca(2+) homeostasis in melanoma cells. Epac-induced Ca(2+) elevation was negated by the inhibition of phospholipase C (PLC) and inositol triphosphate (IP(3)) receptor. Furthermore, Epac-induced cell migration was reduced by the inhibition of PLC or IP(3) receptor. These data suggest that Epac activates Ca(2+) release from the endoplasmic reticulum via the PLC/IP(3) receptor pathway, and this Ca(2+) elevation is involved in Epac-induced cell migration. Actin assembly was increased by Epac-induced Ca(2+), suggesting the involvement of actin in Epac-induced cell migration. In human melanoma specimens, mRNA expression of Epac1 was higher in metastatic melanoma than in primary melanoma, suggesting a role for Epac1 in melanoma metastasis. In conclusion, our findings reveal that Epac is a potential target for the suppression of melanoma cell migration, and, thus, the development of metastasis.
Collapse
Affiliation(s)
- Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol Cell Biol 2010; 30:3956-69. [PMID: 20547757 DOI: 10.1128/mcb.00242-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epac1 (exchange protein directly activated by cyclic AMP [cAMP]) couples intracellular cAMP to the activation of Rap1, a Ras family GTPase that regulates cell adhesion, proliferation, and differentiation. Using mass spectrometry, we identified the small G protein Ran and Ran binding protein 2 (RanBP2) as potential binding partners of Epac1. Ran is a small G protein best known for its role in nuclear transport and can be found at the nuclear pore through its interaction with RanBP2. Here we demonstrate that Ran-GTP and Epac1 interact with each other in vivo and in vitro. This binding requires a previously uncharacterized Ras association (RA) domain in Epac1. Surprisingly, the interaction of Epac1 with Ran is necessary for the efficient activation of Rap1 by Epac1. We propose that Ran and RanBP2 anchor Epac1 to the nuclear pore, permitting cAMP signals to activate Rap1 at the nuclear envelope.
Collapse
|
37
|
Oshikawa J, Urao N, Kim HW, Kaplan N, Razvi M, McKinney R, Poole LB, Fukai T, Ushio-Fukai M. Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One 2010; 5:e10189. [PMID: 20422004 PMCID: PMC2858087 DOI: 10.1371/journal.pone.0010189] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/25/2010] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS), in particular, H(2)O(2), is essential for full activation of VEGF receptor2 (VEGFR2) signaling involved in endothelial cell (EC) proliferation and migration. Extracellular superoxide dismutase (ecSOD) is a major secreted extracellular enzyme that catalyzes the dismutation of superoxide to H(2)O(2), and anchors to EC surface through heparin-binding domain (HBD). Mice lacking ecSOD show impaired postnatal angiogenesis. However, it is unknown whether ecSOD-derived H(2)O(2) regulates VEGF signaling. Here we show that gene transfer of ecSOD, but not ecSOD lacking HBD (ecSOD-DeltaHBD), increases H(2)O(2) levels in adductor muscle of mice, and promotes angiogenesis after hindlimb ischemia. Mice lacking ecSOD show reduction of H(2)O(2) in non-ischemic and ischemic limbs. In vitro, overexpression of ecSOD, but not ecSOD-DeltaHBD, in cultured medium in ECs enhances VEGF-induced tyrosine phosphorylation of VEGFR2 (VEGFR2-pY), which is prevented by short-term pretreatment with catalase that scavenges extracellular H(2)O(2). Either exogenous H(2)O(2) (<500 microM), which is diffusible, or nitric oxide donor has no effect on VEGF-induced VEGFR2-pY. These suggest that ecSOD binding to ECs via HBD is required for localized generation of extracellular H(2)O(2) to regulate VEGFR2-pY. Mechanistically, VEGF-induced VEGFR2-pY in caveolae/lipid rafts, but non-lipid rafts, is enhanced by ecSOD, which localizes at lipid rafts via HBD. One of the targets of ROS is protein tyrosine phosphatases (PTPs). ecSOD induces oxidation and inactivation of both PTP1B and DEP1, which negatively regulates VEGFR2-pY, in caveolae/lipid rafts, but not non-lipid rafts. Disruption of caveolae/lipid rafts, or PTPs inhibitor orthovanadate, or siRNAs for PTP1B and DEP1 enhances VEGF-induced VEGFR2-pY, which prevents ecSOD-induced effect. Functionally, ecSOD promotes VEGF-stimulated EC migration and proliferation. In summary, extracellular H(2)O(2) generated by ecSOD localized at caveolae/lipid rafts via HBD promotes VEGFR2 signaling via oxidative inactivation of PTPs in these microdomains. Thus, ecSOD is a potential therapeutic target for angiogenesis-dependent cardiovascular diseases.
Collapse
Affiliation(s)
- Jin Oshikawa
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Norifumi Urao
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ha Won Kim
- Department of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nihal Kaplan
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Masooma Razvi
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ronald McKinney
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Tohru Fukai
- Department of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Masuko Ushio-Fukai
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
38
|
Aikawa E. Optical Molecular Imaging of Inflammation and Calcification in Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010. [DOI: 10.1007/s12410-009-9004-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Métrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc'h F. Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflugers Arch 2009; 459:535-46. [PMID: 19855995 DOI: 10.1007/s00424-009-0747-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 12/24/2022]
Abstract
Exchange proteins directly activated by cyclic AMP (Epac) were discovered 10 years ago as new sensors for the second messenger cyclic AMP (cAMP). Epac family, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2 and function independently of protein kinase A. Given the importance of cAMP in the cardiovascular system, numerous molecular and cellular studies using specific Epac agonists have analyzed the role and the regulation of Epac proteins in cardiovascular physiology and pathophysiology. The specific functions of Epac proteins may depend upon their microcellular environments as well as their expression and localization. This review discusses recent data showing the involvement of Epac in vascular cell migration, endothelial permeability, and inflammation through specific signaling pathways. In addition, we present evidence that Epac regulates the activity of various cellular compartments of the cardiac myocyte and influences calcium handling and excitation-contraction coupling. The potential role of Epac in cardiovascular disorders such as cardiac hypertrophy and remodeling is also discussed.
Collapse
Affiliation(s)
- Mélanie Métrich
- Inserm, UMR-S 769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry 92296, France
| | | | | | | | | | | |
Collapse
|
40
|
Lezoualc'h F. Epac in melanoma: a contributor to tumor cell physiology? Focus on "Epac increases melanoma cell migration by a heparin sulfate-related mechanism". Am J Physiol Cell Physiol 2009; 297:C797-9. [PMID: 19692651 DOI: 10.1152/ajpcell.00358.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|