1
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Pesen T, Akgun B, Unlu MB. Measuring the effect of repetitive stretching on the deformability of human red blood cells using optical tweezers. Sci Rep 2025; 15:9060. [PMID: 40097548 PMCID: PMC11914483 DOI: 10.1038/s41598-025-93288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Mechanical features of cells play a crucial role in many biological processes such as crawling, proliferation, spreading, stretching, contracting, division, and programmed cell death. The loss of cell viscoelasticity underlines different types of diseases such as cancer, sickle cell, malaria, and diabetes mellitus. To understand the loss of viscoelasticity, mechanical responses of various kinds of cells to stress or strain are under investigation. Especially red blood cells (RBCs) or erythrocytes are one of the simple structured cells such that the effects of stress or strain could be easily assessed. With their viscoelastic nature, they can deform by preserving cell integrity when passing through blood vessels that are smaller than their size. In this study, we investigated the mechanical response of RBCs under repetitive stretching-relaxation cycles and examined some of the universal cytoskeleton laws at the single cell level over the whole body. For this, the individual RBCs were exposed to repetitive biaxial stretch-relaxation cycles of 5 s duration by optical tweezers to assess their mechanical response. According to the findings, the cells became stiffer with each stretch and became completely undeformable after a certain number of stretch-relaxation cycles. We observed that with the increasing number of stretching cycles, cell stiffness changed as a sign of weak power law, implying cell rheology is scale-free and decay times were increased, showing the transition from fast to slow regime. In addition, the appearance of the cells became non-uniform with darker areas in some parts and highly elongated shape in the most extreme cases.
Collapse
Affiliation(s)
- Tuna Pesen
- Department of Physics, Boğaziçi University, 34342, Beşiktaş, İstanbul, Türkiye.
- Center for Life Sciences and Technologies, Boğaziçi University, 34342, Beşiktaş, İstanbul, Türkiye.
| | - Bora Akgun
- Department of Physics, Boğaziçi University, 34342, Beşiktaş, İstanbul, Türkiye
- Center for Life Sciences and Technologies, Boğaziçi University, 34342, Beşiktaş, İstanbul, Türkiye
| | - Mehmet Burcin Unlu
- Faculty of Aviation and Aeronautical Sciences, Özyeğin University, 34794, Çekmeköy, İstanbul, Türkiye
- Faculty of Engineering, Özyeğin University, 34794, Çekmeköy, İstanbul, Türkiye
| |
Collapse
|
3
|
Putra VDL, Kilian KA, Knothe Tate ML. Stem cell mechanoadaptation. II. Microtubule stabilization and substrate compliance effects on cytoskeletal remodeling. APL Bioeng 2025; 9:016103. [PMID: 39801501 PMCID: PMC11719672 DOI: 10.1063/5.0231287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025] Open
Abstract
Stem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.e., the cell, in situ in model tissue templates, we probed native and microtubule-stabilized (via Paclitaxel, PAX, exposure) stem cells' cytoskeletal adaptation capacity on substrates of increasing compliance (exerting local tension on cells) and with increased target seeding densities (exerting local compression on cells). On 10 and 100 kPa gels, cells seeded at 5000 cells/cm2 and cells proliferated to 15 000 cells/cm2 exhibited bulk moduli that nearly matched those of their respective substrates; hence, they exhibited a greater increase in Young's Modulus after microtubule stabilization than cells cultured on glass. Culture on compliant substrates also reduced microtubule-stabilized cells' F-actin, and microtubule concentration increases compared to cells seeded on glass. On gels, F-actin alignment decreased as more randomly oriented, short actin crosslinks were observed, representing emergent adaptation to the compliant substrate, mediated through myosin II contractility. We conclude that stem cell adaptation to compliant substrates facilitates the accommodation of larger loads from the PAX-stabilized polymerizing microtubule, which, in turn, exerts a larger effect in determining cells' capacity to stiffen and remodel the cytoskeleton. Taken as a whole, these studies establish correlations between cytoskeleton and physical and mechanical parameters of stem cells. Hence, the studies progress our understanding of the dynamic cytoskeleton as well as shape changes in cells and their nuclei, culminating in emergent tissue development and healing.
Collapse
Affiliation(s)
- Vina D. L. Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A. Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
4
|
Stamenović D. Cellular solids and prestressed affine networks as models of the elastic behavior of soft biological structures. Biomech Model Mechanobiol 2025; 24:1-15. [PMID: 39407078 DOI: 10.1007/s10237-024-01894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/25/2024] [Indexed: 02/24/2025]
Abstract
We reviewed two microstructural models, cellular solid models and prestressed affine network models, that have been used previously in studies of elastic behavior of soft biological materials. These models provide simple and mathematically transparent equations that can be used to interpret experimental data and to obtain quantitative predictions of the elastic properties of biological structures. In both models, volumetric density and elastic properties of the microstructure are key determinants of the macroscopic elastic properties. In the prestressed network model, geometrical rearrangement of the microstructure (kinematic stiffness) is also important. As examples of application of these models, we considered the shear behavior of the cytoskeleton of adherent cells, of the collagen network of articular cartilage, and of the lung parenchymal network since their ability to resist shear is important for their normal biological and physiological functions. All three networks carry a pre-existing stress (prestress). We predicted their shear moduli using the microstructural models and compared those predictions with existing experimental data. Prestressed network models of the cytoskeleton and of the lung parenchyma provided a better correspondence to experimental data than cellular solid models. Both cellular solid and prestressed network models of the cartilage collagen network provided reasonable agreements with experimental values. These findings suggested that the kinematic stiffness and material stiffness of microstructural elements were both important determinants of the shear modulus of the cytoskeleton and of the lung parenchyma, whereas elasticity of collagen fibrils had a predominant role in the cartilage shear behavior.
Collapse
Affiliation(s)
- Dimitrije Stamenović
- Department of Biomedical Engineering and Division of Materials Science & Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Jung J, Joo SY, Min H, Roh JW, Kim KA, Ma JH, Rim JH, Kim JA, Kim SJ, Jang SH, Koh YI, Kim HY, Lee H, Kim BC, Gee HY, Bok J, Choi JY, Seong JK. MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss. Exp Mol Med 2024; 56:2423-2435. [PMID: 39482536 PMCID: PMC11612406 DOI: 10.1038/s12276-024-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
| | - Sun Young Joo
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyehyun Min
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Roh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Kyung Ah Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ah Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Jin Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Jang
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ik Koh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Byoung Choul Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Heon Yung Gee
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea.
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Dutta S, Muraganadan T, Vasudevan M. Evaluation of lamin A/C mechanotransduction under different surface topography in LMNA related muscular dystrophy. Cytoskeleton (Hoboken) 2024. [PMID: 39091017 DOI: 10.1002/cm.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
- Theomics International Private Limited, Bengaluru, India
| | - T Muraganadan
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
7
|
Mei F, Guo Y, Wang Y, Zhou Y, Heng BC, Xie M, Huang X, Zhang S, Ding S, Liu F, Deng X, Chen L, Yang C. Matrix stiffness regulates macrophage polarisation via the Piezo1-YAP signalling axis. Cell Prolif 2024; 57:e13640. [PMID: 38556840 PMCID: PMC11294424 DOI: 10.1111/cpr.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Macrophages play a pivotal role in the immunological cascade activated in response to biomedical implants, which predetermine acceptance or rejection of implants by the host via pro- and anti-inflammatory polarisation states. The role of chemical signals in macrophage polarisation is well-established, but how physical cues regulate macrophage function that may play a fundamental role in implant-bone interface, remains poorly understood. Here we find that bone marrow-derived macrophages (BMDM) cultured on polyacrylamide gels of varying stiffness exhibit different polarisation states. BMDM are 'primed' to a pro-inflammatory M1 phenotype on stiff substrates, while to an anti-inflammatory M2 phenotype on soft and medium stiffness substrates. It is further observed that matrix stiffening increases Piezo1 expression, as well as leads to subsequent activation of the mechanotransduction signalling effector YAP, thus favouring M1 polarisation whilst suppressing M2 polarisation. Moreover, upon treatment with YAP inhibitor, we successfully induce macrophage re-polarisation to the M2 state within the implant site microenvironment, which in turn promotes implant osseointegration. Collectively, our present study thus characterises the critical role of the Piezo1-YAP signalling axis in macrophage mechanosensing and stiffness-mediated macrophage polarisation and provides cues for the design of immuno-modulatory biomaterials that can regulate the macrophage phenotype.
Collapse
Affiliation(s)
- Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yaru Guo
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingChina
| | - Yu Wang
- Department of OrthodonticsPeking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Yingying Zhou
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijingChina
| | - Boon Chin Heng
- Central LaboratoryPeking University School and Hospital of StomatologyBeijingChina
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Shihan Zhang
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingChina
| | - Shuai Ding
- Department of OrthodonticsPeking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Fangyong Liu
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijingChina
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijingChina
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijingChina
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
8
|
Denisin AK, Kim H, Riedel-Kruse IH, Pruitt BL. Field Guide to Traction Force Microscopy. Cell Mol Bioeng 2024; 17:87-106. [PMID: 38737454 PMCID: PMC11082129 DOI: 10.1007/s12195-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Traction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant substrates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these decisions on the final output. Methods Therefore, we present this "Field Guide" with the goal to explain the mathematical basis of common TFM methods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific experimental design and analytical choices. Results We cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical properties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and data-reporting strategies. Conclusions By presenting a conceptual review and analysis of TFM-focused research articles published over the last two decades, we provide researchers in the field with a better understanding of their options to make more informed choices when creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists to quantify cell contractility with confidence. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00801-6.
Collapse
Affiliation(s)
| | - Honesty Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Present Address: The Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Beth L. Pruitt
- Departments of Bioengineering and Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
9
|
Atia L, Fredberg JJ. A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming. BIOPHYSICS REVIEWS 2023; 4:041304. [PMID: 38156333 PMCID: PMC10751956 DOI: 10.1063/5.0179719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104-105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.
Collapse
Affiliation(s)
- Lior Atia
- Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
10
|
Wen R, Wang Z, Yi J, Hu Y. Bending-activated biotensegrity structure enables female Megarhyssa to cross the barrier of Euler's critical force. SCIENCE ADVANCES 2023; 9:eadi8284. [PMID: 37851796 PMCID: PMC10584334 DOI: 10.1126/sciadv.adi8284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
The parasitic female Megarhyssa has a hair-like ovipositor capable of withstanding a penetration force 10 times greater than Euler's critical force, using a reciprocating penetration method. Understanding and replicating this penetration mechanism may notably broaden the application scenarios of artificial slender elements. Here, we show that the Megarhyssa's stretched intersegmental membrane and precurved abdomen activate the multipart ovipositor as a biotensegrity structure. The ovipositor's first and second valvulae alternately retract and protract, with each retracted valvula forming a tension network to support the other under compression, resulting in an exponentially increased critical force. We validated this mechanism in a multipart flexible microneedle that withstood a penetration force of 2.5× Euler's critical force and in a lightweight industrial robot that achieved intrinsic safety through its ideal dual-stiffness characteristic. This finding could potentially elucidate the high efficiency of insect probes and inspire more efficient and safer engineering designs.
Collapse
Affiliation(s)
- Rongwei Wen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 000000, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 000000, China
- Department of Computer Science, The University of Hong Kong, Hong Kong 000000, China
| | - Zheng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Juan Yi
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 000000, China
- Orthopedics Center, The University of Hong Kong–Shenzhen Hospital, Shenzhen 518048, China
| |
Collapse
|
11
|
Cosentino F, Sherifova S, Sommer G, Raffa G, Pilato M, Pasta S, Holzapfel GA. Regional biomechanical characterization of human ascending aortic aneurysms: Microstructure and biaxial mechanical response. Acta Biomater 2023; 169:107-117. [PMID: 37579911 DOI: 10.1016/j.actbio.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
The ascending thoracic aortic aneurysm (ATAA) is a permanent dilatation of the vessel with a high risk of adverse events, and shows heterogeneous properties. To investigate regional differences in the biomechanical properties of ATAAs, tissue samples were collected from 10 patients with tricuspid aortic valve phenotype and specimens from minor, anterior, major, and posterior regions were subjected to multi-ratio planar biaxial extension tests and second-harmonic generation (SHG) imaging. Using the data, parameters of a microstructure-motivated constitutive model were obtained considering fiber dispersion. SHG imaging showed disruptions in the organization of the layers. Structural and material parameters did not differ significantly between regions. The non-symmetric fiber dispersion model proposed by Holzapfel et al. [25] was used to fit the data. The mean angle of collagen fibers was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. The experimental data collected in this study contribute to the biomechanical data available in the literature on human ATAAs. Region-specific parameters for the constitutive models are fundamental to improve the current risk stratification strategies, which are mainly based on aortic size. Such investigations can facilitate the development of more advanced finite element models capable of capturing the regional heterogeneity of pathological tissues. STATEMENT OF SIGNIFICANCE: Tissue samples of human ascending thoracic aortic aneurysms (ATAA) were collected. Samples from four regions underwent multi-ratio planar biaxial extension tests and second-harmonic generation imaging. Region-specific parameters of a microstructure-motivated model considering fiber dispersion were obtained. Structural and material parameters did not differ significantly between regions, however, the mean fiber angle was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. This study provides a unique set of mechanical and structural data, supporting the microstructural influence on the tissue response. It may facilitate the development of better finite element models capable of capturing the regional tissue heterogeneity.
Collapse
Affiliation(s)
- Federica Cosentino
- Ri.MED Foundation, Palermo, Italy; Department of Engineering, University of Palermo, Italy
| | - Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Giuseppe Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Salvatore Pasta
- Department of Engineering, University of Palermo, Italy; Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
12
|
Cai Y, Chen S, Xu D, Guo T, Jin J, Chen H. Automatic elasticity measurement of single cells using a microfluidic system with real-time image processing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083301 DOI: 10.1109/embc40787.2023.10340799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The mechanical properties of cells are closely related to their physiological states and functions. Due to the limitations of conventional cell elasticity measurement technologies such as low throughput, cell-invasiveness, and high cost, microfluidic systems are emerging as powerful tools for high-throughput cell mechanical property studies. This paper introduces a microfluidic system to automatically measure the elastic modulus of single cells in real time. The system integrated a microfluidic chip with a microchannel for cell constriction, a pressure pump, a precision differential pressure sensor, and a program for online analysis of cell deformation. The program used a fast U-net to segment cell images and measure protrusion length during cell deformation. Subsequently, the cell elasticity was determined in real-time based on the deformation and required pressure using the power law rheological model. Finally, Young's modulus of BMSCs, Huh-7 cells, EMSCs, and K562 cells was measured as 25.13 ± 15.19 Pa, 69.74 ± 92.01 Pa, 54.50 ± 59.31 Pa and 58.43 ± 27.27 Pa, respectively. The microfluidic system has significant application potential in the automated evaluation of cell mechanical properties.Clinical Relevance-The technique in this paper may be used for the automatic and high throughput study of the stiffness of cells, such as stem cells and cancer cells. The stiffness data may contribute to stem cell therapy and cancer research.
Collapse
|
13
|
Herrera-Perez RM, Cupo C, Allan C, Dagle AB, Kasza KE. Tissue flows are tuned by actomyosin-dependent mechanics in developing embryos. PRX LIFE 2023; 1:013004. [PMID: 38736460 PMCID: PMC11086709 DOI: 10.1103/prxlife.1.013004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Rapid epithelial tissue flows are essential to building and shaping developing embryos. However, the mechanical properties of embryonic epithelial tissues and the factors that control these properties are not well understood. Actomyosin generates contractile tensions and contributes to the mechanical properties of cells and cytoskeletal networks in vitro, but it remains unclear how the levels and patterns of actomyosin activity contribute to embryonic epithelial tissue mechanics in vivo. To dissect the roles of cell-generated tensions in the mechanics of flowing epithelial tissues, we use optogenetic tools to manipulate actomyosin contractility with spatiotemporal precision in the Drosophila germband epithelium, which rapidly flows during body axis elongation. We find that manipulating actomyosin-dependent tensions by either optogenetic activation or deactivation of actomyosin alters the solid-fluid mechanical properties of the germband epithelium, leading to changes in cell rearrangements and tissue-level flows. Optogenetically activating actomyosin leads to increases in the overall level but decreases in the anisotropy of tension in the tissue, whereas optogenetically deactivating actomyosin leads to decreases in both the level and anisotropy of tension compared to in wild-type embryos. We find that optogenetically activating actomyosin results in more solid-like (less fluid-like) tissue properties, which is associated with reduced cell rearrangements and tissue flow compared to in wild-type embryos. Optogenetically deactivating actomyosin also results in more solid-like properties than in wild-type embryos but less solid-like properties compared to optogenetically activating actomyosin. Together, these findings indicate that increasing the overall tension level is associated with more solid-like properties in tissues that are relatively isotropic, whereas high tension anisotropy fluidizes the tissue. Our results reveal that epithelial tissue flows in developing embryos involve the coordinated actomyosin-dependent regulation of the mechanical properties of tissues and the tensions driving them to flow in order to achieve rapid tissue remodeling.
Collapse
Affiliation(s)
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Cole Allan
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Alicia B Dagle
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| |
Collapse
|
14
|
Martins CS, Taveneau C, Castro-Linares G, Baibakov M, Buzhinsky N, Eroles M, Milanović V, Omi S, Pedelacq JD, Iv F, Bouillard L, Llewellyn A, Gomes M, Belhabib M, Kuzmić M, Verdier-Pinard P, Lee S, Badache A, Kumar S, Chandre C, Brasselet S, Rico F, Rossier O, Koenderink GH, Wenger J, Cabantous S, Mavrakis M. Human septins organize as octamer-based filaments and mediate actin-membrane anchoring in cells. J Cell Biol 2023; 222:213778. [PMID: 36562751 PMCID: PMC9802686 DOI: 10.1083/jcb.202203016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Septins are cytoskeletal proteins conserved from algae and protists to mammals. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether septins organize as filaments in cells and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay, we show that all septins decorating actin stress fibers are octamer-containing filaments. Depleting octamers or preventing septins from polymerizing leads to a loss of stress fibers and reduced cell stiffness. Super-resolution microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that septin filaments are membrane bound and largely immobilized. Finally, reconstitution assays showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin filaments at the plasma membrane.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France.,Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Cyntia Taveneau
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Mikhail Baibakov
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Nicolas Buzhinsky
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Mar Eroles
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Violeta Milanović
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Léa Bouillard
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Stacey Lee
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Felix Rico
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| |
Collapse
|
15
|
Mohagheghian E, Luo J, Yavitt FM, Wei F, Bhala P, Amar K, Rashid F, Wang Y, Liu X, Ji C, Chen J, Arnold DP, Liu Z, Anseth KS, Wang N. Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot. Sci Robot 2023; 8:eadc9800. [PMID: 36696474 PMCID: PMC10098875 DOI: 10.1126/scirobotics.adc9800] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023]
Abstract
Stiffness and forces are two fundamental quantities essential to living cells and tissues. However, it has been a challenge to quantify both 3D traction forces and stiffness (or modulus) using the same probe in vivo. Here, we describe an approach that overcomes this challenge by creating a magnetic microrobot probe with controllable functionality. Biocompatible ferromagnetic cobalt-platinum microcrosses were fabricated, and each microcross (about 30 micrometers) was trapped inside an arginine-glycine-apartic acid-conjugated stiff poly(ethylene glycol) (PEG) round microgel (about 50 micrometers) using a microfluidic device. The stiff magnetic microrobot was seeded inside a cell colony and acted as a stiffness probe by rigidly rotating in response to an oscillatory magnetic field. Then, brief episodes of ultraviolet light exposure were applied to dynamically photodegrade and soften the fluorescent nanoparticle-embedded PEG microgel, whose deformation and 3D traction forces were quantified. Using the microrobot probe, we show that malignant tumor-repopulating cell colonies altered their modulus but not traction forces in response to different 3D substrate elasticities. Stiffness and 3D traction forces were measured, and both normal and shear traction force oscillations were observed in zebrafish embryos from blastula to gastrula. Mouse embryos generated larger tensile and compressive traction force oscillations than shear traction force oscillations during blastocyst. The microrobot probe with controllable functionality via magnetic fields could potentially be useful for studying the mechanoregulation of cells, tissues, and embryos.
Collapse
Affiliation(s)
- Erfan Mohagheghian
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Junyu Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Parth Bhala
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kshitij Amar
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fazlur Rashid
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuzheng Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xingchen Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenyang Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - David P. Arnold
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhen Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Finney TJ, Frank SL, Bull MR, Guy RD, Kuhl TL. Tracking Mechanical Stress and Cell Migration with Inexpensive Polymer Thin-Film Sensors. ADVANCED MATERIALS INTERFACES 2023; 10:2201808. [PMID: 36817827 PMCID: PMC9937716 DOI: 10.1002/admi.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Polydiacetylene (PDA) Langmuir films are well known for their blue to red chromatic transitions in response to a variety of stimuli, including UV light, heat, bio-molecule bindings and mechanical stress. In this work, we detail the ability to tune PDA Langmuir films to exhibit discrete chromatic transitions in response to applied mechanical stress. Normal and shear-induced transitions were quantified using the Surface Forces Apparatus and established to be binary and tunable as a function of film formation conditions. Both monomer alkyl tail length and metal cations were used to manipulate the chromatic transition force threshold to enable discrete force sensing from ~50 to ~500 nN μm-2 for normal loading and ~2 to ~40 nN μm-2 for shear-induced transitions, which are appropriate for biological cells. The utility of PDA thin-film sensors was demonstrated with the slime mold Physarum polycephalum. The fluorescence readout of the films enabled: the area explored by Physarum to be visualized, the forces involved in locomotion to be quantified, and revealed novel puncta formation potentially associated with Physarum sampling its environment.
Collapse
Affiliation(s)
- Tanner J Finney
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Skye L Frank
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Michael R Bull
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| | - Robert D Guy
- Department of Mathematics, University of California, Davis, CA 95616, United States
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California, Davis, CA 95616, United States
| |
Collapse
|
17
|
Amar K, Saha S, Debnath A, Weng CH, Roy A, Han KY, Chowdhury F. Reduced Cell-ECM Interactions in the EpiSC Colony Center Cause Heterogeneous Differentiation. Cells 2023; 12:326. [PMID: 36672261 PMCID: PMC9857087 DOI: 10.3390/cells12020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Mechanoregulation of cell-extracellular matrix (ECM) interactions are crucial for dictating pluripotent stem cell differentiation. However, not all pluripotent cells respond homogeneously which results in heterogeneous cell populations. When cells, such as mouse epiblast stem cells (EpiSCs), are cultured in clusters, the heterogeneity effect during differentiation is even more pronounced. While past studies implicated variations in signaling pathways to be the root cause of heterogeneity, the biophysical aspects of differentiation have not been thoroughly considered. Here, we demonstrate that the heterogeneity of EpiSC differentiation arises from differences in the colony size and varying degrees of interactions between cells within the colonies and the ECM. Confocal imaging demonstrates that cells in the colony periphery established good contact with the surface while the cells in the colony center were separated by an average of 1-2 µm from the surface. Traction force measurements of the cells within the EpiSC colonies show that peripheral cells generate large tractions while the colony center cells do not. A finite element modeling of EpiSC colonies shows that tractions generated by the cells at the colony periphery lift off the colony center preventing the colony center from undergoing differentiation. Together, our results demonstrate a biophysical regulation of heterogeneous EpiSC colony differentiation.
Collapse
Affiliation(s)
- Kshitij Amar
- School of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sanjoy Saha
- School of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Avishek Debnath
- School of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Chun Hung Weng
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
| | - Arpan Roy
- School of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
| | - Farhan Chowdhury
- School of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Biomedical Engineering Program, School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Materials Technology Center, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
18
|
Goode D, Dhaliwal R, Mohammadi H. Valve interstitial cells under impact load, a mechanobiology study. J Med Eng Technol 2023; 47:54-66. [PMID: 35856893 DOI: 10.1080/03091902.2022.2097328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the relationship between mechanobiology and the biosynthetic activities of the valve interstitial cells (VICs) in health and disease under severe dynamic loading conditions is of particular interest. The purpose of this study is to further understand the mechanobiology of heart valve leaflet tissue and the VICs under impact forces. Two novel computational and experimental platforms were developed to study the effect of impact load on the VICs to monitor for apoptosis. The first objective was to design and develop an apparatus to experimentally study viability (apoptosis) of the porcine heart valve leaflet tissue VICs in the aortic position under controlled impact forces. Apoptosis was assessed based on terminal transferase dUTP nick end-labelling (TUNEL) assay. The second objective was to develop a computational platform to estimate the stress and strain fields in the vicinity of VICs when the tissue experiences impact forces. A nonlinear finite element (FE) model with an anisotropic, hyperelastic and heterogeneous material model for the matrix and cells was developed. Preliminary results confirm that interstitial cells are successfully resistant to impact loads up to 30 times more than normal physiological conditions. Additionally, the structure and composition of heart valve leaflet tissue provides a mechanical shield for VICs protecting them from excessive mechanical forces such as impact loads. Although, the entire tissue may experience excessive stresses, which may lead to structural damage, the stresses around and near VICs remain consistency low. Results of this study may be used for heart valve leaflet tissue-engineering, as well as further understanding the mechanobiology of the VICs in health and disease.
Collapse
Affiliation(s)
- Dylan Goode
- Heart Valve Performance Laboratory, School of Engineering, University of British Columbia, Kelowna, Canada
| | - Ruby Dhaliwal
- Heart Valve Performance Laboratory, School of Engineering, University of British Columbia, Kelowna, Canada
| | - Hadi Mohammadi
- Heart Valve Performance Laboratory, School of Engineering, University of British Columbia, Kelowna, Canada
| |
Collapse
|
19
|
Xing H, Huang Y, Kunkemoeller BH, Dahl PJ, Muraleetharan O, Malvankar NS, Murrell MP, Kyriakides TR. Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction. Sci Rep 2022; 12:22474. [PMID: 36577792 PMCID: PMC9797577 DOI: 10.1038/s41598-022-26337-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Fibroblasts are a major cell population that perform critical functions in the wound healing process. In response to injury, they proliferate and migrate into the wound space, engaging in extracellular matrix (ECM) production, remodeling, and contraction. However, there is limited knowledge of how fibroblast functions are altered in diabetes. To address this gap, several state-of-the-art microscopy techniques were employed to investigate morphology, migration, ECM production, 2D traction, 3D contraction, and cell stiffness. Analysis of cell-derived matrix (CDM) revealed that diabetic fibroblasts produce thickened and less porous ECM that hindered migration of normal fibroblasts. In addition, diabetic fibroblasts were found to lose spindle-like shape, migrate slower, generate less traction force, exert limited 3D contractility, and have increased cell stiffness. These changes were due, in part, to a decreased level of active Rac1 and a lack of co-localization between F-actin and Waskott-Aldrich syndrome protein family verprolin homologous protein 2 (WAVE2). Interestingly, deletion of thrombospondin-2 (TSP2) in diabetic fibroblasts rescued these phenotypes and restored normal levels of active Rac1 and WAVE2-F-actin co-localization. These results provide a comprehensive view of the extent of diabetic fibroblast dysfunction, highlighting the regulatory role of the TSP2-Rac1-WAVE2-actin axis, and describing a new function of TSP2 in regulating cytoskeleton organization.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Yaqing Huang
- Department of Pathology, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Britta H Kunkemoeller
- Department of Pathology, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Peter J Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA.,Microbial Sciences Institute, Yale University, New Haven, USA
| | | | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA.,Microbial Sciences Institute, Yale University, New Haven, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, New Haven, USA.,Department of Physics, Yale University, New Haven, USA.,Systems Biology Institute, Yale University, New Haven, USA
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, USA. .,Department of Pathology, Yale University, New Haven, USA. .,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA.
| |
Collapse
|
20
|
Aufderhorst-Roberts A, Staykova M. Scratching beyond the surface - minimal actin assemblies as tools to elucidate mechanical reinforcement and shape change. Emerg Top Life Sci 2022; 6:ETLS20220052. [PMID: 36541184 PMCID: PMC9788373 DOI: 10.1042/etls20220052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The interaction between the actin cytoskeleton and the plasma membrane in eukaryotic cells is integral to a large number of functions such as shape change, mechanical reinforcement and contraction. These phenomena are driven by the architectural regulation of a thin actin network, directly beneath the membrane through interactions with a variety of binding proteins, membrane anchoring proteins and molecular motors. An increasingly common approach to understanding the mechanisms that drive these processes is to build model systems from reconstituted lipids, actin filaments and associated actin-binding proteins. Here we review recent progress in this field, with a particular emphasis on how the actin cytoskeleton provides mechanical reinforcement, drives shape change and induces contraction. Finally, we discuss potential future developments in the field, which would allow the extension of these techniques to more complex cellular processes.
Collapse
Affiliation(s)
| | - Margarita Staykova
- Centre for Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
21
|
Kokate SB, Ciuba K, Tran VD, Kumari R, Tojkander S, Engel U, Kogan K, Kumar S, Lappalainen P. Caldesmon controls stress fiber force-balance through dynamic cross-linking of myosin II and actin-tropomyosin filaments. Nat Commun 2022; 13:6032. [PMID: 36229430 PMCID: PMC9561149 DOI: 10.1038/s41467-022-33688-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Contractile actomyosin bundles are key force-producing and mechanosensing elements in muscle and non-muscle tissues. Whereas the organization of muscle myofibrils and mechanism regulating their contractility are relatively well-established, the principles by which myosin-II activity and force-balance are regulated in non-muscle cells have remained elusive. We show that Caldesmon, an important component of smooth muscle and non-muscle cell actomyosin bundles, is an elongated protein that functions as a dynamic cross-linker between myosin-II and tropomyosin-actin filaments. Depletion of Caldesmon results in aberrant lateral movement of myosin-II filaments along actin bundles, leading to irregular myosin distribution within stress fibers. This manifests as defects in stress fiber network organization and contractility, and accompanied problems in cell morphogenesis, migration, invasion, and mechanosensing. These results identify Caldesmon as critical factor that ensures regular myosin-II spacing within non-muscle cell actomyosin bundles, and reveal how stress fiber networks are controlled through dynamic cross-linking of tropomyosin-actin and myosin filaments.
Collapse
Affiliation(s)
- Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Katarzyna Ciuba
- HiLIFE Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.,Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Vivien D Tran
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Sari Tojkander
- Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Arvo Building, E318, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Ulrike Engel
- Nikon Imaging Center at Heidelberg University and Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
22
|
Bermudez A, Gonzalez Z, Zhao B, Salter E, Liu X, Ma L, Jawed MK, Hsieh CJ, Lin NYC. Supracellular measurement of spatially varying mechanical heterogeneities in live monolayers. Biophys J 2022; 121:3358-3369. [PMID: 36028999 PMCID: PMC9515370 DOI: 10.1016/j.bpj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanical properties of tissues have profound impacts on a wide range of biological processes such as embryo development (1,2), wound healing (3-6), and disease progression (7). Specifically, the spatially varying moduli of cells largely influence the local tissue deformation and intercellular interaction. Despite the importance of characterizing such a heterogeneous mechanical property, it has remained difficult to measure the supracellular modulus field in live cell layers with a high-throughput and minimal perturbation. In this work, we developed a monolayer effective modulus measurement by integrating a custom cell stretcher, light microscopy, and AI-based inference. Our approach first quantifies the heterogeneous deformation of a slightly stretched cell layer and converts the measured strain fields into an effective modulus field using an AI inference. This method allowed us to directly visualize the effective modulus distribution of thousands of cells virtually instantly. We characterized the mean value, SD, and correlation length of the effective cell modulus for epithelial cells and fibroblasts, which are in agreement with previous results. We also observed a mild correlation between cell area and stiffness in jammed epithelia, suggesting the influence of cell modulus on packing. Overall, our reported experimental platform provides a valuable alternative cell mechanics measurement tool that can be integrated with microscopy-based characterizations.
Collapse
Affiliation(s)
- Alexandra Bermudez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California.
| | - Zachary Gonzalez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Physics and Astronomy, University of California, Los Angeles, California
| | - Bao Zhao
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Ethan Salter
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, California
| | - Leixin Ma
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Mohammad Khalid Jawed
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, California
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
23
|
How do cells stiffen? Biochem J 2022; 479:1825-1842. [PMID: 36094371 DOI: 10.1042/bcj20210806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Collapse
|
24
|
Kong X, Kapustka A, Sullivan B, Schwarz GJ, Leckband DE. Extracellular matrix regulates force transduction at VE-cadherin junctions. Mol Biol Cell 2022; 33:ar95. [PMID: 35653290 DOI: 10.1091/mbc.e22-03-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Increased tension on VE-cadherin (VE-cad) complexes activates adaptive cell stiffening and local cytoskeletal reinforcement--two key signatures of intercellular mechanotransduction. Here we demonstrate that tugging on VE-cad receptors initiates a cascade that results in downstream integrin activation. The formation of new integrin adhesions potentiates vinculin and actin recruitment to mechanically reinforce stressed cadherin adhesions. This cascade differs from documented antagonistic effects of integrins on intercellular junctions. We identify focal adhesion kinase, Abl kinase, and RhoA GTPase as key components of the positive feedback loop. Results further show that a consequence of integrin involvement is the sensitization of intercellular force transduction to the extracellular matrix (ECM) not by regulating junctional tension but by altering signal cascades that reinforce cell-cell adhesions. On type 1 collagen or fibronectin substrates, integrin subtypes α2β1 and α5β1, respectively, differentially control actin remodeling at VE-cad adhesions. Specifically, ECM-dependent differences in VE-cad force transduction mirror differences in the rigidity sensing mechanisms of α2β1 and α5β1 integrins. The findings verify the role of integrins in VE-cad force transduction and uncover a previously unappreciated mechanism by which the ECM impacts the mechanical reinforcement of interendothelial junctions.
Collapse
Affiliation(s)
- Xinyu Kong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gregory J Schwarz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Deborah E Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
25
|
Lou Y, Kawaue T, Yow I, Toyama Y, Prost J, Hiraiwa T. Interfacial friction and substrate deformation mediate long-range signal propagation in tissues. Biomech Model Mechanobiol 2022; 21:1511-1530. [PMID: 36057053 DOI: 10.1007/s10237-022-01603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
Tissue layers can generally slide at the interface, accompanied by the dissipation due to friction. Nevertheless, it remains elusive how force could propagate in a tissue with such interfacial friction. Here, we elaborate the force dynamics in a prototypical multilayer system in which an epithelial monolayer was cultivated upon an elastic substrate in contact with a hard surface, and discover a novel mechanism of pronounced force propagation over a long distance due to interfacial dynamics between substrate layers. We derived an analytical model for the dynamics of the elastic substrate under the shear stress provided by the cell layer at the surface boundary and the friction at bottom. The model reveals that sliding between substrate layers leads to an expanding stretch regime from a shear regime of substrate deformation in time and space. The regime boundary propagating diffusively with a speed depending on the stiffness, thickness, and slipperiness of the substrate, is a robust nature of a deformed elastic sheet with interfacial friction. These results shed new light on force propagation in tissues and our model could serve as a basis for studies of such propagation in a more complex tissue environment.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University Singapore, queenstown, 100190, Singapore.
| | - Takumi Kawaue
- Mechanobiology Institute, National University Singapore, queenstown, 100190, Singapore
| | - Ivan Yow
- Mechanobiology Institute, National University Singapore, queenstown, 100190, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University Singapore, queenstown, 100190, Singapore
| | - Jacques Prost
- Mechanobiology Institute, National University Singapore, queenstown, 100190, Singapore
- Laboratoire Physico Chimie Curie, Institut Curie, Paris Science et Lettres Research University, CNRS UMR168, Paris, 75005, France
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University Singapore, queenstown, 100190, Singapore.
| |
Collapse
|
26
|
Moisdon É, Seez P, Molino F, Marcq P, Gay C. Mapping cell cortex rheology to tissue rheology and vice versa. Phys Rev E 2022; 106:034403. [PMID: 36266852 DOI: 10.1103/physreve.106.034403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The mechanics of biological tissues mainly proceeds from the cell cortex rheology. A direct, explicit link between cortex rheology and tissue rheology remains lacking, yet would be instrumental in understanding how modulations of cortical mechanics may impact tissue mechanical behavior. Using an ordered geometry built on 3D hexagonal, incompressible cells, we build a mapping relating the cortical rheology to the monolayer tissue rheology. Our approach shows that the tissue low-frequency elastic modulus is proportional to the rest tension of the cortex, as expected from the physics of liquid foams as well as of tensegrity structures. A fractional visco-contractile cortex rheology is predicted to yield a high-frequency fractional visco-elastic monolayer rheology, where such a fractional behavior has been recently observed experimentally at each scale separately. In particular cases, the mapping may be inverted, allowing to derive from a given tissue rheology the underlying cortex rheology. Interestingly, applying the same approach to a 2D hexagonal tiling fails, which suggests that the 2D character of planar cell cortex-based models may be unsuitable to account for realistic monolayer rheologies. We provide quantitative predictions, amenable to experimental tests through standard perturbation assays of cortex constituents, and hope to foster new, challenging mechanical experiments on cell monolayers.
Collapse
Affiliation(s)
- Étienne Moisdon
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| | - Pierre Seez
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| | - François Molino
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Philippe Marcq
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Cyprien Gay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| |
Collapse
|
27
|
Bodenschatz JFE, Ajmail K, Skamrahl M, Vache M, Gottwald J, Nehls S, Janshoff A. Epithelial cells sacrifice excess area to preserve fluidity in response to external mechanical stress. Commun Biol 2022; 5:855. [PMID: 35995827 PMCID: PMC9395404 DOI: 10.1038/s42003-022-03809-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Viscoelastic properties of epithelial cells subject to shape changes were monitored by indentation-retraction/relaxation experiments. MDCK II cells cultured on extensible polydimethylsiloxane substrates were laterally stretched and, in response, displayed increased cortex contractility and loss of excess surface area. Thereby, the cells preserve their fluidity but inevitably become stiffer. We found similar behavior in demixed cell monolayers of ZO-1/2 double knock down (dKD) cells, cells exposed to different temperatures and after removal of cholesterol from the plasma membrane. Conversely, the mechanical response of single cells adhered onto differently sized patches displays no visible rheological change. Sacrificing excess surface area allows the cells to respond to mechanical challenges without losing their ability to flow. They gain a new degree of freedom that permits resolving the interdependence of fluidity β on stiffness [Formula: see text]. We also propose a model that permits to tell apart contributions from excess membrane area and excess cell surface area.
Collapse
Affiliation(s)
- Jonathan F E Bodenschatz
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Karim Ajmail
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Mark Skamrahl
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Marian Vache
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jannis Gottwald
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Stefan Nehls
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Andreas Janshoff
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany.
| |
Collapse
|
28
|
Benvenuti E, Reho GA, Palumbo S, Fraldi M. Pre-strains and buckling in mechanosensitivity of contractile cells and focal adhesions: A tensegrity model. J Mech Behav Biomed Mater 2022; 135:105413. [PMID: 36057207 DOI: 10.1016/j.jmbbm.2022.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/31/2022]
Abstract
We demonstrate that several key aspects of the contractile activity of a cell interacting with the substrate can be captured by means of a non linear elastic tensegrity mechanical system made of a tensile element in parallel with a buckling-prone component, and exchanging forces with the surroundings through an extracellular matrix-focal adhesion complex. Mechanosensitivity of the focal adhesion plaque is triggered by pre-strain-driven buckling of the system induced either by pre-contraction or pre-polymerization of the constituents. The impact of pre-polymerization on the mechanical force and the implications of using linear and nonlinear elasticity for the focal adhesion plaque are assessed.
Collapse
Affiliation(s)
- E Benvenuti
- Engineering Department, University of Ferrara, Italy.
| | - G A Reho
- Engineering Department, University of Ferrara, Italy
| | - S Palumbo
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Italy
| | - M Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Italy.
| |
Collapse
|
29
|
Jain M, Weber A, Maly K, Manjaly G, Deek J, Tsvyetkova O, Stulić M, Toca‐Herrera JL, Jantsch MF. A-to-I RNA editing of Filamin A regulates cellular adhesion, migration and mechanical properties. FEBS J 2022; 289:4580-4601. [PMID: 35124883 PMCID: PMC9546289 DOI: 10.1111/febs.16391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
A-to-I RNA editing by ADARs is an abundant epitranscriptomic RNA-modification in metazoa. In mammals, Flna pre-mRNA harbours a single conserved A-to-I RNA editing site that introduces a Q-to-R amino acid change in Ig repeat 22 of the encoded protein. Previously, we showed that FLNA editing regulates smooth muscle contraction in the cardiovascular system and affects cardiac health. The present study investigates how ADAR2-mediated A-to-I RNA editing of Flna affects actin crosslinking, cell mechanics, cellular adhesion and cell migration. Cellular assays and AFM measurements demonstrate that the edited version of FLNA increases cellular stiffness and adhesion but impairs cell migration in both, mouse fibroblasts and human tumour cells. In vitro, edited FLNA leads to increased actin crosslinking, forming actin gels of higher stress resistance. Our study shows that Flna RNA editing is a novel regulator of cytoskeletal organisation, affecting the mechanical property and mechanotransduction of cells.
Collapse
Affiliation(s)
- Mamta Jain
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Andreas Weber
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Kathrin Maly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Greeshma Manjaly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Joanna Deek
- Department of Physics, Cellular Biophysics E27Technical University of MunichGarchingGermany
| | - Olena Tsvyetkova
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Maja Stulić
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - José L. Toca‐Herrera
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Michael F. Jantsch
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| |
Collapse
|
30
|
Protick F, Amit SK, Amar K, Nath SD, Akand R, Davis VA, Nilufar S, Chowdhury F. Additive Manufacturing of Viscoelastic Polyacrylamide Substrates for Mechanosensing Studies. ACS OMEGA 2022; 7:24384-24395. [PMID: 35874232 PMCID: PMC9301700 DOI: 10.1021/acsomega.2c01817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymerized polyacrylamide (PAA) substrates are linearly elastic hydrogels that are widely used in mechanosensing studies due to their biocompatibility, wide range of functionalization capability, and tunable mechanical properties. However, such cellular response on purely elastic substrates, which do not mimic the viscoelastic living tissues, may not be physiologically relevant. Because the cellular response on 2D viscoelastic PAA substrates remains largely unknown, we used stereolithography (SLA)-based additive manufacturing technique to create viscoelastic PAA substrates with tunable mechanical properties that allow us to identify physiologically relevant cellular behaviors. Three PAA substrates of different complex moduli were fabricated by SLA. By embedding fluorescent markers during the additive manufacturing of the substrates, we show a homogeneous and uniform composition throughout, which conventional manufacturing techniques cannot produce. Rheological investigation of the additively manufactured PAA substrates shows a viscoelastic behavior with a 5-10% loss moduli compared to their elastic moduli, mimicking the living tissues. To understand the cell mechanosensing on the dissipative PAA substrates, single live cells were seeded on PAA substrates to establish the basic relationships between cell traction, cytoskeletal prestress, and cell spreading. With the increasing substrate moduli, we observed a concomitant increase in cellular traction and prestress, but not cell spreading, suggesting that cell spreading can be decoupled from traction and intracellular prestress in physiologically relevant environments. Together, additively manufactured PAA substrates fill the void of lacking real tissue like viscoelastic materials that can be used in a variety of mechanosensing studies with superior reproducibility.
Collapse
Affiliation(s)
- Fardeen
Kabir Protick
- School
of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Sadat Kamal Amit
- Samuel
Ginn Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Kshitij Amar
- School
of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Shukantu Dev Nath
- School
of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Rafee Akand
- School
of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Virginia A. Davis
- Samuel
Ginn Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Sabrina Nilufar
- School
of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Farhan Chowdhury
- School
of Mechanical, Aerospace, and Materials Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
- Biomedical
Engineering Program, School of Electrical, Computer, and Biomedical
Engineering, Southern Illinois University
Carbondale, Carbondale, Illinois 62901, United
States
- Materials
Technology Center, Southern Illinois University
Carbondale, Carbondale, Illinois 62901, United
States
| |
Collapse
|
31
|
Adam I, Bagnoli F, Fanelli D, Mahadevan L, Paoletti P. Prestrain-induced contraction in one-dimensional random elastic chains. Phys Rev E 2022; 105:065002. [PMID: 35854552 DOI: 10.1103/physreve.105.065002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Prestrained elastic networks arise in a number of biological and technological systems ranging from the cytoskeleton of cells to tensegrity structures. Motivated by this observation, we here consider a minimal model in one dimension to set the stage for understanding the response of such networks as a function of the prestrain. To this end we consider a chain [one-dimensional (1D) network] of elastic springs upon which a random, zero mean, finite variance prestrain is imposed. Numerical simulations and analytical predictions quantify the magnitude of the contraction as a function of the variance of the prestrain, and show that the chain always shrinks. To test these predictions, we vary the topology of the chain, consider more complex connectivity and show that our results are relatively robust to these changes.
Collapse
Affiliation(s)
- Ihusan Adam
- Department of Information Engineering, University of Florence, Florence 50019, Italy
- Department of Physics and Astronomy, and CSDC, University of Florence, Sesto Fiorentino 50019, Italy
| | - Franco Bagnoli
- Department of Physics and Astronomy, and CSDC, University of Florence, Sesto Fiorentino 50019, Italy
- INFN, Florence Section, Sesto Fiorentino 50019, Italy
| | - Duccio Fanelli
- Department of Physics and Astronomy, and CSDC, University of Florence, Sesto Fiorentino 50019, Italy
- INFN, Florence Section, Sesto Fiorentino 50019, Italy
| | - L Mahadevan
- School of Engineering and Applied Sciences, Department of Physics, and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Paolo Paoletti
- School of Engineering, University of Liverpool, L69 3GH Liverpool, United Kingdom
| |
Collapse
|
32
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
33
|
Li H, Matsunaga D, Matsui TS, Aosaki H, Kinoshita G, Inoue K, Doostmohammadi A, Deguchi S. Wrinkle force microscopy: a machine learning based approach to predict cell mechanics from images. Commun Biol 2022; 5:361. [PMID: 35422083 PMCID: PMC9010416 DOI: 10.1038/s42003-022-03288-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Combining experiments with artificial intelligence algorithms, we propose a machine learning based approach called wrinkle force microscopy (WFM) to extract the cellular force distributions from the microscope images. The full process can be divided into three steps. First, we culture the cells on a special substrate allowing to measure both the cellular traction force on the substrate and the corresponding substrate wrinkles simultaneously. The cellular forces are obtained using the traction force microscopy (TFM), at the same time that cell-generated contractile forces wrinkle their underlying substrate. Second, the wrinkle positions are extracted from the microscope images. Third, we train the machine learning system with GAN (generative adversarial network) by using sets of corresponding two images, the traction field and the input images (raw microscope images or extracted wrinkle images), as the training data. The network understands the way to convert the input images of the substrate wrinkles to the traction distribution from the training. After sufficient training, the network is utilized to predict the cellular forces just from the input images. Our system provides a powerful tool to evaluate the cellular forces efficiently because the forces can be predicted just by observing the cells under the microscope, which is much simpler method compared to the TFM experiment. Additionally, the machine learning based approach presented here has the profound potential for being applied to diverse cellular assays for studying mechanobiology of cells. A deep learning approach, termed wrinkle force microscopy, allows for conducting traction force microscopy by observing bright-field cell images but without using its conventional requirements such as fluorescent microbeads and confocal microscopy.
Collapse
|
34
|
Wen K, Ni K, Guo J, Bu B, Liu L, Pan Y, Li J, Luo M, Deng L. MircroRNA Let-7a-5p in Airway Smooth Muscle Cells is Most Responsive to High Stretch in Association With Cell Mechanics Modulation. Front Physiol 2022; 13:830406. [PMID: 35399286 PMCID: PMC8990250 DOI: 10.3389/fphys.2022.830406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: High stretch (strain >10%) can alter the biomechanical behaviors of airway smooth muscle cells which may play important roles in diverse lung diseases such as asthma and ventilator-induced lung injury. However, the underlying modulation mechanisms for high stretch-induced mechanobiological responses in ASMCs are not fully understood. Here, we hypothesize that ASMCs respond to high stretch with increased expression of specific microRNAs (miRNAs) that may in turn modulate the biomechanical behaviors of the cells. Thus, this study aimed to identify the miRNA in cultured ASMCs that is most responsive to high stretch, and subsequently investigate in these cells whether the miRNA expression level is associated with the modulation of cell biomechanics. Methods: MiRNAs related to inflammatory airway diseases were obtained via bioinformatics data mining, and then tested with cultured ASMCs for their expression variations in response to a cyclic high stretch (13% strain) simulating in vivo ventilator-imposed strain on airways. Subsequently, we transfected cultured ASMCs with mimics and inhibitors of the miRNA that is most responsive to the high stretch, followed by evaluation of the cells in terms of morphology, stiffness, traction force, and mRNA expression of cytoskeleton/focal adhesion-related molecules. Results: 29 miRNAs were identified to be related to inflammatory airway diseases, among which let-7a-5p was the most responsive to high stretch. Transfection of cultured human ASMCs with let-7a-5p mimics or inhibitors led to an increase or decrease in aspect ratio, stiffness, traction force, migration, stress fiber distribution, mRNA expression of α-smooth muscle actin (SMA), myosin light chain kinase, some subfamily members of integrin and talin. Direct binding between let-7a-5p and ItgαV was also verified in classical model cell line by using dual-luciferase assays. Conclusion: We demonstrated that high stretch indeed enhanced the expression of let-7a-5p in ASMCs, which in turn led to changes in the cells’ morphology and biomechanical behaviors together with modulation of molecules associated with cytoskeletal structure and focal adhesion. These findings suggest that let-7a-5p regulation is an alternative mechanism for high stretch-induced effect on mechanobiology of ASMCs, which may contribute to understanding the pathogenesis of high stretch-related lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- *Correspondence: Mingzhi Luo, ; Linhong Deng,
| | | |
Collapse
|
35
|
Guo Y, Calve S, Tepole AB. Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics. Biophys J 2022; 121:525-539. [PMID: 35074393 PMCID: PMC8874030 DOI: 10.1016/j.bpj.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
The mechanical behavior of tissues at the macroscale is tightly coupled to cellular activity at the microscale. Dermal wound healing is a prominent example of a complex system in which multiscale mechanics regulate restoration of tissue form and function. In cutaneous wound healing, a fibrin matrix is populated by fibroblasts migrating in from a surrounding tissue made mostly out of collagen. Fibroblasts both respond to mechanical cues, such as fiber alignment and stiffness, as well as exert active stresses needed for wound closure. Here, we develop a multiscale model with a two-way coupling between a microscale cell adhesion model and a macroscale tissue mechanics model. Starting from the well-known model of adhesion kinetics proposed by Bell, we extend the formulation to account for nonlinear mechanics of fibrin and collagen and show how this nonlinear response naturally captures stretch-driven mechanosensing. We then embed the new nonlinear adhesion model into a custom finite element implementation of tissue mechanical equilibrium. Strains and stresses at the tissue level are coupled with the solution of the microscale adhesion model at each integration point of the finite element mesh. In addition, solution of the adhesion model is coupled with the active contractile stress of the cell population. The multiscale model successfully captures the mechanical response of biopolymer fibers and gels, contractile stresses generated by fibroblasts, and stress-strain contours observed during wound healing. We anticipate that this framework will not only increase our understanding of how mechanical cues guide cellular behavior in cutaneous wound healing, but will also be helpful in the study of mechanobiology, growth, and remodeling in other tissues.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette,Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, Boulder
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette; Weldon School of Biomedical Engineering, Purdue University, West Lafayette.
| |
Collapse
|
36
|
Nietmann P, Bodenschatz JE, Cordes AM, Gottwald J, Rother-Nöding H, Oswald T, Janshoff A. Epithelial cells fluidize upon adhesion but display mechanical homeostasis in the adherent state. Biophys J 2022; 121:361-373. [PMID: 34998827 PMCID: PMC8822618 DOI: 10.1016/j.bpj.2021.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Atomic force microscopy is used to study the viscoelastic properties of epithelial cells in three different states. Force relaxation data are acquired from cells in suspension, adhered but single cells, and polarized cells in a confluent monolayer using different indenter geometries comprising flat bars, pyramidal cones, and spheres. We found that the fluidity of cells increased substantially from the suspended to the adherent state. Along this line, the prestress of suspended cells generated by cortical contractility is also greater than that of cells adhering to a surface. Polarized cells that are part of a confluent monolayer form an apical cap that is soft and fluid enough to respond rapidly to mechanical challenges from wounding, changes in the extracellular matrix, osmotic stress, and external deformation. In contrast to adherent cells, cells in the suspended state show a pronounced dependence of fluidity on the external areal strain. With increasing areal strain, the suspended cells become softer and more fluid. We interpret the results in terms of cytoskeletal remodeling that softens cells in the adherent state to facilitate adhesion and spreading by relieving internal active stress. However, once the cells spread on the surface they maintain their mechanical phenotype displaying viscoelastic homeostasis.
Collapse
Affiliation(s)
- Peter Nietmann
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | | | - Andrea M. Cordes
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Jannis Gottwald
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Helen Rother-Nöding
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Tabea Oswald
- Georg-August Universität, Institute for Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany,Corresponding author
| |
Collapse
|
37
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Viscoelastic properties of epithelial cells. Biochem Soc Trans 2021; 49:2687-2695. [PMID: 34854895 DOI: 10.1042/bst20210476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Epithelial cells form tight barriers that line both the outer and inner surfaces of organs and cavities and therefore face diverse environmental challenges. The response to these challenges relies on the cells' dynamic viscoelastic properties, playing a pivotal role in many biological processes such as adhesion, growth, differentiation, and motility. Therefore, the cells usually adapt their viscoelastic properties to mirror the environment that determines their fate and vitality. Albeit not a high-throughput method, atomic force microscopy is still among the dominating methods to study the mechanical properties of adherent cells since it offers a broad range of forces from Piconewtons to Micronewtons at biologically significant time scales. Here, some recent work of deformation studies on epithelial cells is reviewed with a focus on viscoelastic models suitable to describe force cycle measurements congruent with the architecture of the actin cytoskeleton. The prominent role of the cortex in the cell's response to external forces is discussed also in the context of isolated cortex extracts on porous surfaces.
Collapse
|
39
|
Pathare SJ, Eng W, Lee SJJ, Ramasubramanian AK. Fibrin prestress due to platelet aggregation and contraction increases clot stiffness. BIOPHYSICAL REPORTS 2021; 1:100022. [PMID: 36425457 PMCID: PMC9680775 DOI: 10.1016/j.bpr.2021.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 06/16/2023]
Abstract
Efficient hemorrhagic control is attained through the formation of strong and stable blood clots at the site of injury. Although it is known that platelet-driven contraction can dramatically influence clot stiffness, the underlying mechanisms by which platelets assist fibrin in resisting external loads are not understood. In this study, we delineate the contribution of platelet-fibrin interactions to clot tensile mechanics using a combination of new mechanical measurements, image analysis, and structural mechanics simulation. Based on uniaxial tensile test data using custom-made microtensometer and fluorescence microscopy of platelet aggregation and platelet-fibrin interactions, we show that integrin-mediated platelet aggregation and actomyosin-driven platelet contraction synergistically increase the elastic modulus of the clots. We demonstrate that the mechanical and geometric response of an active contraction model of platelet aggregates compacting vicinal fibrin is consistent with the experimental data. The model suggests that platelet contraction induces prestress in fibrin fibers and increases the effective stiffness in both cross-linked and noncross-linked clots. Our results provide evidence for fibrin compaction at discrete nodes as a major determinant of mechanical response to applied loads.
Collapse
Affiliation(s)
| | - Wilson Eng
- Department of Mechanical Engineering, San José State University, San José, California
| | - Sang-Joon J. Lee
- Department of Mechanical Engineering, San José State University, San José, California
| | | |
Collapse
|
40
|
Boghdady CM, Kalashnikov N, Mok S, McCaffrey L, Moraes C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng 2021; 5:041501. [PMID: 34632250 PMCID: PMC8487350 DOI: 10.1063/5.0046093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces in vivo is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses in vitro, and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.
Collapse
Affiliation(s)
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | | | | |
Collapse
|
41
|
Chen S, Broedersz CP, Markovich T, MacKintosh FC. Nonlinear stress relaxation of transiently crosslinked biopolymer networks. Phys Rev E 2021; 104:034418. [PMID: 34654176 DOI: 10.1103/physreve.104.034418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/22/2021] [Indexed: 11/07/2022]
Abstract
A long-standing puzzle in the rheology of living cells is the origin of the experimentally observed long-time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks are internally stressed due to the presence of molecular motors. In this work we propose a theoretical model that uses a mode-dependent mobility to describe the stress relaxation of such prestressed transient networks. Our theoretical predictions agree favorably with experimental data of reconstituted cytoskeletal networks and may provide an explanation for the slow stress relaxation observed in cells.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
42
|
Borodich FM, Galanov BA, Keer LM, Suarez-Alvarez MM. Contact probing of prestressed adhesive membranes of living cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200289. [PMID: 34148419 DOI: 10.1098/rsta.2020.0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Atomic force microscopy (AFM) studies of living biological cells is one of main experimental tools that enable quantitative measurements of deformation of the cells and extraction of information about their structural and mechanical properties. However, proper modelling of AFM probing and related adhesive contact problems are of crucial importance for interpretation of experimental data. The Johnson-Kendall-Roberts (JKR) theory of adhesive contact has often been used as a basis for modelling of various phenomena including cell-cell interactions. However, strictly speaking the original JKR theory is valid only for contact of isotropic linearly elastic spheres, while the cell membranes are often prestressed. For the first time, effects caused by molecular adhesion for living cells are analytically studied taking into account the mechanical properties of cell membranes whose stiffness depends on the level of the tensile prestress. Another important question is how one can extract the work of adhesion between the probe and the cell. An extended version of the Borodich-Galanov method for non-direct extraction of elastic and adhesive properties of contacted materials is proposed to apply to experiments of cell probing. Evidently, the proposed models of adhesive contact for cells with prestressed membranes do not cover all types of biological cells because the structure and properties of the cells may vary considerably. However, the obtained results can be applied to many types of smooth cells and can be used to describe initial stages of contact and various other processes when effects of adhesion are of crucial importance. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.
Collapse
Affiliation(s)
| | - Boris A Galanov
- Institute for Problems in Materials Science, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Leon M Keer
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
43
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
44
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
45
|
Avoiding tensional equilibrium in cells migrating on a matrix with cell-scale stiffness-heterogeneity. Biomaterials 2021; 274:120860. [PMID: 34004486 DOI: 10.1016/j.biomaterials.2021.120860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022]
Abstract
Intracellular stresses affect various cell functions, including proliferation, differentiation and movement, which are dynamically modulated in migrating cells through continuous cell-shaping and remodeling of the cytoskeletal architecture induced by spatiotemporal interactions with extracellular matrix stiffness. When cells migrate on a matrix with cell-scale stiffness-heterogeneity, which is a common situation in living tissues, what intracellular stress dynamics (ISD) emerge? In this study, to explore this issue, finite element method-based traction force microscopy was applied to cells migrating on microelastically patterned gels. Two model systems of microelastically patterned gels (stiff/soft stripe and stiff triangular patterns) were designed to characterize the effects of a spatial constraint on cell-shaping and of the presence of different types of cues to induce competing cellular taxis (usual and reverse durotaxis) on the ISD, respectively. As the main result, the prolonged fluctuation of traction stress on a whole-cell scale was markedly enhanced on single cell-size triangular stiff patterns compared with homogeneous gels. Such ISD enhancement was found to be derived from the interplay between the nomadic migration of cells to regions with different degrees of stiffness and domain shape-dependent traction force dynamics, which should be an essential factor for keeping cells far from tensional equilibrium.
Collapse
|
46
|
Zak A, Merino-Cortés SV, Sadoun A, Mustapha F, Babataheri A, Dogniaux S, Dupré-Crochet S, Hudik E, He HT, Barakat AI, Carrasco YR, Hamon Y, Puech PH, Hivroz C, Nüsse O, Husson J. Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophys J 2021; 120:1692-1704. [PMID: 33730552 PMCID: PMC8204340 DOI: 10.1016/j.bpj.2021.02.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | | | - Anaïs Sadoun
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Farah Mustapha
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France; Centre Interdisciplinaire de Nanoscience de Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphanie Dogniaux
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Hai-Tao He
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yolanda R Carrasco
- B Lymphocyte Dynamics Laboratory, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yannick Hamon
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Claire Hivroz
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
47
|
Perez JE, Fage F, Pereira D, Abou-Hassan A, Asnacios S, Asnacios A, Wilhelm C. Transient cell stiffening triggered by magnetic nanoparticle exposure. J Nanobiotechnology 2021; 19:117. [PMID: 33902616 PMCID: PMC8074464 DOI: 10.1186/s12951-021-00790-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells’ mechanical properties remains poorly understood. Results Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods. Conclusions Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.![]()
Collapse
Affiliation(s)
- Jose E Perez
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France.,Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Florian Fage
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France
| | - David Pereira
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS UMR 8234, Physico-Chimie Des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), 75005, Paris, France
| | - Sophie Asnacios
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France. .,Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris, France.
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France.
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS & University of Paris, 75205, Paris Cedex 13, France. .,Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, 75005, Paris, France.
| |
Collapse
|
48
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
49
|
Jamieson RR, Stasiak SE, Polio SR, Augspurg RD, McCormick CA, Ruberti JW, Parameswaran H. Stiffening of the extracellular matrix is a sufficient condition for airway hyperreactivity. J Appl Physiol (1985) 2021; 130:1635-1645. [PMID: 33792403 DOI: 10.1152/japplphysiol.00554.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current therapeutic approach to asthma focuses exclusively on targeting inflammation and reducing airway smooth muscle force to prevent the recurrence of symptoms. However, even when inflammation is brought under control, airways in an asthmatic can still hyperconstrict when exposed to a low dose of agonist. This suggests that there are mechanisms at play that are likely triggered by inflammation and eventually become self-sustaining so that even when airway inflammation is brought back under control, these alternative mechanisms continue to drive airway hyperreactivity in asthmatics. In this study, we hypothesized that stiffening of the airway extracellular matrix is a core pathological change sufficient to support excessive bronchoconstriction even in the absence of inflammation. To test this hypothesis, we increased the stiffness of the airway extracellular matrix by photo-crosslinking collagen fibers within the airway wall of freshly dissected bovine rings using riboflavin (vitamin B2) and Ultraviolet-A radiation. In our experiments, collagen crosslinking led to a twofold increase in the stiffness of the airway extracellular matrix. This change was sufficient to cause airways to constrict to a greater degree, and at a faster rate when they were exposed to 10-5 M acetylcholine for 5 min. Our results show that stiffening of the extracellular matrix is sufficient to drive excessive airway constriction even in the absence of inflammatory signals.NEW & NOTEWORTHY Targeting inflammation is the central dogma on which current asthma therapy is based. Here, we show that a healthy airway can be made to constrict excessively and at a faster rate in response to the same stimulus by increasing the stiffness of the extracellular matrix, without the use of inflammatory agents. Our results provide an independent mechanism by which airway remodeling in asthma can sustain airway hyperreactivity even in the absence of inflammatory signals.
Collapse
Affiliation(s)
- Ryan R Jamieson
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Suzanne E Stasiak
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Samuel R Polio
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Ralston D Augspurg
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | | | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | | |
Collapse
|
50
|
Cell Cytoskeleton and Stiffness Are Mechanical Indicators of Organotropism in Breast Cancer. BIOLOGY 2021; 10:biology10040259. [PMID: 33805866 PMCID: PMC8064360 DOI: 10.3390/biology10040259] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Cancer cell dissemination exhibits organ preference or organotropism. Although the influence of intrinsic biochemical factors on organotropism has been intensely studied, little is known about the roles of mechanical properties of metastatic cancer cells. Our study suggests that there may be a correlation between cell cytoskeleton/stiffness and organotropism. We find that the cytoskeleton and stiffness of breast cancer cell subpopulations with different metastatic preference match the mechanics of the metastasized organs. The modification of cell cytoskeleton significantly influences the organotropism-related gene expression pattern and mechanoresponses on soft substrates which mimic brain tissue stiffness. These findings highlight the key role of cell cytoskeleton in specific organ metastasis, which may not only reflect but also impact the metastatic organ preference. Abstract Tumor metastasis involves the dissemination of tumor cells from the primary lesion to other organs and the subsequent formation of secondary tumors, which leads to the majority of cancer-related deaths. Clinical findings show that cancer cell dissemination is not random but exhibits organ preference or organotropism. While intrinsic biochemical factors of cancer cells have been extensively studied in organotropism, much less is known about the role of cell cytoskeleton and mechanics. Herein, we demonstrate that cell cytoskeleton and mechanics are correlated with organotropism. The result of cell stiffness measurements shows that breast cancer cells with bone tropism are much stiffer with enhanced F-actin, while tumor cells with brain tropism are softer with lower F-actin than their parental cells. The difference in cellular stiffness matches the difference in the rigidity of their metastasized organs. Further, disrupting the cytoskeleton of breast cancer cells with bone tropism not only elevates the expressions of brain metastasis-related genes but also increases cell spreading and proliferation on soft substrates mimicking the stiffness of brain tissue. Stabilizing the cytoskeleton of cancer cells with brain tropism upregulates bone metastasis-related genes while reduces the mechanoadaptation ability on soft substrates. Taken together, these findings demonstrate that cell cytoskeleton and biophysical properties of breast cancer subpopulations correlate with their metastatic preference in terms of gene expression pattern and mechanoadaptation ability, implying the potential role of cell cytoskeleton in organotropism.
Collapse
|