1
|
Nevado JB, Cutiongco-de la Paz EMC, Paz-Pacheco ET, Jasul GV, Aman AYCL, Deguit CDT, San Pedro JVB, Francisco MDG. Transcriptional profiles associated with coronary artery disease in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1323168. [PMID: 38706700 PMCID: PMC11066158 DOI: 10.3389/fendo.2024.1323168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 05/07/2024] Open
Abstract
Background Coronary artery disease (CAD) is a common complication of Type 2 diabetes mellitus (T2DM). Understanding the pathogenesis of this complication is essential in both diagnosis and management. Thus, this study aimed to characterize the presence of CAD in T2DM using molecular markers and pathway analyses. Methods The study is a sex- and age-frequency matched case-control design comparing 23 unrelated adult Filipinos with T2DM-CAD to 23 controls (DM with CAD). Healthy controls served as a reference. Total RNA from peripheral blood mononuclear cells (PBMCs) underwent whole transcriptomic profiling using the Illumina HumanHT-12 v4.0 expression beadchip. Differential gene expression with gene ontogeny analyses was performed, with supporting correlational analyses using weighted correlation network analysis (WGCNA). Results The study observed that 458 genes were differentially expressed between T2DM with and without CAD (FDR<0.05). The 5 top genes the transcription factor 3 (TCF3), allograft inflammatory factor 1 (AIF1), nuclear factor, interleukin 3 regulated (NFIL3), paired immunoglobulin-like type 2 receptor alpha (PILRA), and cytoskeleton-associated protein 4 (CKAP4) with AUCs >89%. Pathway analyses show differences in innate immunity activity, which centers on the myelocytic (neutrophilic/monocytic) theme. SNP-module analyses point to a possible causal dysfunction in innate immunity that triggers the CAD injury in T2DM. Conclusion The study findings indicate the involvement of innate immunity in the development of T2DM-CAD, and potential immunity markers can reflect the occurrence of this injury. Further studies can verify the mechanistic hypothesis and use of the markers.
Collapse
Affiliation(s)
- Jose B. Nevado
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Eva Maria C. Cutiongco-de la Paz
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
- Philippine Genome Center, University of the Philippines System, Diliman, Quezon City, Philippines
| | - Elizabeth T. Paz-Pacheco
- Division of Endocrinology, Department of Medicine, University of the Philippines-Philippine General Hospital Medical Center, Manila, Philippines
| | - Gabriel V. Jasul
- Division of Endocrinology, Department of Medicine, University of the Philippines-Philippine General Hospital Medical Center, Manila, Philippines
| | - Aimee Yvonne Criselle L. Aman
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Christian Deo T. Deguit
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Jana Victoria B. San Pedro
- Institute of Human Genetics, National Institutes of Health-University of the Philippines Manila, Manila, Philippines
| | - Mark David G. Francisco
- Division of Endocrinology, Department of Medicine, University of the Philippines-Philippine General Hospital Medical Center, Manila, Philippines
| |
Collapse
|
2
|
Lin P, Jiang S, Liu T, Yuan X, Luo K, Xie C, Zhao X, Zhou L. Activatable fluorescent probes for early diagnosis and evaluation of liver injury. Analyst 2024; 149:638-664. [PMID: 38170876 DOI: 10.1039/d3an01631e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
With the increase in people's living standards, the number of patients suffering from liver injury keeps on increasing. Traditional diagnostic methods can no longer meet the needs of early and accurate diagnosis due to their limitations in application. However, fluorescent probes based on different fluorophores and nanomaterials have been gradually lighting up medical research due to their unique properties, such as high specificity and non-invasiveness. In addition, accurate identification of the different types of liver injury biomarkers can significantly improve the level of early diagnosis. Therefore, this review reviews the fluorescent probes used in the detection of biomarkers of liver injury over recent years and briefly summarizes the corresponding biomarkers of different types of liver injury. Impressively, this review also lists the structures and the response mechanisms of the different probes, and concludes with an outlook, suggesting directions in which improvements can be made. Finally, we hope that this review will contribute to the further development of fluorescent probes for the early diagnosis and assessment of liver injury.
Collapse
Affiliation(s)
- Pengxu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Shali Jiang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Gurule NJ, Malcolm KC, Harris C, Knapp JR, O'Connor BP, McClendon J, Janssen WJ, Lee FFY, Price C, Osaghae-Nosa J, Wheeler EA, McMahon CM, Pietras EM, Pollyea DA, Alper S. Myelodysplastic neoplasm-associated U2AF1 mutations induce host defense defects by compromising neutrophil chemotaxis. Leukemia 2023; 37:2115-2124. [PMID: 37591942 PMCID: PMC10539173 DOI: 10.1038/s41375-023-02007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Myelodysplastic neoplasm (MDS) is a hematopoietic stem cell disorder that may evolve into acute myeloid leukemia. Fatal infection is among the most common cause of death in MDS patients, likely due to myeloid cell cytopenia and dysfunction in these patients. Mutations in genes that encode components of the spliceosome represent the most common class of somatically acquired mutations in MDS patients. To determine the molecular underpinnings of the host defense defects in MDS patients, we investigated the MDS-associated spliceosome mutation U2AF1-S34F using a transgenic mouse model that expresses this mutant gene. We found that U2AF1-S34F causes a profound host defense defect in these mice, likely by inducing a significant neutrophil chemotaxis defect. Studies in human neutrophils suggest that this effect of U2AF1-S34F likely extends to MDS patients as well. RNA-seq analysis suggests that the expression of multiple genes that mediate cell migration are affected by this spliceosome mutation and therefore are likely drivers of this neutrophil dysfunction.
Collapse
Affiliation(s)
- Natalia J Gurule
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | - Caitlin Price
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Jackson Osaghae-Nosa
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Eric M Pietras
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | | | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA.
| |
Collapse
|
4
|
De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, García-Puente L, Rios-Parra A, Garrido-Gil MJ, Casanova-Martín C, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Ortega MA. AIF1: Function and Connection with Inflammatory Diseases. BIOLOGY 2023; 12:biology12050694. [PMID: 37237507 DOI: 10.3390/biology12050694] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Macrophages are a type of immune cell distributed throughout all tissues of an organism. Allograft inflammatory factor 1 (AIF1) is a calcium-binding protein linked to the activation of macrophages. AIF1 is a key intracellular signaling molecule that participates in phagocytosis, membrane ruffling and F-actin polymerization. Moreover, it has several cell type-specific functions. AIF1 plays important roles in the development of several diseases: kidney disease, rheumatoid arthritis, cancer, cardiovascular diseases, metabolic diseases and neurological disorders, and in transplants. In this review, we present a comprehensive review of the known structure, functions and role of AIF1 in inflammatory diseases.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
5
|
Tada A, Minami T, Kitai H, Higashiguchi Y, Tokuda M, Higashiyama T, Negi Y, Horio D, Nakajima Y, Otsuki T, Mikami K, Takahashi R, Nakamura A, Kitajima K, Ohmuraya M, Kuribayashi K, Kijima T. Combination therapy with anti-programmed cell death 1 antibody plus angiokinase inhibitor exerts synergistic antitumor effect against malignant mesothelioma via tumor microenvironment modulation. Lung Cancer 2023; 180:107219. [PMID: 37146474 DOI: 10.1016/j.lungcan.2023.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related fatal malignant neoplasm. Although there has been no reliable chemotherapeutic regimen other than combination therapy of cisplatin and pemetrexed for two decades, combination of ipilimumab plus nivolumab brought about a better outcome in patients with MPM. Thus, cancer immunotherapy using immune checkpoint inhibitor (ICI) is expected to play a central role in the treatment of MPM. To maximize the antitumor effect of ICI, we evaluated whether nintedanib, an antiangiogenic agent, could augment the antitumor effect of anti-programmed cell death 1 (PD-1) antibody (Ab). Although nintedanib could not inhibit the proliferation of mesothelioma cells in vitro, it significantly suppressed the growth of mesothelioma allografts in mice. Moreover, combination therapy with anti-PD-1 Ab plus nintedanib reduced tumor burden more dramatically compared with nintedanib monotherapy via inducing remarkable necrosis in MPM allografts. Nintedanib did not promote the infiltration of CD8+ T cells within the tumor when used alone or in combination with anti-PD-1 Ab but it independently decreased the infiltration of tumor-associated macrophages (TAMs). Moreover, immunohistochemical analysis and ex vivo study using bone marrow-derived macrophages (BMDMs) showed that nintedanib could polarize TAMs from M2 to M1 phenotype. These results indicated that nintedanib had a potential to suppress protumor activity of TAMs both numerically and functionally. On the other hand, ex vivo study revealed that nintedanib upregulated the expression of PD-1 and PD-ligand 1 (PD-L1) in BMDMs and mesothelioma cells, respectively, and exhibited the impairment of phagocytic activity of BMDMs against mesothelioma cells. Co-administration of anti-PD-1 Ab may reactivate phagocytic activity of BMDMs by disrupting nintedanib-induced immunosuppressive signal via binding between PD-1 on BMDMs and PD-L1 on mesothelioma cells. Collectively, combination therapy of anti-PD-1 Ab plus nintedanib enhances the antitumor activity compared with respective monotherapy and can become a novel therapeutic option for patients with MPM.
Collapse
Affiliation(s)
- Akio Tada
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
| | - Hidemi Kitai
- Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoko Higashiguchi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Mayuko Tokuda
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Tomoki Higashiyama
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yoshiki Negi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Daisuke Horio
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yasuhiro Nakajima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Taiichiro Otsuki
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Koji Mikami
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Ryo Takahashi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Akifumi Nakamura
- Department of Thoracic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kazuhiro Kitajima
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo Medical University, Nishinomiya, Japan
| | - Kozo Kuribayashi
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo Medical University, Nishinomiya, Hyogo, Japan; Department of Thoracic Oncology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
6
|
Li Q, Hu L, Liu G, Yin X, Li Y, Wei X, Duan N, Zhao X, Gong Q, Du Z. Inhibition of AIF-1 alleviates laser-induced macular neovascularization by inhibiting endothelial cell proliferation via restrained p44/42 MAPK signaling pathway. Exp Eye Res 2023; 231:109474. [PMID: 37080383 DOI: 10.1016/j.exer.2023.109474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Age-related macular degeneration (AMD) is a leading blinding disease worldwide, and macular neovascularization (MNV) is a common complication encountered in the advanced stages of AMD. While the underlying causes of MNV remain elusive, aberrant multiplication of choroidal endothelial cells (CECs) and increased vascular endothelial growth factor (VEGF) are thought to play significant roles in the occurrence and development of MNV. Allograft inflammatory factor-1(AIF-1) is a crucial regulatory factor of vascular tubular structure formation and growth, involving the proliferation and migration of vascular endothelial cells and various tumor cells. This study aimed to understand how AIF-1 effects the proliferation of CECs and the subsequent progression of MNV. To study this, a mouse MNV model was established through laser injury, and the AIF-1 expression levels were then measured using western blot and immunohistochemistry. AIF-1 siRNA was intravitreally injected to silence AIF-1 gene expression. Western blot and choroidal flat mount were performed to measure the progression of MNV and proliferation of the CECs. These results showed that the protein expression of AIF-1 was significantly elevated in the laser-induced mouse MNV model, and the expression trend was consistent with VEGF. The protein level of AIF-1 was significantly decreased after the intravitreal injection of AIF-1 siRNA, the damage range of laser lesions was significantly reduced, and the proliferation of endothelial cells was inhibited. Knockdown of the AIF-1 gene significantly inhibited the expression of mitogen-activated protein kinase p44/42 in MNV lesions. In summary, this research demonstrates that AIF-1 promoted MNV progression by promoting the proliferation of CECs and that silencing AIF-1 significantly ameliorates MNV progression in mouse models, which may act through the p44/42 MAPK signaling pathway. AIF-1 could be a new potential molecular target for MNV.
Collapse
Affiliation(s)
- Qinghua Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Guibo Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaoni Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ying Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiangyang Wei
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ning Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaoran Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Qingyun Gong
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zhaodong Du
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
7
|
Yamate J, Izawa T, Kuwamura M. Macrophage pathology in hepatotoxicity. J Toxicol Pathol 2023; 36:51-68. [PMID: 37101958 PMCID: PMC10123298 DOI: 10.1293/tox.2022-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
The liver is the most important organ that metabolizes and detoxifies chemicals taken into the body. Therefore, there is always a risk of liver damage owing to the toxic effects of chemicals. The mechanisms of hepatotoxicity have been studied extensively and deeply based on toxic effects of chemicals themselves. However, it is important to note that liver damage is variously modified by the patho-biological reactions evoked mainly via macrophages. Macrophages appearing in hepatotoxicity are evaluated by the M1/M2 polarization; M1 macrophages promote tissue injury/inflammation, whereas M2 macrophages show anti-inflammatory action including reparative fibrosis. The "portal vein-liver barrier" regulated by Kupffer cells and dendritic cells in and around the Glisson's sheath may be related to the initiation of hepatotoxicity. In addition, Kupffer cells exhibit the two-sides of functions (that is, M1 or M2 macrophage-like functions), depending on microenvironmental conditions which may be raised in part by gut microbiota-derived lipopolysaccharide. Furthermore, damage-associated molecular patterns (DAMPs) (in particular, HMGB1) and autophagy (which degrades DAMPs) also play roles in the polarity of M1/M2 macrophages. The mutual relation of "DAMPs (HMGB-1)-autophagy-M1/M2 macrophage polarization" as the patho-biological reaction should be taken into consideration in hepatotoxicity evaluation.
Collapse
Affiliation(s)
- Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| |
Collapse
|
8
|
Tian Y, Liu S, Zhang Y, Yang J, Guo P, Zhang H, Yu X, Zou T. Immune infiltration and immunophenotyping in atrial fibrillation. Aging (Albany NY) 2023; 15:213-229. [PMID: 36602538 PMCID: PMC9876632 DOI: 10.18632/aging.204470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Atrial fibrillation (AF) is a relatively common arrhythmia in clinical practice. Although significant progress has been achieved in the treatment of AF and its associated complications, research on AF prevention lags behind, mainly due to the lack of a deep understanding of AF pathogenesis. In recent years, as our knowledge has grown, the role of the inflammatory/immune response in the occurrence and progression of AF has gradually gained attention. In this paper, based on existing gene expression data in the Gene Expression Omnibus database, a detailed description of immune infiltration status in AF is presented using a series of analytical methods, including differential analysis, Gene Ontology categorization, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and weighted gene coexpression network analysis, and analysis tools such as CIBERSORTx and Cytoscape. Several new AF/immune infiltrations-related signature genes were identified, and the AF/immune infiltration pathology was classified based on these immune signature genes, thus providing novel insights into the pathogenesis of AF based on the inflammatory response.
Collapse
Affiliation(s)
- Yuqing Tian
- Department of Cardiology, Affiliated Hospital of Panzhihua University, Panzhihua 617000, Sichuan, P.R. China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shiying Liu
- Department of Plastic Surgery, Affiliated Hospital of Panzhihua University, Panzhihua 617000, Sichuan, P.R. China
| | - Yanan Zhang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, P.R. China
| | - Jiefu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Peiyao Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing 100730, P.R. China
| | - Hongchao Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Tong Zou
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
9
|
Chinnasamy P, Casimiro I, Riascos-Bernal DF, Venkatesh S, Parikh D, Maira A, Srinivasan A, Zheng W, Tarabra E, Zong H, Jayakumar S, Jeganathan V, Pradan K, Aleman JO, Singh R, Nandi S, Pessin JE, Sibinga NES. Increased adipose catecholamine levels and protection from obesity with loss of Allograft Inflammatory Factor-1. Nat Commun 2023; 14:38. [PMID: 36596796 PMCID: PMC9810600 DOI: 10.1038/s41467-022-35683-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Recent studies implicate macrophages in regulation of thermogenic, sympathetic neuron-mediated norepinephrine (NE) signaling in adipose tissues, but understanding of such non-classical macrophage activities is incomplete. Here we show that male mice lacking the allograft inflammatory factor-1 (AIF1) protein resist high fat diet (HFD)-induced obesity and hyperglycemia. We link this phenotype to higher adipose NE levels that stem from decreased monoamine oxidase A (MAOA) expression and NE clearance by AIF1-deficient macrophages, and find through reciprocal bone marrow transplantation that donor Aif1-/- vs WT genotype confers the obesity phenotype in mice. Interestingly, human sequence variants near the AIF1 locus associate with obesity and diabetes; in adipose samples from participants with obesity, we observe direct correlation of AIF1 and MAOA transcript levels. These findings identify AIF1 as a regulator of MAOA expression in macrophages and catecholamine activity in adipose tissues - limiting energy expenditure and promoting energy storage - and suggest how it might contribute to human obesity.
Collapse
Affiliation(s)
- Prameladevi Chinnasamy
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Isabel Casimiro
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shreeganesh Venkatesh
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dippal Parikh
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alishba Maira
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aparna Srinivasan
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Zheng
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elena Tarabra
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
| | - Haihong Zong
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Venkatesh Jeganathan
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jose O Aleman
- Department of Medicine (Endocrinology), New York University Langone Health, New York, NY, USA
| | - Rajat Singh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Endocrinology, Albert Einstein College of Medicine), Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sayan Nandi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Pessin
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Einstein-Mount Sinai Diabetes Research Center and Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Wang L, Zhao X, Zheng H, Zhu C, Liu Y. AIF-1, a potential biomarker of aggressive tumor behavior in patients with non-small cell lung cancer. PLoS One 2022; 17:e0279211. [PMID: 36520870 PMCID: PMC9754194 DOI: 10.1371/journal.pone.0279211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Allogeneic inflammatory factor-1 (AIF-1) overexpression has been reported to be associated with tumorigenesis and tumor metastasis. This study aimed to investigate the role of AIF-1 in the development and progression of non-small cell lung cancer (NSCLC). AIF-1, IL-6, and VEGF expressions in human NSCLC tissue were examined by immunofluorescence staining. Bioinformatics analyses were performed to identify AIF-1-related molecules and pathways in NSCLC. Human lung cancer A549 cell proliferation was assessed by CCK-8 assay, and cell migration was evaluated with wound-healing assay. IL-6 and VEGF secretions in A549 cell culture supernatants were quantified using the Elecsys IL-6 immunoassay kit and Vascular Endothelial Growth Factor Assay Kit. RT-PCR and western blot were performed to quantify the expressions of AIF-1, IL-6, and VEGF mRNAs and proteins involved in p38-MAPK and JAK/STAT3 signaling such as p-p38 and p-STAT3. The effects of AIF-1 on A549 cell proliferation and the expressions of IL-6 and VEGF were assessed using SB203580 and ruxolitinib. The results showed that AIF-1 expression was higher in human NSCLC tissue than that in paracancer tissue. High AIF-1 expression was associated with metastasis, higher TNM stage, and poorer survival. Bioinformatics connected AIF-1 to JAK/STAT signaling in NSCLC. AIF-1 increased A549 cell proliferation, migration, IL-6 secretion and, VEGF secretion, and these effects were attenuated by inhibition of p38-MAPK or JAK/STAT3 signaling. In conclusion, AIF-1 may promote aggressive NSCLC behavior via activation of p38-MAPK and JAK/STAT signaling.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Laboratory Diagnosis, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xing Zhao
- Department of Pathology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Huachuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cuimin Zhu
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
11
|
Lai Y, Wang Y, Fan X, Zhao Y. Allograft inflammatory factor-1 stimulates inflammatory properties of peripheral blood leukocytes and increases cell viability via enhancing mitochondrial function in Ctenopharyngodon idellus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:412-418. [PMID: 35772678 DOI: 10.1016/j.fsi.2022.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) is a 17 kDa calcium-binding protein associated with numerous inflammatory diseases. The full-length cDNA of AIF-1 has been identified in grass carp, Ctenopharyngodon idellus in our previous study, and it was assumed to be a novel molecule involved in immune responses. To clarify this aspect, the level of AIF-1 expression was amplified and reduced in grass carp peripheral blood leukocytes via transfection of vector pcDNA3.1-AIF1-EGFP and pLKO.1-shRNA-EGFP-puro, respectively. Thereafter, AIF-1 stimulated cell proliferation, inhibited cell apoptosis, which might benefit from improved mitochondrial function as evidenced by increased mitochondrial membrane potential, subsequently promoted ATP production. In addition, AIF-1 induced leukocyte migration via up-regulated monocyte chemotactic protein-1(MCP-1) secretion, enhanced neutral red uptake into leukocyte, provoked pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 1β (IL1β), interleukin 6 (IL6), interleukin 8 (IL8) and suppressed anti-inflammatory cytokine interleukin 10 (IL10) production. These results indicated AIF-1 played a critical role in grass carp innate immune system.
Collapse
Affiliation(s)
- Yaling Lai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yilin Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Xianyang Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China
| | - Yanying Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, PR China.
| |
Collapse
|
12
|
Zhang L, Gu J, Wang S, He F, Gong K. Identification of key differential genes in intimal hyperplasia induced by left carotid artery ligation. PeerJ 2022; 10:e13436. [PMID: 35586138 PMCID: PMC9109685 DOI: 10.7717/peerj.13436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/22/2022] [Indexed: 01/14/2023] Open
Abstract
Background Intimal hyperplasia is a common pathological process of restenosis following angioplasty, atherosclerosis, pulmonary hypertension, vein graft stenosis, and other proliferative diseases. This study aims to screen for potential novel gene targets and mechanisms related to vascular intimal hyperplasia through an integrated microarray analysis of the Gene Expression Omnibus Database (GEO) database. Material and Methods The gene expression profile of the GSE56143 dataset was downloaded from the Gene Expression Omnibus database. Functional enrichment analysis, protein-protein interaction (PPI) network analysis, and the transcription factor (TF)-target gene regulatory network were used to reveal the biological functions of differential genes (DEGs). Furthermore, the expression levels of the top 10 key DEGs were verified at the mRNA and protein level in the carotid artery 7 days after ligation. Results A total of 373 DEGs (199 upregulated DEGs and 174 downregulated DEGs) were screened. These DEGs were significantly enriched in biological processes, including immune system process, cell adhesion, and several pathways, which were mainly associated with cell adhesion molecules and the regulation of the actin cytoskeleton. The top 10 key DEGs (Ptprc, Fn1, Tyrobp, Emr1, Itgb2, Itgax, CD44, Ctss, Ly86, and Aif1) acted as key genes in the PPI network. The verification of these key DEGs at the mRNA and protein levels was consistent with the results of the above-mentioned bioinformatics analysis. Conclusion The present study identified key genes and pathways involved in intimal hyperplasia induced by carotid artery ligation. These results improved our understanding of the mechanisms underlying the development of intimal hyperplasia and provided candidate targets.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuming He
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Chang X, Hao J, Wang X, Liu J, Ni J, Hao L. The Role of AIF-1 in the Aldosterone-Induced Vascular Calcification Related to Chronic Kidney Disease: Evidence From Mice Model and Cell Co-Culture Model. Front Endocrinol (Lausanne) 2022; 13:917356. [PMID: 35937793 PMCID: PMC9347268 DOI: 10.3389/fendo.2022.917356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that aldosterone (Aldo) plays an essential role in vascular calcification which is a serious threat to cardiovascular disease (CVD) developed from chronic kidney disease (CKD). However, the exact pathogenesis of vascular calcification is still unclear. First, we established CKD-associated vascular calcification mice model and knockout mice model to investigate the causal relationship between allograft inflammatory factor 1 (AIF-1) and vascular calcification. Then, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) co-culture experiments were performed to further explore the mechanisms of calcification. The results of the Aldo intervention mice model and transgenic mice model showed that Aldo could cause calcification by increasing the AIF-1 level. The results of in vitro co-culture model of ECs and VSMCs showed that AIF-1 silence in ECs may alleviate Aldo-induced calcification of VSMCs. In conclusion, our study indicated that Aldo may induce vascular calcification related to chronic renal failure via the AIF-1 pathway which may provide a potential therapeutic target.
Collapse
Affiliation(s)
- Xueying Chang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianbing Hao
- Department of Nephropathy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingwei Liu
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Ni
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lirong Hao, ; Jie Ni,
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lirong Hao, ; Jie Ni,
| |
Collapse
|
14
|
Cercone M, Chevalier J, Kennedy JG, Miller AD, Fortier LA. Early Failure of a Polyvinyl Alcohol Hydrogel Implant With Osteolysis and Foreign Body Reactions in an Ovine Model of Cartilage Repair. Am J Sports Med 2021; 49:3395-3403. [PMID: 34424105 DOI: 10.1177/03635465211033601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hemiarthroplasty using a polyvinyl alcohol (PVA) hydrogel synthetic implant has been suggested as a good alternative to arthrodesis for the treatment of hallux rigidus. However, failure rates as high as 20% have been recorded. PURPOSE To characterize the pathological processes in bone, cartilage, and the synovial membrane after PVA hemiarthroplasty in an ovine model with 6 months of follow-up. STUDY DESIGN Controlled laboratory study. METHODS A unilateral osteochondral defect (8-mm diameter × 10-mm depth) was made in the medial femoral condyle in 6 sheep. Animals were randomized to receive a PVA implant (n = 4) or to have an empty defect (n = 2) and were monitored for 6 months. Patellofemoral radiographs were obtained at monthly intervals, and quantitative computed tomography was performed at the end of the study. After death, the joints were macroscopically evaluated and scored. Osteochondral and synovial membrane histological findings were assessed using modified Osteoarthritis Research Society International (OARSI) and aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) scoring systems. Immunohistochemistry using Iba1 was performed to evaluate activated macrophage infiltration. RESULTS Overall, 2 sheep with PVA implants were euthanized at 1 and 5 months because of uncontrollable pain and lameness (failed implants). Quantitative computed tomography showed that sheep with failed implants had 2.1-fold more osteolysis than those with successful implants. The sheep with failed implants had osteoarthritis with extensive glycosaminoglycan loss and cartilage fibrillation of the condyle and opposing tibial surface on histological examination. A foreign body reaction with severe chronic lymphoplasmacytic and granulomatous inflammation with giant cells was detected surrounding the implant. The synovial membrane ALVAL score was 9 of 19 and 14 of 19 in failed implants with synovial hyperplasia and lymphoplasmacytic and macrophage infiltration. In contrast, the synovial membrane in successful implants and empty defects was normal (ALVAL score = 0/19). Immunolabeling for Iba1 in failed implants confirmed extensive and dense macrophage infiltration within the condyle and synovial membrane, with the highest immunoreactive score (9/9). CONCLUSION PVA hydrogel implants had a 50% failure rate with uncontrollable pain, severe osteolysis, inflammation, and foreign body reactions. CLINICAL RELEVANCE The failure rate and pathological characteristics of the PVA implants suggest that their use should not be continued in human patients without further in vivo safety studies.
Collapse
Affiliation(s)
- Marta Cercone
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jacqueline Chevalier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - John G Kennedy
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, USA
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Yamamoto Y, Minami M, Yoshida K, Nagata M, Miyata T, Yang T, Takayama N, Suzuki K, Okawa M, Yamada K, Miyamoto S. Irradiation Accelerates Plaque Formation and Cellular Senescence in Flow-Altered Carotid Arteries of Apolipoprotein E Knock-Out Mice. J Am Heart Assoc 2021; 10:e020712. [PMID: 34227406 PMCID: PMC8483483 DOI: 10.1161/jaha.120.020712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Chronic inflammation through cellular senescence, known as the senescence‐associated secretory phenotype, is a mechanism of various organ diseases, including atherosclerosis. Particularly, ionizing radiation (IR) contributes to cellular senescence by causing DNA damage. Although previous clinical studies have demonstrated that radiotherapy causes atherosclerosis as a long‐term side effect, the detailed mechanism is unclear. This study was conducted to investigate the relationship between radiation‐induced atherosclerosis and senescence‐associated secretory phenotype in murine carotid arteries. Methods and Results Partial ligation of the left carotid artery branches in 9‐week‐old male apolipoprotein E‐deficient mice was performed to induce atherosclerosis. The mice received total body irradiation at a dose of 6 Gy using gamma rays at 2 weeks post operation. We compared the samples collected 4 weeks after IR with unirradiated control samples. The IR and control groups presented pathologically progressive lesions in 90.9% and 72.3% of mice, respectively. Plaque volume, macrophage accumulation, and phenotype switching of vascular smooth muscle cells were advanced in the IR group. Irradiated samples showed increased persistent DNA damage response (53BP1 [p53 binding protein 1]), upregulated cyclin‐dependent kinase inhibitors (p16INK4a and p21), and elevated inflammatory chemokines expression (monocyte chemotactic protein‐1, keratinocyte‐derived chemokine, and macrophage inflammatory protein 2). Conclusions IR promoted plaque growth in murine carotid arteries. Our findings support the possibility that senescence‐associated secretory phenotype aggravates atherogenesis in irradiated artery. This mice model might contribute to mechanism elucidation of radiation‐induced atherosclerosis.
Collapse
Affiliation(s)
- Yu Yamamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Data Science National Cerebral and Cardiovascular Center Suita Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Manabu Nagata
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Takeshi Miyata
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tao Yang
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Naoki Takayama
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Keita Suzuki
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Masakazu Okawa
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kiyofumi Yamada
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Susumu Miyamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| |
Collapse
|
16
|
Horiuchi K, Kano K, Minoshima A, Hayasaka T, Yamauchi A, Tatsukawa T, Matsuo R, Yoshida Y, Tomita Y, Kabara M, Nakagawa N, Takehara N, Hasebe N, Kawabe JI. Pericyte-specific deletion of ninjurin-1 induces fragile vasa vasorum formation and enhances intimal hyperplasia of injured vasculature. Am J Physiol Heart Circ Physiol 2021; 320:H2438-H2447. [PMID: 33961504 DOI: 10.1152/ajpheart.00931.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adventitial abnormalities including enhanced vasa vasorum malformation are associated with development and vulnerability of atherosclerotic plaque. However, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. We recently reported that ninjurin-1 (Ninj1) is a crucial adhesion molecule for pericytes to form matured neovessels. The purpose is to examine if Ninj1 regulates adventitial angiogenesis and affects the vascular remodeling of injured vessels using pericyte-specific Ninj1 deletion mouse model. Mouse femoral arteries were injured by insertion of coiled wire. Four weeks after vascular injury, fixed arteries were decolorized. Vascular remodeling, including intimal hyperplasia and adventitial microvessel formation were estimated in a three-dimensional view. Vascular fragility, including blood leakiness was estimated by extravasation of fluorescein isothiocyanate (FITC)-lectin or FITC-dextran from microvessels. Ninj1 expression was increased in pericytes in response to vascular injury. NG2-CreER/Ninj1loxp mice were treated with tamoxifen (Tam) to induce deletion of Ninj1 in pericyte (Ninj1 KO). Tam-treated NG2-CreER or Tam-nontreated NG2-CreER/Ninj1loxp mice were used as controls. Intimal hyperplasia was significantly enhanced in Ninj1 KO compared with controls. Vascular leakiness was significantly enhanced in Ninj1 KO. In Ninj1 KO, the number of infiltrated macrophages in adventitia was increased, along with the expression of inflammatory cytokines. In conclusion, deletion of Ninj1 in pericytes induces the immature vasa vasorum formation of injured vasculature and exacerbates adventitial inflammation and intimal hyperplasia. Thus, Ninj1 contributes to the vasa vasorum maturation in response to vascular injury and to reduction of vascular remodeling.NEW & NOTEWORTHY Although abnormalities of adventitial vasa vasorum are associated with vascular remodeling such as atherosclerosis, the mechanisms of vasa vasorum malformation and its role in vascular remodeling have not been fully clarified. The present study provides a line of novel evidence that ninjurin-1 contributes to adventitial microvascular maturation during vascular injury and regulates vascular remodeling.
Collapse
Affiliation(s)
- Kiwamu Horiuchi
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Kano
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Akiho Minoshima
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taiki Hayasaka
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Atsushi Yamauchi
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Takamitsu Tatsukawa
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Risa Matsuo
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuri Yoshida
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Tomita
- Department of Radiology, Asahikawa Medical University, Asahikawa, Japan
| | - Maki Kabara
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Nakagawa
- Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naofumi Takehara
- Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Hasebe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-Ichi Kawabe
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan.,Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
17
|
The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis. Sci Rep 2021; 11:1310. [PMID: 33446707 PMCID: PMC7809457 DOI: 10.1038/s41598-020-79479-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fipronil (FIP) is a phenylpyrazole insecticide that is commonly used in agricultural and veterinary fields for controlling a wide range of insects, but it is a strong environmentally toxic substance. Exposure to FIP has been reported to increase the hepatic fat accumulation through altered lipid metabolism, which ultimately can contribute to nonalcoholic fatty liver disease (NAFLD) development. The present study aimed to examine the function of cerium oxide nanoparticles (CeNPs) in protecting against hepatotoxicity and lipogenesis induced by FIP. Twenty-eight male albino rats were classified into four groups: FIP (5 mg/kg/day per os), CTR, CeNPs (35 mg/kg/day p.o.), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg/day p.o.) for 28 consecutive days. Serum lipid profiles, hepatic antioxidant parameters and pathology, and mRNA expression of adipocytokines were assessed. The results revealed that FIP increased cholesterol, height-density lipoprotein, triacylglyceride, low-density lipoprotein (LDL-c), and very-low-density lipoprotein (VLDL-c) concentrations. It also increased nitric oxide (NO) and malondialdehyde (MDA) hepatic levels and reduced glutathione peroxidase (GPx) and superoxide dismutase (SOD) enzyme activities. Additionally, FIP up-regulated the fatty acid-binding protein (FABP), acetyl Co-A carboxylase (ACC1), and peroxisome proliferator-activated receptor-alpha (PPAR-α). Immunohistochemically, a strong proliferation of cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba-1), cyclooxygenase-2 (COX-2) reactions in the endothelial cells of the hepatic sinusoids, and increased expression of caspase3 were observed following FIP intoxication. FIP also caused histological changes in hepatic tissue. The CeNPs counteracted the hepatotoxic effect of FIP exposure. So, this study recorded an ameliorative effect of CeNPs against FIP-induced hepatotoxicity.
Collapse
|
18
|
Leishmania donovani infection suppresses Allograft Inflammatory Factor-1 in monocytes and macrophages to inhibit inflammatory responses. Sci Rep 2021; 11:946. [PMID: 33441583 PMCID: PMC7807085 DOI: 10.1038/s41598-020-79068-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Macrophages and monocytes are important for clearance of Leishmania infections. However, immune evasion tactics employed by the parasite results in suppressed inflammatory responses, marked by deficient macrophage functions and increased accumulation of monocytes. This results in an ineffective ability to clear parasite loads. Allograft Inflammatory Factor-1 (AIF1) is expressed in myeloid cells and serves to promote immune responses. However, AIF1 involvement in monocyte and macrophage functions during parasitic infections has not been explored. This study now shows that Leishmania donovani inhibits AIF1 expression in macrophages to block pro-inflammatory responses. Mice challenged with the parasite had markedly reduced AIF1 expression in splenic macrophages. Follow-up studies using in vitro approaches confirmed that L. donovani infection in macrophages suppresses AIF1 expression, which correlated with reduction in pro-inflammatory cytokine production and increased parasite load. Ectopic overexpression of AIF1 in macrophages provided protection from infection, marked by robust pro-inflammatory cytokine production and efficient pathogen clearance. Further investigations found that inhibiting AIF1 expression in bone marrow cells or monocytes impaired differentiation into functional macrophages. Collectively, results show that AIF1 is a critical regulatory component governing monocyte and macrophage immune functions and that L. donovani infection can suppress the gene as an immune evasion tactic.
Collapse
|
19
|
Deng L, He K, Pan Y, Wang H, Luo Y, Xia Q. The role of tumor-associated macrophages in primary hepatocellular carcinoma and its related targeting therapy. Int J Med Sci 2021; 18:2109-2116. [PMID: 33859517 PMCID: PMC8040428 DOI: 10.7150/ijms.56003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Liver macrophages consist of ontogenically distinct populations termed Kupffer cells and monocyte-derived macrophages. Tumor-associated macrophages (TAMs) inhepatocellularcarcinoma (HCC) play a prominent role in tumormicroenvironment by presenting M1(induced by IFN γ along with LPS) and M2(induced by IL-4 and IL13) polarization. Although TAMs are involved in tumor immune surveillance during the course of HCC, they contribute to tumour progression at different levels by inhibiting the anti-tumor immune response, promoting the generation of blood vessels and lymphatic vessels, and supporting the proliferation and survival of tumor cells. In this paper, the multiple functions of TAMs in HCC were reviewed to provide assistance for future researches about therapeutic approaches.
Collapse
Affiliation(s)
- Lu Deng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixiao Pan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
The Crosstalk between Calcium Ions and Aldosterone Contributes to Inflammation, Apoptosis, and Calcification of VSMC via the AIF-1/NF- κB Pathway in Uremia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3431597. [PMID: 33343805 PMCID: PMC7732390 DOI: 10.1155/2020/3431597] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Vascular calcification is a major complication of maintenance hemodialysis patients. Studies have confirmed that calcification mainly occurs in the vascular smooth muscle cells (VSMC) of the vascular media. However, the exact pathogenesis of VSMC calcification is still unknown. This study shows that the crosstalk between calcium and aldosterone via the allograft inflammatory factor 1 (AIF-1) pathway contributes to calcium homeostasis and VSMC calcification, which is a novel mechanism of vascular calcification in uremia. In vivo results showed that the level of aldosterone and inflammatory factors increased in calcified arteries, whereas no significant changes were observed in peripheral blood. However, the expression of inflammatory factors markedly increased in the peripheral blood of uremic rats without aortic calcification and gradually returned to normal levels with aggravation of aortic calcification. In vitro results showed that there was an interaction between calcium ions and aldosterone in macrophages or VSMC. Calcium induced aldosterone synthesis, and in turn, aldosterone also triggered intracellular calcium content upregulation in macrophages or VSMC. Furthermore, activated macrophages induced inflammation, apoptosis, and calcification of VSMC. Activated VSMC also imparted a similar effect on untreated VSMC. Finally, AIF-1 enhanced aldosterone- or calcium-induced VSMC calcification, and NF-κB inhibitors inhibited the effect of AIF-1 on VSMC. These in vivo and in vitro results suggest that the crosstalk between calcium ions and aldosterone plays an important role in VSMC calcification in uremia via the AIF-1/NF-κB pathway. Local calcified VSMC induced the same pathological process in surrounding VSMC, thereby contributing to calcium homeostasis and accelerating vascular calcification.
Collapse
|
21
|
Acetaminophen-Induced Rat Hepatotoxicity Based on M1/M2-Macrophage Polarization, in Possible Relation to Damage-Associated Molecular Patterns and Autophagy. Int J Mol Sci 2020; 21:ijms21238998. [PMID: 33256230 PMCID: PMC7730394 DOI: 10.3390/ijms21238998] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Overdose of acetaminophen (APAP), an antipyretic drug, is an important cause of liver injury. However, the mechanism in the rat model remains undetermined. We analyzed APAP-induced hepatotoxicity using rats based on M1/M2-macrophage functions in relation to damage-associated molecular patterns (DAMPs) and autophagy. Liver samples from six-week-old rats injected with APAP (1000 mg/kg BW, ip, once) after 15 h fasting were collected at hour 10, and on days 1, 2, 3, and 5. Liver lesions consisting of coagulation necrosis and inflammation were seen in the affected centrilobular area on days 1 and 2, and then, recovered with reparative fibrosis by day 5. Liver exudative enzymes increased transiently on day 1. CD68+ M1-macrophages increased significantly on days 1 and 2 with increased mRNAs of M1-related cytokines such as IFN-g and TNF-α, whereas CD163+ M2-macrophages appeared later on days 2 and 3. Macrophages reacting to MHC class II and Iba1 showed M1-type polarization, and CD204+ macrophages tended to be polarized toward M2-type. At hour 10, interestingly, HMGB1 (representative DAMPs) and its related signals, TLR-9 and MyD88, as well as LC3B+ autophagosomes began to increase. Collectively, the pathogenesis of rat APAP hepatotoxicity, which is the first, detailed report for a rat model, might be influenced by macrophage functions of M1 type for tissue injury/inflammation and M2-type for anti-inflammatory/fibrosis; particularly, M1-type may function in relation to DAMPs and autophagy. Understanding the interplayed mechanisms would provide new insight into hepato-pathogenesis and contribute to the possible development of therapeutic strategies.
Collapse
|
22
|
Allograft Inflammatory Factor-1 in Metazoans: Focus on Invertebrates. BIOLOGY 2020; 9:biology9110355. [PMID: 33114451 PMCID: PMC7692721 DOI: 10.3390/biology9110355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary During their life, all living organisms defend themselves from pathogens using complex strategies. Vertebrates and invertebrates share mechanisms and molecules that guarantee their overall bodily integrity. Allograft inflammatory factor-1 (AIF-1) is a protein extensively studied in vertebrates, and especially in mammals. This factor, generally involved in inflammation events occurring upon pathogenic infection or tissue injury, is linked to several important human diseases. This review collects data on the presence and role of AIF-1 in invertebrates, which are still poorly investigated organisms. Multiple alignment and phylogenetic analysis reveal that AIF-1 is conserved in vertebrates and invertebrates, suggesting similarity of functions. In some invertebrate species, the expression of AIF-1 increases considerably after a bacterial challenge, indicating that it plays a key role during the immune responses. This review highlights the importance of studying this protein in invertebrates as a way to improve our knowledge of innate immunity mechanisms and to better understand inflammatory regulation events in mammals. Abstract Allograft inflammatory factor-1 (AIF-1) is a calcium-binding scaffold/adaptor protein often associated with inflammatory diseases. Originally cloned from active macrophages in humans and rats, this gene has also been identified in other vertebrates and in several invertebrate species. Among metazoans, AIF-1 protein sequences remain relatively highly conserved. Generally, the highest expression levels of AIF-1 are observed in immunocytes, suggesting that it plays a key role in immunity. In mammals, the expression of AIF-1 has been reported in different cell types such as activated macrophages, microglial cells, and dendritic cells. Its main immunomodulatory role during the inflammatory response has been highlighted. Among invertebrates, AIF-1 is involved in innate immunity, being in many cases upregulated in response to biotic and physical challenges. AIF-1 transcripts result ubiquitously expressed in all examined tissues from invertebrates, suggesting its participation in a variety of biological processes, but its role remains largely unknown. This review aims to present current knowledge on the role and modulation of AIF-1 and to highlight its function along the evolutionary scale.
Collapse
|
23
|
Miyata T, Minami M, Kataoka H, Hayashi K, Ikedo T, Yang T, Yamamoto Y, Yokode M, Miyamoto S. Osteoprotegerin Prevents Intracranial Aneurysm Progression by Promoting Collagen Biosynthesis and Vascular Smooth Muscle Cell Proliferation. J Am Heart Assoc 2020; 9:e015731. [PMID: 32856519 PMCID: PMC7660769 DOI: 10.1161/jaha.119.015731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Decreased extracellular matrix formation and few vascular smooth muscle cells (VSMCs) in cerebral vascular walls are the main characteristics of intracranial aneurysm (IA) pathogenesis. Recently, osteoprotegerin was reported to activate collagen biosynthesis and VSMC proliferation via the TGF-β1 (transforming growth factor-β1) signaling. This study aimed to investigate whether osteoprotegerin can prevent IA progression in rats through enhanced collagen expression and VSMC proliferation. Methods and Results IAs were surgically induced in 7-week-old male Sprague-Dawley rats; at 1-week post-operation, recombinant mouse osteoprotegerin or vehicle control was continuously infused for 4 weeks into the lateral ventricle using an osmotic pump. In the osteoprotegerin-treatment group, the aneurysmal size was significantly smaller (37.5 μm versus 60.0 μm; P<0.01) and the media of IA walls was thicker (57.1% versus 36.0%; P<0.01) than in the vehicle-control group. Type-I and type-III collagen, TGF-β1, phosphorylated Smad2/3, and proliferating cell nuclear antigen were significantly upregulated in the IA walls of the osteoprotegerin group than that in the control group. No significant difference was found in the expression of proinflammatory genes between the groups. In mouse VSMC cultures, osteoprotegerin treatment upregulated the expression of collagen and TGF-β1 genes, and activated VSMC proliferation; the inhibition of TGF-β1 signaling nullified this effect. Conclusions Osteoprotegerin suppressed the IA progression by a unique mechanism whereby collagen biosynthesis and VSMC proliferation were activated via TGF-β1 without altering proinflammatory gene expression. Osteoprotegerin may represent a novel therapeutic target for IAs.
Collapse
Affiliation(s)
- Takeshi Miyata
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kosuke Hayashi
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Taichi Ikedo
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tao Yang
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yu Yamamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Susumu Miyamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| |
Collapse
|
24
|
Horio D, Minami T, Kitai H, Ishigaki H, Higashiguchi Y, Kondo N, Hirota S, Kitajima K, Nakajima Y, Koda Y, Fujimoto E, Negi Y, Niki M, Kanemura S, Shibata E, Mikami K, Takahashi R, Yokoi T, Kuribayashi K, Kijima T. Tumor-associated macrophage-derived inflammatory cytokine enhances malignant potential of malignant pleural mesothelioma. Cancer Sci 2020; 111:2895-2906. [PMID: 32530527 PMCID: PMC7419052 DOI: 10.1111/cas.14523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related aggressive malignant neoplasm. Due to the difficulty of achieving curative surgical resection in most patients with MPM, a combination chemotherapy of cisplatin and pemetrexed has been the only approved regimen proven to improve the prognosis of MPM. However, the median overall survival time is at most 12 mo even with this regimen. There has been therefore a pressing need to develop a novel chemotherapeutic strategy to bring about a better outcome for MPM. We found that expression of interleukin-1 receptor (IL-1R) was upregulated in MPM cells compared with normal mesothelial cells. We also investigated the biological significance of the interaction between pro-inflammatory cytokine IL-1β and the IL-1R in MPM cells. Stimulation by IL-1β promoted MPM cells to form spheroids along with upregulating a cancer stem cell marker CD26. We also identified tumor-associated macrophages (TAMs) as the major source of IL-1β in the MPM microenvironment. Both high mobility group box 1 derived from MPM cells and the asbestos-activated inflammasome in TAMs induced the production of IL-1β, which resulted in enhancement of the malignant potential of MPM. We further performed immunohistochemical analysis using clinical MPM samples obtained from patients who were treated with the combination of platinum plus pemetrexed, and found that the overexpression of IL-1R tended to correlate with poor overall survival. In conclusion, the interaction between MPM cells and TAMs through a IL-1β/IL-1R signal could be a promising candidate as the target for novel treatment of MPM (Hyogo College of Medicine clinical trial registration number: 2973).
Collapse
Affiliation(s)
- Daisuke Horio
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
| | - Toshiyuki Minami
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Hidemi Kitai
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Hirotoshi Ishigaki
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
| | - Yoko Higashiguchi
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
| | - Nobuyuki Kondo
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic SurgeryHyogo College of MedicineNishinomiyaJapan
| | - Seiichi Hirota
- Department of Surgical PathologyHyogo College of MedicineNishinomiyaJapan
| | - Kazuhiro Kitajima
- Division of Nuclear Medicine and PET CenterDepartment of RadiologyHyogo College of MedicineNishinomiyaJapan
| | - Yasuhiro Nakajima
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
| | - Yuichi Koda
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Eriko Fujimoto
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Yoshiki Negi
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Maiko Niki
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Shingo Kanemura
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Eisuke Shibata
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Koji Mikami
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Ryo Takahashi
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Takashi Yokoi
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Kozo Kuribayashi
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| | - Takashi Kijima
- Department of Respiratory Medicine and HematologyHyogo College of MedicineNishinomiyaJapan
- Department of Thoracic OncologyHyogo College of MedicineNishinomiyaJapan
| |
Collapse
|
25
|
Piotrowska K, Słuczanowska-Głabowska S, Kurzawski M, Dziedziejko V, Kopytko P, Paczkowska E, Rogińska D, Safranow K, Machaliński B, Pawlik A. Over-Expression of Allograft Inflammatory Factor-1 (AIF-1) in Patients with Rheumatoid Arthritis. Biomolecules 2020; 10:biom10071064. [PMID: 32708725 PMCID: PMC7407126 DOI: 10.3390/biom10071064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022] Open
Abstract
Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic protein that is encoded by the AIF1 gene. The main functions of AIF-1 are the activation of macrophages and enhancing the production of pro-inflammatory cytokines. To date, three different AIF-1 isoforms have been identified. In this study, we examined the expression of AIF-1 isoforms on the level of mRNA, and we compared the percentage of AIF-1-positive white blood cells (WBCs) in blood and AIF-1/CD68 cells in the synovial membranes in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). We examined 15 patients with RA and 15 patients with OA who had previously undergone knee arthroplasty. Peripheral blood and synovial membranes (SMs) were collected from these patients during knee arthroplasty. We identified three AIF-1 mRNA expression variants in peripheral mononuclear cells (PBMCs) and SMs from patients in both groups. Spearman’s rank correlation coefficient tests showed strong, positive, and significant correlations between the three AIF-1 mRNA expression variants in PBMCs and/or SMs in patients with RA and OA. There were no statistically significant correlations for any of the AIF-1 mRNA expression variants between PBMCs and SMs in patients with RA and OA. We observed a statistically significant increased percentage of AIF-1-positive cells in patients with RA in comparison to patients with OA. The percentage of AIF-1-positive cells in the blood of patients with RA and OA was 1.35 ± 0.81% and 0.71 ± 0.25% (p < 0.01), respectively, whereas the percentage of AIF-1/CD68-positive WBC cells in the SMs was 24.05 ± 7.17% and 4.78 ± 1.52% (p < 0.001), respectively. In conclusion, three AIF-1 mRNA expression variants occurred in PBMCs and SM cells in patients with RA and OA. The AIF-1 mRNA expression levels of the variants correlated with each other in PBMCs and SM cells, but there were no statistically significant correlations for AIF-1 mRNA expression variants between PBMCs and SM cells in patients with RA and OA. Both in the blood and SMs, we observed an increased percentage of AIF-1-positive cells in patients with RA in comparison to patients with OA. The above results suggested that AIF-1 was the cytokine involved in the pathogenesis of RA. The precise knowledge of the role of AIF-1 in RA pathogenesis and the development of inflammatory response requires further investigations.
Collapse
Affiliation(s)
- Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.P.); (S.S.-G.); (P.K.)
| | | | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.P.); (S.S.-G.); (P.K.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.P.); (D.R.); (B.M.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.P.); (D.R.); (B.M.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.P.); (D.R.); (B.M.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.P.); (S.S.-G.); (P.K.)
- Correspondence:
| |
Collapse
|
26
|
Gong X, Li X, You X, Hu A, Liu M, Yao H, He J, Zhang X, Ning P. AIF1 was identified as an up-regulated gene contributing to CSFV Shimen infection in porcine alveolar macrophage 3D4/21 cells. PeerJ 2020; 8:e8543. [PMID: 32110485 PMCID: PMC7032059 DOI: 10.7717/peerj.8543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/10/2020] [Indexed: 11/28/2022] Open
Abstract
Classical swine fever (CSF) is a disease that is characterized by diffuse hemorrhaging, high fever, and high mortality rates. The pro-inflammatory characteristics of allograft inflammatory factor 1 (AIF1) have been well documented; however, insufficient attention has been given to porcine AIF1. In the present study, AIF1 was identified as a key player contributing to CSFV Shimen infection in porcine alveolar macrophage (PAM) 3D4/21 cell line. Our evaluation showed that AIF1 mRNA and protein are expressed at a time-dependent high level in CSFV Shimen-infected PAM 3D4/21 cells. The transcription and translation of IL6 were also significantly upregulated in infected PAM 3D4/21 cells. By utilizing overexpression RNAs approach, we showed that the cellular AIF1 induced an increased IL6 in PAM 3D4/21 cells. Furthermore, silencing of AIF1 suppressed CSFV Shimen-induced IL6 production in PAM 3D4/21 cells and also inhibited CSFV replication, whereas overexpression of recombinant AIF1 was beneficial for the replication of CSFV Shimen and promoting IL6 production in CSFV Shimen-infected PAM 3D4/21 cells. It is suggested CSFV Shimen induced IL6 in PAM 3D4/21 cells via AIF1 activation, which help clarify the AIF1-related inflammatory processes that occur on CSFV Shimen infected macrophages.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xuepeng Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xin You
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Aoxue Hu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Min Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Huimin Yao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jun He
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xianghan Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Cano-Martínez D, Monserrat J, Hernández-Breijo B, Sanmartín Salinas P, Álvarez-Mon M, Val Toledo-Lobo M, Guijarro LG. Extracellular allograft inflammatory factor-1 (AIF-1) potentiates Th1 cell differentiation and inhibits Treg response in human peripheral blood mononuclear cells from normal subjects. Hum Immunol 2020; 81:91-100. [PMID: 32057519 DOI: 10.1016/j.humimm.2020.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
We identified the presence of AIF-1 (allograft inflammatory factor-1) in human peripheral blood mononuclear cells (PBMCs) from normal subjects by immunocytological methods. After isolation of different types of mononuclear cells by FACS (Fluorescence-activated cell sorting) with >95% purity, we studied the transcript levels of AIF-1 using qPCR. We observed the following order of AIF-1 mRNA expression in mononuclear cells: T-lymphocytes ˃ Monocytes ˃ B-lymphocytes ˃ NK. After T cell expansion of isolated PBMCs using anti-CD3-CD28 magnetic beads (Dynabeads®), AIF-1 increased intracellularly in the presence of brefeldin A; this finding, along with an increase in the medium in the absence of the drug, suggests that AIF-1 is processed in the Golgi apparatus and may be secreted extracellularly. In another set of experiments, interleukin-12 and anti-interleukin-4 were added to PBMCs during T cell expansion to promote Th1 polarization and to inhibit Th2 differentiation. In this case, the presence of 6 nM of rhAIF-1 (recombinant human AIF-1) increased the mRNA expression of interferon-ϒ and interleukin-2. In the same set of experiments, the incubation of PBMCs with rhAIF-1 (6 nM) promoted the decrease of mRNA expression of IL-10 and TGF-β, along with the decrease of CD25 and Foxp3 proteins. Furthermore, extracellular rhAIF-1 (6 nM) increased the survival of naive and effector T cells during Th1 polarization by inhibition of apoptosis, without causing changes in cell cycle rate and in retinoblastoma-cyclin-dependent kinase (Rb-CDK) activation. Taken together, rhAIF-1 treatment of PBMCs potentiates Th1 response and inhibits functionally suppressive CD25 + Foxp3 + Treg, which suggests an important immunomodulatory role in governing T cell response.
Collapse
Affiliation(s)
- David Cano-Martínez
- Department of Systems Biology, University of Alcalá, Alcalá de Henares. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBEREHD), Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialties, University of Alcalá, Alcalá de Henares, Spain
| | - Borja Hernández-Breijo
- Department of Systems Biology, University of Alcalá, Alcalá de Henares. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBEREHD), Spain
| | - Patricia Sanmartín Salinas
- Department of Systems Biology, University of Alcalá, Alcalá de Henares. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBEREHD), Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, University of Alcalá, Alcalá de Henares, Spain
| | - M Val Toledo-Lobo
- Department of Biomedicine and Biotechnology, Unit of Cell Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Luis G Guijarro
- Department of Systems Biology, University of Alcalá, Alcalá de Henares. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBEREHD), Spain.
| |
Collapse
|
28
|
Role of allograft inflammatory factor-1 in pathogenesis of diseases. Immunol Lett 2019; 218:1-4. [PMID: 31830499 DOI: 10.1016/j.imlet.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) is a 17 kDa calcium-binding protein produced by monocytes, macrophages, and lymphocytes; its synthesis is induced by INF-γ. The AIF-1 gene is located in the major histocompatibility complex (MHC) class III region on chromosome 6p21.3, surrounded by surface glycoprotein genes and complement cascade protein genes as well as TNF-α, TNF-β, and NF-κB genes. Increased expression of AIF-1 was observed in several diseases, including endometriosis, breast cancer, atherosclerosis, rheumatoid arthritis, and fibrosis. In this review, we summarise the role of AIF-1 in allograft rejection and the pathogenesis of diseases.
Collapse
|
29
|
Yuan X, Wang X, Li Y, Li X, Zhang S, Hao L. Aldosterone promotes renal interstitial fibrosis via the AIF‑1/AKT/mTOR signaling pathway. Mol Med Rep 2019; 20:4033-4044. [PMID: 31545432 PMCID: PMC6797939 DOI: 10.3892/mmr.2019.10680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/05/2019] [Indexed: 01/25/2023] Open
Abstract
A number of studies have shown that aldosterone serves an important role in promoting renal interstitial fibrosis, although the specific mechanism remains to be elucidated. A previous study revealed that the fibrotic effect of aldosterone was associated with the expression of allograft inflammatory factor 1 (AIF‑1) in RAW264.7 macrophage cells, in a time‑ and concentration‑dependent manner. However, the exact mechanism through which aldosterone promotes renal interstitial fibrosis remains unknown. In the present study, the effects of aldosterone on renal inflammatory cell infiltration, collagen deposition and the expression levels of AIF‑1, phosphatidylinositol 3‑kinase (PI3K), AKT serine/threonine kinase (AKT), mammalian target of rapamycin (mTOR), the oxidative stress factor NADPH oxidase 2 (NOX2) and nuclear transcription factor erythroid‑related factor 2 (Nrf2) were assessed in normal rats, rats treated with aldosterone, rats treated with aldosterone and spironolactone and those treated with spironolactone only (used as the control). The effect of aldosterone on these factors was also investigated in the renal interstitium of unilateral ureteral obstruction (UUO) rats. Additionally, the AIF‑1 gene was overexpressed and knocked down in macrophage RAW264.7 cells, and the effects of aldosterone on PI3K, AKT, mTOR, NOX2 and Nrf2 were subsequently investigated. The results showed that aldosterone promoted inflammatory cell infiltration, collagen deposition and the expression of AIF‑1, PI3K, AKT, mTOR and NOX2, but inhibited the expression of Nrf2. In the UUO rats, aldosterone also promoted renal interstitial inflammatory cell infiltration, collagen deposition and the expression of AIF‑1, NOX2, PI3K, AKT and mTOR, whereas the expression of Nrf2 was downregulated by aldosterone compared with that in the UUO‑only group; the influence of aldosterone was counteracted by spironolactone in the normal and UUO rats. In vitro, aldosterone upregulated the expression levels of AKT, mTOR, NOX2 and Nrf2 in RAW264.7 cells compared with those in untreated cells. Suppressing the expression of AIF‑1 inhibited the effects of aldosterone, whereas the overexpression of AIF‑1 enhanced these effects in RAW264.7 cells. These findings indicated that aldosterone promoted renal interstitial fibrosis by upregulating the expression of AIF‑1 and that the specific mechanism may involve AKT/mTOR and oxidative stress signaling.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yushu Li
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Li
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuyu Zhang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
30
|
Egaña-Gorroño L, Chinnasamy P, Casimiro I, Almonte VM, Parikh D, Oliveira-Paula GH, Jayakumar S, Law C, Riascos-Bernal DF, Sibinga NES. Allograft inflammatory factor-1 supports macrophage survival and efferocytosis and limits necrosis in atherosclerotic plaques. Atherosclerosis 2019; 289:184-194. [PMID: 31439353 DOI: 10.1016/j.atherosclerosis.2019.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Allograft inflammatory factor-1 (AIF1) has been characterized as a pro-inflammatory molecule expressed primarily in the monocyte/macrophage (MP) lineage and positively associated with various forms of vascular disease, including atherosclerosis. Studies of AIF1 in atherosclerosis have relied on mouse models in which AIF1 was overexpressed in either myeloid or smooth muscle cells, resulting in increased atherosclerotic plaque burden. How physiologic expression of AIF1 contributes to MP biology in atherogenesis is not known. METHODS Effects of global AIF1 deficiency on atherosclerosis were assessed by crossing Aif1-/- and ApoE-/- mice, and provoking hyperlipidemia with high fat diet feeding. Atherosclerotic plaques were studied en face and in cross section. Bone marrow-derived MPs (BMDMs) were isolated from Aif1-/- mice for study in culture. RESULTS Atherosclerotic plaques in Aif1-/-;ApoE-/- mice showed larger necrotic cores compared to those in ApoE-/- animals, without change in overall lesion burden. In vitro, lack of AIF1 reduced BMDM survival, phagocytosis, and efferocytosis. Mechanistically, AIF1 supported activation of the NF-κB pathway and expression of related target genes involved in stress response, inflammation, and apoptosis. Consistent with this in vitro BMDM phenotype, AIF1 deficiency reduced NF-κB pathway activity in vivo and increased apoptotic cell number in atherosclerotic lesions from Aif1-/-;ApoE-/- mice. CONCLUSIONS These findings characterize AIF1 as a positive regulator of the NF-κB pathway that supports MP functions such as survival and efferocytosis. In inflammatory settings such as atherosclerosis, these AIF1-dependent activities serve to clear cellular and other debris and limit necrotic core expansion, and may oppose lesion destabilization.
Collapse
Affiliation(s)
- Lander Egaña-Gorroño
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Prameladevi Chinnasamy
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Isabel Casimiro
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Vanessa M Almonte
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Dippal Parikh
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Gustavo H Oliveira-Paula
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Smitha Jayakumar
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Calvin Law
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Dario F Riascos-Bernal
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Nicholas E S Sibinga
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology) and Department of Developmental and Molecular Biology, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
31
|
Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W, Wang Y, Li H, Fu Y, Zhu L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019; 9:5790. [PMID: 30962497 PMCID: PMC6453933 DOI: 10.1038/s41598-019-42286-8] [Citation(s) in RCA: 519] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/17/2019] [Indexed: 01/19/2023] Open
Abstract
In this study, we investigated lipopolysaccharide (LPS)-induced cognitive impairment and neuroinflammation in C57BL/6J mice by using behavioral tests, immunofluorescence, enzyme-linked immunosorbent assay (ELISA) and Western blot. We found that LPS treatment leads to sickness behavior and cognitive impairment in mice as shown in the Morris water maze and passive avoidance test, and these effects were accompanied by microglia activation (labeled by ionized calcium binding adaptor molecule-1, IBA-1) and neuronal cell loss (labeled by microtubule-associated protein 2, MAP-2) in the hippocampus. The levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) in the serum and brain homogenates were reduced by the LPS treatment, while the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), prostaglandin E2 (PGE2) and nitric oxide (NO) were increased. In addition, LPS promoted the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the brain homogenates. The Western blot analysis showed that the nuclear factor kappa B (NF-κB) signaling pathway was activated in the LPS groups. Furthermore, VIPER, which is a TLR-4-specific inhibitory peptide, prevented the LPS-induced neuroinflammation and cognitive impairment. These data suggest that LPS induced cognitive impairment and neuroinflammation via microglia activation by activating the NF-kB signaling pathway; furthermore, we compared the time points, doses, methods and outcomes of LPS administration between intraperitoneal and intracerebroventricular injections of LPS in LPS-induced neuroinflammation and cognitive impairment, and these data may provide additional insight for researchers performing neuroinflammation research.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shu Xiao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xin Lan
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Cheng
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiawei Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei Wei
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yanping Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yongmei Fu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Elizondo DM, Andargie TE, Haddock NL, da Silva RLL, de Moura TR, Lipscomb MW. IL-10 producing CD8 + CD122 + PD-1 + regulatory T cells are expanded by dendritic cells silenced for Allograft Inflammatory Factor-1. J Leukoc Biol 2018; 105:123-130. [PMID: 30512224 DOI: 10.1002/jlb.1a0118-010rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/18/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022] Open
Abstract
Allograft Inflammatory Factor-1 (AIF1) is a cytoplasmic scaffold protein that contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes in immune cells. The protein plays a dominant role in both macrophage- and dendritic cell (DC)-mediated inflammatory responses. This study now reports that AIF1 expression in DC is important in directing CD8+ T cell effector responses. Silencing AIF1 expression in murine CD11c+ DC suppressed antigen-specific CD8+ T cell activation, marked by reduced CXCR3, IFNγ and Granzyme B expression, and restrained proliferation. These primed CD8+ T cells had impaired cytotoxic killing of target cells in vitro. In turn, studies identified that AIF1 silencing in DC robustly expanded IL-10 producing CD8+ CD122+ PD-1+ regulatory T cells that suppressed neighboring immune effector responses through both IL-10 and PD-1-dependent mechanisms. In vivo studies recapitulated bystander suppression of antigen-responsive CD4+ T cells by the CD8+ Tregs expanded from the AIF1 silenced DC. These studies further demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and present a novel target for engineering tolerogenic DC-based immunotherapies.
Collapse
Affiliation(s)
| | | | - Naomi L Haddock
- Department of Biology, Howard University, Washington DC, USA
| | - Ricardo L Louzada da Silva
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Tatiana Rodrigues de Moura
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | | |
Collapse
|
33
|
Abstract
Background Inflammation is a major player in breast cancer (BC) progression. Allograft-inflammatory factor-1 (AIF1) is a crucial mediator in the inflammatory response. AIF1 reportedly plays a role in BC, but the mechanism remains to be elucidated. We identified two AIF1 isoforms, AIF1v1 and AIF1v3, which were differentially expressed between affected and unaffected sisters from families with high risk of BC with no deleterious BRCA1/BRCA2 mutations (BRCAX). We investigated potential functions of AIFv1/v3 in BC of varying severity and breast adipose tissue by evaluating their expression, and association with metabolic and clinical parameters of BC patients. Methods AIF1v1/v3 expression was determined in BC tissues and cell lines using quantitative real-time PCR. Potential roles and mechanisms were examined in the microenvironment (fibroblasts, adipose tissue, monocytes and macrophages), inflammatory response (cell reaction in BC subgroups), and metabolism [treatment with docosahexaenoic acid (DHA)]. Association of AIF1 transcript expression with clinical factors was determined by Spearman’s rank correlation. Bioinformatics analyses were performed to characterize transcripts. Results AIF1v1/v3 were mostly expressed in the less severe BC samples, and their expression appeared to originate from the tumor microenvironment. AIF1 isoforms had different expression rates and sources in breast adipose tissue; lymphocytes mostly expressed AIF1v1 while activated macrophages mainly expressed AIF1v3. Bioinformatics analysis revealed major structural differences suggesting distinct functions in BC progression. Lymphocytes were the most infiltrating cells in breast tumors and their number correlated with AIF1v1 adipose expression. Furthermore, DHA supplementation significantly lowered the expression of AIF1 isoforms in BRCAX cell lines. Finally, the expression of AIF1 isoforms in BC and breast adipose tissue correlated with clinical parameters of BC patients. Conclusions Results strongly suggest that AIF1v1 as much as AIF1v3 play a major role in the crosstalk between BC and infiltrating immune cells mediating tumor progression, implying their high potential as target molecules for BC diagnostic, prognostication and treatment. Electronic supplementary material The online version of this article (10.1186/s12935-018-0663-3) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Prodrugs for colon-restricted delivery: Design, synthesis, and in vivo evaluation of colony stimulating factor 1 receptor (CSF1R) inhibitors. PLoS One 2018; 13:e0203567. [PMID: 30192846 PMCID: PMC6128612 DOI: 10.1371/journal.pone.0203567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
The ability to restrict low molecular weight compounds to the gastrointestinal (GI) tract may enable an enhanced therapeutic index for molecular targets known to be associated with systemic toxicity. Using a triazolopyrazine CSF1R inhibitor scaffold, a broad range of prodrugs were synthesized and evaluated for enhanced delivery to the colon in mice. Subsequently, the preferred cyclodextrin prodrug moiety was appended to a number of CSF1R inhibitory active parent molecules, enabling GI-restricted delivery. Evaluation of a cyclodextrin prodrug in a dextran sodium sulfate (DSS)-induced mouse colitis model resulted in enhanced GI tissue levels of active parent. At a dose where no significant depletion of systemic monocytes were detected, the degree of pharmacodynamic effect-measured as reduction in macrophages in the colon-was inferior to that observed with a systemically available positive control. This suggests that a suitable therapeutic index cannot be achieved with CSF1R inhibition by using GI-restricted delivery in mice. However, these efforts provide a comprehensive frame-work in which to pursue additional gut-restricted delivery strategies for future GI targets.
Collapse
|
35
|
Ikeda H, Ishii A, Sano K, Chihara H, Arai D, Abekura Y, Nishi H, Ono M, Saji H, Miyamoto S. Activatable fluorescence imaging of macrophages in atherosclerotic plaques using iron oxide nanoparticles conjugated with indocyanine green. Atherosclerosis 2018; 275:1-10. [DOI: 10.1016/j.atherosclerosis.2018.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
36
|
Yasuda-Yamahara M, Rogg M, Yamahara K, Maier JI, Huber TB, Schell C. AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS One 2018; 13:e0200487. [PMID: 30001384 PMCID: PMC6042786 DOI: 10.1371/journal.pone.0200487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Podocytes are highly-specialized epithelial cells essentially required for the generation and the maintenance of the kidney filtration barrier. This elementary function is directly based on an elaborated cytoskeletal apparatus establishing a complex network of primary and secondary processes. Here, we identify the actin-bundling protein allograft-inflammatory-inhibitor 1 like (AIF1L) as a selectively expressed podocyte protein in vivo. We describe the distinct subcellular localization of AIF1L to actin stress fibers, focal adhesion complexes and the nuclear compartment of podocytes in vitro. Genetic deletion of AIF1L in immortalized human podocytes resulted in an increased formation of filopodial extensions and decreased actomyosin contractility. By the use of SILAC based quantitative proteomics analysis we describe the podocyte specific AIF1L interactome and identify several components of the actomyosin machinery such as MYL9 and UNC45A as potential AIF1L interaction partners. Together, these findings indicate an involvement of AIF1L in the stabilization of podocyte morphology by titrating actomyosin contractility and membrane dynamics.
Collapse
Affiliation(s)
- Mako Yasuda-Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Manuel Rogg
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jasmin I. Maier
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Christoph Schell
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Zhao YY, Lin YQ, Xu YO. Functional Identification of Allograft Inflammatory Factor 1-Like Gene in Luning Chicken. Anim Biotechnol 2018; 29:234-240. [PMID: 29035136 DOI: 10.1080/10495398.2017.1369096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Allograft inflammatory factor-1 (AIF-1) is an inflammation-related protein mainly produced by immune cells, such as monocyte/macrophages and activated T lymphocytes. It is essential for the survival and proinflammatory activity of immune cells. However, the function of AIF-1 in chicken still has not been defined. In the present study, AIF-1-like (AIF1L) gene was identified in Luning chicken. Bioinformatics analysis revealed that the molecular weight of the chicken AIF-1 protein was 16290.8 Da. AIF1L contained a Ca2+ binding EF hand and could interact with actin filament. Its transcript was found in all tested tissues including spleen, brain, heart, kidney, liver, thymus, bursa of Fabricius, lung, and a relative low-level expression was detected in leg muscle. Furthermore, AIF1L expression in peripheral blood lymphocyte was depressed in a dose-dependent manner with cadmium exposure and peripheral blood lymphocyte viability decrease displayed a similar pattern with AIF1L expression. The results indicated that newly identified chicken AIF1L might be associated with lymphocyte viability.
Collapse
Affiliation(s)
- Yan-Ying Zhao
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , P. R. China
| | - Ya-Qiu Lin
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , P. R. China
| | - Ya-Ou Xu
- a College of Life Science and Technology , Southwest University for Nationalities , Chengdu , P. R. China
| |
Collapse
|
38
|
Jiao X, Xiao Y, Li Y, Liang M, Xie X, Wang X, Tang B. Evaluating Drug-Induced Liver Injury and Its Remission via Discrimination and Imaging of HClO and H 2S with a Two-Photon Fluorescent Probe. Anal Chem 2018; 90:7510-7516. [PMID: 29781282 DOI: 10.1021/acs.analchem.8b01106] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) has aroused wide concern. Finding new markers or indicators as well as detoxification molecules for DILI is of great significance and good application prospect, which can help develop effective preclinical screening methodology and corresponding treatment protocols. Herein, in this article, DILI caused by antidepressant drugs of duloxetine and fluoxetine and its remission were evaluated by a two-photon fluorescent probe, RPC-1, through discriminating and imaging HClO and H2S simultaneously. By being applied both in vitro and in vivo, RPC-1 revealed slight up-regulation of HClO and negligible liver damage after administration of either of the two drugs. In contrast, an apparent up-regulation of HClO and obvious liver damage was observed after combined administration of the drugs. Meanwhile, the pretreatment of N-acetyl cysteine (NAC) resulted in the increasing of endogenous H2S level, which contributed to the remission of DILI. The histological analysis and serological test both gave good consistency with the imaging results. These findings demonstrate that HClO may be an appropriate indicator of DILI, and H2S plays an important role in the antidotal effect of NAC. We envision that RPC-1 can be used as a powerful tool to predict clinical DILI and study the effect of antidote, as well as explore the molecular mechanisms involved.
Collapse
Affiliation(s)
- Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Yongsheng Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Muwen Liang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
39
|
Li Y, Wang X, Zhang L, Yuan X, Hao J, Ni J, Hao L. Upregulation of allograft inflammatory factor‑1 expression and secretion by macrophages stimulated with aldosterone promotes renal fibroblasts to a profibrotic phenotype. Int J Mol Med 2018; 42:861-872. [PMID: 29749461 PMCID: PMC6034929 DOI: 10.3892/ijmm.2018.3667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages have been identified as a key cell type in the pathogenesis of renal interstitial fibrosis (RIF). However, the mechanism through which macrophages drive fibrosis remains unclear. The current study focuses on the effects and possible underlying mechanism of allograft inflammatory factor-1 (AIF-1), an inflammation-responsive scaffold protein expressed and secreted by macrophages, in promoting fibroblasts to a profibrotic phenotype. In vivo experiments indicated that AIF-1, CD68 and α-smooth muscle actin (α-SMA) were upregulated in kidney tissues of mice subjected to unilateral ureteric obstruction, while their expressions were inhibited by an aldosterone receptor antagonist, spironolactone. Double immunofluorescence staining revealed that AIF-1 expression co-localized with CD68-positive macrophages in the renal interstitium, indicating that AIF-1 expression in macrophages was increased in the RIF animal model. Furthermore, to identify the role of AIF-1 in promoting fibrosis, its expression and secretion by the RAW264.7 macrophage cell line were detected in vitro. The expression levels of α-SMA, phosphorylated p38 (p-p38) and fibronectin (FN) in fibroblasts were examined subsequent to co-culture with macrophages. The increase in AIF-1 expression and secretion was confirmed in RAW264.7 cells in response to aldosterone. After 72 h of co-culture between fibroblasts and macrophages stimulated with aldosterone, the α-SMA expression was induced in fibroblasts, with significantly increased expression levels of FN and p-p38 observed. In addition, AIF-1 expression was reduced by stable transfection of RAW264.7 cells with AIF-1 small interfering RNA, resulting in significantly reduced expression levels of α-SMA, p-p38 and FN in fibroblasts co-cultured with macrophages as compared with normal macrophages. These findings indicate that the expression of AIF-1 in macrophages is critical for the activation of renal fibroblasts to a profibrotic phenotype. AIF-1 expression was upregulated in macrophages, and may be a novel mechanism linking macrophages to the promotion of RIF via the p38 signaling pathway.
Collapse
Affiliation(s)
- Yushu Li
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingzhi Wang
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Zhang
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xueying Yuan
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianbing Hao
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jie Ni
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lirong Hao
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
40
|
Elizondo DM, Andargie TE, Yang D, Kacsinta AD, Lipscomb MW. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4 + T Cell Effector Responses and Induces CD25 +Foxp3 + T Regulatory Subsets. Front Immunol 2017; 8:1502. [PMID: 29167673 PMCID: PMC5682305 DOI: 10.3389/fimmu.2017.01502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Allograft inflammatory factor-1 (AIF1) is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c+ dendritic cells (DC) and silencing of expression restrains induction of antigen-specific CD4+ T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25+Foxp3+ T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.
Collapse
Affiliation(s)
- Diana M Elizondo
- Department of Biology, Howard University, Washington, DC, United States
| | | | - Dazhi Yang
- Department of Biology, Howard University, Washington, DC, United States
| | - Apollo D Kacsinta
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, United States
| | | |
Collapse
|
41
|
Egger C, Cannet C, Gérard C, Suply T, Ksiazek I, Jarman E, Beckmann N. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. Eur J Pharmacol 2017; 809:64-72. [DOI: 10.1016/j.ejphar.2017.05.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/29/2022]
|
42
|
Cai H, Zhu XD, Ao JY, Ye BG, Zhang YY, Chai ZT, Wang CH, Shi WK, Cao MQ, Li XL, Sun HC. Colony-stimulating factor-1-induced AIF1 expression in tumor-associated macrophages enhances the progression of hepatocellular carcinoma. Oncoimmunology 2017; 6:e1333213. [PMID: 28932635 PMCID: PMC5599077 DOI: 10.1080/2162402x.2017.1333213] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
M2-polarized (alternatively activated) macrophages play an important role in the progression of hepatocellular carcinoma (HCC). Allograft inflammatory factor 1 (AIF1) is overexpressed in M2-polarized macrophages. This study explored the role of AIF1 in tumor-associated macrophages in HCC. Macrophages were stimulated with colony-stimulating factor 1 (CSF1) to characterize the regulatory pathway of AIF1 in macrophages. The chromatin immunoprecipitation and luciferase reporter gene assay were conducted to examine transcription factors associated with AIF1 expression. AIF1 was down or upregulated, and the effects on tumor progression were evaluated by using in vitro and in vivo co-culture systems. A cytokine array was performed to screen the downstream functional components of AIF1. Tumor tissue from 206 patients with HCC were used to explore the clinical significance of AIF1. AIF1 induced a M2-like phenotype of macrophages. By facilitating the binding of c-Jun to the promoter of AIF1, CSF1 secreted from hepatoma cells increased AIF1 expression through the CSF1R-MEK1/2-Erk1/2-c-Jun axis. AIF1 expressed in macrophages promoted the migration of hepatoma cells in co-culture system of RAW264.7 and Hepa1-6 and tumor growth in an animal model. The cytokine array showed that CXCL16 was increased in RAW264.7 cells with overexpressed AIF1, leading to enhanced tumor cell migration. In human HCC tissue, AIF1-positive macrophages in the adjacent microenvironment was associated with microvascular invasion and advanced TNM stages and with patients' overall and disease-free survival (p = 0.002 for both). AIF1 expression in macrophages plays a pivotal role in the interaction between macrophages and hepatoma cells.
Collapse
Affiliation(s)
- Hao Cai
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jian-Yang Ao
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo-Gen Ye
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan-Yuan Zhang
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zong-Tao Chai
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Cheng-Hao Wang
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wen-Kai Shi
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Man-Qing Cao
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiao-Long Li
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
43
|
Kallikourdis M, Martini E, Carullo P, Sardi C, Roselli G, Greco CM, Vignali D, Riva F, Ormbostad Berre AM, Stølen TO, Fumero A, Faggian G, Di Pasquale E, Elia L, Rumio C, Catalucci D, Papait R, Condorelli G. T cell costimulation blockade blunts pressure overload-induced heart failure. Nat Commun 2017; 8:14680. [PMID: 28262700 PMCID: PMC5343521 DOI: 10.1038/ncomms14680] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a leading cause of mortality. Inflammation is implicated in HF, yet clinical trials targeting pro-inflammatory cytokines in HF were unsuccessful, possibly due to redundant functions of individual cytokines. Searching for better cardiac inflammation targets, here we link T cells with HF development in a mouse model of pathological cardiac hypertrophy and in human HF patients. T cell costimulation blockade, through FDA-approved rheumatoid arthritis drug abatacept, leads to highly significant delay in progression and decreased severity of cardiac dysfunction in the mouse HF model. The therapeutic effect occurs via inhibition of activation and cardiac infiltration of T cells and macrophages, leading to reduced cardiomyocyte death. Abatacept treatment also induces production of anti-inflammatory cytokine interleukin-10 (IL-10). IL-10-deficient mice are refractive to treatment, while protection could be rescued by transfer of IL-10-sufficient B cells. These results suggest that T cell costimulation blockade might be therapeutically exploited to treat HF. Abatacept is an FDA-approved drug used for treatment of rheumatoid arthritis. Here the authors show that abatacept reduces cardiomyocyte death in a mouse model of heart failure by inhibiting activation and heart infiltration of T cells and macrophages, an effect mediated by IL-10, suggesting a potential therapy for heart failure.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, 20089 Milan, Italy
| | - Elisa Martini
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Pierluigi Carullo
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy.,Institute of Genetic and Biomedical Research (IRGB)-UOS of Milan, National Research Council of Italy, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Claudia Sardi
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Carolina M Greco
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Debora Vignali
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Federica Riva
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Anne Marie Ormbostad Berre
- KG Jebsen Centre of Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postboks 8905, 7491 Trondheim, Norway
| | - Tomas O Stølen
- KG Jebsen Centre of Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postboks 8905, 7491 Trondheim, Norway.,Norwegian Health Association, Oscars gate 36A, 0258 Oslo, Norway
| | - Andrea Fumero
- Cardiac Surgery, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giuseppe Faggian
- Department of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Elisa Di Pasquale
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy.,Institute of Genetic and Biomedical Research (IRGB)-UOS of Milan, National Research Council of Italy, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Leonardo Elia
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy.,Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cristiano Rumio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Trentacoste 2, 20133 Milan, Italy
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB)-UOS of Milan, National Research Council of Italy, Via Manzoni 56, Rozzano, 20089 Milan, Italy.,Laboratory of Signal Transduction in Cardiac Pathologies, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Roberto Papait
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy.,Institute of Genetic and Biomedical Research (IRGB)-UOS of Milan, National Research Council of Italy, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, 20089 Milan, Italy.,Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
44
|
Histopathological Analysis of Rat Hepatotoxicity Based on Macrophage Functions: in Particular, an Analysis for Thioacetamide-induced Hepatic Lesions. Food Saf (Tokyo) 2016; 4:61-73. [PMID: 32231908 DOI: 10.14252/foodsafetyfscj.2016012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatic macrophages play an important role in homeostasis. The functional abnormalities of hepatic macrophages primarily or secondarily influence chemically induced hepatotoxicity. However, the evaluation system based on their functions has not yet been established. Recently, a new concept (M1-/M2-macrophage polarization) was proposed; M1-macropahges are induced by INF-γ, and show high phagocytosis/tissue damage, whereas M2-macropahges are induced by IL-4 and play roles in reparative fibrosis by releasing IL-10 and TGF-β1. In hepatogenesis, CD68-expressing M1-macrophages predominantly exist in embryos; in neonates, in contrast, CD163-/CD204-expressing M2-macrophages appear along the sinusoids and mature as Kupffer cells. Activated Kupffer cells by liposome decrease AST and ALT values, whereas AST and ALT values are increased under Kupffer cells depleted with clodronate treatment. Since Kupffer cells may be involved in clearance of liver enzymes, macrophage condition should be taken into consideration when hepatotoxicity is analyzed. In TAA-induced acute hepatic lesions, INF-γ, TNF-α and IL-6 for M1-factors and IL-4 for M2-factors are already increased before histopathological change; the appearance of CD68-expressing M1-macrophages and CD163-expressing M2-macrophages follows in injured centrilobular lesions, and TGF-β1 and IL-10 are increased for reparative fibrosis. CD68-expressing M1-macrophages co-express MHC class II and Iba-1, whereas CD163-expressing M2-macrophages also express CD204 and Galectin-3. Under macrophage depletion by clodoronate, TAA-treated rat livers show prolonged coagulation necrosis of hepatocytes, and then develop dystrophic calcification without reparative fibrosis. The depletion of hepatic macrophages influences hepatic lesion development. Collectively, a histopathological analysis method for hepatotoxicity according to M1-/M2-macrophage polarization would lead to the refinement of hazard characterization of chemicals in food and feed.
Collapse
|
45
|
Wijesundera KK, Izawa T, Tennakoon AH, Golbar HM, Tanaka M, Kuwamura M, Yamate J. M1-/M2-macrophage polarization in pseudolobules consisting of adipohilin-rich hepatocytes in thioacetamide (TAA)-induced rat hepatic cirrhosis. Exp Mol Pathol 2016; 101:133-42. [PMID: 27453055 DOI: 10.1016/j.yexmp.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Liver steatosis is the most frequent liver disease and may further develop into non-alcoholic steatohepatitis (NASH), liver cirrhosis, and finally hepatocellular carcinoma. Adipophilin (Adp) is localized on lipid droplet membrane in cytoplasm, and its increased expression is related to development of steatosis and NASH. The relationship between M1-/M2-macrophage polarization and Adp-rich hepatocyte-consisting pseudolobules (PLs) was investigated in thioacetamide (TAA)-induced rat cirrhosis. MATERIALS AND METHOD F344 rats were injected twice weekly with TAA (100mg/kg bodyweight) and sacrificed at post-first injection (PFI) weeks 5, 10, 15, 20, 25 and 32. Macrophage immunophenotypes and Adp-containing hepatocytes were analyzed by single immunolabeling. Adp and M1-/M2-related factors were analyzed by real -time RT-PCR. RESULTS PLs consisting exclusively of Adp-containing hepatocytes (Adp-positive) and PLs consisting of few Adp-containing hepatocytes (Adp-negative) were clearly distinguishable at PFI week 20 onwards. The numbers of M1-macrophages (reacting to CD68 and Iba1) and M2- macrophages (reacting to CD163, CD204 and Gal-3) were considerably greater in Adp-positive PLs. Expressions for both M1 (TNF-α, MCP-1, and Iba1)- and M2 (IL-4, TGF-β1, Gal-3, and Hsp25)-related factors were markedly higher in Adp-positive PLs at PFI week 25. Interestingly, MHC class II-positive macrophages/dendritic cells were increased in Adp-positive clusters/foci at the early stages at PFI weeks 5 and 10, and the level was gradually decreased thereafter. CONCLUSIONS M1-/M2-macrophages may simultaneously participate in the pathogenesis of steatosis in TAA-induced cirrhosis through M1- and M2-related factors. MHC class II cells may be responsible for steatosis at early stages, suggesting different functions from the above M1-/M2-macropahges.
Collapse
Affiliation(s)
- Kavindra Kumara Wijesundera
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan; Veterinary Pathology, Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka, 20000
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Anusha Hemamali Tennakoon
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan; Teaching Hospital Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Hossain Md Golbar
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano City, Osaka, 598-8531, Japan.
| |
Collapse
|
46
|
Zhao Y, Li R, Lin Y. Allograft inflammatory factor-1 in grass carp (Ctenopharynogodon idella): Expression and response to cadmium exposure. FISH & SHELLFISH IMMUNOLOGY 2015; 47:444-449. [PMID: 26334790 DOI: 10.1016/j.fsi.2015.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/22/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Allograft Inflammatory Factor-1 (AIF-1) is an inflammation responsive protein that is mainly produced by immunocytes. As a pro-inflammatory cytokine, AIF-1 is a key moderator in host immune defense reaction. However, the inflammatory properties of AIF-1 in freshwater fish still hasn't been clearly elucidated. In the present study, AIF-1 was identified from grass carp (Ctenopharynogodon idella). It's transcript was found in all examined tissues including brain, spleen, kidney, liver, heart, while a relative low level in red muscle, gill, thymus, white muscle, intestine and fin. Furthermore, AIF-1 transcription and expression level decreased in spleen and didn't change a lot in kidney with cadmium induction, respectively. The result indicated that grass carp AIF-1 might be involved in cadmium-induced stress.
Collapse
Affiliation(s)
- Yanying Zhao
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, PR China
| | - Ruiwen Li
- Reproductive Laboratory, Chengdu Woman Children Central Hospital, Chengdu, PR China; Health Ministry Key Laboratory of Chronobiology, Pre-clinic and Forensic Medical School, Sichuan University, Chengdu, PR China
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, PR China.
| |
Collapse
|
47
|
Jia S, Du Z, Jiang H, Huang X, Chen Z, Chen N. Daintain/AIF-1 accelerates the activation of insulin-like growth factor-1 receptor signaling pathway in HepG2 cells. Oncol Rep 2015; 34:511-7. [PMID: 25998745 DOI: 10.3892/or.2015.4002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Daintain/allograft inflammatory factor-1 (AIF-1), as a novel inflammatory factor, has been reported to accelerate the proliferation and migration of breast cancer cells. However, the effect of daintain/AIF-1 on hepatocarcinogenesis remains unclear. In order to explore the effect of daintain/AIF-1 on the progression of hepatocellular carcinoma (HCC), enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR) were performed to examine the secretion and gene expression of (IGF)-1, IGF-2 and IGFBP-3. The expression of IGF-1R and its downstream targets was evaluated by western blotting. In addition, the proliferation and cell-cycle progression of HepG2 cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide (MTT) and flow cytometric analysis. The results showed that HepG2 cells subjected to daintain/AIF-1 treatment revealed an obvious increase in the secretion of IGF-1 and IGF-2, and a reduction in the secretion of IGFBP-3. Moreover, daintain/AIF-1 accelerated the activation of IGF-1-induced IGF-1R and its downstream AKT signaling pathway, and subsequently promoted the activation of cyclin D1 pathway, thus accelerating the progression of the cell cycle and eventually promoting the proliferation of HepG2 cells. In conclusion, daintain/AIF-1 promoted the proliferation of HepG2 cells by accelerating the activation of IGF-1R and its downstream signaling pathway, which confirms that daintain/AIF-1 plays a crucial role in the development of HCC.
Collapse
Affiliation(s)
- Shaohui Jia
- College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| | - Zhongxia Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Hua Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Xingyuan Huang
- School of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, P.R. China
| | - Zhengwang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Ning Chen
- College of Health Science, Wuhan Sports University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
48
|
Wijesundera KK, Izawa T, Tennakoon AH, Murakami H, Golbar HM, Katou-Ichikawa C, Tanaka M, Kuwamura M, Yamate J. M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol 2014; 96:382-92. [DOI: 10.1016/j.yexmp.2014.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
|
49
|
Daintain/AIF-1 Reinforces the Resistance of Breast Cancer Cells to Cisplatin. Biosci Biotechnol Biochem 2014; 76:2338-41. [DOI: 10.1271/bbb.120577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Chen QR, Guan F, Song SM, Jin JK, Lei DS, Chen CM, Lei JH, Chen ZW, Niu AO. Allograft inflammatory factor-1 alleviates liver disease of BALB/c mice infected with Schistosoma japonicum. Parasitol Res 2014; 113:2629-39. [PMID: 24816816 DOI: 10.1007/s00436-014-3915-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) plays an important role in various inflammatory conditions. Our previous study demonstrated that AIF-1 was over-expressed in the liver of BALB/c mice infected with Schistosoma japonicum and played significant role in the pathogenesis of schistosomiasis. The aim of this study was to focus on the effect of AIF-1 treatment on liver fibrosis and necrosis of BALB/c mice infected with S. japonicum. Seventy-two BALB/c mice were infected with cercariae of S. japonicum and then divided into three groups: AIF-1-treated group, saline-treated group, and control group. The vital signs, liver function, egg load, and hepatic pathological changes of the mice were assessed, and the levels of AIF-1 and TNF-α in the liver and spleen were measured at 5, 8, and 14 weeks postinfection. The treatment of AIF-1 on the mice infected with S. japonicum suppressed the expression of TNF-α and increased the effectiveness of AIF-1 in the liver and spleen at 14 weeks postinfection. Histopathological analysis and Masson trichrome staining for the liver tissues showed that the liver fibrosis and necrosis were alleviated previously compared with other infected mice at 14 weeks postinfection. The treatment of AIF-1 on the mice infected with S. japonicum can alleviate hepatic fibrosis and necrosis which indicate that AIF-1 use may prevent and cure the liver fibrosis.
Collapse
Affiliation(s)
- Qiong-Rong Chen
- Department of Pathology, Hubei Cancer Hospital, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|