1
|
Bazard P, Ding B, Chittam HK, Zhu X, Parks TA, Taylor-Clark TE, Bhethanabotla VR, Frisina RD, Walton JP. Aldosterone up-regulates voltage-gated potassium currents and NKCC1 protein membrane fractions. Sci Rep 2020; 10:15604. [PMID: 32973172 PMCID: PMC7515911 DOI: 10.1038/s41598-020-72450-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/12/2020] [Indexed: 02/02/2023] Open
Abstract
Na+-K+-2Cl- Cotransporter (NKCC1) is a protein that aids in the active transport of sodium, potassium, and chloride ions across cell membranes. It has been shown that long-term systemic treatment with aldosterone (ALD) can enhance NKCC1 protein expression and activity in the aging cochlea resulting in improved hearing. In the present work, we used a cell line with confirmed NKCC1 expression to demonstrate that in vitro application of ALD increased outward voltage-gated potassium currents significantly, and simultaneously upregulated whole lysate and membrane portion NKCC1 protein expression. These ALD-induced changes were blocked by applying the mineralocorticoid receptor antagonist eplerenone. However, application of the NKCC1 inhibitor bumetanide or the potassium channel antagonist Tetraethyl ammonium had no effect. In addition, NKKC1 mRNA levels remained stable, indicating that ALD modulates NKCC1 protein expression via the activation of mineralocorticoid receptors and post-transcriptional modifications. Further, in vitro electrophysiology experiments, with ALD in the presence of NKCC1, K+ channel and mineralocorticoid receptor inhibitors, revealed interactions between NKCC1 and outward K+ channels, mediated by a mineralocorticoid receptor-ALD complex. These results provide evidence of the therapeutic potential of ALD for the prevention/treatment of inner ear disorders such as age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Harish K Chittam
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Thomas A Parks
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Venkat R Bhethanabotla
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Department Communication Sciences and Disorders, College of Behavioral and Communication Sciences, Tampa, FL, 33620, USA
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Joseph P Walton
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA.
- Department Communication Sciences and Disorders, College of Behavioral and Communication Sciences, Tampa, FL, 33620, USA.
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA.
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
May O, Yu H, Riederer B, Manns MP, Seidler U, Bachmann O. Short-term regulation of murine colonic NBCe1-B (electrogenic Na+/HCO3(-) cotransporter) membrane expression and activity by protein kinase C. PLoS One 2014; 9:e92275. [PMID: 24642792 PMCID: PMC3958514 DOI: 10.1371/journal.pone.0092275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The colonic mucosa actively secretes HCO3(-), and several lines of evidence point to an important role of Na+/HCO3(-) cotransport (NBC) as a basolateral HCO3(-) import pathway. We could recently demonstrate that the predominant NBC isoform in murine colonic crypts is electrogenic NBCe1-B, and that secretagogues cause NBCe1 exocytosis, which likely represents a component of NBC activation. Since protein kinase C (PKC) plays a key role in the regulation of ion transport by trafficking events, we asked whether it is also involved in the observed NBC activity increase. Crypts were isolated from murine proximal colon to assess PKC activation as well as NBC function and membrane abundance using fluorometric pHi measurements and cell surface biotinylation, respectively. PKC isoform translocation and phosphorylation occurred in response to PMA-, as well as secretagogue stimulation. The conventional and novel PKC inhibitors Gö6976 or Gö6850 did not alter NBC function or surface expression by themselves, but stimulation with forskolin (10(-5) M) or carbachol (10(-4) M) in their presence led to a significant decrease in NBC-mediated proton flux, and biotinylated NBCe1. Our data thus indicate that secretagogues lead to PKC translocation and phosphorylation in murine colonic crypts, and that PKC is necessary for the increase in NBC transport rate and membrane abundance caused by cholinergic and cAMP-dependent stimuli.
Collapse
Affiliation(s)
- Oliver May
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Haoyang Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver Bachmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
3
|
Alzamora R, O'Mahony F, Ko WH, Yip TWN, Carter D, Irnaten M, Harvey BJ. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels. Front Physiol 2011; 2:33. [PMID: 21747769 PMCID: PMC3129074 DOI: 10.3389/fphys.2011.00033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/18/2011] [Indexed: 11/13/2022] Open
Abstract
Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Beaumont Hospital Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
4
|
Bachmann O, Juric M, Seidler U, Manns MP, Yu H. Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf) 2011; 201:33-46. [PMID: 20528802 DOI: 10.1111/j.1748-1716.2010.02153.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrolyte transporters located in the basolateral membrane of the colonic epithelium are increasingly appreciated as elaborately regulated components of specific transport functions and cellular homeostasis: During electrolyte absorption, Na(+) /K(+) ATPase, Cl⁻ conductance, Cl⁻/HCO₃⁻ exchange, K(+) /Cl⁻ cotransport and K(+) channels are candidates for basolateral Na(+) , Cl⁻ and K(+) extrusion. The process of colonic anion secretion involves basolateral Na(+) /K(+) /2Cl⁻ , and probably also Na(+) /HCO₃⁻ cotransport, as well as Na(+) /K(+) ATPase and K(+) channels to supply substrate, stabilize the membrane potential and generate driving force respectively. Together with a multitude of additional transport systems, Na(+) /H(+) exchange and Na(+) /HCO₃⁻ cotransport have been implicated in colonocyte pH(i) and volume homeostasis. The purpose of this article is to summarize recently gathered information on the molecular identity, function and regulation of the involved basolateral transport systems in native tissue. Furthermore, we discuss how these findings can help to integrate these systems into the transport function and the cellular homoeostasis of colonic epithelial cells. Finally, disturbances of basolateral electrolyte transport during disease states such as mucosal inflammation will be reviewed.
Collapse
Affiliation(s)
- O Bachmann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Germany.
| | | | | | | | | |
Collapse
|
5
|
Tang J, Bouyer P, Mykoniatis A, Buschmann M, Matlin KS, Matthews JB. Activated PKC{delta} and PKC{epsilon} inhibit epithelial chloride secretion response to cAMP via inducing internalization of the Na+-K+-2Cl- cotransporter NKCC1. J Biol Chem 2010; 285:34072-85. [PMID: 20732874 DOI: 10.1074/jbc.m110.137380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is a key determinant of transepithelial chloride secretion and dysregulation of chloride secretion is a common feature of many diseases including secretory diarrhea. We have previously shown that activation of protein kinase C (PKC) markedly reduces transepithelial chloride secretion in human colonic T84 cells, which correlates with both functional inhibition and loss of the NKCC1 surface expression. In the present study, we defined the specific roles of PKC isoforms in regulating epithelial NKCC1 and chloride secretion utilizing adenoviral vectors that express shRNAs targeting human PKC isoforms (α, δ, ε) (shPKCs) or LacZ (shLacZ, non-targeting control). After 72 h of adenoviral transduction, protein levels of the PKC isoforms in shPKCs-T84 cells were decreased by ∼90% compared with the shLacZ-control. Activation of PKCs by phorbol 12-myristate 13-acetate (PMA) caused a redistribution of NKCC1 immunostaining from the basolateral membrane to intracellular vesicles in both shLacZ- and shPKCα-T84 cells, whereas the effect of PMA was not observed in shPKCδ- and shPKCε- cells. These results were further confirmed by basolateral surface biotinylation. Furthermore, activation of PKCs by PMA inhibited cAMP-stimulated chloride secretion in the uninfected, shLacZ- and shPKCα-T84 monolayers, but the inhibitory effect was significantly attenuated in shPKCδ- and shPKCε-T84 monolayers. In conclusion, the activated novel isoforms PKCδ or PKCε, but not the conventional isoform PKCα, inhibits transepithelial chloride secretion through inducing internalization of the basolateral surface NKCC1. Our study reveals that the novel PKC isoform-regulated NKCC1 surface expression plays an important role in the regulation of chloride secretion.
Collapse
Affiliation(s)
- Jun Tang
- Department of Surgery, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
6
|
Mykoniatis A, Shen L, Fedor-Chaiken M, Tang J, Tang X, Worrell RT, Delpire E, Turner JR, Matlin KS, Bouyer P, Matthews JB. Phorbol 12-myristate 13-acetate-induced endocytosis of the Na-K-2Cl cotransporter in MDCK cells is associated with a clathrin-dependent pathway. Am J Physiol Cell Physiol 2009; 298:C85-97. [PMID: 19864322 DOI: 10.1152/ajpcell.00118.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In secretory epithelial cells, the basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) plays a major role in salt and fluid secretion. Our laboratory has identified NKCC1 surface expression as an important regulatory mechanism for Cl(-) secretion in the colonic crypt cell line T84, a process also present in native human colonic crypts. We previously showed that activation of protein kinase C (PKC) by carbachol and phorbol 12-myristate 13-acetate (PMA) decreases NKCC1 surface expression in T84 cells. However, the specific endocytic entry pathway has not been defined. We used a Madin-Darby canine kidney (MDCK) cell line stably transfected with enhanced green fluorescent protein (EGFP)-NKCC1 to map NKCC1 entry during PMA exposure. At given times, we fixed and stained the cells with specific markers (e.g., dynamin II, clathrin heavy chain, and caveolin-1). We also used chlorpromazine, methyl-beta-cyclodextrin, amiloride, and dynasore, blockers of the clathrin, caveolin, and macropinocytosis pathways and the vesicle "pinchase" dynamin, respectively. We found that PMA caused dose- and time-dependent NKCC1 endocytosis. After 2.5 min of PMA exposure, approximately 80% of EGFP-NKCC1 endocytic vesicles colocalized with clathrin and approximately 40% colocalized with dynamin II and with the transferrin receptor, the uptake of which is also mediated by clathrin-coated vesicles. We did not observe significant colocalization of EGFP-NKCC1 endocytic vesicles with caveolin-1, a marker of the caveolae-mediated endocytic pathway. We quantified the effect of each inhibitor on PMA-induced EGFP-NKCC1 endocytosis and found that only chlorpromazine and dynasore caused significant inhibition compared with the untreated control (61% and 25%, respectively, at 2.5 min). Together, these results strongly support the conclusion that PMA-stimulated NKCC1 endocytosis is associated with a clathrin pathway.
Collapse
Affiliation(s)
- Andreas Mykoniatis
- The Univ. of Chicago, 5841 S. Maryland Ave., MC 5029, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hirota CL, McKay DM. Loss of Ca-mediated ion transport during colitis correlates with reduced ion transport responses to a Ca-activated K channel opener. Br J Pharmacol 2009; 156:1085-97. [PMID: 19298254 DOI: 10.1111/j.1476-5381.2009.00122.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Epithelial surface hydration is critical for proper gut function. However, colonic tissues from individuals with inflammatory bowel disease or animals with colitis are hyporesponsive to Cl(-) secretagogues. The Cl(-) secretory responses to the muscarinic receptor agonist bethanechol are virtually absent in colons of mice with dextran sodium sulphate (DSS)-induced colitis. Our aim was to define the mechanism underlying this cholinergic hyporesponsiveness. EXPERIMENTAL APPROACH Colitis was induced by 4% DSS water, given orally. Epithelial ion transport was measured in Ussing chambers. Colonic crypts were isolated and processed for mRNA expression via RT-PCR and protein expression via immunoblotting and immunolocalization. KEY RESULTS Expression of muscarinic M(3) receptors in colonic epithelium was not decreased during colitis. Short-circuit current (I(SC)) responses to other Ca(2+)-dependent secretagogues (histamine, thapsigargin, cyclopiazonic acid and calcium ionophore) were either absent or severely attenuated in colonic tissue from DSS-treated mice. mRNA levels of several ion transport molecules (a Ca(2+)-regulated Cl(-) channel, the intermediate-conductance Ca(2+)-activated K(+) channel, the cystic fibrosis transmembrane conductance regulator, the Na(+)/K(+)-ATPase pump or the Na(+)/K(+)/2Cl(-) co-transporter) were not reduced in colonic crypts from DSS-treated mice. However, protein expression of Na(+)/K(+)-ATPase alpha1 subunits was decreased twofold during colitis. Activation of Ca(2+)-activated K(+) channels increased I(SC) significantly less in DSS colons compared with control, as did the protein kinase C activator, phorbol 12-myristate 13-acetate. CONCLUSIONS AND IMPLICATIONS Decreased Na(+)/K(+)-ATPase expression probably contributes to overall epithelial hyporesponsiveness during colitis, while dysfunctional K(+) channels may account, at least partially, for lack of epithelial secretory responses to Ca(2+)-mediated secretagogues.
Collapse
Affiliation(s)
- Christina L Hirota
- Intestinal Disease Research Programme, Department of Pathology and Molecular Medicine, McMaster University, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada.
| | | |
Collapse
|
8
|
Saslowsky DE, Lencer WI. Conversion of apical plasma membrane sphingomyelin to ceramide attenuates the intoxication of host cells by cholera toxin. Cell Microbiol 2008; 10:67-80. [PMID: 18052945 DOI: 10.1111/j.1462-5822.2007.01015.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholera toxin (CT) enters host cells by binding to ganglioside GM1 in the apical plasma membrane (PM). GM1 carries CT retrograde from the PM to the endoplasmic reticulum (ER), where a portion of the toxin, the A1-chain, retro-translocates to the cytosol, causing disease. Trafficking in this pathway appears to depend on the association of CT-GM1 complexes with sphingomyelin (SM)- and cholesterol-rich membrane microdomains termed lipid rafts. Here, we find that in polarized intestinal epithelia, the conversion of apical membrane SM to ceramide by bacterial sphingomyelinase attenuates CT toxicity, consistent with the lipid raft hypothesis. The effect is reversible, specific to toxin entry via the apical membrane, and recapitulated by the addition of exogenous long-chain ceramides. Conversion of apical membrane SM to ceramide inhibits the efficiency of toxin endocytosis, but retrograde trafficking from the apical PM to the Golgi and ER is not affected. This result suggests that the cause for toxin resistance occurs at steps required for retro-translocation of the CT A1-chain to the cytosol.
Collapse
Affiliation(s)
- David E Saslowsky
- Children's Hospital, Harvard Digestive Diseases Center, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
9
|
Reynolds A, Parris A, Evans LA, Lindqvist S, Sharp P, Lewis M, Tighe R, Williams MR. Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol 2007; 582:507-24. [PMID: 17478539 PMCID: PMC2075325 DOI: 10.1113/jphysiol.2007.129718] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/26/2007] [Indexed: 12/21/2022] Open
Abstract
The capacity of the intestine to secrete fluid is dependent on the basolateral Na(+)-K(+)-2Cl(-) co-transporter (NKCC1). Given that cAMP and Ca(2+) signals promote sustained and transient episodes of fluid secretion, respectively, this study investigated the differential regulation of functional NKCC1 membrane expression in the native human colonic epithelium. Tissue sections and colonic crypts were obtained from sigmoid rectal biopsy tissue samples. Cellular location of NKCC1, Na(+)-K(+)-ATPase, M3 muscarinic acetylcholine receptor (M(3)AChR) and lysosomes was examined by immunolabelling techniques. NKCC1 activity (i.e. bumetanide-sensitive uptake), intracellular Ca(2+) and cell volume were assessed by 2',7'-bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), Fura-2 and differential interference contrast/calcein imaging. Unstimulated NKCC1 was expressed on basolateral membranes and exhibited a topological expression gradient, predominant at the crypt base. Cholinergic Ca(2+) signals initiated at the crypt base and spread along the crypt axis. In response, NKCC1 underwent a Ca(2+)-dependent 4 h cycle of recruitment to basolateral membranes, activation, internalization, degradation and re-expression. Internalization was prevented by the epidermal growth factor receptor kinase inhibitor tyrphostin-AG1478, and re-expression was prohibited by the protein synthesis inhibitor cylcoheximide; the lysosome inhibitor chloroquine promoted accumulation of NKCC1 vesicles. NKCC1 internalization and re-expression were accompanied by secretory volume decrease and bumetanide-sensitive regulatory volume increase, respectively. In contrast, forskolin (i.e. cAMP elevation)-stimulated NKCC1 activity was sustained, and membrane expression and cell volume remained constant. Co-stimulation with forskolin and acetylcholine promoted dramatic recruitment of NKCC1 to basolateral membranes and prolonged the cycle of co-transporter activation, internalization and re-expression. In conclusion, persistent NKCC1 activation by cAMP is constrained by a Ca(2+)-dependent cycle of co-transporter internalization, degradation and re-expression; this is a novel mechanism to limit intestinal fluid loss.
Collapse
Affiliation(s)
- Amy Reynolds
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Del Castillo IC, Fedor-Chaiken M, Song JC, Starlinger V, Yoo J, Matlin KS, Matthews JB. Dynamic regulation of Na(+)-K(+)-2Cl(-) cotransporter surface expression by PKC-{epsilon} in Cl(-)--secretory epithelia. Am J Physiol Cell Physiol 2005; 289:C1332-42. [PMID: 16000638 DOI: 10.1152/ajpcell.00580.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In secretory epithelia, activation of PKC by phorbol ester and carbachol negatively regulates Cl(-) secretion, the transport event of secretory diarrhea. Previous studies have implicated the basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) as a target of PKC-dependent inhibition of Cl(-) secretion. In the present study, we examined the regulation of surface expression of NKCC1 in response to the activation of PKC. Treatment of confluent T84 intestinal epithelial cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA) reduced the amount of NKCC1 accessible to basolateral surface biotinylation. Loss of cell surface NKCC1 was due to internalization as shown by 1) the resistance of biotinylated NKCC1 to surface biotin stripping after incubation with PMA and 2) indirect immunofluorescent labeling. PMA-induced internalization of NKCC1 is dependent on the epsilon-isoform of PKC as determined on the basis of sensitivity to a panel of PKC inhibitors. The effect of PMA on surface expression of NKCC1 was specific because PMA did not significantly alter the amount of Na(+)-K(+)-ATPase or E-cadherin available for surface biotinylation. After extended PMA exposure (>2 h), NKCC1 became degraded in a proteasome-dependent fashion. Like PMA, carbachol reduced the amount of NKCC1 accessible to basolateral surface biotinylation in a PKC-epsilon-dependent manner. However, long-term exposure to carbachol did not result in degradation of NKCC1; rather, NKCC1 that was internalized after exposure to carbachol was recycled back to the cell membrane. PKC-epsilon-dependent alteration of NKCC1 surface expression represents a novel mechanism for regulating Cl(-) secretion.
Collapse
Affiliation(s)
- Isabel Calvo Del Castillo
- Dept. of Surgery, Univ. of Cincinnati Medical Center, 231 Albert B. Sabin Way, PO Box 670558, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kulaksiz H, Schmid A, Hönscheid M, Ramaswamy A, Cetin Y. Clara cell impact in air-side activation of CFTR in small pulmonary airways. Proc Natl Acad Sci U S A 2002; 99:6796-801. [PMID: 12011439 PMCID: PMC124482 DOI: 10.1073/pnas.102171199] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Clara cells are nonciliated, nonmucous, secretory cells containing characteristic peptidergic granules; they constitute up to 80% of the epithelial cell population of the distal airways. Despite this exposed histotopology and abundance within the terminal airways where fluid secretion is of pivotal importance, the functional role of the Clara cells remained poorly understood. At the transcriptional, translational, and cellular levels, we provide evidence that the Clara cells are well equipped with the bioactive peptide guanylin and proteins of the cGMP-signaling system including guanylate cyclase C, cGMP-dependent protein kinase II, and cystic fibrosis transmembrane conductance regulator (CFTR) together with the two CFTR scaffolding proteins EBP50/NHERF and E3KARP/NHERF-2 that are essential for proper function of CFTR. Guanylin was localized to secretory granules underneath the apical membrane of Clara cells and was, in addition, detected in high concentrations in bronchoalveolar lavage fluid, predicting release of the peptide luminally into the bronchiolar airways. On the other hand, the guanylin-receptor guanylate cyclase C, CFTR, and proteins linked to CFTR activation and function were all confined to the adluminal membrane of Clara cells, implicating an intriguing air-side route of action of guanylin. Whole-cell patch-clamp recordings in the Clara cell line H441 revealed that guanylin activates CFTR Cl(-) conductance via the cGMP but not the cAMP-signaling pathway. Hence, in the critical location of distal airways in situ, the Clara cells may play the outstanding role of CFTR-dependent regulation of epithelial electrolyte/water secretion through a sophisticated paracrine/luminocrine mode of guanylin-induced CFTR activation.
Collapse
Affiliation(s)
- Hasan Kulaksiz
- Department of Molecular Cell Biology, Institute of Anatomy and Cell Biology, Philipps University, D-35033 Marburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Song JC, Hanson CM, Tsai V, Farokhzad OC, Lotz M, Matthews JB. Regulation of epithelial transport and barrier function by distinct protein kinase C isoforms. Am J Physiol Cell Physiol 2001; 281:C649-61. [PMID: 11443064 DOI: 10.1152/ajpcell.2001.281.2.c649] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibits Cl(-) secretion (short-circuit current, I(sc)) and decreases barrier function (transepithelial resistance, TER) in T84 epithelia. To elucidate the role of specific protein kinase C (PKC) isoenzymes in this response, we compared PMA with two non-phorbol activators of PKC (bryostatin-1 and carbachol) and utilized three PKC inhibitors (Gö-6850, Gö-6976, and rottlerin) with different isozyme selectivity profiles. PMA sequentially inhibited cAMP-stimulated I(sc) and decreased TER, as measured by voltage-current clamp. By subcellular fractionation and Western blot, PMA (100 nM) induced sequential membrane translocation of the novel PKC epsilon followed by the conventional PKC alpha and activated both isozymes by in vitro kinase assay. PKC delta was activated by PMA but did not translocate. By immunofluorescence, PKC epsilon redistributed to the basolateral domain in response to PMA, whereas PKC alpha moved apically. Inhibition of I(sc) by PMA was prevented by the conventional and novel PKC inhibitor Gö-6850 (5 microM) but not the conventional isoform inhibitor Gö-6976 (5 microM) or the PKC delta inhibitor rottlerin (10 microM), implicating PKC epsilon in inhibition of Cl(-) secretion. In contrast, both Gö-6976 and Gö-6850 prevented the decline of TER, suggesting involvement of PKC alpha. Bryostatin-1 (100 nM) translocated PKC epsilon and PKC alpha and inhibited cAMP-elicited I(sc). However, unlike PMA, bryostatin-1 downregulated PKC alpha protein, and the decrease in TER was only transient. Carbachol (100 microM) translocated only PKC epsilon and inhibited I(sc) with no effect on TER. Gö-6850 but not Gö-6976 or rottlerin blocked bryostatin-1 and carbachol inhibition of I(sc). We conclude that basolateral translocation of PKC epsilon inhibits Cl(-) secretion, while apical translocation of PKC alpha decreases TER. These data suggest that epithelial transport and barrier function can be modulated by distinct PKC isoforms.
Collapse
Affiliation(s)
- J C Song
- Division of General and Gastrointestinal Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
13
|
Sugi K, Musch MW, Di A, Nelson DJ, Chang EB. Oxidants potentiate Ca(2+)- and cAMP-stimulated Cl(-) secretion in intestinal epithelial T84 cells. Gastroenterology 2001; 120:89-98. [PMID: 11208717 DOI: 10.1053/gast.2001.20917] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Diarrhea is one of the major complications of inflammatory bowel disease. The role of oxidants in promoting net intestinal secretion is important, but the cellular mechanisms underlying their effects are unclear. We examined the effects and defined the cellular actions of the oxidant monochloramine (NH(2)Cl) on anion secretion in human colonic T84 cells. METHODS Effects of NH(2)Cl on basal and agonist-stimulated short-circuit current (Isc) of T84 monolayers were determined. Apical Cl(-) and basolateral K(+) conductances were measured by efflux of (125)I(-) and (86)Rb(+), respectively. RESULTS NH(2)Cl alone had little effect on Isc and (125)I(-) efflux. However, pretreatment with NH(2)Cl led to a concentration-dependent potentiation of the Ca(2+)-mediated Isc and of submaximal cAMP-mediated responses. These effects were associated with increased basolateral K(+) channel conductance and were blocked by increasing cellular Ca(2+) buffering capacity with Quin-2. Whole-cell voltage clamp experiments showed that NH(2)Cl potentiated Ca(2+) activation of basolateral K(+) channel conductance. CONCLUSIONS Oxidants potentiate both Ca(2+)- and cAMP-stimulated Cl(-) secretion by a direct effect on calcium-activated basolateral K(+) channel conductance, lowering its Ca(2+) activation threshold. This effect may play an important role in amplifying and prolonging the secretory response of inflamed intestinal mucosa and enhancing the severity of diarrhea.
Collapse
Affiliation(s)
- K Sugi
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
14
|
Saidi RF, Jaeger K, Montrose MH, Wu S, Sears CL. Bacteroides fragilis toxin rearranges the actin cytoskeleton of HT29/C1 cells without direct proteolysis of actin or decrease in F-actin content. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:159-65. [PMID: 9186013 DOI: 10.1002/(sici)1097-0169(1997)37:2<159::aid-cm8>3.0.co;2-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Enterotoxigenic strains of B. fragilis associated with childhood diarrhea produce a 20 kD zinc metalloprotease toxin (BFT). BFT is reported to cleave G-actin in vitro and also causes dramatic rounding and rearrangement of the F-actin cytoskeleton in human intestinal epithelial cell lines (HT29) and HT29/C1). To test the hypothesis that the proteolysis of cellular actin by BFT in vivo may contribute to these alterations in morphology and cytoskeletal architecture, we assessed the F-actin content and the arrangement of the F- and G-actin cytoskeleton in BFT-treated HT29/C1 cells by spectrofluorimetry, confocal microscopy, and immunoblotting. BFT-treated cells were compared to cells treated with C. difficile toxin A (CDA) or cytochalasin D. Using spectrofluorimetric quantification, the F-actin content of BFT- and cytochalasin D-treated cells was unchanged in contrast to a significant decrease in CDA-treated cells. By confocal microscopy, the arrangement of F- and G-actin in all treated cells was markedly different than control cells. There was no change in the immunoblotting pattern of actin in the Triton-soluble or -insoluble cellular fractions of BFT-treated HT29/C1 cells. We conclude that BFT alters the F- and G-actin cytoskeletal architecture of HT29/C1 cells without direct proteolysis of actin or decrease in F-actin content.
Collapse
Affiliation(s)
- R F Saidi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
15
|
Moser AJ, Abedin MZ, Morgenstern KE, Abedin ZR, Roslyn JJ. Endogenous prostaglandins modulate chloride secretion by prairie dog gallbladder. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 135:82-8. [PMID: 10638698 DOI: 10.1016/s0022-2143(00)70024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In addition to concentrating bile, the gallbladder secretes chloride (Cl-) and mucus into its lumen. We recently observed that gallbladder Cl- secretion is increased in prairie dogs during the formation of cholesterol crystals, a period of altered mucosal prostaglandin synthesis. Pathologic Cl- secretion is characteristic of other epithelial disorders such as cystic fibrosis and hypercalciuric nephrolithiasis and may be important in gallstone pathogenesis. We hypothesized that concentrations of endogenous prostaglandin E2 (PGE2) found during experimental gallstone formation may mediate increased Cl- secretion by prairie dog gallbladder. Prairie dog gallbladders were harvested by cholecystectomy and mounted in Ussing chambers. Unidirectional transepithelial Cl-, Na+, and H20 fluxes were measured before and after inhibition of endogenous prostaglandin synthesis with 10 micromol/L indomethacin. Gallbladders were then exposed to increasing concentrations of PGE2 to a maximal dose of 1 micromol/L, as found in animals with gallstones. Standard electrophysiologic parameters were recorded simultaneously. Indomethacin increased mucosal resistance and stimulated gallbladder Na+ and Cl- absorption. These effects were rapidly reversed by PGE2. PGE2 promoted Cl- secretion and decreased mucosal Na+ absorption at concentrations found in the gallbladder bile of animals with gallstones. Endogenous prostaglandin metabolism modulates gallbladder Cl- secretion and may promote changes in Cl- transport associated with cholelithiasis.
Collapse
Affiliation(s)
- A J Moser
- Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
16
|
Keely S, Barrett K. Chapter 7 Integrated signaling mechanisms that regulate intestinal chloride secretion. CURRENT TOPICS IN MEMBRANES 2000. [DOI: 10.1016/s1063-5823(00)50009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Song JC, Hrnjez BJ, Farokhzad OC, Matthews JB. PKC-epsilon regulates basolateral endocytosis in human T84 intestinal epithelia: role of F-actin and MARCKS. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C1239-49. [PMID: 10600776 DOI: 10.1152/ajpcell.1999.277.6.c1239] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) and the actin cytoskeleton are critical effectors of membrane trafficking in mammalian cells. In polarized epithelia, the role of these factors in endocytic events at either the apical or basolateral membrane is poorly defined. In the present study, phorbol 12-myristate 13-acetate (PMA) and other activators of PKC selectively enhanced basolateral but not apical fluid-phase endocytosis in human T84 intestinal epithelia. Stimulation of basolateral endocytosis was blocked by the conventional and novel PKC inhibitor Gö-6850, but not the conventional PKC inhibitor Gö-6976, and correlated with translocation of the novel PKC isoform PKC-epsilon. PMA treatment induced remodeling of basolateral F-actin. The actin disassembler cytochalasin D stimulated basolateral endocytosis and enhanced stimulation of endocytosis by PMA, whereas PMA-stimulated endocytosis was blocked by the F-actin stabilizers phalloidin and jasplakinolide. PMA induced membrane-to-cytosol redistribution of the F-actin cross-linking protein myristoylated alanine-rich C kinase substrate (MARCKS). Cytochalasin D also induced MARCKS translocation and enhanced PMA-stimulated translocation of MARCKS. A myristoylated peptide corresponding to the phosphorylation site domain of MARCKS inhibited both MARCKS translocation and PMA stimulation of endocytosis. MARCKS translocation was inhibited by Gö-6850 but not Gö-6976. The results suggest that a novel PKC isoform, likely PKC-epsilon, stimulates basolateral endocytosis in model epithelia by a mechanism that involves F-actin and MARCKS.
Collapse
Affiliation(s)
- J C Song
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
18
|
Farokhzad OC, Sagar GD, Mun EC, Sicklick JK, Lotz M, Smith JA, Song JC, O'Brien TC, Sharma CP, Kinane TB, Hodin RA, Matthews JB. Protein kinase C activation downregulates the expression and function of the basolateral Na+/K+/2Cl(-) cotransporter. J Cell Physiol 1999; 181:489-98. [PMID: 10528235 DOI: 10.1002/(sici)1097-4652(199912)181:3<489::aid-jcp13>3.0.co;2-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The basolateral Na+/K+/2Cl(-) cotransporter (NKCC1) has been shown to be an independent regulatory site for electrogenic Cl(-) secretion. The proinflammatory phorbol ester, phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), inhibits basal and cyclic adenosine monophosphate (cAMP)-stimulated NKCC1 activity in T84 intestinal epithelial cells and decreases the steady state levels of NKCC1 mRNA in a time- and dose-dependent manner. The levels of NKCC1 protein also fall in accordance with the NKCC1 mRNA transcript and these levels are unaffected by 4alpha-phorbol, which does not activate PKC. Inhibition of maximal (cAMP-stimulated) NKCC1 functional activity by PMA was first detected by 1 h, whereas decreases in the steady state levels of NKCC1 mRNA were not detectable until 4 h. NKCC1 mRNA expression recovers toward control levels with extended treatment of cells with PMA suggesting that the PMA effects on NKCC1 expression are mediated through activation of PKC. Although NKCC1 mRNA and protein levels return to control values after extended PMA exposure, NKCC1 functional activity does not recover. Immunofluorescence imaging suggest that the absence of functional recovery is due to failure of newly synthesized NKKC1 protein to reach the cell surface. We conclude that NKCC1 has the capacity to be regulated at the level of de novo expression by PKC, although decreased NKCC1 expression alone cannot account for either early or late loss of NKCC1 function.
Collapse
Affiliation(s)
- O C Farokhzad
- Division of General and Gastrointestinal Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The actin cytoskeleton mediates a variety of essential biological functions in cells, including division, shape changes, and movement. A number of studies have suggested that the abundant submembranous actin cytoskeleton present in the cortex of many cell types is involved in the regulation of cell volume. This relationship is supported by numerous works which document the changes in the structural organization of the actin cytoskeleton which accompany cell volume changes and the F-actin-dependence of the regulatory volume responses. In addition, other studies demonstrate structural and functional relationships between the actin cytoskeleton and the membrane transporters known to be involved in cell volume homeostasis. This review provides a summary of the current level of knowledge in this area and discusses the mechanisms which may underlie the linkage between the actin cytoskeleton and cell volume regulation.
Collapse
Affiliation(s)
- J H Henson
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013, USA.
| |
Collapse
|
20
|
Sahi J, Nataraja SG, Layden TJ, Goldstein JL, Moyer MP, Rao MC. Cl- transport in an immortalized human epithelial cell line (NCM460) derived from the normal transverse colon. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1048-57. [PMID: 9755058 DOI: 10.1152/ajpcell.1998.275.4.c1048] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells of a newly described, immortalized, epithelial, human transverse colonic cell line, NCM460, reach approximately 90% confluence on plastic and develop transepithelial resistances of 120-250 Omega . cm2 on porous substrates. Its utility as a model for the transverse human colon was validated by comparing second messenger-mediated Cl- transport, using the fluorescent probe 6-methoxy-quinolyl acetoethyl ester, in NCM460 cells and colonocytes isolated from human transverse crypts. Basal Cl- influx was increased (P < 0.01) by PGE1 (1 microM), forskolin (1 microM), 8-bromoadenosine 3'5'-cyclic monophosphate (100 microM), heat-stable Escherichia coli enterotoxin (STa; 1 microM), 8-bromoguanosine 3'5'-cyclic monophosphate (100 microM), histamine (1 microM), and phorbol 12,13-dibutyrate (1 microM) in both cell types. The Cl- channel blocker diphenylamine 2-carboxylic acid (50 microM) and the Na+-K+-2Cl- cotransport inhibitor furosemide (1 microM), but not the K+ channel blocker Ba2+ (3 mM), inhibited these Cl- permeabilities. These cells possess transcripts for cystic fibrosis transmembrane conductance regulator, Na+-K+-2Cl- cotransporter, STa receptor, and intestine-specific cGMP-dependent protein kinase II. Thus cAMP-, cGMP-, and Ca2+-dependent secretagogues act on NCM460 and primary colonocytes to stimulate Cl- transport. This validates the utility of NCM460 as a model for transverse colonic crypts and is the first demonstration of a colonic cell line whose origin is known.
Collapse
Affiliation(s)
- J Sahi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
21
|
Farokhzad OC, Mun EC, Sicklick JK, Smith JA, Matthews JB. Effects of bryostatin 1, a novel anticancer agent, on intestinal transport and barrier function: Role of protein kinase C. Surgery 1998. [DOI: 10.1016/s0039-6060(98)70144-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Philpott DJ, McKay DM, Mak W, Perdue MH, Sherman PM. Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect Immun 1998; 66:1680-7. [PMID: 9529098 PMCID: PMC108105 DOI: 10.1128/iai.66.4.1680-1687.1998] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 01/14/1998] [Indexed: 02/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) infection is associated with watery diarrhea and can lead to complications, including hemorrhagic colitis and the hemolytic-uremic syndrome. The mechanisms by which these organisms produce diarrheal disease remain to be elucidated. Changes in T84 epithelial cell electrophysiology were examined following EHEC infection. T84 cell monolayers infected with EHEC O157:H7 displayed a time-dependent decrease in transepithelial resistance. Increases in the transepithelial flux of both [3H]mannitol and 51Cr-EDTA accompanied the EHEC-induced decreases in T84 resistance. Altered barrier function induced by EHEC occurred at the level of the tight junction since immunofluorescent staining of the tight-junction-associated protein ZO-1 was disrupted when examined by confocal microscopy. Decreased resistance induced by EHEC involved a protein kinase C (PKC)-dependent pathway as the highly specific PKC inhibitor, CGP41251, abrogated the EHEC-induced drop in resistance. PKC activity was also increased in T84 cells infected with EHEC. Calmodulin and myosin light chain kinase played a role in EHEC-induced resistance changes as inhibition of these effector molecules partially reversed the effects of EHEC on barrier function. These studies demonstrate that intracellular signal transduction pathways activated following EHEC infection link the increases in T84 epithelial permeability induced by this pathogen.
Collapse
Affiliation(s)
- D J Philpott
- Department of Pediatrics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Shiue MH, Kim KJ, Lee VH. Modulation of chloride secretion across the pigmented rabbit conjunctiva. Exp Eye Res 1998; 66:275-82. [PMID: 9533855 DOI: 10.1006/exer.1997.0459] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to investigate whether active Cl- secretion in the pigmented rabbit conjunctiva was subject to cAMP, Ca2+ and protein kinase C (PKC) modulation. The excised pigmented rabbit conjunctivas were mounted in the modified Ussing-type chambers for measurement of unidirectional 36Cl fluxes under the open-circuit condition and of the short-circuit current (Isc), potential difference, and transconjunctival electrical resistance. The results indicate that Cl- secretion across the conjunctiva was abolished by mucosal application of 1 mM N-phenylanthranilic acid and was reduced by 40% by serosal application of 10 microM bumetanide. Net Cl- flux was stimulated by 133% by 1 mM 8-Br cAMP, 107% by 10 microM A23187, and 87% by 1 microM phorbol 12-myristate-13-acetate (PMA), suggesting that cAMP, Ca2+, and PKC all modulated active Cl- secretion, respectively. There existed a linear correlation between measured changes in net Cl- flux and observed changes in Isc (r2=0.99). The serial treatment of the conjunctiva with (a) 1 mM 8-Br cAMP and 10 microM A23187 and (b) 10 microM A23187 and 1 microM PMA resulted in sequence-independent, additive stimulation of Isc. In the case of 1 mM 8-Br cAMP and 1 microM PMA, additive stimulation of Isc was observed only when 1 mM 8-Br cAMP was added prior to 1 microM PMA. These results suggest that a given pharmacological agent may affect more than one channel type and that there might be a possible connection among the channels at the signal transduction level. In summary, Cl- appears to enter the pigmented rabbit conjunctiva from the serosal fluid via Na+-(K+)-2Cl- cotransport process and exit to the mucosal fluid via channels, resulting in active Cl- secretion. Active Cl- secretion in the pigmented rabbit conjunctiva appears to be modulated by cAMP, Ca2+, and PKC.
Collapse
Affiliation(s)
- M H Shiue
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
24
|
Mun EC, Tally KJ, Matthews JB. Characterization and regulation of adenosine transport in T84 intestinal epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G261-9. [PMID: 9486178 DOI: 10.1152/ajpgi.1998.274.2.g261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine release from mucosal sources during inflammation and ischemia activates intestinal epithelial Cl- secretion. Previous data suggest that A2b receptor-mediated Cl- secretory responses may be dampened by epithelial cell nucleoside scavenging. The present study utilizes isotopic flux analysis and nucleoside analog binding assays to directly characterize the nucleoside transport system of cultured T84 human intestinal epithelial cells and to explore whether adenosine transport is regulated by secretory agonists, metabolic inhibition, or phorbol ester. Uptake of adenosine across the apical membrane displayed characteristics of simple diffusion. Kinetic analysis of basolateral uptake revealed a Na(+)-independent, nitrobenzylthioinosine (NBTI)-sensitive facilitated-diffusion system with low affinity but high capacity for adenosine. NBTI binding studies indicated a single population of high-affinity binding sites basolaterally. Neither forskolin, 5'-(N-ethylcarboxamido)-adenosine, nor metabolic inhibition significantly altered adenosine transport. However, phorbol 12-myristate 13-acetate significantly reduced both adenosine transport and the number of specific NBTI binding sites, suggesting that transporter number may be decreased through activation of protein kinase C. This basolateral facilitated adenosine transporter may serve a conventional function in nucleoside salvage and a novel function as a regulator of adenosine-dependent Cl- secretory responses and hence diarrheal disorders.
Collapse
Affiliation(s)
- E C Mun
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
25
|
Evans RL, Ashton N, Elliott AC, Green R, Argent BE. Interactions between secretin and acetylcholine in the regulation of fluid secretion by isolated rat pancreatic ducts. J Physiol 1996; 496 ( Pt 1):265-73. [PMID: 8910214 PMCID: PMC1160842 DOI: 10.1113/jphysiol.1996.sp021683] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Interlobular ducts were isolated from the rat pancreas and maintained in short-term tissue culture. Fluid secretion from these isolated ducts was measured using micropuncture techniques, intracellular calcium concentration ([Ca2+]i) by fura-2 microspectrofluorimetry, and cyclic AMP by radioimmunoassay. 2. Applying secretin and ACh simultaneously to ducts caused either a stimulation or an inhibition of fluid secretion depending on the doses employed. 3. The inhibitory effect of secretin and ACh could be relieved by atropine, and by the protein kinase C (PKC) inhibitors staurosporine and 1-(5-isoquinolinylsulphonyl)-2-methyl-piperazine (H-7). 4. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) and phorbol 12, 13-dibutyrate (PDBu) inhibited secretin-evoked fluid secretion. 5. ACh and TPA also inhibited fluid secretion stimulated by the adenylate cyclase activator, forskolin. 6. Neither secretin nor the PKC activators and inhibitors had any effect on either the increase in [Ca2+]i evoked by ACh or the increase in intracellular cyclic AMP evoked by secretin and forskolin. 7. We conclude that the inhibitory effect of combined doses of secretin and ACh on ductal fluid secretion is probably mediated by PKC at a point in the secretory mechanism distal to the generation of intracellular messengers.
Collapse
Affiliation(s)
- R L Evans
- Cell Physiology Group, School of Biological Sciences, University of Manchester, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
1. The effects of the alkaloid berberine on basal and stimulated ion transport were investigated in voltage-clamped rat colonic epithelia. 2. Berberine (100-500 microM) reduced basal short circuit current (SCC) when applied basolaterally but not when applied apically. 3. SCC responses to mast cell activation by anti-rat IgE were significantly attenuated in the presence of berberine. 4. Berberine, applied to the basolateral bathing solution, also reduced SCC responses to the following agents which stimulate chloride secretion in rat colon: carbachol, forskolin, sodium nitroprusside, dibutyryl cyclic-AMP, heat-stable E. coli enterotoxin, 8-bromo-cyclic GMP and thapsigargin. Calcium mediated ion transport responses appear to be more sensitive to berberine inhibition than those which are cyclic GMP-mediated, which in turn are more sensitive than cyclic AMP-mediated responses. 5. Berberine added apically was without effect upon forskolin-stimulated ion transport. Cytochalasin D treatment of the lumenal surface of rat colon conferred apical-side sensitivity to berberine. 6. Berberine (at concentrations up to 500 microM) was without effect on generation of cyclic AMP by forskolin or on generation of cyclic GMP by sodium nitroprusside in isolated mucosal segments. Protein kinase A activity stimulated by dibutyryl cyclic AMP was unaffected by berberine (at concentrations up to 500 microM). 7. The precise mechanism of action of berberine remains to be elucidated. However, its site of action appears to be distal to second messenger production and may be at a level common to all stimuli of colonic chloride secretion.
Collapse
Affiliation(s)
- C T Taylor
- Department of Pharmacology, University College Dublin, Belfield, Ireland
| | | |
Collapse
|
27
|
Matthews JB, Tally KJ, Smith JA, Zeind AJ, Hrnjez BJ. Activation of Cl secretion during chemical hypoxia by endogenous release of adenosine in intestinal epithelial monolayers. J Clin Invest 1995; 96:117-25. [PMID: 7615780 PMCID: PMC185179 DOI: 10.1172/jci118010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Intestinal ischemia is characterized by rapid early inhibition of absorptive function and the appearance of net secretion, although why active secretion persists in the setting of a mucosal energy deficit is unknown. The cryptlike epithelial line T84, a well-characterized model of intestinal Cl- secretion, develops a prominent increase in short-circuit current (Isc, indicative of active Cl- transport) in response to "hypoxia" induced by metabolic inhibitors. The increased Isc is associated with the initial decrease in monolayer ATP content. The Isc is transient and disappears with progressive energy depletion, although graded degrees of ATP depletion induce a more sustained Isc response. Chromatographic analysis and secretory bioassays show that the Isc response to metabolic inhibitors is related to the endogenous release of adenosine into the extracellular space in quantities sufficient to interact locally with stimulatory adenosine receptors. Unlike its classical role as a metabolic feedback inhibitor, adenosine appears to function as an autocrine "feed-forward" activator of active intestinal Cl- secretion. These studies suggest a novel role for adenosine in the conversion of the gut from an absorptive to a secretory organ during ischemic stress, thus contributing to the initial diarrheal manifestation of intestinal ischemia.
Collapse
Affiliation(s)
- J B Matthews
- Department of Surgery, Beth Israel Hospital Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
28
|
Na-K-2Cl cotransport in intestinal epithelial cells. Influence of chloride efflux and F-actin on regulation of cotransporter activity and bumetanide binding. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40738-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|