1
|
Helicobacter pylori status and esophagogastroduodenal mucosal lesions in patients with end-stage renal failure on maintenance hemodialysis. J Gastroenterol 2010; 45:515-22. [PMID: 20084526 DOI: 10.1007/s00535-009-0196-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 12/15/2009] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The aim of this study was to elucidate the impact of Helicobacter pylori infection on esophagogastroduodenal mucosal lesions in patients with end-stage renal failure on maintenance hemodialysis (HD). METHODS An upper endoscopy and the (13)C-urea breath test were performed in 198 patients on maintenance HD. Clinical features, serum pepsinogen levels and esophagogastroduodenal mucosal lesions were compared between H. pylori-positive and H. pylori-negative patients. Risk factors associated with esophagogastroduodenal mucosal lesion were determined by multivariate analyses. RESULTS The upper endoscopy revealed that gastric erosion was the most frequent (58%) type of esophagogastroduodenal mucosal lesion, followed by duodenal erosion (18%), gastric ulcer (14%), gastroesophageal reflux disease (10%), and duodenal ulcer (7%). Of the 198 patients enrolled in the study, 81 were positive and 117 patients were negative for H. pylori infection. The time duration after the introduction of HD was significantly longer and serum pepsinogen I/II ratio was significantly higher in H. pylori-negative patients than in H. pylori-positive patients. Multivariate analyses revealed that the H. pylori infection was an independent, protective factor for gastric erosion (odds ratio 0.38; 95% confidence interval 0.21-0.70), while the infection was unrelated to other mucosal lesions. CONCLUSIONS The most common mucosal lesion observed in our study cohort, all of whom were patients on maintenance HD, was gastric erosion. The high prevalence of this type of lesion may be explained partly by the cure of H. pylori infection during the clinical course of maintenance HD.
Collapse
|
2
|
Hinard V, Belin D, Konig S, Bader CR, Bernheim L. Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242. Development 2008; 135:859-67. [PMID: 18216177 DOI: 10.1242/dev.011387] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myoblast differentiation is essential to skeletal muscle formation and repair. The earliest detectable event leading to human myoblast differentiation is an upregulation of Kir2.1 channel activity, which causes a negative shift (hyperpolarization) of the resting potential of myoblasts. After exploring various mechanisms, we found that this upregulation of Kir2.1 was due to dephosphorylation of the channel itself. Application of genistein, a tyrosine kinase inhibitor, increased Kir2.1 activity and triggered the differentiation process, whereas application of bpV(Phen), a tyrosine phosphatase inhibitor, had the opposite effects. We could show that increased Kir2.1 activity requires dephosphorylation of tyrosine 242; replacing this tyrosine in Kir2.1 by a phenylalanine abolished inhibition by bpV(Phen). Finally, we found that the level of tyrosine phosphorylation in endogenous Kir2.1 channels is considerably reduced during differentiation when compared with proliferation. We propose that Kir2.1 channels are already present at the membrane of proliferating, undifferentiated human myoblasts but in a silent state, and that Kir2.1 tyrosine 242 dephosphorylation triggers differentiation.
Collapse
Affiliation(s)
- Valérie Hinard
- Département de Neurosciences Fondamentales, University of Geneva, Centre Médical Universitaire, Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Elizalde JI, Mendez A, Gomez J, del Rivero M, Gironella M, Closa D, Quintero E, Pique JM. Gastric mucosal blood flow changes in Helicobacter pylori infection and NSAID-induced gastric injury. Helicobacter 2003; 8:124-31. [PMID: 12662380 DOI: 10.1046/j.1523-5378.2003.00133.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The impact of H. pylori infection on gastric mucosal blood flow and NSAID-induced gastric damage is unclear. AIM To study the effects of H. pylori infection on gastric mucosal blood flow, both at basal conditions and after NSAID exposure, and its relation with mucosal damage and nitric oxide production. METHODS Gastric mucosal blood flow, nitric oxide production and gastric damage were assessed in time after H. pylori SS1 or E. coli inoculation in mice. Experiments were conducted in basal conditions or after oral exposure to indomethacin (20 mg/kg). RESULTS H. pylori infected mice exhibited a significant increase in gastric blood flow and gastric nitric oxide production 1 week after infection, but those parameters returned to basal levels by 4 weeks. NSAID challenge elicited a similar reduction in gastric blood flow [25-35%] in H. pylori-infected and control animals. However, only 1 week H. pylori-infected mice, which exhibited a significant baseline hyperemia, were able to maintain gastric blood flow values within the normal range after NSAID exposure. NSAID-induced gastric damage was increased in H. pylori-infected mice by 4 weeks, but not 1 week after infection. CONCLUSIONS Underlying H. pylori infection aggravates acute NSAID-induced gastric damage. However, at early phases, gastric hyperemia associated with increased nitric oxide production may exert some protective role.
Collapse
Affiliation(s)
- J Ignasi Elizalde
- Gastroenterology Department, Institut Clinic de Malalties Digestives, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
5
|
Colden-Stanfield M. Clustering of very late antigen-4 integrins modulates K(+) currents to alter Ca(2+)-mediated monocyte function. Am J Physiol Cell Physiol 2002; 283:C990-C1000. [PMID: 12176755 DOI: 10.1152/ajpcell.00481.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial cell vascular cell adhesion molecule-1 (VCAM-1) activates adherent monocytes by clustering their very late antigen-4 (VLA-4) receptors, resulting in the modulation of the inwardly rectifying (I(ir)) and delayed rectifying (I(dr)) K(+) currents, hyperpolarization of the cells, and enhanced Ca(2+) influx (Colden-Stanfield M and Gallin EK. Am J Physiol Cell Physiol 275: C267-C277, 1998; Colden-Stanfield M and Scanlon M. Am J Physiol Cell Physiol 279: C488-C494, 2000). The present study was undertaken to test the hypothesis that monoclonal antibodies (MAbs) against VLA-4 (MAbVLA-4) mimic VCAM-1 to cluster VLA-4 integrins, which play a key role in signaling an increase in the secretion of the proinflammatory cytokine interleukin-8 (IL-8). Whole cell ionic currents and IL-8 secretion from THP-1 monocytes that were incubated on polystyrene, VCAM-1-immobilized MAbVLA-4 or an isotype-matched MAb against CD45 (MAbCD45) were measured. Clustering of VLA-4 integrins with a cross-linked MAbVLA-4, but not a monovalent MAbVLA-4, modulated the K(+) currents in an identical manner to incubation of cells on VCAM-1. Similarly, cross-linked MAbVLA-4 or VCAM-1 augmented Ca(2+)-mediated IL-8 secretion from THP-1 monocytes and was completely abolished by exposure to CsCl, an I(ir) blocker. Thus VLA-4 integrin clustering by cross-linked MAbVLA-4 mimics VCAM-1/VLA-4 interactions sufficiently to be associated with events leading to monocyte differentiation, enhanced Ca(2+)-mediated macrophage function, and possibly atherosclerotic plaque formation.
Collapse
|
6
|
Bauer M, Heinz A, Whybrow PC. Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain. Mol Psychiatry 2002; 7:140-56. [PMID: 11840307 DOI: 10.1038/sj.mp.4000963] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2001] [Revised: 06/07/2001] [Accepted: 06/15/2001] [Indexed: 12/19/2022]
Abstract
The use of thyroid hormones as an effective adjunct treatment for affective disorders has been studied over the past three decades and has been confirmed repeatedly. Interaction of the thyroid and monoamine neurotransmitter systems has been suggested as a potential underlying mechanism of action. While catecholamine and thyroid interrelationships have been reviewed in detail, the serotonin system has been relatively neglected. Thus, the goal of this article is to review the literature on the relationships between thyroid hormones and the brain serotonin (5-HT) system, limited to studies in adult humans and adult animals. In humans, neuroendocrine challenge studies in hypothyroid patients have shown a reduced 5-HT responsiveness that is reversible with thyroid replacement therapy. In adult animals with experimentally-induced hypothyroid states, increased 5-HT turnover in the brainstem is consistently reported while decreased cortical 5-HT concentrations and 5-HT2A receptor density are less frequently observed. In the majority of studies, the effects of thyroid hormone administration in animals with experimentally-induced hypothyroid states include an increase in cortical 5-HT concentrations and a desensitization of autoinhibitory 5-HT1A receptors in the raphe area, resulting in disinhibition of cortical and hippocampal 5-HT release. Furthermore, there is some indication that thyroid hormones may increase cortical 5-HT2 receptor sensitivity. In conclusion, there is robust evidence, particularly from animal studies, that the thyroid economy has a modulating impact on the brain serotonin system. Thus it is postulated that one mechanism, among others, through which exogenous thyroid hormones may exert their modulatory effects in affective illness is via an increase in serotonergic neurotransmission, specifically by reducing the sensitivity of 5-HT1A autoreceptors in the raphe area, and by increasing 5-HT2 receptor sensitivity.
Collapse
Affiliation(s)
- M Bauer
- University of California Los Angeles (UCLA), Neuropsychiatric Institute & Hospital, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| | | | | |
Collapse
|
7
|
Park JY, Lee D, Maeng JU, Koh DS, Kim K. Hyperpolarization, but not depolarization, increases intracellular Ca(2+) level in cultured chick myoblasts. Biochem Biophys Res Commun 2002; 290:1176-82. [PMID: 11811986 DOI: 10.1006/bbrc.2001.6323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) influx appears to be important for triggering myoblast fusion. It remains, however, unclear how Ca(2+) influx rises prior to myoblast fusion. The present study examines a possible involvement of the voltage-dependent Ca(2+) influx pathways. Treatment with the L-type Ca(2+) channel blockers, diltiazem, and nifedipine did not alter cytosolic Ca(2+) levels. Depolarization with high K(+) solution and activation of Ca(2+) channel with Bay K 8644, and agonist of voltage dependent Ca(2+) channels, failed to elicit increases intracellular Ca(2+) level, indicating the absence of depolarization-operated mechanisms. In contrast, phloretin, an agonist of Ca(2+)-activated potassium (K(Ca)) channels, was able to hyperpolarize membrane potential and promoted Ca(2+) influx. These effects were completely abolished by treatment of charybdotoxin, a specific inhibitor of K(Ca) channels. In addition, gadolinium, a potent stretch-activated channel (SAC) blocker, prevented the phloretin-mediated Ca(2+) increase, indicating the involvement of SACs in Ca(2+) influx. Furthermore, phloretin stimulated precocious myoblast fusion and this effect was blocked with gadolinium or charybdotoxin. Taken together, these results suggest that induced hyperpolarization, but not depolarization increases Ca(2+) influx through stretch-activated channels, and in turn triggers myoblast fusion.
Collapse
Affiliation(s)
- Jae-Yong Park
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | |
Collapse
|
8
|
Bernheim L, Bader CR. Human Myoblast Differentiation: Ca2+ Channels are Activated by K+ Channels. Physiology (Bethesda) 2002. [DOI: 10.1152/physiologyonline.2002.17.1.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a paradigm of cellular differentiation, human myoblast fusion, we investigated how a Ca2+ influx, indispensable for fusion, is triggered. We show how newly expressed Kir2.1 K+ channels, via their hyperpolarizing effect on the membrane potential, generate a window Ca2+ current (mediated by a1H T-type Ca2+ channels), which causes intracellular Ca2+ to rise.
Collapse
Affiliation(s)
| | - Charles R. Bader
- Division de Recherche Clinique Neuro-Musculaire, Département des Neurosciences Cliniques et Dermatologie, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
9
|
Takeuchi T, Tagawa Y, Hagihara K, Maeshiba Y, Yamashita K, Tsukuda R, Yoshimura Y. Nonlinear pharmacokinetics of TAK-044, a new endothelin antagonist, in rats. Biopharm Drug Dispos 2001; 22:221-30. [PMID: 11754038 DOI: 10.1002/bdd.262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanism of the nonlinear pharmacokinetics of TAK-044 in rats was shown from in vivo and in vitro studies to be due to capacity-limited hepatic uptake. In the rats, which were given intravenous injections of (14)C-labeled TAK-044 ([(14)C]TAK-044) (1, 3, 10, 30 and 100 mg/kg), the AUC(inf) per unit dose of unchanged compound increased remarkably. An analysis model indicated that the CL(tot), V(1) and k(12) values of TAK-044 decreased significantly with increasing dose, whereas the k(el) values remained constant over the doses examined. The uptake clearance of [(14)C]TAK-044 by several tissues was investigated by an integration plot at doses from 0.3 to 60 mg/kg. This study showed that the liver played the principal role in the removal of TAK-044 from the plasma, while hepatic uptake was capacity-limited at doses greater than 30 mg/kg. The hepatic uptake study using rat hepatocytes indicated that a carrier-mediated transport system contributed to the hepatic uptake of TAK-044, and this system had high affinity (K(m,in vitro); 8.4 micromol/L) with low capacity (V(max,in vitro); 86.3 pmol/mg protein/min). These results show that the saturation of hepatic uptake by the carrier-mediated transport system could explain the nonlinear pharmacokinetics of TAK-044 in rats.
Collapse
Affiliation(s)
- T Takeuchi
- Drug Analysis and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Chemical Industries Ltd., 2-17-85, Juso-Honmachi, Yodogawaku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Fischer-Lougheed J, Liu JH, Espinos E, Mordasini D, Bader CR, Belin D, Bernheim L. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. J Cell Biol 2001; 153:677-86. [PMID: 11352930 PMCID: PMC2192379 DOI: 10.1083/jcb.153.4.677] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Accepted: 03/21/2001] [Indexed: 12/02/2022] Open
Abstract
Myoblast fusion is essential to skeletal muscle development and repair. We have demonstrated previously that human myoblasts hyperpolarize, before fusion, through the sequential expression of two K+ channels: an ether-à-go-go and an inward rectifier. This hyperpolarization is a prerequisite for fusion, as it sets the resting membrane potential in a range at which Ca2+ can enter myoblasts and thereby trigger fusion via a window current through alpha1H T channels.
Collapse
Affiliation(s)
- J Fischer-Lougheed
- Département de Physiologie et, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L. T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci U S A 2000; 97:7627-32. [PMID: 10861024 PMCID: PMC16596 DOI: 10.1073/pnas.97.13.7627] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanisms underlying Ca(2+) signaling during human myoblast terminal differentiation were studied using cell cultures. We found that T-type Ca(2+) channels (T-channels) are expressed in myoblasts just before fusion. Their inhibition by amiloride or Ni(2+) suppresses fusion and prevents an intracellular Ca(2+) concentration increase normally observed at the onset of fusion. The use of antisense oligonucleotides indicates that the functional T-channels are formed by alpha1H subunits. At hyperpolarized potentials, these channels allow a window current sufficient to increase [Ca(2+)](i). As hyperpolarization is a prerequisite to myoblast fusion, we conclude that the Ca(2+) signal required for fusion is produced when the resting potential enters the T-channel window. A similar mechanism could operate in other cell types of which differentiation implicates membrane hyperpolarization.
Collapse
Affiliation(s)
- P Bijlenga
- Département de Physiologie, Centre Médical Universitaire, and Division de Recherche Clinique Neuro-Musculaire, Hôpital Cantonal Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
König J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:377-94. [PMID: 10581368 DOI: 10.1016/s0005-2736(99)00169-8] [Citation(s) in RCA: 545] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The membrane proteins mediating the ATP-dependent transport of lipophilic substances conjugated to glutathione, glucuronate, or sulfate have been identified as members of the multidrug resistance protein (MRP) family. Several isoforms of these conjugate export pumps with different kinetic properties and domain-specific localization in polarized human cells have been cloned and characterized. Orthologs of the human MRP isoforms have been detected in many different organisms. Studies in mutant rats lacking the apical isoform MRP2 (symbol ABCC2) indicate that anionic conjugates of endogenous and exogenous substances cannot exit from cells at a sufficient rate unless an export pump of the MRP family is present in the plasma membrane. Several mutations in the human MRP2 gene have been identified which lead to the absence of the MRP2 protein from the hepatocyte canalicular membrane and to the conjugated hyperbilirubinemia of Dubin-Johnson syndrome. Overexpression of recombinant MRP2 confers resistance to multiple chemotherapeutic agents. Because of its function in the terminal excretion of cytotoxic and carcinogenic substances, MRP2 as well as other members of the MRP family, play an important role in detoxification and chemoprevention.
Collapse
Affiliation(s)
- J König
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, D-69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Park JY, Shin KS, Kwon H, Rhee JG, Kang MS, Chung CH. Role of hyperpolarization attained by linoleic acid in chick myoblast fusion. Exp Cell Res 1999; 251:307-17. [PMID: 10471316 DOI: 10.1006/excr.1999.4579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous report has suggested that hyperpolarization generated by reciprocal activation of calcium-activated potassium (K(Ca)) channels and stretch-activated channels induces calcium influx that triggers myoblast fusion. Here we show that linoleic acid is involved in the process of generating hyperpolarization in cultured chick myoblasts and hence in promotion of the cell fusion. Linoleic acid dramatically hyperpolarized the membrane potential from -14 +/- 3 to -58 +/- 5 mV within 10 min. This effect was partially blocked by 1 mM tetraethylammonium (TEA) or 30 nM charybdotoxin, a selective K(Ca) channel inhibitor, and completely abolished by 10 mM TEA. Single-channel recordings revealed that linoleic acid activates TEA-resistant potassium channels as well as K(Ca) channels. Furthermore, linoleic acid induced calcium influx from extracellular solution, and this effect was partially blocked by 1 mM TEA and completely prevented at 10 mM, similar to the effect of TEA on linoleic acid-mediated hyperpolarization. Since the valinomycin-mediated hyperpolarization promoted calcium influx, hyperpolarization itself appears capable of inducing calcium influx. In addition, gadolinium prevented the valinomycin-mediated increase in intracellular calcium level under hypotonic conditions, revealing the involvement of stretch-activated channels in calcium influx. Furthermore, linoleic acid stimulated myoblast fusion, and this stimulatory effect could completely be prevented by 10 mM TEA. These results suggest that linoleic acid induces hyperpolarization of membrane potential by activation of potassium channels, which induces calcium influx through stretch-activated channels, and thereby triggers myoblast fusion.
Collapse
Affiliation(s)
- J Y Park
- Department of Molecular Biology and Research Center for Cell Differentiation, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Liu JH, Bijlenga P, Fischer-Lougheed J, Occhiodoro T, Kaelin A, Bader CR, Bernheim L. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. J Physiol 1998; 510 ( Pt 2):467-76. [PMID: 9705997 PMCID: PMC2231059 DOI: 10.1111/j.1469-7793.1998.467bk.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The role of K+ channels and membrane potential in myoblast fusion was evaluated by examining resting membrane potential and timing of expression of K+ currents at three stages of differentiation of human myogenic cells: undifferentiated myoblasts, fusion-competent myoblasts (FCMBs), and freshly formed myotubes. 2. Two K+ currents contribute to a hyperpolarization of myoblasts prior to fusion: IK(NI), a non-inactivating delayed rectifier, and IK(IR), an inward rectifier. 3. IK(NI) density is low in undifferentiated myoblasts, increases in FCMBs and declines in myotubes. On the other hand, IK(IR) is expressed in 28% of the FCMBs and in all myotubes. 4. IK(IR) is reversibly blocked by Ba2+ or Cs+. 5. Cells expressing IK(IR) have resting membrane potentials of -65 mV. A block by Ba2+ or Cs+ induces a depolarization to a voltage determined by IK(NI) (-32 mV). 6. Cs+ and Ba2+ ions reduce myoblast fusion. 7. It is hypothesized that the IK(IR)-mediated hyperpolarization allows FCMBs to recruit Na+, K+ and T-type Ca2+ channels which are present in these cells and would otherwise be inactivated. FCMBs, rendered thereby capable of firing action potentials, could amplify depolarizing signals and may accelerate fusion.
Collapse
Affiliation(s)
- J H Liu
- Département de Physiologie, Hôpital Cantonal Universitaire, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Colden-Stanfield M, Gallin EK. Modulation of K+ currents in monocytes by VCAM-1 and E-selectin on activated human endothelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C267-77. [PMID: 9688858 DOI: 10.1152/ajpcell.1998.275.1.c267] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Resting membrane potential (RMP) and whole cell currents were recorded in human THP-1 monocytes adherent to polystyrene, unstimulated human umbilical vein endothelial cells (HUVECs), lipopolysaccharide (LPS)-treated HUVECs, immobilized E-selectin, or vascular cell adhesion molecule 1 (VCAM-1) using the patch-clamp technique. RMP after 5 h on polystyrene was -24.3 +/- 1.7 mV (n = 42) with delayed rectifier K+ (Idr) and Cl- currents (ICl) present in >75% of the cells. Inwardly rectifying K+ currents (Iir) were present in only 14% of THP-1 cells. Adherence to unstimulated HUVECs or E-selectin for 5 h had no effect on Iir or ICl but decreased Idr. Five hours after adherence to LPS-treated HUVECs, outward currents were unchanged, but Iir was present in 81% of THP-1 cells. A twofold increase in Iir and a hyperpolarization (-41.3 +/- 3.7 mV, n = 16) were abolished by pretreatment of THP-1 cells with cycloheximide, a protein synthesis inhibitor, or herbimycin A, a tyrosine kinase inhibitor, or by pretreatment of the LPS-treated HUVECs with anti-VCAM-1. Only a brief (15-min) interaction between THP-1 cells and LPS-treated HUVECs was required to induce Iir expression 5 h later. THP-1 cells adherent to VCAM-1 exhibited similar conductances to cells adherent to LPS-treated HUVECs. Thus engagement of specific integrins results in selective modulation of different K+ conductances.
Collapse
Affiliation(s)
- M Colden-Stanfield
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | |
Collapse
|
16
|
Shin KS, Park JY, Kwon H, Chung CH, Kang MS. Opposite effect of intracellular Ca2+ and protein kinase C on the expression of inwardly rectifying K+ channel 1 in mouse skeletal muscle. J Biol Chem 1997; 272:21227-32. [PMID: 9261131 DOI: 10.1074/jbc.272.34.21227] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The level of inwardly rectifying K+ channel 1 (IRK1) mRNA decreased upon denervation and increased during muscle differentiation in mouse skeletal muscle. To identify the mechanism(s) underlying the regulation of IRK1 mRNA expression, we examined its expression using the well differentiated C2C12 mouse skeletal muscle cell line as a model system. Since nerve-induced muscle activity results in contraction, it was questioned whether the changes in IRK1 expression might be relevant to the increased intracellular calcium that functions as a cytoplasmic messenger in excitation-contraction coupling. Indeed, activation of either L-type calcium channels or ryanodine receptors increased the level of IRK1 mRNA. More directly, ionomycin activated the IRK1 expression in time- and dose-dependent manners, which was abolished by treatment with EGTA. Genistein, a tyrosine kinase inhibitor, also abolished the stimulating effect of ionomycin. Meanwhile, activation of protein kinase C by 12-O-tetradecanoylphorbol acetate (TPA) markedly decreased the level of IRK1 mRNA, which required ongoing protein synthesis. Actinomycin D experiments revealed that ionomycin increased the half-life of IRK1 mRNA from 0.86 to 1.97 h, but TPA decreased it to 0.38 h. However, neither ionomycin nor TPA appreciably altered the rate of IRK1 gene transcription. Based on these observations, we conclude that intracellular calcium and protein kinase C are oppositely involved in the muscle activity-dependent regulation of IRK1 gene expression and that both act at the level of mRNA stability.
Collapse
Affiliation(s)
- K S Shin
- Department of Molecular Biology and Research Center for Cell Differentiation, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|