1
|
Hu B, Liu T, Wu Z, Phan SH. P53 regulates CCAAT/Enhancer binding protein β gene expression. Gene 2023; 884:147675. [PMID: 37541559 DOI: 10.1016/j.gene.2023.147675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) is implicated in diverse processes and diseases. Its two isoforms, namely liver-enriched activator protein (LAP) and liver-enriched inhibitor protein (LIP) are translated from the same mRNA. They share the same C-terminal DNA binding domain except LAP has an extra N-terminal activation domain. Probably due to its higher affinity for its DNA cognate sequences, LIP can inhibit LAP transcriptional activity even at substoichiometric levels. However, the regulatory mechanism of C/EBPβ gene expression and the LAP: LIP ratio is unclear. METHODS In this study, the C/EBPβ promoter sequence was scanned for conserved P53 response element (P53RE), and binding of P53 to the C/EBPβ promoter was tested by Electrophoretic Mobility Shift Assay (EMSA) and chromatin immunoprecipitation assay. P53 over-expression and dominant negative P53 expression plasmids were transfected into rat lung fibroblasts and tested for C/EBPβ gene transcription and expression. Western blot analysis was used to test the regulation of C/EBPβ LAP and LIP isoforms. Constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region were used to test the importance of 5'UTR in the control of C/EBPβ LAP and LIP translation. RESULTS The C/EBPβ promoter sequence was found to contain a conserved P53 response element (P53RE), which binds P53 as demonstrated by Electrophoresis Mobility Shift Assay and chromatin immunoprecipitation assays. P53 over-expression suppressed while dominant negative P53 stimulated C/EBPβ gene transcription and expression. Western blot analysis showed that P53 differentially regulated the translation of the C/EBPβ LAP and LIP isoforms through the regulation of eIF4E and eIF4E-BP1. Further studies with constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region showed that the 5'UTR is important in differential control of C/EBPβ LAP and LIP translation. CONCLUSION Analysis of the effects of P53 on C/EBPβ expression revealed a novel mechanism by which P53 could antagonize the effects of C/EBPβ on its target gene expression. For the first time, P53 is shown to be a repressor of C/EBPβ gene expression at both transcriptional and translational levels, with a differential effect in the magnitude of the effect on LAP vs. LIP isoforms.
Collapse
Affiliation(s)
- Biao Hu
- Department of Internal Medicine, University of Michigan Medical School, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109 USA
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109 USA
| | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109 USA.
| |
Collapse
|
2
|
Istomine R, Al-Aubodah TA, Alvarez F, Smith JA, Wagner C, Piccirillo CA. The eIF4EBP-eIF4E axis regulates CD4 + T cell differentiation through modulation of T cell activation and metabolism. iScience 2023; 26:106683. [PMID: 37187701 PMCID: PMC10176268 DOI: 10.1016/j.isci.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
CD4+ T cells are critical for adaptive immunity, differentiating into distinct effector and regulatory subsets. Although the transcriptional programs underlying their differentiation are known, recent research has highlighted the importance of mRNA translation in determining protein abundance. We previously conducted genome-wide analysis of translation in CD4+ T cells revealing distinct translational signatures distinguishing these subsets, identifying eIF4E as a central differentially translated transcript. As eIF4E is vital for eukaryotic translation, we examined how altered eIF4E activity affected T cell function using mice lacking eIF4E-binding proteins (BP-/-). BP-/- effector T cells showed elevated Th1 responses ex vivo and upon viral challenge with enhanced Th1 differentiation observed in vitro. This was accompanied by increased TCR activation and elevated glycolytic activity. This study highlights how regulating T cell-intrinsic eIF4E activity can influence T cell activation and differentiation, suggesting the eIF4EBP-eIF4E axis as a potential therapeutic target for controlling aberrant T cell responses.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Jacob A. Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
3
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
4
|
Nuclear-targeted 4E-BP1 is dephosphorylated, induces nuclear translocation of eIF4E, and alters mRNA translation. Exp Cell Res 2022; 418:113246. [PMID: 35697076 DOI: 10.1016/j.yexcr.2022.113246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) phosphorylates and inhibits eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). This leads to the release of eIF4E from 4E-BP1 and the initiation of eIF4E-dependent mRNA translation. In this study, we examined the expression of a 4E-BP1-based reporter (mTORC1 activity reporter; TORCAR) with various localization signal tags to clarify the relationship between the localization of 4E-BP1 and its phosphorylation. Phosphorylation of 4E-BP1 at threonine 37/46 and serine 65 was efficient at lysosomes and the plasma membrane, whereas it was significantly decreased in the nucleus. In addition, the localization of endogenous eIF4E shifted from the cytoplasm to the nucleus only when nuclear-localized TORCAR was expressed. Nuclear-localized TORCAR decreased cyclin D1 protein levels and altered cell cycle distribution. These data provide an experimental tool to manipulate the localization of endogenous eIF4E without affecting mTORC1 and highlight the important role of nuclear-cytoplasmic shuttling of eIF4E.
Collapse
|
5
|
Sidibé H, Vande Velde C. Collective Learnings of Studies of Stress Granule Assembly and Composition. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2428:199-228. [PMID: 35171482 DOI: 10.1007/978-1-0716-1975-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stress granules have gained considerable exposure and interest in recent years. These micron-sized entities, composed of RNA and protein, form following a stress exposure and have been linked to several pathologies. Understanding stress granule function is paramount but has been arduous due to the membraneless nature of these organelles. Several new methodologies have recently been developed to catalogue the protein and RNA composition of stress granules. Collectively, this work has provided important insights to potential stress granule functions as well as molecular mechanisms for their assembly and disassembly. This chapter reviews the latest advancements in the understanding of stress granule dynamics and discusses the various protocols developed to study their composition.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada.
| |
Collapse
|
6
|
Smeeton J, Natarajan N, Naveen Kumar A, Miyashita T, Baddam P, Fabian P, Graf D, Crump JG. Zebrafish model for spondylo-megaepiphyseal-metaphyseal dysplasia reveals post-embryonic roles of Nkx3.2 in the skeleton. Development 2021; 148:dev193409. [PMID: 33462117 PMCID: PMC7860120 DOI: 10.1242/dev.193409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Natasha Natarajan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arati Naveen Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tetsuto Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Frydrýšková K, Mašek T, Pospíšek M. Changing faces of stress: Impact of heat and arsenite treatment on the composition of stress granules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1596. [PMID: 32362075 DOI: 10.1002/wrna.1596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/07/2022]
Abstract
Stress granules (SGs), hallmarks of the cellular adaptation to stress, promote survival, conserve cellular energy, and are fully dissolved upon the cessation of stress treatment. Different stresses can initiate the assembly of SGs, but arsenite and heat are the best studied of these stresses. The composition of SGs and posttranslational modifications of SG proteins differ depending on the type and severity of the stress insult, methodology used, cell line, and presence of overexpressed and tagged proteins. A group of 18 proteins showing differential localization to SGs in heat- and arsenite-stressed mammalian cell lines is described. Upon severe and prolonged stress, physiological SGs transform into more solid protein aggregates that are no longer reversible and do not contain mRNA. Similar pathological inclusions are hallmarks of neurodegenerative diseases. SGs induced by heat stress are less dynamic than SGs induced by arsenite and contain a set of unique proteins and linkage-specific polyubiquitinated proteins. The same types of ubiquitin linkages have been found to contribute to the development of neurodegenerative disorders such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis (ALS). We propose heat stress-induced SGs as a possible model of an intermediate stage along the transition from dynamic, fully reversible arsenite stress-induced SGs toward aberrant SGs, the hallmark of neurodegenerative diseases. Stress- and methodology-specific differences in the compositions of SGs and the transition of SGs to aberrant protein aggregates are discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Guarino AM, Mauro GD, Ruggiero G, Geyer N, Delicato A, Foulkes NS, Vallone D, Calabrò V. YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress. Sci Rep 2019; 9:9059. [PMID: 31227764 PMCID: PMC6588705 DOI: 10.1038/s41598-019-45468-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/04/2019] [Indexed: 01/14/2023] Open
Abstract
The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress.
Collapse
Affiliation(s)
- Andrea Maria Guarino
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,University of Ferrara, Department of Life Sciences and Biotechnology, Via Borsari 46, 44121, Ferrara, Italy
| | - Gennaro Ruggiero
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nathalie Geyer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Antonella Delicato
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Viola Calabrò
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy.
| |
Collapse
|
9
|
Lu H, Mazumder M, Jaikaran ASI, Kumar A, Leis EK, Xu X, Altmann M, Cochrane A, Woolley GA. A Yeast System for Discovering Optogenetic Inhibitors of Eukaryotic Translation Initiation. ACS Synth Biol 2019; 8:744-757. [PMID: 30901519 DOI: 10.1021/acssynbio.8b00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, AsLOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photoactivated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate human eIF4E-dependent translation initiation in a mechanistically defined manner.
Collapse
Affiliation(s)
- Huixin Lu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mostafizur Mazumder
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anna S. I. Jaikaran
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anil Kumar
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Eric K. Leis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Xiuling Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Altmann
- Institut für Biochemie und Molekulare Medizin, Universität Bern, Bühlstr. 28, CH-3012 Bern, Switzerland
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
10
|
Repici M, Hassanjani M, Maddison DC, Garção P, Cimini S, Patel B, Szegö ÉM, Straatman KR, Lilley KS, Borsello T, Outeiro TF, Panman L, Giorgini F. The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration. Mol Neurobiol 2018; 56:61-77. [PMID: 29675578 PMCID: PMC6334738 DOI: 10.1007/s12035-018-1084-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Mutations in the gene encoding DJ-1 are associated with autosomal recessive forms of Parkinson’s disease (PD). DJ-1 plays a role in protection from oxidative stress, but how it functions as an “upstream” oxidative stress sensor and whether this relates to PD is still unclear. Intriguingly, DJ-1 may act as an RNA binding protein associating with specific mRNA transcripts in the human brain. Moreover, we previously reported that the yeast DJ-1 homolog Hsp31 localizes to stress granules (SGs) after glucose starvation, suggesting a role for DJ-1 in RNA dynamics. Here, we report that DJ-1 interacts with several SG components in mammalian cells and localizes to SGs, as well as P-bodies, upon induction of either osmotic or oxidative stress. By purifying the mRNA associated with DJ-1 in mammalian cells, we detected several transcripts and found that subpopulations of these localize to SGs after stress, suggesting that DJ-1 may target specific mRNAs to mRNP granules. Notably, we find that DJ-1 associates with SGs arising from N-methyl-d-aspartate (NMDA) excitotoxicity in primary neurons and parkinsonism-inducing toxins in dopaminergic cell cultures. Thus, our results indicate that DJ-1 is associated with cytoplasmic RNA granules arising during stress and neurodegeneration, providing a possible link between DJ-1 and RNA dynamics which may be relevant for PD pathogenesis.
Collapse
Affiliation(s)
- Mariaelena Repici
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Mahdieh Hassanjani
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Daniel C Maddison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Sara Cimini
- Neuroscience Department, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Bhavini Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Éva M Szegö
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Kornelis R Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, LE1 7RH, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tiziana Borsello
- Neuroscience Department, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri", Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lia Panman
- MRC Toxicology Unit, Leicester, LE1 9HN, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
11
|
Severance AL, Latham KE. PLK1 regulates spindle association of phosphorylated eukaryotic translation initiation factor 4E-binding protein and spindle function in mouse oocytes. Am J Physiol Cell Physiol 2017; 313:C501-C515. [PMID: 28794108 PMCID: PMC5792166 DOI: 10.1152/ajpcell.00075.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022]
Abstract
Oocyte meiotic spindles are associated with spindle-enriched mRNAs, phosphorylated ribosome protein S6, and phosphorylated variants of the key translational regulator, eukaryotic translation initiation factor 4E-binding protein 1 (eIF4E-BP1), consistent with translational control of localized mRNAs by eIF4E-BP1 in facilitating spindle formation and stability. Using specific kinase inhibitors, we determined which kinases regulate phosphorylation status of eIF4E-BP1 associated with meiotic spindles in mouse oocytes and effects of kinase inhibition on chromosome congression and spindle formation. Neither ataxia telangiectasia-mutated kinase nor mechanistic target of rapamycin inhibition significantly affected phosphorylation status of spindle-associated eIF4E-BP1 at the phosphorylation sites examined. Spindle-associated phospho-eIF4E-BP1, spindle formation, and chromosome congression were strongly disrupted by polo-like kinase I (PLK1) inhibition at both metaphase I (MI) and MII. In addition, direct inhibition of eIF4E-BP1 via 4EGI led to spindle defects at MI, indicating a direct role for eIF4E-BP1 phosphorylation in meiotic spindle formation. PLK1 also regulated microtubule dynamics throughout the ooplasm, indicating likely coordination between spindle dynamics and broader ooplasm cytoskeletal dynamics. Because diverse upstream signaling pathways converge on PLK1, these results implicate PLK1 as a major regulatory nexus coupling endogenous and exogenous signals via eIF4E-BP1 to the regulation of spindle formation and stability.
Collapse
Affiliation(s)
- Ashley L Severance
- Reproductive and Developmental Sciences Program, Michigan State University , East Lansing, Michigan
- Genetics Graduate Program, Michigan State University , East Lansing, Michigan
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, Michigan State University , East Lansing, Michigan
- Genetics Graduate Program, Michigan State University , East Lansing, Michigan
- Department of Animal Science, Michigan State University , East Lansing, Michigan ; and
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
12
|
Kamel NN, Ahmed AMH, Mehaisen GMK, Mashaly MM, Abass AO. Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1637-1645. [PMID: 28455634 DOI: 10.1007/s00484-017-1342-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
In tropical and semitropical regions, raising broiler chickens out of their thermal comfort zone can cause an added economic loss in the poultry industry. The cause for the deleterious effects on immunity and growth performance of broilers under high environmental temperatures is still poorly understood. Therefore, the aim of the current investigation was to evaluate the effect of heat stress on leukocytes protein synthesis and immune function as a possible direct cause of low performance in broiler chickens under such condition. In this study, 300 one-day-old male broiler chicks (Cobb500™) were randomly assigned into 2 groups with 5 replicates of 30 chicks each. From 21 to 42 days of age, one group was exposed to non-stressed condition at 24 °C and 50% relative humidity (control group), while the other group was exposed to heat stress at 35 °C and 50% relative humidity (HS group). At 42 days of age, blood samples were collected from each group to evaluate stress indicators, immune function, and leukocytes protein synthesis. Production performance was also recorded. Noteworthy, protein synthesis in leukocytes was significantly (P < 0.05) inhibited in HS group by 38% compared to control group. In contrast, the phosphorylation level on threonine 56 site (Thr56) of eukaryotic elongation factor (eEF2), which indicates the suppression of protein translation process through altering the protein elongation phase, was significantly threefold higher in HS group than in control (P < 0.05). In addition, an increase in stress indicators was markedly (P < 0.05) presented in the HS birds by twofold increase in heterophil/lymphocyte (H/L) ratio and threefold increase in plasma corticosterone level compared to control. Furthermore, the immune function was significantly (P < 0.05) suppressed in HS birds than control (0.99 vs. 1.88 mg/mL plasma IgG, 89.2 vs. 148.0 μg/mL plasma IgM, 4.80 vs. 7.20 antibody titer against SRBC, and 1.38 vs. 3.39 stimulation index of lymphocyte proliferation in HS vs. control group, respectively). Moreover, results on the broiler performance indicate that HS birds had a significant (P < 0.05) lower body weight gain by 58%, lower feed consumption by 39%, higher conversion ratio by 27%, and higher mortality by more than three times, compared to control birds. In conclusion, our results demonstrate that the inhibition of leukocyte protein synthesis through increasing the level of eEF2 Thr56 phosphorylation may play a key role in the observed decrease in immune function and growth performance with the high mortality rate encountered in broiler chickens under heat stress environment.
Collapse
Affiliation(s)
- Nancy N Kamel
- Department of Animal Production, National Research Centre, Giza, 12311, Egypt
| | - Ayman M H Ahmed
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shobra, Cairo, 11241, Egypt
| | - Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamaa Street, Giza, 12613, Egypt.
| | - Magdi M Mashaly
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamaa Street, Giza, 12613, Egypt
| | - Ahmed O Abass
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamaa Street, Giza, 12613, Egypt
| |
Collapse
|
13
|
Aulas A, Fay MM, Lyons SM, Achorn CA, Kedersha N, Anderson P, Ivanov P. Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 2017; 130:927-937. [PMID: 28096475 DOI: 10.1242/jcs.199240] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Cells have developed different mechanisms to respond to stress, including the formation of cytoplasmic foci known as stress granules (SGs). SGs are dynamic and formed as a result of stress-induced inhibition of translation. Despite enormous interest in SGs due to their contribution to the pathogenesis of several human diseases, many aspects of SG formation are poorly understood. SGs induced by different stresses are generally assumed to be uniform, although some studies suggest that different SG subtypes and SG-like cytoplasmic foci exist. Here, we investigated the molecular mechanisms of SG assembly and characterized their composition when induced by various stresses. Our data revealed stress-specific differences in composition, assembly and dynamics of SGs and SG-like cytoplasmic foci. Using a set of genetically modified haploid human cells, we determined the molecular circuitry of stress-specific translation inhibition upstream of SG formation and its relation to cell survival. Finally, our studies characterize cytoplasmic stress-induced foci related to, but distinct from, canonical SGs, and also introduce haploid cells as a valuable resource to study RNA granules and translation control mechanisms.
Collapse
Affiliation(s)
- Anaïs Aulas
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher A Achorn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA .,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,The Broad Institute of Harvard and M.I.T., Cambridge, MA 02142, USA
| |
Collapse
|
14
|
4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression. Viruses 2016; 8:v8100287. [PMID: 27763553 PMCID: PMC5086619 DOI: 10.3390/v8100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5' cap with 2'-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.
Collapse
|
15
|
Frydryskova K, Masek T, Borcin K, Mrvova S, Venturi V, Pospisek M. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules. BMC Mol Biol 2016; 17:21. [PMID: 27578149 PMCID: PMC5006505 DOI: 10.1186/s12867-016-0072-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 4E (eIF4E) plays a pivotal role in the control of cap-dependent translation initiation, modulates the fate of specific mRNAs, occurs in processing bodies (PBs) and is required for formation of stress granules (SGs). In this study, we focused on the subcellular localization of a representative compendium of eIF4E protein isoforms, particularly on the less studied members of the human eIF4E protein family, eIF4E2 and eIF4E3. RESULTS We showed that unlike eIF4E1, its less studied isoform eIF4E3_A, encoded by human chromosome 3, localized to stress granules but not PBs upon both heat shock and arsenite stress. Furthermore, we found that eIF4E3_A interacts with human translation initiation factors eIF4G1, eIF4G3 and PABP1 in vivo and sediments into the same fractions as canonical eIF4E1 during polysome analysis in sucrose gradients. Contrary to this finding, the truncated human eIF4E3 isoform, eIF4E3_B, showed no localization to SGs and no binding to eIF4G. We also highlighted that eIF4E2 may exhibit distinct functions under different stresses as it readily localizes to P-bodies during arsenite and heat stresses, whereas it is redirected to stress granules only upon heat shock. We extended our study to a number of protein variants, arising from alternative mRNA splicing, of each of the three eIF4E isoforms. Our results surprisingly uncovered differences in the ability of eIF4E1_1 and eIF4E1_3 to form stress granules in response to cellular stresses. CONCLUSION Our comparison of all three human eIF4E isoforms and their protein variants enriches the intriguing spectrum of roles attributed to the eukaryotic initiation translation factors of the 4E family, which exhibit a distinctive localization within different RNA granules under different stresses. The localization of eIF4E3_A to stress granules, but not to processing bodies, along with its binding to eIF4G and PABP1 suggests a role of human eIF4E3_A in translation initiation rather than its involvement in a translational repression and mRNA decay and turnover. The localization of eIF4E2 to stress granules under heat shock but not arsenite stress indicates its distinct function in cellular response to these stresses and points to the variable protein content of SGs as a consequence of different stress insults.
Collapse
Affiliation(s)
- Klara Frydryskova
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic.
| | - Katerina Borcin
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Silvia Mrvova
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic
| | - Veronica Venturi
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Martin Pospisek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
16
|
Igreja C, Peter D, Weiler C, Izaurralde E. 4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nat Commun 2014; 5:4790. [PMID: 25179781 PMCID: PMC4164784 DOI: 10.1038/ncomms5790] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/24/2014] [Indexed: 12/01/2022] Open
Abstract
eIF4E-binding proteins (4E-BPs) are a widespread class of translational regulators that share a canonical (C) eIF4E-binding motif (4E-BM) with eIF4G. Consequently, 4E-BPs compete with eIF4G for binding to the dorsal surface on eIF4E to inhibit translation initiation. Some 4E-BPs contain non-canonical 4E-BMs (NC 4E-BMs), but the contribution of these motifs to the repressive mechanism—and whether these motifs are present in all 4E-BPs—remains unknown. Here, we show that the three annotated Drosophila melanogaster 4E-BPs contain NC 4E-BMs. These motifs bind to a lateral surface on eIF4E that is not used by eIF4G. This distinct molecular recognition mode is exploited by 4E-BPs to dock onto eIF4E–eIF4G complexes and effectively displace eIF4G from the dorsal surface of eIF4E. Our data reveal a hitherto unrecognized role for the NC4E-BMs and the lateral surface of eIF4E in 4E-BP-mediated translational repression, and suggest that bipartite 4E-BP mimics might represent efficient therapeutic tools to dampen translation during oncogenic transformation. eIF4E-binding proteins (4E-BPs) are a conserved class of translational repressors that play essential roles in the regulation of protein expression. Here, Igreja et al. indentify non-canonical interactions between 4E-BPs and eIF4E that are required to effectively displace eIF4G and inhibit translation.
Collapse
Affiliation(s)
- Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Catrin Weiler
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
17
|
mTOR regulates the nucleoplasmic diffusion of Xrn2 under conditions of heat stress. FEBS Lett 2014; 588:3454-60. [PMID: 25128458 DOI: 10.1016/j.febslet.2014.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/26/2022]
Abstract
Stress induces various responses, including translational suppression and tRNA degradation in mammals. Previously, we showed that heat stress induces degradation of initiator tRNA(Met) (iMet) through 5'-3' exoribonuclease Xrn1 and Xrn2, respectively. In addition, we found that rapamycin inhibits the degradation of iMet under heat stress conditions. Here, we report that the mammalian target of rapamycin (mTOR) regulates the diffusion of Xrn2 from the nucleolus to the nucleoplasm, facilitating the degradation of iMet under conditions of heat stress. Our results suggest a mechanism of translational suppression through mTOR-regulated iMet degradation in mammalian cells.
Collapse
|
18
|
Jeffries KM, Hinch SG, Sierocinski T, Pavlidis P, Miller KM. Transcriptomic responses to high water temperature in two species of Pacific salmon. Evol Appl 2013; 7:286-300. [PMID: 24567748 PMCID: PMC3927889 DOI: 10.1111/eva.12119] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/18/2013] [Indexed: 11/29/2022] Open
Abstract
Characterizing the cellular stress response (CSR) of species at ecologically relevant temperatures is useful for determining whether populations and species can successfully respond to current climatic extremes and future warming. In this study, populations of wild-caught adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to ecologically relevant 'cool' or 'warm' water temperatures to uncover common transcriptomic responses to elevated water temperature in non-lethally sampled gill tissue. We detected the differential expression of 49 microarray features (29 unique annotated genes and one gene with unknown function) associated with protein folding, protein synthesis, metabolism, oxidative stress and ion transport that were common between populations and species of Pacific salmon held at 19°C compared with fish held at a cooler temperature (13 or 14°C). There was higher mortality in fish held at 19°C, which suggests a possible relationship between a temperature-induced CSR and mortality in these species. Our results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon.
Collapse
Affiliation(s)
- Ken M Jeffries
- Centre for Applied Conservation Research Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada
| | - Scott G Hinch
- Centre for Applied Conservation Research Department of Forest and Conservation Sciences, University of British Columbia Vancouver, BC, Canada
| | - Thomas Sierocinski
- Centre for High-Throughput Biology Department of Psychiatry, University of British Columbia Vancouver, BC, Canada
| | - Paul Pavlidis
- Centre for High-Throughput Biology Department of Psychiatry, University of British Columbia Vancouver, BC, Canada
| | - Kristi M Miller
- Fisheries and Oceans Canada, Molecular Genetics Section Nanaimo, BC, Canada
| |
Collapse
|
19
|
Zhu L, Tatsuke T, Mon H, Li Z, Xu J, Lee JM, Kusakabe T. Characterization of Tudor-sn-containing granules in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:664-674. [PMID: 23643815 DOI: 10.1016/j.ibmb.2013.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The Tudor-sn protein, which contains four staphylococcal nuclease domains and a Tudor domain, is a ubiquitous protein found in almost all organisms. It has been reported that Tudor-sn in mammals participates in various cellular pathways involved in gene regulation, cell growth, and development. In insects, we have previously identified a Tudor-sn ortholog in the silkworm, Bombyx mori, and detected its interactions between with Argonaute proteins. The role of Tudor-sn in silkworm, however, still remains largely unknown. In this study, we demonstrated that silkworm Tudor-sn is a stress granule (SG) protein, and determined its interactions with other SG proteins using Bimolecular Fluorescence Complementation assay and Insect Two-Hybrid method. Depletions of Argonaute proteins and SG-marker protein Tia1 by RNAi impaired the involvement of Tudor-sn in the SG formation. Protein domain deletion analysis of Tudor-sn demonstrated that SN2 is the key domain required for the aggregation of Tudor-sn in SGs.
Collapse
Affiliation(s)
- Li Zhu
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 2013; 33:2285-301. [PMID: 23547259 DOI: 10.1128/mcb.01517-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stress granules (SG) are cytoplasmic multimeric RNA bodies that form under stress conditions known to inhibit cap-dependent translation. SG contain translation initiation factors, RNA binding proteins, and signaling molecules. SG are known to inhibit apoptotic pathways, thus contributing to chemo- and radioresistance in tumor cells. However, whether stress granule formation involves oncogenic signaling pathways is currently unknown. Here, we report a novel role of the mTORC1-eukaryotic translation initiation factor 4E (eIF4E) pathway, a key regulator of cap-dependent translation initiation of oncogenic factors, in SG formation. mTORC1 specifically drives the eIF4E-mediated formation of SG through the phosphorylation of 4E-BP1, a key factor known to inhibit formation of the mTORC1-dependent eIF4E-eIF4GI interactions. Disrupting formation of SG by inactivation of mTOR with its specific inhibitor pp242 or by depletion of eIF4E or eIF4GI blocks the SG-associated antiapoptotic p21 pathway. Finally, pp242 sensitizes cancer cells to death in vitro and inhibits the growth of chemoresistant tumors in vivo. This work therefore highlights a novel role of the oncogenic mTORC1-eIF4E pathway, namely, the promotion of formation of antiapoptotic SG.
Collapse
|
21
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Bevacizumab attenuates major signaling cascades and eIF4E translation initiation factor in multiple myeloma cells. J Transl Med 2012; 92:178-90. [PMID: 22083671 DOI: 10.1038/labinvest.2011.162] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple myeloma (MM), a malignancy of plasma cells, remains fatal despite introduction of novel therapies, partially due to humoral factors, including vascular endothelial growth factor (VEGF), in their microenvironment. The aim of this study was to explore the efficacy of anti-VEGF treatment with bevacizumab directly on MM cells. Particular attention was directed to the affect of VEGF inhibition on protein translation initiation. Experiments were conducted on MM cells (lines, bone marrow (BM) samples) cultured on plastic. Inhibition of VEGF was achieved with the clinically employed anti-VEGF antibody, bevacizumab, as a platform and its consequences on viability, proliferation, and survival was assessed. VEGF downstream signals of established importance to MM cell biology were assayed as well, with particular emphasis on translation initiation factor eIF4E. We showed that blocking VEGF is deleterious to the MM cells and causes cytostasis. This was evidenced in MM cell lines, as well as in primary BM samples (BM MM). A common bevacizumab-induced attenuation of critical signaling effectors was determined: VEGFR1, mTOR, c-Myc, Akt, STAT3, (cell lines) and eIF4E translation initiation factor (lines and BM). ERK1/2 displayed a variegated response to bevacizumab (lines). Utilizing a constitutively Akt-expressing MM model, we showed that the effect of bevacizumab on viability and eIF4E status is Akt-dependent. Of note, the effect of bevacizumab was achieved with high concentrations (2 mg/ml), but was shown to be specific. These findings demonstrate that bevacizumab has a direct influence on major pathways critically activated in MM that is independent from its established effect on angiogenesis. The cytostatic effect of VEGF inhibition on MM cells underscores its potential in combined therapy, and our findings, regarding its influence on translation initiation, suggest that drugs that unbalance cellular proteostasis may be particularly effective.
Collapse
|
23
|
Ho BC, Yu SL, Chen JJW, Chang SY, Yan BS, Hong QS, Singh S, Kao CL, Chen HY, Su KY, Li KC, Cheng CL, Cheng HW, Lee JY, Lee CN, Yang PC. Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 2011; 9:58-69. [PMID: 21238947 DOI: 10.1016/j.chom.2010.12.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/11/2010] [Accepted: 11/22/2010] [Indexed: 01/06/2023]
Abstract
Viruses rely on the host translation machinery to complete their life cycles. Picornaviruses use an internal ribosome entry site to initiate cap-independent protein translation and in parallel host cap-dependent translation is shut off. This process is thought to occur primarily via cleavage of host translation initiation factors eIF4GI and eIF4GII by viral proteases. Here we describe another mechanism whereby miR-141 induced upon enterovirus infection targets the cap-dependent translation initiation factor, eIF4E, for shutoff of host protein synthesis. Knockdown of miR-141 reduces viral propagation, and silencing of eIF4E can completely reverse the inhibitory effect of the miR-141 antagomiR on viral propagation. Ectopic expression of miR-141 promotes the switch from cap-dependent to cap-independent translation. Moreover, we identified a transcription factor, EGR1, which is partly responsible for miR-141 induction in response to enterovirus infection. Our results suggest that upregulation of miR-141 upon enterovirus infection can facilitate viral propagation by expediting the translational switch.
Collapse
Affiliation(s)
- Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sukarieh R, Sonenberg N, Pelletier J. Nuclear assortment of eIF4E coincides with shut-off of host protein synthesis upon poliovirus infection. J Gen Virol 2010; 91:1224-8. [DOI: 10.1099/vir.0.018069-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|