1
|
Fujii N, Amano T, Kenny GP, Mündel T, Lei TH, Honda Y, Kondo N, Nishiyasu T. TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation in humans in vivo. Exp Physiol 2022; 107:844-853. [PMID: 35688020 DOI: 10.1113/ep090521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do transmembrane member 16A (TMEM16A) blockers modulate the activation of heat loss responses of sweating and cutaneous vasodilatation? What are the main finding and its importance? Relative to the vehicle control site, TMEM16A blockers T16Ainh-A01 and benzbromarone had no effect on sweat rate or cutaneous vascular conductance during whole-body heating inducing a 1.1 ± 0.1°C increase in core temperature above baseline resting levels. These results suggest that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heat stress. ABSTRACT Animal and in vitro studies suggest that transmembrane member 16A (TMEM16A), a Ca2+ -activated Cl- channel, contributes to regulating eccrine sweating. However, direct evidence supporting this possibility in humans is lacking. We assessed the hypothesis that TMEM16A blockers attenuate sweating during whole-body heating in humans. Additionally, we assessed the associated changes in the heat loss response of cutaneous vasodilatation to determine if a functional role of TMEM16A may exist. Twelve young (24 ± 2 years) adults (six females) underwent whole-body heating using a water-perfused suit to raise core temperature 1.1 ± 0.1°C above baseline. Sweat rate and cutaneous vascular conductance (normalized to maximal conductance via administration of sodium nitroprusside) were evaluated continuously at four forearm skin sites treated continuously by intradermal microdialysis with (1) lactated Ringer's solution (control), (2) 5% dimethyl sulfoxide (DMSO) serving as a vehicle control, or (3) TMEM16A blockers 1 mM T16Ainh-A01 or 2 mM benzbromarone dissolved in 5% DMSO solution. All drugs were administered continuously via intradermal microdialysis. Whole-body heating increased core temperature progressively and this was paralleled by an increase in sweat rate and cutaneous vascular conductance at all skin sites. However, sweat rate (all P > 0.318) and cutaneous vascular conductance (all P ≥ 0.073) did not differ between the vehicle control site relative to the TMEM16A blocker-treated sites. Collectively, our findings indicate that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heating in young adults in vivo.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Amano T, Fujii N, Kenny GP, Okamoto Y, Inoue Y, Kondo N. Effects of TEA-sensitive K + channel blockade on cholinergic and thermal sweating in endurance trained and untrained men. Exp Physiol 2022; 107:441-449. [PMID: 35340063 DOI: 10.1113/ep090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
NEW & NOTEWORTHY What is the central question of this study? Does inhibition of K+ channels modulate the exercise-training-induced augmentation in cholinergic and thermal sweating? What is the main finding and its importance? Iontophoretic administration of tetraethylammonium, a K+ channel blocker, blunted sweating induced by a low dose (0.001%) of cholinergic agent pilocarpine, but not heat-induced sweating. However, no differences in the cholinergic sweating were observed between young endurance trained and untrained men. Thus, while K+ channels play a role in the regulation of eccrine sweating, they do not contribute to the increase in sweating commonly observed in endurance trained adults. Our findings provide important new insights into the mechanisms underlying the regulation of sweating by endurance conditioning. ABSTRACT We evaluated the hypothesis that the activation of K+ channels mediate the exercise-training-induced augmentation in cholinergic and thermal sweating. On separate days, 11 endurance trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 2% tetraethylammonium (TEA, K+ channels blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, a low (0.001%) and high (1%) doses of pilocarpine was administered at the TEA-treated and Control sites over a 60-min period. In protocol 2, participants were passively heated by immersing their lower limbs in hot water (43°C) until core (rectal) temperature (Tco ) increased by 0.8°C above resting levels. Administration of TEA attenuated cholinergic sweating (P = 0.001) during the initial 20-min after the treatment of low dose of pilocarpine only whilst the response was similar between the groups (P = 0.163). Cholinergic and thermal sweating were higher in trained relative to the untrained men (all P≤0.033). Thermal sweating reached ∼90% of the response at a Tco elevation of 0.8°C during initial 20-min of passive heating, which corresponds to the period wherein TEA attenuated cholinergic sweating in protocol 1. However, sweating did not differ between the Control and TEA sites in either group (P = 0.704). We showed that activation of K+ channels does not appear to mediate the elevated sweating response induced by a low dose of pilocarpine in trained men. We also demonstrated that K+ channels do not contribute to sweating during heat stress in either group. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
3
|
Chiang KC, Rizk JG, Nelson DJ, Krishnamurti L, Subbian S, Imig JD, Khan I, Reddy ST, Gupta A. Ramatroban for chemoprophylaxis and treatment of COVID-19: David takes on Goliath. Expert Opin Ther Targets 2022; 26:13-28. [PMID: 35068281 PMCID: PMC10119876 DOI: 10.1080/14728222.2022.2031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In COVID-19 pneumonia, there is a massive increase in fatty acid levels and lipid mediators with a predominance of cyclooxygenase metabolites, notably TxB2 ≫ PGE2 > PGD2 in the lungs, and 11-dehydro-TxB2, a TxA2 metabolite, in the systemic circulation. While TxA2 stimulates thromboxane prostanoid (TP) receptors, 11-dehydro-TxB2 is a full agonist of DP2 (formerly known as the CRTh2) receptors for PGD2. Anecdotal experience of using ramatroban, a dual receptor antagonist of the TxA2/TP and PGD2/DP2 receptors, demonstrated rapid symptomatic relief from acute respiratory distress and hypoxemia while avoiding hospitalization. AREAS COVERED Evidence supporting the role of TxA2/TP receptors and PGD2/DP2 receptors in causing rapidly progressive lung injury associated with hypoxemia, a maladaptive immune response and thromboinflammation is discussed. An innovative perspective on the dual antagonism of TxA2/TP and PGD2/DP2 receptor signaling as a therapeutic approach in COVID-19 is presented. This paper examines ramatroban an anti-platelet, immunomodulator, and antifibrotic agent for acute and long-haul COVID-19. EXPERT OPINION Ramatroban, a dual blocker of TP and DP2 receptors, has demonstrated efficacy in animal models of respiratory dysfunction, atherosclerosis, thrombosis, and sepsis, as well as preliminary evidence for rapid relief from dyspnea and hypoxemia in COVID-19 pneumonia. Ramatroban merits investigation as a promising antithrombotic and immunomodulatory agent for chemoprophylaxis and treatment.
Collapse
Affiliation(s)
| | - John G. Rizk
- Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
- Arizona State University, Edson College, Phoenix, AZ, USA
| | | | - Lakshmanan Krishnamurti
- Department of Pediatric Hematology and Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Selvakumar Subbian
- Rutgers University, New Jersey Medical School and Public Health Research Institute, Newark, NJ, USA
| | - John D. Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Imran Khan
- Department of Pathology and Laboratory Medicine, the University of California at Davis, Sacramento, CA, USA
| | - Srinivasa T. Reddy
- Departments of Medicine, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Toxicology Interdepartmental Degree Program, UCLA, Los Angeles, CA, USA
| | - Ajay Gupta
- Charak Foundation, Orange, CA
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, CA, USA
| |
Collapse
|
4
|
Affiliation(s)
- Katherine N Theken
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Welzel J, Grüdl S, Welss T, Claas M, Sättler A, Förster T, Banowski B. Quantitative ion determination in eccrine sweat gland cells correlates to sweat reduction of antiperspirant actives. Int J Cosmet Sci 2021; 43:181-190. [PMID: 33259130 DOI: 10.1111/ics.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Axillary wetness represents an unwanted effect of the physiologically vital sweating mechanism, especially when it becomes excessive. Cosmetic products reducing sweat secretion rely on aluminium salts as the active ingredient acting by physically blocking the sweat gland. Driven by the interest to better understand the sweat mechanism and to develop alternative technologies against excessive sweating a search for an effective testing approach started as up to now, cost- and time-consuming in vivo studies represent the standard procedure for testing and identifying these alternatives. MATERIAL AND METHODS The herein described in vitro test system is based on the measurement of intracellular changes of the ion equilibrium in cultured eccrine sweat gland cells. Subsequently, in vivo studies on the back of volunteers were conducted to verify the sweat-reducing effect of in vitro newly discovered substance. RESULTS In this study, we describe an effective cell-based in vitro method as a potent tool for a more targeted screening of alternatives to aluminium salts. Testing the commonly used aluminium chlorohydrate as one example of an aluminium-based active in this screening procedure, we discovered a distinct influence on the ion equilibrium: Intracellular levels of sodium ions were decreased while those of chloride increased. Screening of various substances revealed a polyethyleneimine, adjusted to pH 3.5 with hydrochloric acid, to evoke the same alterations in the ion equilibrium as aluminium chlorohydrate. Subsequent in vivo studies showed its substantial antiperspirant action and confirmed the high efficiency of the polyethyleneimine solution in vivo. Further, specific investigations connecting the chloride content of the tested substances with the resulting sweat reduction pointed towards a substantial impact of the chloride ions on sweating. CONCLUSION The newly described in vitro cell-based screening method represents an effective means for identifying new antiperspirant actives and suggests an additional biological mechanism of action of sweat-reducing ingredients which is directed towards unbalancing of the ion equilibrium inside eccrine sweat gland cells.
Collapse
Affiliation(s)
- J Welzel
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - S Grüdl
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - T Welss
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - M Claas
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - A Sättler
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - T Förster
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - B Banowski
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| |
Collapse
|
6
|
Amano T, Fujii N, Kenny GP, Okamoto Y, Inoue Y, Kondo N. Effects of L-type voltage-gated Ca 2+ channel blockade on cholinergic and thermal sweating in habitually trained and untrained men. Am J Physiol Regul Integr Comp Physiol 2020; 319:R584-R591. [PMID: 32966123 DOI: 10.1152/ajpregu.00167.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We evaluated the hypothesis that the activation of L-type voltage-gated Ca2+ channels contributes to exercise training-induced augmentation in cholinergic sweating. On separate days, 10 habitually trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 1% verapamil (Verapamil, L-type voltage-gated Ca2+ channel blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, we administered low (0.001%) and high (1%) doses of pilocarpine at both the verapamil-treated and verapamil-untreated forearm sites. In protocol 2, participants were passively heated by immersing their limbs in hot water (43°C) until rectal temperature increased by 1.0°C above baseline resting levels. Sweat rate at all forearm sites was continuously measured throughout both protocols. Pilocarpine-induced sweating in Control was higher in trained than in untrained men for both the concentrations of pilocarpine (both P ≤ 0.001). Pilocarpine-induced sweating at the low-dose site was attenuated at the Verapamil versus the Control site in both the groups (both P ≤ 0.004), albeit the reduction was greater in trained as compared with in untrained men (P = 0.005). The verapamil-mediated reduction in sweating remained intact at the high-dose pilocarpine site in the untrained men (P = 0.004) but not the trained men (P = 0.180). Sweating did not differ between Control and Verapamil sites with increases in rectal temperature in both groups (interaction, P = 0.571). We show that activation of L-type voltage-gated Ca2+ channels modulates sweat production in habitually trained men induced by a low dose of pilocarpine. However, no effect on sweating was observed during passive heating in either group.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
7
|
Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer's disease and brain ageing. Exp Neurol 2020; 328:113248. [PMID: 32084452 DOI: 10.1016/j.expneurol.2020.113248] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
As components of the Mediterranean diet (MedDiet) olive polyphenols may play a crucial role for the prevention of Alzheimer's disease (AD). Since mitochondrial dysfunction is involved in both, brain ageing and early AD, effects of 10 different purified phenolic secoiridoids (hydroxytyrosol, tyrosol, oleacein, oleuroside, oleuroside aglycon, oleuropein, oleocanthal, ligstroside, ligstroside aglycone and ligustaloside B) and two metabolites (the plant metabolite elenolic acid and the mammalian metabolite homovanillic acid) were tested in very low doses on mitochondrial function in SH-SY5Y-APP695 cells - a cellular model of early AD. All tested secoiridoids significantly increased basal adenosine triphosphate (ATP) levels in SY5Y-APP695 cells. Oleacein, oleuroside, oleocanthal and ligstroside showed the highest effect on ATP levels and were additionally tested on mitochondrial respiration. Only oleocanthal and ligstroside were able to enhance the capacity of respiratory chain complexes. To investigate their underlying molecular mechanisms, the expression of genes associated with mitochondrial biogenesis, respiration and antioxidative capacity (PGC-1α, SIRT1, CREB1, NRF1, TFAM, complex I, IV and V, GPx1, SOD2, CAT) were determined using qRT-PCR. Exclusively ligstroside increased mRNA expression of SIRT1, CREB1, complex I, and GPx1. Furthermore, oleocanthal but not ligstroside decreased Aβ 1-40 levels in SH-SY5Y-APP695 cells. To investigate the in vivo effects of purified secoiridoids, the two most promising compounds (oleocanthal and ligstroside) were tested in a mouse model of ageing. Female NMRI mice, aged 12 months, received a diet supplemented with 50 mg/kg oleocanthal or ligstroside for 6 months (equivalent to 6.25 mg/kg b.w.). Young (3 months) and aged (18 months) mice served as controls. Ligstroside fed mice showed improved spatial working memory. Furthermore, ligstroside restored brain ATP levels in aged mice and led to a significant life extension compared to aged control animals. Our findings indicate that purified ligstroside has outstanding performance on mitochondrial bioenergetics in models of early AD and brain ageing by mechanisms that may not interfere with Aβ production. Additionally, ligstroside expanded the lifespan in aged mice and enhanced cognitive function.
Collapse
|
8
|
Fujii N, Meade RD, Alexander LM, Akbari P, Foudil-Bey I, Louie JC, Boulay P, Kenny GP. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. J Appl Physiol (1985) 2016; 120:318-27. [PMID: 26586908 PMCID: PMC4740499 DOI: 10.1152/japplphysiol.00714.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania; and
| | - Pegah Akbari
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Imane Foudil-Bey
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
9
|
Cui CY, Schlessinger D. Eccrine sweat gland development and sweat secretion. Exp Dermatol 2015; 24:644-50. [PMID: 26014472 DOI: 10.1111/exd.12773] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca(2+) -dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers - for example InsP3 and Ca(2+) - and downstream ion channels/transporters in the framework of a Na(+) -K(+) -Cl(-) cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid-base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined.
Collapse
Affiliation(s)
- Chang-Yi Cui
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
10
|
Ertongur-Fauth T, Hochheimer A, Buescher JM, Rapprich S, Krohn M. A novel TMEM16A splice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells. Exp Dermatol 2014; 23:825-31. [PMID: 25220078 DOI: 10.1111/exd.12543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Sweating is an important physiological process to regulate body temperature in humans, and various disorders are associated with dysregulated sweat formation. Primary sweat secretion in human eccrine sweat glands involves Ca(2+) -activated Cl(-) channels (CaCC). Recently, members of the TMEM16 family were identified as CaCCs in various secretory epithelia; however, their molecular identity in sweat glands remained elusive. Here, we investigated the function of TMEM16A in sweat glands. Gene expression analysis revealed that TMEM16A is expressed in human NCL-SG3 sweat gland cells as well as in isolated human eccrine sweat gland biopsy samples. Sweat gland cells express several previously described TMEM16A splice variants, as well as one novel splice variant, TMEM16A(acΔe3) lacking the TMEM16A-dimerization domain. Chloride flux assays using halide-sensitive YFP revealed that TMEM16A is functionally involved in Ca(2+) -dependent Cl(-) secretion in NCL-SG3 cells. Recombinant expression in NCL-SG3 cells showed that TMEM16A(acΔe3) is forming a functional CaCC, with basal and Ca(2+) -activated Cl(-) permeability distinct from canonical TMEM16A(ac). Our results suggest that various TMEM16A isoforms contribute to sweat gland-specific Cl(-) secretion providing opportunities to develop sweat gland-specific therapeutics for treatment of sweating disorders.
Collapse
|
11
|
Shaw PJ, Feske S. Physiological and pathophysiological functions of SOCE in the immune system. Front Biosci (Elite Ed) 2012. [PMID: 22202035 DOI: 10.2741/540] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcium signals play a critical role in many cell-type specific effector functions during innate and adaptive immune responses. The predominant mechanism to raise intracellular (Ca²⁺) used by most immune cells is store-operated Ca²⁺ entry (SOCE), whereby the depletion of endoplasmic reticulum (ER) Ca²⁺ stores triggers the influx of extracellular Ca²⁺. SOCE in immune cells is mediated by the highly Ca²⁺ selective Ca²⁺-release-activated Ca²⁺ (CRAC) channel, encoded by ORAI1, ORAI2 and ORAI3 genes. ORAI proteins are activated by stromal interaction molecules (STIM) 1 and 2, which act as sensors of ER Ca²⁺ store depletion. The importance of SOCE mediated by STIM and ORAI proteins for immune function is evident from the immunodeficiency and autoimmunity in patients with mutations in STIM1 and ORAI1 genes. These patients and studies in gene-targeted mice have revealed an essential role for ORAI/STIM proteins in the function of several immune cells. This review focuses on recent advances made towards understanding the role of SOCE in immune cells with an emphasis on the immune dysregulation that results from defects in SOCE in human patients and transgenic mice.
Collapse
Affiliation(s)
- Patrick J Shaw
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | | |
Collapse
|
12
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
|
14
|
Abstract
The stimulation of thromboxane/endoperoxide receptors (TP) elicits diverse physiological/pathophysiological reactions, including platelet aggregation and contraction of vascular smooth muscle. Furthermore, the activation of endothelial TP promotes the expression of adhesion molecules and favors adhesion and infiltration of monocytes/macrophages. In various cardiovascular diseases, endothelial dysfunction is predominantly the result of the release of endothelium-derived contracting factors that counteract the vasodilator effect of nitric oxide produced by the endothelial nitric oxide synthase. Endothelium-dependent contractions involve the activation of cyclooxygenases, the production of reactive oxygen species along with that of endothelium-derived contracting factors, which diffuse toward the vascular smooth muscle cells and activate their TP. TP antagonists curtail the endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and reduce vascular inflammation. Therefore, TP antagonists, because of this triple activity, may have a unique potential for the treatment of cardiovascular disorders.
Collapse
|
15
|
Abstract
Store-operated Ca2+ entry (SOCE) is an important Ca2+ influx pathway in many non-excitable and some excitable cells. It is regulated by the filling state of intracellular Ca2+ stores, notably the endoplasmic reticulum (ER). Reduction in [Ca2+]ER results in activation of plasma membrane Ca2+ channels that mediate sustained Ca2+ influx which is required for many cell functions as well as refilling of Ca2+ stores. The Ca2+ release activated Ca2+ (CRAC) channel is the best characterized SOC channel with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel, long mysterious, have been defined. ORAI1 (or CRACM1) acts as the pore-forming subunit of the CRAC channel in the plasma membrane. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca2+]ER, and activates the CRAC channel upon store depletion by binding to ORAI1. Both proteins are widely expressed in many tissues in both human and mouse consistent with the widespread prevalence of SOCE and CRAC channel currents in many cells types. CRAC channelopathies in human patients with mutations in STIM1 and ORAI1 are characterized by abolished CRAC channel currents, lack of SOCE and-clinically-immunodeficiency, congenital myopathy, and anhydrotic ectodermal dysplasia. This article reviews the role of ORAI and STIM proteins for SOCE and CRAC channel function in a variety of cell types and tissues and compares the phenotypes of ORAI1 and STIM1-deficient human patients and mice with targeted deletion of Orai and Stim genes.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University, Langone Medical Center, SRB314, New York, NY 10016, USA.
| |
Collapse
|
16
|
Feske S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 2009; 231:189-209. [PMID: 19754898 DOI: 10.1111/j.1600-065x.2009.00818.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a mechanism used by many cells types including lymphocytes and other immune cells to increase intracellular Ca2+ concentrations to initiate signal transduction. Activation of immunoreceptors such as the T-cell receptor, B-cell receptor, or Fc receptors results in the release of Ca2+ ions from endoplasmic reticulum (ER) Ca2+ stores and subsequent activation of plasma membrane Ca2+ channels such as the well-characterized Ca2+ release-activated Ca2+ (CRAC) channel. Two genes have been identified that are essential for SOCE: ORAI1 as the pore-forming subunit of the CRAC channel in the plasma membrane and stromal interaction molecule-1 (STIM1) sensing the ER Ca2+ concentration and activating ORAI1-CRAC channels. Intense efforts in the past several years have focused on understanding the molecular mechanism of SOCE and the role it plays for cell functions in vitro and in vivo. A number of transgenic mouse models have been generated to investigate the role of ORAI1 and STIM1 in immunity. In addition, mutations in ORAI1 and STIM1 identified in immunodeficient patients provide valuable insight into the role of both genes and SOCE. This review focuses on the role of ORAI1 and STIM1 in vivo, discussing the phenotypes of ORAI1- and STIM1-deficient human patients and mice.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
17
|
Marklund N, Sihver S, Hovda DA, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. Increased Cerebral Uptake of [18F]Fluoro-Deoxyglucose but not [1-14C]Glucose Early following Traumatic Brain Injury in Rats. J Neurotrauma 2009; 26:1281-93. [DOI: 10.1089/neu.2008.0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Sven Sihver
- Department of Neuroscience, Unit of Pharmacology, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - David A. Hovda
- UCLA Brain Injury Research Center, Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California–Los Angeles, Los Angeles, California
| | - Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Yasuyoshi Watanabe
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan
- Department of Physiology, Osaka City University, Osaka, Japan
| | - Gunnar Ronquist
- Department of Medical Sciences, Biochemical Structure And Function, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Mats Bergström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| |
Collapse
|
18
|
Marklund N, Sihver S, Hovda D, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. INCREASED CEREBRAL UPTAKE OF [18F]FLUORO-DEOXYGLUCOSE BUT NOT [1-14C]GLUCOSE EARLY FOLLOWING TRAUMATIC BRAIN INJURY IN RATS. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Saga K. Structure and function of human sweat glands studied with histochemistry and cytochemistry. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2003; 37:323-86. [PMID: 12365351 DOI: 10.1016/s0079-6336(02)80005-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The basic structure and the physiological function of human sweat glands were reviewed. Histochemical and cytochemical techniques greatly contributed the elucidation of the ionic mechanism of sweat secretion. X-ray microanalysis using freeze-dried cryosections clarified the level of Na, K, and Cl in each secretory cell of the human sweat gland. Enzyme cytochemistry, immunohistochemistry and autoradiography elucidated the localization of Na,K-ATPase. These data supported the idea that human eccrine sweat is produced by the model of N-K-2Cl cotransport. Cationic colloidal gold localizes anionic sites on histological sections. Human eccrine and apocrine sweat glands showed completely different localization and enzyme sensitivity of anionic sites studied with cationic gold. Human sweat glands have many immunohistochemical markers. Some of them are specific to apocrine sweat glands, although many of them stain both eccrine and apocrine sweat glands. Histochemical techniques, especially immunohistochemistry using a confocal laser scanning microscope and in situ hybridization, will further clarify the relationship of the structure and function in human sweat glands.
Collapse
Affiliation(s)
- Kenji Saga
- Department of Dermatology, Sapporo Medical University School of Medicine, Minami 1 Nishi 16, Chyuo-ku, Sapporo 060-8543, Japan.
| |
Collapse
|
20
|
Snapper JR, Thabes JS, Lefferts PL, Lu W. Role of endothelin in endotoxin-induced sustained pulmonary hypertension in sheep. Am J Respir Crit Care Med 1998; 157:81-8. [PMID: 9445282 DOI: 10.1164/ajrccm.157.1.95-05117] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BMS182874, an endothelin receptor antagonist, blocks the effects of exogenously administered endothelins in chronically instrumented awake sheep. A possible role for endothelin in endotoxin-induced pulmonary hypertension in sheep was investigated by studying animals given intravenous endotoxin with and without pretreatment with BMS182874. BMS182874 administration alone caused a reduction in pulmonary artery pressure (P[PA]) and systemic arterial pressure (P[SA]). Endotoxin alone caused an acute, nearly threefold increase in P(PA) which was followed, from 2-5 h after endotoxin, by a sustained but less severe increase in P(PA). These changes were accompanied by a threefold increase in lung lymph flow and dramatic increases in plasma and lung lymph thromboxane B2 concentrations. Pretreatment with BMS182874 significantly attenuated the early endotoxin-induced acute increase in P(PA) and completely blocked the late sustained pulmonary hypertension (p < 0.05), while having no affect on the increases in thromboxane levels. BMS182874 shifts the dose response curve for U46619, a prostaglandin H2 analogue, to the right. BMS182874, in addition to functioning as an endothelium receptor antagonist, appears to counteract the action of thromboxane at the receptor level. We theorize that BMS182874 attenuates the early endotoxin-induced pulmonary hypertension by counteracting the effects of thromboxane, since previous studies demonstrated that the early acute rise in P(PA) is caused by thromboxane. The late sustained pulmonary hypertension of endotoxemia, on the other hand, appears to be mediated by endothelin.
Collapse
Affiliation(s)
- J R Snapper
- Center for Lung Research, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA
| | | | | | | |
Collapse
|
21
|
Scheid P, Shams H. Chemosensitivity from the lungs of vertebrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 360:123-32. [PMID: 7872070 DOI: 10.1007/978-1-4615-2572-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Scheid
- Institut für Physiologie, Ruhr-Universität Bochum
| | | |
Collapse
|
22
|
Cruz NF, Dienel GA. Brain glucose levels in portacaval-shunted rats with chronic, moderate hyperammonemia: implications for determination of local cerebral glucose utilization. J Cereb Blood Flow Metab 1994; 14:113-24. [PMID: 8263046 DOI: 10.1038/jcbfm.1994.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rates of glucose utilization (lCMRglc) in many structures of the brain of fed, portacaval-shunted rats, when assayed with the [14C]deoxyglucose (DG) method in our laboratory, were previously found to be unchanged (30 of 36 structures) or depressed (6 structures) during the first 4 weeks after shunting, but to rise progressively to higher than normal values in 25 of 36 structures from 4-12 weeks. In contrast, lCMRglc, when assayed with the [14C]glucose method in another laboratory, was depressed in most structures of brains of 4-8-week shunted rats that had relatively high brain ammonia levels. There was a possibility that the increases in lCMRglc obtained with the [14C]DG method may have been artifactual, due, in part, to a change in brain glucose content which could alter the value of the lumped constant of the DG method. Brain glucose levels of shunted rats were, therefore, assayed by both direct chemical measurement in freeze-blown samples and by determination of steady-state brain:plasma distribution ratios for [14C]methylglucose; the methylglucose distribution ratio varies as a function of plasma and tissue glucose contents. Within a week after shunting, ammonia levels in blood and brain rose to 0.25-0.30 mM and 0.35-0.70 mumol/g, respectively, and mean plasma glucose levels fell from 9-10 mM to 7.4-8.5 mM, and then remained nearly constant. Brains of fed-shunted rats had normal glycogen levels and stable but moderately reduced glucose contents between 1 and 12 weeks (i.e., 1.9-2.2 mumol/g). [14C]Methylglucose distribution ratios were essentially the same as those in controls in 22 brain structures at 2 and 8 weeks after shunting. Because brain glucose levels remained stable from 1 to 12 weeks after shunting, there is no evidence to support the hypothesis that the value of the lumped constant would have changed and caused an artifactual rise in lCMRglc.
Collapse
Affiliation(s)
- N F Cruz
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland 20892
| | | |
Collapse
|
23
|
Sato K, Ohtsuyama M, Sato F. Whole cell K and Cl currents in dissociated eccrine secretory coil cells during stimulation. J Membr Biol 1993; 134:93-106. [PMID: 8411119 DOI: 10.1007/bf00232746] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of -60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at -60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 microM) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nM (Ca-free + 1 mM EGTA in the bath). MCh-activated outward currents were inhibited by 5 mM Ba and by 0.1 mM quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 microM FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.
Collapse
Affiliation(s)
- K Sato
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa College of Medicine, Iowa City 52242-1181
| | | | | |
Collapse
|
24
|
Gossage JR, Kuratomi Y, Davidson JM, Lefferts PL, Snapper JR. Neutrophil elastase inhibitors, SC-37698 and SC-39026, reduce endotoxin-induced lung dysfunction in awake sheep. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1993; 147:1371-9. [PMID: 8503548 DOI: 10.1164/ajrccm/147.6_pt_1.1371] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neutrophils have been implicated as important cellular mediators of the pulmonary dysfunction observed following endotoxemia in chronically instrumented awake sheep. Several areas of research suggest that neutrophil-derived proteases may be mediators of this dysfunction. We hypothesized that neutrophil elastase inhibitors would attenuate the effects of endotoxemia in sheep. To test this hypothesis, we studied the effects of two putative neutrophil elastase inhibitors, SC-37698 and SC-39026 (Searle, Skokie, IL), on endotoxin-induced lung dysfunction in awake sheep. Sheep were given intravenous neutrophil elastase inhibitor alone (20 mg/kg/h for 6 h), intravenous endotoxin (E. coli endotoxin, 0.5 microgram/kg over 20 min) 1 h after beginning the 6-h infusion of elastase inhibitor, or endotoxin 1 h after beginning a 6-h infusion of elastase inhibitor vehicle. SC-37698 attenuated the increase in lung lymph flow and lung lymph protein clearance, the alterations in lung mechanics, and the fall in white blood count. Qualitatively similar effects were seen with SC-39026. These data suggest the need for further research examining the role of protease-antiprotease interactions and the potential utility of neutrophil elastase inhibitors in acute lung injury like that observed in the adult respiratory distress syndrome (ARDS) in the human.
Collapse
Affiliation(s)
- J R Gossage
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650
| | | | | | | | | |
Collapse
|
25
|
Wilson SM, Pediani JD, Jenkinson DM, Elder HY. Amiloride impairs the cholinergic regulation of potassium permeability in the human sweat gland but not in the rat submandibular gland. EXPERIENTIA 1992; 48:1115-7. [PMID: 1473575 DOI: 10.1007/bf01948001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Potassium permeability was monitored in human sweat glands and rat submandibular glands. Acetylcholine increased permeability in both tissues and the responses consisted of transient, calcium-independent and sustained, calcium-dependent components. Amiloride, a drug which inhibits Na(+)-H+ countertransport, impaired the regulation of potassium permeability in sweat glands but not in the submandibular gland. It is suggested that the stimulus-permeability coupling process in the sweat gland may be sensitive to the lowering of internal pH.
Collapse
Affiliation(s)
- S M Wilson
- Institute of Physiology, University of Glasgow, Scotland
| | | | | | | |
Collapse
|
26
|
Heard SO, Fink MP. Multiple Organ Failure Syndrome—Part I: Epidemiology, Prognosis, and Pathophysiology. J Intensive Care Med 1991. [DOI: 10.1177/088506669100600604] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The multiple organ failure syndrome (MOFS) is the leading cause of death in intensive care units. Although sepsis is an important cause of MOFS, it is clear that MOFS can occur in the absence of infection. The pathophysiology of MOFS is complex and multifactorial and includes derangements in oxygen delivery and consumption, the release of inflammatory and vasoactive mediators capable of inflicting tissue damage, and alterations in the barrier function of the intestinal mucosa. Although advances have been made in our understanding of MOFS, treatment remains nonspecific and largely supportive. Early and aggressive restoration of tissue perfusion, adequate treatment of infection, timely nutritional support, and support of individual failed organs remain the mainstay of therapy. Therapeutic agents directed against the various mediators associated with the pathophysiology of MOFS may prove useful in the future.
Collapse
Affiliation(s)
- Stephen O. Heard
- Departments of Anesthesiology and Surgery, University of Massachusetts Medical Center, Worcester, MA
| | - Mitchell P. Fink
- Departments of Anesthesiology and Surgery, University of Massachusetts Medical Center, Worcester, MA
| |
Collapse
|
27
|
Affiliation(s)
- S E Hall
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08540
| |
Collapse
|
28
|
Suzuki Y, Ohtsuyama M, Samman G, Sata F, Sato K. Ionic basis of methacholine-induced shrinkage of dissociated eccrine clear cells. J Membr Biol 1991; 123:33-41. [PMID: 1723102 DOI: 10.1007/bf01993960] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The goal of the present study was to elucidate the ionic mechanisms by which cholinergic stimulation induces cell shrinkage in eccrine clear cells. Dissociated Rhesus monkey eccrine sweat clear cells were prepared by collagenase digestion of freshly isolated secretory coils and immobilized on a glass slide in a perfusion chamber at 30 degrees C. The cell was visualized by light microscopy with differential interference contract (DIC) and was recorded with a video system (15,000 x total magnification). The cell volume was calculated from the maximal cross section of the cell. Methacholine (MCh)-induced cell shrinkage, which was as much as 30% of resting cell volume, was dose dependent and pharmacologically specific. MCh-induced cell shrinkage was persistent in some cells but tended to partially wane with time in others. MCh-induced cell shrinkage was dependent on the chemical potential gradient for KCl, i.e., increasing [K] in the bath ([K]o) from 5 to 120 mM caused MCh to induce cell swelling, whereas removing [Cl]0 at 120 mM K partially restored the MCh-induced cell shrinkage. The interpolated null [K]o (medium [K] where the cell volume did not change by MCh) of 71 mM agreed with the predicted [K]o,null. MCh-induced cell shrinkage was inhibited completely by 1 mM quinidine (K-channel blocker) and partially by 1 mM diphenylamine-2-carboxylic acid (DPC, a Cl-channel blocker), but not by 0.1 mM ouabain or 0.1 mM bumetanide, suggesting that MCh-induced cell shrinkage may be due to activation of both K and Cl channels with the resultant net KCl efflux down the chemical potential gradient.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Suzuki
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | | | |
Collapse
|
29
|
Stein B, Pfenninger E, Grünert A, Schmitz JE, Deller A, Kocher F. The consequences of continuous haemofiltration on lung mechanics and extravascular lung water in a porcine endotoxic shock model. Intensive Care Med 1991; 17:293-8. [PMID: 1939876 DOI: 10.1007/bf01713941] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endotoxinaemia (E. coli endotoxin, 0.111.B4) and pulmonary hypertension were evoked in 20 swine, randomly assigned to receive either zero-balanced venovenous haemofiltration (HF) with an ultrafiltration and replacement rate of 600 ml/h (HF group, n = 10) or to undergo an uninfluenced spontaneous course (E group, n = 10) during a constant infusion of endotoxin until the end of the experiment. Endotoxin-induced pulmonary dysfunction was assessed on the basis of extravascular lung water (EVLW) using a thermo-dye technique via a fiberoptic intra-aortic probe, gas exchange and lung mechanics, the latter derived by a pressure-volume loop (P/V loop) of the respiratory system (super syringe, flow 30 ml/s, tidal volume 600 ml). A comparable increase in alveolo-arterial oxygen difference and a constant EVLW was observed in both groups. The progressive deterioration of hysteresis area and compliance parameters by endotoxinaemia was significantly blunted by HF. Independent of an impact on pulmonary oedema zero-balanced HF modifies endotoxin induced lung injury, probably by the convective transport of mediator substances.
Collapse
Affiliation(s)
- B Stein
- Department of Anaesthesiology, University Clinic, Ulm, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
30
|
Lydic R, Baghdoyan HA, Hibbard L, Bonyak EV, DeJoseph MR, Hawkins RA. Regional brain glucose metabolism is altered during rapid eye movement sleep in the cat: a preliminary study. J Comp Neurol 1991; 304:517-29. [PMID: 2013648 DOI: 10.1002/cne.903040402] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucose utilization was measured in 74 brain regions of the cat during states of wakefulness or rapid eye movement (REM) sleep. These data were obtained from intact, unanesthetized animals which were instrumented for objectively measuring states of consciousness. Through a chronically implanted intravenous catheter, the cats received 250 microCi of magnitude of 6-14C glucose during REM sleep (N = 3) or during wakefulness (N = 3). After spending approximately 8 min in REM sleep or in quiet wakefulness, the cats were administered a lethal dose of barbiturate and the brains were removed and processed for autoradiography. The results revealed site-specific changes in glucose metabolism during REM sleep. Significant alterations in glucose use occurred in the thalamus, the limbic system, and specific regions of the pontine reticular formation. These data demonstrate for the first time that during states comprised entirely of REM sleep there are anatomically specific changes in cerebral glucose metabolism. The majority of brain regions exhibiting REM sleep-dependent changes in glucose metabolism either overlapped with regions known to contain cholinergic cell bodies, or with areas that receive prominent cholinergic input.
Collapse
Affiliation(s)
- R Lydic
- Department of Anesthesia, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | | | | | | | |
Collapse
|
31
|
Takemura T, Sato F, Saga K, Suzuki Y, Sato K. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells. J Membr Biol 1991; 119:211-9. [PMID: 2056521 DOI: 10.1007/bf01868726] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl [( Na]i, [K]i, and [Cl]i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; an initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both [K+]i and [Cl]i of clear cells decreased by about 45%, whereas [Na]i increased in such a way to maintain the sum of [Na] i + [K]i constant. There was a small (12-15 mM) increase in [Na]i and a decrease in [K]i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in [Cl]i in the face of constant [Na]i + [K]i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Takemura
- Department of Dermatology, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | | | |
Collapse
|
32
|
Sato K, Ohtsuyama M, Suzuki Y, Samman G, Sato KT, Sato F. Roles of Ca and cAMP on C1 channel activity in cystic fibrosis sweat clear cells as studied by microsuperfusion and cell volume analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 290:145-58. [PMID: 1719755 DOI: 10.1007/978-1-4684-5934-0_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In an attempt to study regulation of C1 channels in intact sweat secretory coils in cystic fibrosis and controls in the least invasive manner, isolated secretory coils were superfused with various drugs and K-efflux was determined as an indirect measure of C1 movement. C1 channel activity was also determined from the drug-induced cell volume increase in gramicidin (GC)-treated dissociated eccrine clear cells. We observed that while MCh-induced K-efflux from the CF secretory coils was entirely normal, K-efflux in the presence of isoproterenol (ISO), forskolin (FK), or IBMX was absent in CF, suggesting that these agents failed to stimulate C1 movement. C1 channel activity of dissociated CF clear cells, as studied by cell volume analysis, was entirely normal when stimulated by Ca-elevating agents but was defective when stimulated by cAMP-elevating agents. TPA (phorbol ester) does not appear to stimulate C1 channel activity nor does it modify the effect of other agents. The following observations from the present and previous studies are not necessarily consistent with the traditional thesis that the observed C1 movement is due to cAMP: CT-cAMP had no effect on cell swelling or on K-efflux; ISO is more potent in accumulating tissue cAMP than IBMX yet the latter is more potent in stimulating K-efflux; IBMX increases cytoplasmic [Ca] yet is unable to stimulate K-efflux in CF; K-efflux stimulated by cAMP-elevating agents was inhibited by removal of Ca from the bath; and, cell swelling of GC-treated cells in response to cAMP elevating agents was inhibited by removal of Ca. The inability of IBMX to stimulate C1 channels in the face of elevated cytoplasmic [Ca] and cAMP in CF cells deserves further scrutiny.
Collapse
Affiliation(s)
- K Sato
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa College of Medicine, Iowa City
| | | | | | | | | | | |
Collapse
|
33
|
Lear JL, Kasliwal R, Feyerabend A. Mapping regional cerebral vascular transit time by simultaneous determination of local cerebral blood flow and local cerebral blood volume. Metab Brain Dis 1990; 5:155-65. [PMID: 2274001 DOI: 10.1007/bf00999842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We developed a method for autoradiographic mapping of regional cerebral transit time (CTT) by simultaneously measuring local cerebral blood flow (LCBF) and local cerebral blood volume (LCBV). Previously described single-tracer techniques for determination of LCBF and LCBV were modified for dual-tracer, 99mTc and 14C, autoradiography and used to create digital images of LCBF and LCBV from the same brain sections in a series of normal rats. The images were aligned and ratio images (LCBV/LCBF) were then generated which reflected CTT. Regional cerebral transit time was found to vary significantly through-out the brain in a pattern only partially related to that of blood flow. Such CTT heterogeneity could cause errors in implementation of kinetic models which assume uniform or monovariant distributions of vascular transit time.
Collapse
Affiliation(s)
- J L Lear
- Department of Radiology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
34
|
Stein B, Pfenninger E, Grünert A, Schmitz JE, Hudde M. Influence of continuous haemofiltration on haemodynamics and central blood volume in experimental endotoxic shock. Intensive Care Med 1990; 16:494-9. [PMID: 2286729 DOI: 10.1007/bf01709399] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to assess the influence of continuous haemofiltration (HF) on haemodynamics and central blood volume in endotoxic shock, endotoxinaemia was invoked in 20 swine (28-32 kg). 15 min after doubling the mean pulmonary pressure, the animals were randomly assigned to receive either a zero-balanced veno-venous HF with an ultrafiltration and replacement rate of 600 ml/h (HF group, n = 10) or to observe the spontaneous course (E group, n = 10) under a constant infusion of endotoxin for 4 h. A trend to a higher survival rate in the HF group (6/10 vs. 3/10; E group) during the observation period was evident, but not statistically significant. Early initiation of HF during endotoxic shock modifies the haemodynamic response, lowering the pulmonary artery pressure (PAP), PCWP, pulmonary (PVR) and systemic vascular resistance (SVR), compared to the spontaneous course, whereas the decrement of central blood volume was comparable in both groups. These changes cannot be explained by effects of the HF on the volume status, but supports and additional effect by the filtration of small and medium-sized molecules.
Collapse
Affiliation(s)
- B Stein
- Klinik für Anaesthesiologie und Intensivmedizin, Universitätsklinik Ulm, Federal Republik of Germany
| | | | | | | | | |
Collapse
|
35
|
Redies C. Refinement of the kinetic model of the deoxyglucose method. J Cereb Blood Flow Metab 1990; 10:435-8. [PMID: 2329131 DOI: 10.1038/jcbfm.1990.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
|
37
|
Mori K, Schmidt K, Jay T, Palombo E, Nelson T, Lucignani G, Pettigrew K, Kennedy C, Sokoloff L. Optimal duration of experimental period in measurement of local cerebral glucose utilization with the deoxyglucose method. J Neurochem 1990; 54:307-19. [PMID: 2403433 DOI: 10.1111/j.1471-4159.1990.tb13316.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The time course and magnitude of the effects of product loss on the measurement of local cerebral glucose utilization (LCGU) by the 2-[14C]deoxyglucose (DG) method were studied by determination of LCGU in 38 rats with 25-120 min experimental periods after a [14C]DG pulse and in 45 rats with experimental periods of 2.5-120 min during which arterial plasma [14C]DG concentrations (C*P) were maintained constant. LCGU was calculated by the operational equation, which assumes no product loss, with the original set of rate constants and with a new set redetermined in the rats used in the present study; in each case the rate constants were those specific to the structure. Data on local tissue 14C concentrations and C*P were also plotted according to the multiple time/graphic evaluation technique ("Patlak Plot"). The results show that with both pulse and constant arterial inputs of [14C]DG the influence of the rate constants is critical early after onset of tracer administration but diminishes with time and becomes relatively minor by 30 min. After a [14C]DG pulse calculated LCGU remains constant between 25 and 45 min, indicating a negligible effect of product loss during that period; at 60 min it begins to fall and declines progressively with increasing time, indicating that product loss has become significant. When C*P is maintained constant, calculated LCGU does not change significantly over the full 120 min. The "Patlak Plots" reinforced the conclusions drawn from the time courses of calculated LCGU; evidence for loss of product was undetectable for at least 45 min after a pulse of [14C]DG and for at least 60 min after onset of a constant arterial input of [14C]DG.
Collapse
Affiliation(s)
- K Mori
- Laboratory of Cerebral Metabolism, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lupinetti MD, Sheller JR, Catella F, Fitzgerald GA. Thromboxane biosynthesis in allergen-induced bronchospasm. Evidence for platelet activation. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1989; 140:932-5. [PMID: 2508524 DOI: 10.1164/ajrccm/140.4.932] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To determine if platelet activation occurs after allergen inhalation in atopic asthmatics, we measured two urinary metabolites of the principal cyclooxygenase product of platelets, thromboxane A2 (TxA2), using the sensitive and specific technique of gas chromatography-negative ion, chemical ionization-mass spectrometry. Seven atopic asthmatics underwent allergen challenge after low dose aspirin to suppress platelet thromboxane generation and on placebo days. On placebo days, the urinary levels of 2,3-dinor-TxB2 increased from 76 +/- 22 pg/mg creatinine to 216 +/- 95 after allergen, and 11-dehydro-TxB2 from 396 +/- 98 to 627 +/- 137 (p less than 0.05). Low dose aspirin suppressed excretion of urinary thromboxane metabolites and prevented the rise after allergen inhalation without altering the bronchoconstriction. Excretion of 2,3-dinor-6-keto-PGF1 alpha, a metabolite of prostacyclin, was unaltered by this aspirin regimen. We conclude that platelets are activated after allergen challenge, but that platelet-derived TxA2 is not important in the early bronchoconstrictor response.
Collapse
Affiliation(s)
- M D Lupinetti
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | |
Collapse
|
39
|
Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 1989; 20:537-63. [PMID: 2654204 DOI: 10.1016/s0190-9622(89)70063-3] [Citation(s) in RCA: 456] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The basic mechanisms of sweat gland function and an updated review of some relatively common disorders of sweat secretion, are presented. Although sweat secretion and ductal absorption are basically biophysical and biologic cellular processes, a detailed description of the basic biophysical principles of membrane transport has been avoided to make the discussion more readable. The cited references will, however, help those readers primarily interested in the basic details of sweat gland function. Part I of this article includes a discussion of morphologic characteristics, central and peripheral nervous control of sweat secretion, neurotransmitters, intracellular mediators and stimulus secretion coupling, Na-K-Cl cotransport model for the ionic mechanism of sweat secretion, ingredients of sweat, ductal function, the pathogenesis of abnormal sweat gland function in cystic fibrosis, and the discovery of the apoeccrine sweat gland. Part II, to be published in the May issue of the Journal, reviews reports of all those major disorders of hyperhidrosis and hypohidrosis that have appeared in the literature during the past 10 years. It is hoped that this review will serve as a resource for clinicians who encounter puzzling disorders of sweating in their patients, as well as for investigators who wish to obtain a quick update on sweat gland function.
Collapse
Affiliation(s)
- K Sato
- Marshall Dermatology Research Laboratories, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | |
Collapse
|
40
|
Redies C, Diksic M. The deoxyglucose method in the ferret brain. I. Methodological considerations. J Cereb Blood Flow Metab 1989; 9:35-42. [PMID: 2910895 DOI: 10.1038/jcbfm.1989.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the brain of the anesthetized ferret, the 2-deoxyglucose (2-DG) transfer rate constants required to determine cerebral glucose utilization by the deoxyglucose method were calculated from regional gray matter time-radioactivity curves measured for 180 min after tracer injection. Results suggest that loss of metabolized tracer from brain occurs at a rate of about 1%/min for the first 180 min after injection if the rate constant of the rate-limiting step for loss of metabolized tracer (k4*) represents a first-order kinetic process. A simulation experiment shows that, whether k4* is assumed to be 0 or 0.01 min-1, has a negligible influence on glucose utilization rates obtained in conventional 45 min autoradiographic experiments provided that the entire analysis, including lumped constant determination, is carried out in a consistent way. The 2-DG lumped constant for k4* = 0 is 0.54, and 0.68 for k4* = 0.01 min-1.
Collapse
Affiliation(s)
- C Redies
- Cone Laboratory, Montreal Neurological Institute, Québec, Canada
| | | |
Collapse
|
41
|
Redies C, Diksic M, Yamamoto YL. The deoxyglucose method in the ferret brain. II. Glucose utilization images and normal values. J Cereb Blood Flow Metab 1989; 9:43-52. [PMID: 2910896 DOI: 10.1038/jcbfm.1989.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To measure cerebral glucose utilization with the autoradiographic deoxyglucose method, the tracer transfer rate constants and lumped constants must be known. 2-Deoxyglucose (2-DG) and fluorodeoxyglucose (FDG) constants were determined in 18 gray and white matter brain structures of the anesthetized ferret. The ferret is a domestic carnivore particularly suitable for deoxyglucose studies because of its small brain size and low body weight. The average gray matter rate constants for tracer transfer across the blood-brain barrier are similar for 2-DG and FDG in the ferret brain (K*1 = 0.21 ml/g/min and k*2 = 0.39 min-1). The rate constant for the rate-limiting step of tracer phosphorylation, k*3, is 1.6 times higher for FDG than for 2-DG (0.21 vs. 0.13 min-1). Loss of metabolized tracer is about 1-1.5%/min throughout the ferret brain for both tracers as estimated for a 180 min experimental period. Taking into account this loss, the lumped constant is 0.92 for FDG and 0.68 for 2-DG. Glucose utilization values in the brain of the anesthesized ferret range from 33 mumol/100 g/min in the corpus callosum to 104 mumol/100 g/min in the caudate nucleus. Representative glucose utilization images of coronal sections of the ferret brain are shown. Brain structures are identified on the same slices counterstained with thionin.
Collapse
Affiliation(s)
- C Redies
- Cone Laboratory, Montreal Neurological Institute, Québec, Canada
| | | | | |
Collapse
|
42
|
Saga K, Sato K. Electron probe X-ray microanalysis of cellular ions in the eccrine secretory coil cells during methacholine stimulation. J Membr Biol 1989; 107:13-24. [PMID: 2646452 DOI: 10.1007/bf01871079] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracellular concentrations of Na, K, Cl ([Na], [K] and [Cl], respectively) and other elements were determined in isolated monkey eccrine sweat secretory coil cells using quantitative electron probe X-ray microanalysis of freeze dried cryosections. The validity of the methodology was partially supported by qualitative agreement of the X-ray microanalysis data with those obtained by micro-titration with a helium glow spectrophotometer. [Na], [K] and [Cl] of the cytoplasm were the same as those in the nucleus in both clear and dark cells. [Na], [K], and [Cl] of the clear cells were also the same as those of the dark cells at rest and after stimulation with methacholine (MCh), suggesting that these two cell types behave like a functional syncytium. MCh stimulation induced a pharmacologically specific, dose-dependent decrease in [K] and [Cl] (as much as 65%), and a 3.7-fold increase in [Na]. In myoepithelial cells, a similar change in [Na] and [K] was noted after MCh stimulation although the decrease in [Cl] was only 20%. The MCh-induced change in [Na], [K] and [Cl] was almost completely inhibited by removal of Ca2+ from the medium. 10(-4) M bumetanide inhibited the MCh-induced increase in [Na], reduced the decrease in [K] by about 50%, but slightly augmented the MCh-induced decrease in [Cl]. 10(-4) M ouabain increased [Na] and decreased [K] as did MCh; however, unlike MCh, ouabain increased [Cl] by 56% after 30 min of incubation. Thus the data may be best interpreted to indicate that Ca-dependent K efflux and (perhaps also Ca-dependent) Cl efflux are the predominant initial ionic movement in muscarinic cholinergic stimulation of the eccrine sweat secretory coils and that the ouabain-sensitive Na pump plays an important role in maintenance of intracellular ions and sweat secretion.
Collapse
Affiliation(s)
- K Saga
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa College of Medicine, Iowa City 52242
| | | |
Collapse
|
43
|
Lear JL, Ackermann RF. Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3-4, and 6 positions using double label quantitative digital autoradiography. J Cereb Blood Flow Metab 1988; 8:575-85. [PMID: 3392117 DOI: 10.1038/jcbfm.1988.99] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We compared local cerebral glucose metabolic rates (LCMRglu) that were determined with [18F]fluorodeoxyglucose (FDG) and [14C]glucose labeled in the 1, 2, 3-4, and 6 positions. Double label digital autoradiography was used with published kinetic models to determine LCMRglu for FDG and glucose in the same animals. Glucose showed metabolic rate dependent underestimation of LCMRglu compared to FDG, which worsened with increasing experimental times. The least underestimation occurred with glucose labeled in the 6 position at 6 min, reaching 10% in areas of high metabolism. Labeling in the 1 position, the 2 position and the 3-4 position caused progressively worse underestimation at all times. In addition, some structures showed differences not directly related to metabolic rate, indicating regional variations in relationships between individual kinetic constants of FDG and glucose.
Collapse
Affiliation(s)
- J L Lear
- Division of Nuclear Medicine, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
44
|
Alessandrini P, McRae J, Feman S, FitzGerald GA. Thromboxane biosynthesis and platelet function in type I diabetes mellitus. N Engl J Med 1988; 319:208-12. [PMID: 3292913 DOI: 10.1056/nejm198807283190404] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has been speculated that platelet activation may contribute to the evolution of vascular complications in patients with Type I diabetes mellitus. To address this hypothesis, we measured the plasma and urinary metabolites of thromboxane, presumably of platelet origin, and of prostacyclin, derived from endothelial cells, in addition to more conventional indexes of platelet function. Urinary excretion of the metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-keto-prostaglandin F1 alpha did not differ between diabetics with or without retinopathy and nondiabetic controls. Furthermore, measurement of platelet granule constituents, the aggregation responses to ADP or arachidonic acid, and levels of serum thromboxane B2 failed to discriminate between the groups. The institution of tight diabetic control with multiple daily injections of insulin failed to alter either urinary metabolite excretion or plasma levels of 11-dehydro-thromboxane B2. Conversely, insulin-induced hypoglycemia failed to alter the concentrations of plasma or urinary thromboxane metabolites in nondiabetic volunteers, despite a mean 60-fold increase in plasma epinephrine. These studies suggest that platelet activation does not precede the development of microvascular complications in patients with Type I diabetes who lack clinical evidence of macrovascular disease and have normal renal function. Furthermore, it is unlikely that platelet activation due to intermittent hypoglycemia contributes to the reportedly accelerated development of retinopathy in such patients, when they are subject to tight diabetic control.
Collapse
Affiliation(s)
- P Alessandrini
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | | | |
Collapse
|