1
|
Ochs AR, Boyle PM. Optogenetic Modulation of Arrhythmia Triggers: Proof-of-Concept from Computational Modeling. Cell Mol Bioeng 2023; 16:243-259. [PMID: 37810996 PMCID: PMC10550900 DOI: 10.1007/s12195-023-00781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Early afterdepolarizations (EADs) are secondary voltage depolarizations associated with reduced repolarization reserve (RRR) that can trigger lethal arrhythmias. Relating EADs to triggered activity is difficult to study, so the ability to suppress or provoke EADs would be experimentally useful. Here, we use computational simulations to assess the feasibility of subthreshold optogenetic stimulation modulating the propensity for EADs (cell-scale) and EAD-associated ectopic beats (organ-scale). Methods We modified a ventricular ionic model by reducing rapid delayed rectifier potassium (0.25-0.1 × baseline) and increasing L-type calcium (1.0-3.5 × baseline) currents to create RRR conditions with varying severity. We ran simulations in models of single cardiomyocytes and left ventricles from post-myocardial infarction patient MRI scans. Optogenetic stimulation was simulated using either ChR2 (depolarizing) or GtACR1 (repolarizing) opsins. Results In cell-scale simulations without illumination, EADs were seen for 164 of 416 RRR conditions. Subthreshold stimulation of GtACR1 reduced EAD incidence by up to 84.8% (25/416 RRR conditions; 0.1 μW/mm2); in contrast, subthreshold ChR2 excitation increased EAD incidence by up to 136.6% (388/416 RRR conditions; 50 μW/mm2). At the organ scale, we assumed simultaneous, uniform illumination of the epicardial and endocardial surfaces. GtACR1-mediated suppression (10-50 μW/mm2) and ChR2-mediated unmasking (50-100 μW/mm2) of EAD-associated ectopic beats were feasible in three distinct ventricular models. Conclusions Our findings suggest that optogenetics could be used to silence or provoke both EADs and EAD-associated ectopic beats. Validation in animal models could lead to exciting new experimental regimes and potentially to novel anti-arrhythmia treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00781-z.
Collapse
Affiliation(s)
- Alexander R. Ochs
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
| | - Patrick M. Boyle
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
2
|
Ochs AR, Karathanos TV, Trayanova NA, Boyle PM. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study. Front Physiol 2021; 12:718622. [PMID: 34526912 PMCID: PMC8435849 DOI: 10.3389/fphys.2021.718622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Optogenetic defibrillation of hearts expressing light-sensitive cation channels (e.g., ChR2) has been proposed as an alternative to conventional electrotherapy. Past modeling work has shown that ChR2 stimulation can depolarize enough myocardium to interrupt arrhythmia, but its efficacy is limited by light attenuation and high energy needs. These shortcomings may be mitigated by using new optogenetic proteins like Guillardia theta Anion Channelrhodopsin (GtACR1), which produces a repolarizing outward current upon illumination. Accordingly, we designed a study to assess the feasibility of GtACR1-based optogenetic arrhythmia termination in human hearts. We conducted electrophysiological simulations in MRI-based atrial or ventricular models (n = 3 each), with pathological remodeling from atrial fibrillation or ischemic cardiomyopathy, respectively. We simulated light sensitization via viral gene delivery of three different opsins (ChR2, red-shifted ChR2, GtACR1) and uniform endocardial illumination at the appropriate wavelengths (blue, red, or green light, respectively). To analyze consistency of arrhythmia termination, we varied pulse timing (three evenly spaced intervals spanning the reentrant cycle) and intensity (atrial: 0.001–1 mW/mm2; ventricular: 0.001–10 mW/mm2). In atrial models, GtACR1 stimulation with 0.005 mW/mm2 green light consistently terminated reentry; this was 10–100x weaker than the threshold levels for ChR2-mediated defibrillation. In ventricular models, defibrillation was observed in 2/3 models for GtACR1 stimulation at 0.005 mW/mm2 (100–200x weaker than ChR2 cases). In the third ventricular model, defibrillation failed in nearly all cases, suggesting that attenuation issues and patient-specific organ/scar geometry may thwart termination in some cases. Across all models, the mechanism of GtACR1-mediated defibrillation was voltage forcing of illuminated tissue toward the modeled channel reversal potential of −40 mV, which made propagation through affected regions impossible. Thus, our findings suggest GtACR1-based optogenetic defibrillation of the human heart may be feasible with ≈2–3 orders of magnitude less energy than ChR2.
Collapse
Affiliation(s)
- Alexander R Ochs
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Thomas V Karathanos
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Li W, Han JL, Entcheva E. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 319:H1112-H1122. [PMID: 32986966 PMCID: PMC7789971 DOI: 10.1152/ajpheart.00148.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current (Ik1). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking Ik1-like currents with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting. NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Julie L Han
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| |
Collapse
|
4
|
Duverger JE, Jacquemet V, Vinet A, Comtois P. In silico study of multicellular automaticity of heterogeneous cardiac cell monolayers: Effects of automaticity strength and structural linear anisotropy. PLoS Comput Biol 2018. [PMID: 29529023 PMCID: PMC5877903 DOI: 10.1371/journal.pcbi.1005978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The biological pacemaker approach is an alternative to cardiac electronic pacemakers. Its main objective is to create pacemaking activity from added or modified distribution of spontaneous cells in the myocardium. This paper aims to assess how automaticity strength of pacemaker cells (i.e. their ability to maintain robust spontaneous activity with fast rate and to drive neighboring quiescent cells) and structural linear anisotropy, combined with density and spatial distribution of pacemaker cells, may affect the macroscopic behavior of the biological pacemaker. A stochastic algorithm was used to randomly distribute pacemaker cells, with various densities and spatial distributions, in a semi-continuous mathematical model. Simulations of the model showed that stronger automaticity allows onset of spontaneous activity for lower densities and more homogeneous spatial distributions, displayed more central foci, less variability in cycle lengths and synchronization of electrical activation for similar spatial patterns, but more variability in those same variables for dissimilar spatial patterns. Compared to their isotropic counterparts, in silico anisotropic monolayers had less central foci and displayed more variability in cycle lengths and synchronization of electrical activation for both similar and dissimilar spatial patterns. The present study established a link between microscopic structure and macroscopic behavior of the biological pacemaker, and may provide crucial information for optimized biological pacemaker therapies. Implantation of electronic pacemakers is a standard treatment to pathologically slow heart rhythm. Despite improving quality of life, those devices display many shortcomings. Bioengineered tissue pacemakers may be a therapeutic alternative, but associated design methods usually lack control of the way cells with spontaneous activity are scattered throughout the tissue. Our study is the first to use a mathematical model to rigorously define and thoroughly characterize how pacemaker cells scattering at the microscopic level may affect macroscopic behaviors of the bioengineered tissue pacemaker. Automaticity strength (ability of pacemaker cell to drive its non-pacemaker neighbors) and anisotropy (preferential orientation of cell shape) are also implemented and give unparalleled insights on how effects of uncontrollable scattered pacemaker cells may be modulated by available experimental techniques. Our model is a powerful tool to aid in optimized bioengineered pacemaker therapies.
Collapse
Affiliation(s)
- James Elber Duverger
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology / Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
| | - Vincent Jacquemet
- Department of Pharmacology and Physiology / Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Alain Vinet
- Department of Pharmacology and Physiology / Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
- Research Centre, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Philippe Comtois
- Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology / Institute of Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
5
|
Aghighi A, Comtois P. Noise-induced effects on multicellular biopacemaker spontaneous activity: Differences between weak and strong pacemaker cells. CHAOS (WOODBURY, N.Y.) 2017; 27:093927. [PMID: 28964145 DOI: 10.1063/1.5000809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.
Collapse
Affiliation(s)
- Alireza Aghighi
- Research Centre, Montreal Heart Institute, 5000 Belanger E., Montréal, Québec H1T 1C8, Canada
| | - Philippe Comtois
- Research Centre, Montreal Heart Institute, 5000 Belanger E., Montréal, Québec H1T 1C8, Canada
| |
Collapse
|
6
|
Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate. PLoS One 2015; 10:e0127977. [PMID: 26035822 PMCID: PMC4452796 DOI: 10.1371/journal.pone.0127977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/21/2015] [Indexed: 11/27/2022] Open
Abstract
In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS) is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.
Collapse
|
7
|
Desroches BR, Zhang P, Choi BR, King ME, Maldonado AE, Li W, Rago A, Liu G, Nath N, Hartmann KM, Yang B, Koren G, Morgan JR, Mende U. Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Am J Physiol Heart Circ Physiol 2012; 302:H2031-42. [PMID: 22427522 DOI: 10.1152/ajpheart.00743.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To bridge the gap between two-dimensional cell culture and tissue, various three-dimensional (3-D) cell culture approaches have been developed for the investigation of cardiac myocytes (CMs) and cardiac fibroblasts (CFs). However, several limitations still exist. This study was designed to develop a cardiac 3-D culture model with a scaffold-free technology that can easily and inexpensively generate large numbers of microtissues with cellular distribution and functional behavior similar to cardiac tissue. Using micromolded nonadhesive agarose hydrogels containing 822 concave recesses (800 μm deep × 400 μm wide), we demonstrated that neonatal rat ventricular CMs and CFs alone or in combination self-assembled into viable (Live/Dead stain) spherical-shaped microtissues. Importantly, when seeded simultaneously or sequentially, CMs and CFs self-sorted to be interspersed, reminiscent of their myocardial distribution, as shown by cell type-specific CellTracker or antibody labeling. Microelectrode recordings and optical mapping revealed characteristic triangular action potentials (APs) with a resting membrane potential of -66 ± 7 mV (n = 4) in spontaneously contracting CM microtissues. Under pacing, optically mapped AP duration at 90% repolarization and conduction velocity were 100 ± 30 ms and 18.0 ± 1.9 cm/s, respectively (n = 5 each). The presence of CFs led to a twofold AP prolongation in heterogenous microtissues (CM-to-CF ratio of 1:1). Importantly, Ba(2+)-sensitive inward rectifier K(+) currents and Ca(2+)-handling proteins, including sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a, were detected in CM-containing microtissues. Furthermore, cell type-specific adenoviral gene transfer was achieved, with no impact on microtissue formation or cell viability. In conclusion, we developed a novel scaffold-free cardiac 3-D culture model with several advancements for the investigation of CM and CF function and cross-regulation.
Collapse
Affiliation(s)
- B R Desroches
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Prenatal exposure to toxicants, such as maternal smoking, may impair cardiovascular autonomic maturation in infants. We recently showed that exposure of pregnant rats to a mild concentration of carbon monoxide (CO), a component of cigarette smoke, delays postnatal electrophysiological maturation of ventricular myocytes from newborns rats, likely predisposing to life-threatening arrhythmias. To get a comprehensive view of developmental molecular abnormalities induced, at cardiac level, by prenatal CO exposure, we used microarray analysis approach on the rat heart at 4, 7 and 20 days postnatal life. The relationship between molecular and functional alterations was investigated by assessing the ventricular expression of f-current, an electrophysiological marker of immature cardiac phenotype. Rats were prenatally exposed to 0 (CTR) or 150 p.p.m. CO and mRNA obtained from ventricular samples. Differential analysis and biological pathway analysis of microarray data were performed by using Newton's approach and the GENMAPP/MAPPFinder, respectively. The real-time RT-PCR reactions were performed by TaqMan probe-based chemistry. Freshly isolated patch-clamped ventricular cardiomyocytes were used to measure I(f). Genes and pathways controlling cell cycle and excitation-contraction coupling were significantly modified in CO-exposed rats. The higher effect was observed in cardiomyocytes harvested from 7-day-old rats, in which mRNA expression for crucial sarcomeric proteins (myosin and actin subunits, troponin I), transporters (Ca(2+) transporting ATPase) and enzymes (aldolase) were significantly downregulated. Accordingly, the molecular and functional expression of f-channels, which represents a marker of fetal ventricular phenotype, was transiently greater in CO-exposed rats (+200%) than in control ones. In conclusion, our study provides new insights into the molecular and functional mechanisms underlying cardiac maturation and its impairment by prenatal exposure to toxic components of smoking, such as CO.
Collapse
|
9
|
Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophys J 2009; 96:1189-209. [PMID: 19186154 DOI: 10.1016/j.bpj.2008.10.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 10/27/2008] [Indexed: 11/22/2022] Open
Abstract
The neonatal rat ventricular myocyte culture is one of the most popular experimental cardiac cell models. To our knowledge, the excitation-contraction coupling (ECC) of these cells, i.e., the process linking the electrical activity to the cytosolic Ca2+ transient and contraction, has not been previously analyzed, nor has it been presented as a complete system in detail. Neonatal cardiomyocytes are in the postnatal developmental stage, and therefore, the features of their ECC differ vastly from those of adult ventricular myocytes. We present the first complete analysis of ECC in these cells by characterizing experimentally the action potential and calcium signaling and developing the first mathematical model of ECC in neonatal cardiomyocytes that we know of. We show that in comparison to adult cardiomyocytes, neonatal cardiomyocytes have long action potentials, heterogeneous cytosolic Ca2+ signals, weaker sarcoplasmic reticulum Ca2+ handling, and stronger sarcolemmal Ca2+ handling, with a significant contribution by the Na+/Ca2+ exchanger. The developed model reproduces faithfully the ECC of rat neonatal cardiomyocytes with a novel description of spatial cytosolic [Ca2+] signals. Simulations also demonstrate how an increase in the cell size (hypertrophy) affects the ECC in neonatal cardiomyocytes. This model of ECC in developing cardiomyocytes provides a platform for developing future models of cardiomyocytes at different developmental stages.
Collapse
|
10
|
Sidorov VY, Holcomb MR, Woods MC, Gray RA, Wikswo JP. Effects of unipolar stimulation on voltage and calcium distributions in the isolated rabbit heart. Basic Res Cardiol 2008; 103:537-51. [PMID: 18642125 PMCID: PMC2742888 DOI: 10.1007/s00395-008-0740-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 07/02/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of electric stimulation on the polarization of cardiac tissue (virtual electrode effect) is well known; the corresponding response of intracellular calcium concentration ([Ca(2+)](i)) and its dependence on coupling interval between conditioning stimulus (S1) and test stimulus (S2) has yet to be elucidated. OBJECTIVE Because uncovering the transmembrane potential (V(m))-[Ca(2+)](i) relationship during an electric shock is imperative for understanding arrhythmia induction and defibrillation, we aimed to study simultaneous V(m) and [Ca(2+)](i) responses to strong unipolar stimulation. METHODS We used a dual-camera optical system to image concurrently V (m) and [Ca(2+)](i) responses to unipolar stimulation (20 ms +/- 20 mA) in Langendorff-perfused rabbit hearts. RH-237 and Rhod-2 fluorescent dyes were used to measure V(m) and [Ca(2+)](i), respectively. The S1-S2 interval ranged from 10 to 170 ms to examine stimulation during the action potential. RESULTS The [Ca(2+)](i) deflections were less pronounced than changes in V(m) for all S1-S2 intervals. For cathodal stimulation, [Ca(2+)](i) at the central virtual cathode region increased with prolongation of S1-S2 interval. For anodal stimulation, [Ca(2+)](i) at the central virtual anode area decreased with shortening of the S1-S2 interval. At very short S1-S2 intervals (10-20 ms), when S2 polarization was superimposed on the S1 action potential upstroke, the [Ca(2+)](i) distribution did not follow V(m) and produced a more complex pattern. After S2 termination [Ca(2+)](i) exhibited three outcomes in a manner similar to V(m): non-propagating response, break stimulation, and make stimulation. CONCLUSIONS Changes in the [Ca(2+)](i) distribution correlate with the behavior of the V (m) distribution for S1-S2 coupling intervals longer than 20 ms; at shorter intervals S2 creates more heterogeneous [Ca(2+)](i) distribution in comparison with V(m). Stimulation in diastole and at very short coupling intervals caused V(m)-[Ca(2+)](i) uncoupling at the regions of positive polarization (virtual cathode).
Collapse
Affiliation(s)
- Veniamin Y. Sidorov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee
| | - Mark R. Holcomb
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Marcella C. Woods
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Richard A. Gray
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, University of Alabama, Birmingham, Alabama
| | - John P. Wikswo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
11
|
Ponard JGC, Kondratyev AA, Kucera JP. Mechanisms of intrinsic beating variability in cardiac cell cultures and model pacemaker networks. Biophys J 2007; 92:3734-52. [PMID: 17325022 PMCID: PMC1853135 DOI: 10.1529/biophysj.106.091892] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 01/30/2007] [Indexed: 01/13/2023] Open
Abstract
Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.
Collapse
Affiliation(s)
- Julien G C Ponard
- Department of Physiology, University of Bern, Bühlplatz 5 CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
12
|
Roshchevsky MP, Yurkova AA, Roshchevskaya IM. The dynamics of the body surface cardioelectric field in one-day-old rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2007; 410:370-2. [PMID: 17278837 DOI: 10.1134/s0012496606050061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M P Roshchevsky
- Institute of Physiology, Komi Science Center, Ural Division, Russian Academy of Sciences, Syktyvkar 167000 Komi Republic, Russia
| | | | | |
Collapse
|
13
|
Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 2007; 25:1136-44. [PMID: 17255522 DOI: 10.1634/stemcells.2006-0466] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiomyocytes derived from human embryonic stem cells constitute a promising cell source for the regeneration of damaged hearts. The assessment of their in vitro functional properties is mandatory to envisage appropriate cardiac cell-based therapies. In this study, we characterized human embryonic stem cell-derived cardiomyocytes over a 3-month period, using patch-clamp or intracellular recordings to assess their functional maturation and reverse transcriptase-polymerase chain reaction to evaluate the expression of ion channel-encoding subunits. I(to1) and I(K1), the transient outward and inward rectifier potassium currents, were present in cardiomyocytes only, whereas the rapid delayed rectifier potassium current (I(Kr)), pacemaker current (I(f)), and L-type calcium current (I(Ca,L)) could be recorded both in undifferentiated human embryonic stem cells and in cardiomyocytes. Most of the currents underwent developmental maturation in cardiomyocytes, as assessed by modifications in current density (I(to1), I(K1), and I(Ca,L)) and properties (I(f)). Ion-channel mRNAs were always present when the current was recorded. Intracellular recordings in spontaneously beating clusters of cardiomyocytes revealed changes in action potential parameters and in response to pharmacological tools according to time of differentiation. In summary, human embryonic stem cell-derived cardiomyocytes mature over time during in vitro differentiation, approaching an adult phenotype. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Laura Sartiani
- Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Firenze, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Kondratyev AA, Ponard JGC, Munteanu A, Rohr S, Kucera JP. Dynamic changes of cardiac conduction during rapid pacing. Am J Physiol Heart Circ Physiol 2006; 292:H1796-811. [PMID: 17142344 DOI: 10.1152/ajpheart.00784.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Slow conduction and unidirectional conduction block (UCB) are key mechanisms of reentry. Following abrupt changes in heart rate, dynamic changes of conduction velocity (CV) and structurally determined UCB may critically influence arrhythmogenesis. Using patterned cultures of neonatal rat ventricular myocytes grown on microelectrode arrays, we investigated the dynamics of CV in linear strands and the behavior of UCB in tissue expansions following an abrupt decrease in pacing cycle length (CL). Ionic mechanisms underlying rate-dependent conduction changes were investigated using the Pandit-Clark-Giles-Demir model. In linear strands, CV gradually decreased upon a reduction of CL from 500 ms to 230-300 ms. In contrast, at very short CLs (110-220 ms), CV first decreased before increasing again. The simulations suggested that the initial conduction slowing resulted from gradually increasing action potential duration (APD), decreasing diastolic intervals, and increasing postrepolarization refractoriness, which impaired Na(+) current (I(Na)) recovery. Only at very short CLs did APD subsequently shorten again due to increasing Na(+)/K(+) pump current secondary to intracellular Na(+) accumulation, which caused recovery of CV. Across tissue expansions, the degree of UCB gradually increased at CLs of 250-390 ms, whereas at CLs of 180-240 ms, it first increased and subsequently decreased. In the simulations, reduction of inward currents caused by increasing intracellular Na(+) and Ca(2+) concentrations contributed to UCB progression, which was reversed by increasing Na(+)/K(+) pump activity. In conclusion, CV and UCB follow intricate dynamics upon an abrupt decrease in CL that are determined by the interplay among I(Na) recovery, postrepolarization refractoriness, APD changes, ion accumulation, and Na(+)/K(+) pump function.
Collapse
|
15
|
Jones R, Capen D, Jacobson M, Munn L. PDGF and microvessel wall remodeling in adult rat lung: imaging PDGF-AA and PDGF-Ralpha molecules in progenitor smooth muscle cells developing in experimental pulmonary hypertension. Cell Tissue Res 2006; 326:759-69. [PMID: 16794827 DOI: 10.1007/s00441-006-0177-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 01/26/2006] [Indexed: 02/04/2023]
Abstract
Smooth muscle cells are mostly absent from the walls of microvessels in the adult lung but develop in large numbers as part of the pathology of human and experimental pulmonary hypertensions (PHs). We have previously shown, in an in vivo model of experimental PH, that mesenchymal (interstitial) fibroblasts and intermediate cells are the progenitors of these cells. Although smooth muscle cell development is a defining pathophysiological feature of human PH, little is known about the angiogenic signaling molecules responsible. Here, we report data for platelet-derived growth factor AA (PDGF-AA) and PDGF-Ralpha, two components of an important signaling pathway for fibroblast and myofibroblast proliferation and migration. Using antibodies linked to protein-A gold and high-resolution imaging techniques, we analyzed the expression of these molecules as smooth muscle cells developed from progenitor cell populations and in endothelial cells of the same microvessels. PDGF-AA was highly expressed by each cell type in control lung. As PH developed, the number of antigenic sites for PDGF-AA decreased with time. PDGF-Ralpha expression levels in the control lung were low, relative to the ligand, and fell in PH. These data show, for the first time, a marked phenotypic shift in expression levels of the PDGF-AA isoform and its receptor tyrosine kinase in the progenitor smooth muscle cells developing in the microvessels of the adult hypertensive lung.
Collapse
Affiliation(s)
- Rosemary Jones
- Department of Anesthesia and Critical Care, Harvard Medical School, Massachusetts General Hospital, MGH-East, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
16
|
Kuang PP, Lucey E, Rishikof DC, Humphries DE, Bronsnick D, Goldstein RH. Engraftment of neonatal lung fibroblasts into the normal and elastase-injured lung. Am J Respir Cell Mol Biol 2005; 33:371-7. [PMID: 16037486 PMCID: PMC2715345 DOI: 10.1165/rcmb.2004-0319oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interstitial fibroblasts are an integral component of the alveolar wall. These cells produce matrix proteins that maintain the extracellular scaffold of alveolar structures. Emphysema is characterized by airspace enlargement resulting from the loss of alveolar cellularity and matrix. In this study, we explored the endotracheal delivery of fibroblasts to the lung parenchyma as a means of repairing damaged alveolar structures directly or indirectly for the delivery of transgenes. Fibroblasts were isolated from the lungs of neonatal transgenic mice expressing GFP during the period of rapid alveolarization. These GFP+ cells maintained their myofibroblast phenotype in culture and expressed elastin and alpha-smooth muscle actin mRNA. We administered GFP+ fibroblasts to saline- and elastase-treated mice by endotracheal instillation. We detected more GFP+ fibroblasts in the alveolar walls and in the interstitial areas of elastase-injured lungs than in normal lungs as assessed by immunohistochemistry and fluorescent imaging. The presence of GFP+ fibroblasts in the interstitium demonstrated transepithelial migration of these cells. Expression of GFP+ fibroblasts in recipient lungs was maintained for at least 20 d after endotracheal administration. These cells synthesize matrix components including elastin in vitro and could contribute to restoring the structural integrity of the alveolar wall.
Collapse
Affiliation(s)
- Ping-Ping Kuang
- The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bursac N, Papadaki M, White JA, Eisenberg SR, Vunjak-Novakovic G, Freed LE. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. ACTA ACUST UNITED AC 2004; 9:1243-53. [PMID: 14670112 DOI: 10.1089/10763270360728152] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We tested the hypothesis that cardiomyocytes maintained their phenotype better if cultured as three-dimensional tissue constructs than if cultured as confluent monolayers. Neonatal rat cardiomyocytes were cultured on biomaterial scaffolds in rotating bioreactors for 1 week, and resulting tissue constructs were compared with confluent monolayers and slices of native ventricular tissue with respect to proteins involved in cell metabolism (creatine kinase isoform MM), contractile function (sarcomeric myosin heavy chain), and intercellular communication (connexin 43), as well as action potential characteristics (e.g., membrane resting potential, maximum depolarization slope, and action potential duration), and macroscopic electrophysiological properties (maximum capture rate). The molecular and electrophysiological properties of cardiomyocytes cultured in tissue constructs, although inferior to those of native neonatal ventricles, were superior to those of the same cells cultured as monolayers. Construct levels of creatine kinase, myosin heavy chain, and connexin 43 were 40-60% as high as ventricle levels, whereas monolayer levels of the same proteins were only 11-20% as high. Construct action potential durations were 1.8-fold higher than those in ventricles, whereas monolayer action potential durations were 2.4-fold higher. Pharmacological studies using 4-aminopyridine showed that prolonged action potential duration and reduced maximum capture rate in tissue constructs as compared with native ventricles could be explained by decreased transient outward potassium current.
Collapse
Affiliation(s)
- Nenad Bursac
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang YZ, Zhang P, Rice AB, Bonner JC. Regulation of interleukin-1beta -induced platelet-derived growth factor receptor-alpha expression in rat pulmonary myofibroblasts by p38 mitogen-activated protein kinase. J Biol Chem 2000; 275:22550-7. [PMID: 10807932 DOI: 10.1074/jbc.m909785199] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potential role of p38 mitogen-activated protein (MAP) kinase in platelet-derived growth factor receptor-alpha (PDGF-Ralpha) gene expression was investigated using cultured rat pulmonary myofibroblasts. p38 MAP kinase was constitutively expressed in myofibroblasts and activated by interleukin (IL)-1beta. A pyridinylimidazole compound, SB203580, completely inhibited the ability of p38 MAP kinase activity to phosphorylate PHAS-1 substrate. SB203580 inhibited IL-1beta-induced up-regulation of PDGF-Ralpha mRNA and protein in a concentration-dependent manner. Other kinase inhibitors, including the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD98059, did not block up-regulation of PDGF-Ralpha. The IL-1beta-induced increase in the number of (125)I-PDGF-AA-binding sites at the cell surface was reduced >70% by pretreatment with SB203580. Accordingly, an enhancement of PDGF-AA-stimulated DNA synthesis following IL-1beta pretreatment was blocked >70% by SB203580. SB203580 did not affect IL-1beta-induced ERK activation, yet enhanced IL-1beta-induced JNK activation approximately 2-fold. Treatment of cells with SB203580 after inhibition of transcription by actinomycin D decreased the half-life of IL-1beta-induced PDGF-Ralpha mRNA from >4 to approximately 1.5 h. Moreover, pretreatment of cells with cycloheximide blocked induction of PDGF-Ralpha mRNA by IL-1beta, suggesting that de novo protein synthesis was required for PDGF-Ralpha mRNA stabilization. These data indicate that p38 MAP kinase regulates PDGF-Ralpha expression at the translational level by signaling the synthesis of an mRNA-stabilizing protein.
Collapse
Affiliation(s)
- Y Z Wang
- Laboratory of Pulmonary Pathobiology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
19
|
Rosenkranz S, DeMali KA, Gelderloos JA, Bazenet C, Kazlauskas A. Identification of the Receptor-associated Signaling Enzymes That Are Required for Platelet-derived Growth Factor-AA-dependent Chemotaxis and DNA Synthesis. J Biol Chem 1999; 274:28335-43. [PMID: 10497192 DOI: 10.1074/jbc.274.40.28335] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the platelet-derived growth factor (PDGF) alpha receptor (alphaPDGFR) leads to cell migration and DNA synthesis. These events are preceded by the ligand-induced tyrosine phosphorylation of the receptor and its association with SH2-containing signaling enzymes including Src family members (Src), the phosphotyrosine phosphatase SHP-2, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-gamma1 (PLCgamma). In this study, we sought to systematically evaluate the relative roles of the signaling enzymes that are recruited to the alphaPDGFR for DNA synthesis and cell migration. Our approach was to generate and characterize tyrosine to phenylalanine alphaPDGFR mutants that failed to associate with one or more of the above listed signaling enzymes. In a 3T3-like cell line (Ph cells), PDGF-dependent DNA synthesis was strictly dependent on only one of the receptor-associated proteins, PI3K. In contrast, multiple signaling enzymes were required for maximal chemotaxis, as receptors unable to associate with either Src, PI3K, or PLCgamma initiated chemotaxis to 4, 47, or 56% of the wild-type level, respectively. Furthermore, coexpression of mutant receptors revealed that these signaling enzymes do not need to be on the same receptor for a cell to respond chemotactically to PDGF. We conclude that for the alphaPDGFR, PI3K plays a major role in initiating DNA synthesis, whereas PI3K, PLCgamma, and especially Src are required for chemotaxis.
Collapse
Affiliation(s)
- S Rosenkranz
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
20
|
Kallio EA, Koskinen PK, Aavik E, Buchdunger E, Lemström KB. Role of platelet-derived growth factor in obliterative bronchiolitis (chronic rejection) in the rat. Am J Respir Crit Care Med 1999; 160:1324-32. [PMID: 10508825 DOI: 10.1164/ajrccm.160.4.9802006] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of platelet-derived growth factor (PDGF) in the development of obliterative bronchiolitis (OB) as a manifestation of chronic rejection was investigated in the heterotopic rat tracheal allograft model. An increase in intragraft PDGF-Ralpha and -Rbeta mRNA expression, and in PDGF-AA and -Ralpha immunoreactivity, was demonstrated during the progressive loss of respiratory epithelium and airway occlusion in nontreated allografts compared with syngeneic grafts. Treatment with CGP 53716, a protein-tyrosine kinase inhibitor selective for PDGF receptor, alone and in combination with suboptimal doses of cyclosporin A, significantly reduced myofibroproliferation and the degree of OB by more than 50%. CGP 53716 did not affect airway wall inflammatory cell proliferation, the number of graft-infiltrating CD4(+) or CD8(+) T cells, ED3(+) macrophages, or the level of immune activation determined as IL-2R and MHC class II expression. This study suggests a regulatory role for PDGF, especially for PDGF-AA and -Ralpha, in the development of obliterative bronchiolitis in this model, and demonstrates that inhibition of PDGF receptor protein-tyrosine kinase activation prevents these obliterative changes. Thus, receptor protein-tyrosine kinase inhibitors may provide a novel therapeutic strategy for the prevention of chronic rejection.
Collapse
Affiliation(s)
- E A Kallio
- Cardiopulmonary Research Group, Transplantation Laboratory, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- J S Biscardi
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
22
|
Liu W, Yasui K, Arai A, Kamiya K, Cheng J, Kodama I, Toyama J. beta-adrenergic modulation of L-type Ca2+-channel currents in early-stage embryonic mouse heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H608-13. [PMID: 9950862 DOI: 10.1152/ajpheart.1999.276.2.h608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little information is available concerning the modulation of cardiac function by beta-adrenergic agonists in early-stage embryonic mammalian heart. We have examined the effects of isoproterenol (Iso) on the spontaneous beating rate and action potential (AP) configuration in embryonic mouse hearts at 9.5 days postcoitum (dpc), just 1 day after they started to beat. Iso (3 microM) increased the spontaneous beating rate in whole hearts, dissected ventricles, and isolated ventricular myocytes. In ventricular myocytes, Iso also increased the slope of the pacemaker potential and the action potential duration but decreased the maximum upstroke velocity. In whole cell voltage-clamp experiments, the Ca2+-channel currents were measured as Ba2+ currents (IBa). In 9.5-dpc myocytes, IBa was enhanced significantly from -4.7 +/- 0.9 to -6.7 +/- 1.2 pA/pF (by 52.4 +/- 14.8%, n = 10) after the application of Iso. Propranolol (3 microM) reversed the effect of Iso. Forskolin (For, 10 microM) produced an increase in IBa by 95.5 +/- 18.8% (n = 8). In ventricular myocytes at a late embryonic stage (18 dpc), 3 microM Iso caused an appreciably greater increase in IBa from -6.2 +/- 0.5 to -14.5 +/- 2.2 pA/pF (by 137.8 +/- 33.0%, n = 8), whereas the increase in IBa by 10 microM For (by 120.0 +/- 23.0%, n = 7) was comparable to that observed in the early stage (9.5 dpc). These results indicate that the L-type Ca2+-channel currents are modulated by beta-adrenergic receptors in the embryonic mouse heart as early as 9.5 dpc, probably via a cAMP-dependent pathway.
Collapse
Affiliation(s)
- W Liu
- Department of Circulation, Division of Regulation of Organ Function, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Rosenkranz S, Kazlauskas A. Evidence for distinct signaling properties and biological responses induced by the PDGF receptor alpha and beta subtypes. Growth Factors 1999; 16:201-16. [PMID: 10372961 DOI: 10.3109/08977199909002130] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factor (PDGF) acts as a potent mitogen, chemoattractant and survival factor for mesenchymal cells. In addition to its importance in mammalian development, PDGF plays a critical role in physiological repair mechanisms and in the pathogenesis of various proliferative diseases. The biological effects of PDGF are initiated via two related receptor tyrosine kinases, termed alpha and betaPDGF receptors. Recent observations provide increasing evidence for distinct roles of the two PDGF receptor subtypes in both embryogenesis and disease formation. Moreover, characterization of the signal relay mechanisms indicates, that the alpha and betaPDGF receptors are not identical in their ability to bind intracellular effector molecules. Furthermore, the two PDGF receptors initiate overlapping, yet distinct signal transduction pathways. These differences may account for some of the variabilities in biological responses resulting from activation of these two receptors.
Collapse
Affiliation(s)
- S Rosenkranz
- The Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
Pignier C, Fares N, Potreau D. Effects of adrenergic stimulation on postnatal development and calcium current in newborn rat cardiomyocytes in primary culture. J Cardiovasc Pharmacol 1998; 31:262-70. [PMID: 9475268 DOI: 10.1097/00005344-199802000-00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With a primary culture of ventricular cardiomyocytes from newborn rats as an in vitro model, the long-term effects of norepinephrine (NE) on hypertrophic postnatal development and the I/V properties of L-type calcium currents were investigated with the whole-cell configuration of patch-clamp technique. These effects of NE also were tested in the presence of propranolol (P). Compared with mean values obtained in control conditions, the measurement of cell membrane capacitance (Cm) as an index of cell growth demonstrated that Cm was increased by 12, 35, and 42% after 1, 3, and 6 days, respectively, of treatment with 2 microM NE. Similar increases were observed when propranolol (2 microM) was added to the NE treatment, suggesting that growth potentiation could be attributed to the alpha-adrenergic effect of NE. Under control conditions, the L-type calcium current (ICa-L) density did not alter with the age of the culture. However, in the presence of NE, ICa-L density increased significantly compared with control conditions at the same stage of culture and was also significantly increased after 3 and 6 days of NE treatment when compared with ICa-L density after 1 day of NE treatment. Similar results were obtained in the presence of propranolol. These results show that the growth and functional properties of neonatal cardiomyocytes in primary culture can be regulated by catecholamines and demonstrate that these regulatory effects were achieved through activation of alpha-adrenoceptors.
Collapse
Affiliation(s)
- C Pignier
- Laboratoire de Physiologie Générale, Faculté des Sciences, Poitiers, France
| | | | | |
Collapse
|