1
|
Casciola R, Leoni L, Cuffari B, Pecchini M, Menozzi R, Colecchia A, Ravaioli F. Creatine Supplementation to Improve Sarcopenia in Chronic Liver Disease: Facts and Perspectives. Nutrients 2023; 15:863. [PMID: 36839220 PMCID: PMC9958770 DOI: 10.3390/nu15040863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Creatine supplementation has been one of the most studied and useful ergogenic nutritional support for athletes to improve performance, strength, and muscular mass. Over time creatine has shown beneficial effects in several human disease conditions. This review aims to summarise the current evidence for creatine supplementation in advanced chronic liver disease and its complications, primarily in sarcopenic cirrhotic patients, because this condition is known to be associated with poor prognosis and outcomes. Although creatine supplementation in chronic liver disease seems to be barely investigated and not studied in human patients, its potential efficacy on chronic liver disease is indirectly highlighted in animal models of non-alcoholic fatty liver disease, bringing beneficial effects in the fatty liver. Similarly, encephalopathy and fatigue seem to have beneficial effects. Creatine supplementation has demonstrated effects in sarcopenia in the elderly with and without resistance training suggesting a potential role in improving this condition in patients with advanced chronic liver disease. Creatine supplementation could address several critical points of chronic liver disease and its complications. Further studies are needed to support the clinical burden of this hypothesis.
Collapse
Affiliation(s)
- Riccardo Casciola
- Gastroenterology Unit, Department of Specialistic Medicines, University of Modena & Reggio Emilia, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| | - Laura Leoni
- Division of Metabolic Diseases and Clinical Nutrition, Department of Specialistic Medicines, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Biagio Cuffari
- Gastroenterology Unit, Department of Specialistic Medicines, University of Modena & Reggio Emilia, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| | - Maddalena Pecchini
- Gastroenterology Unit, Department of Specialistic Medicines, University of Modena & Reggio Emilia, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| | - Renata Menozzi
- Division of Metabolic Diseases and Clinical Nutrition, Department of Specialistic Medicines, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, Department of Specialistic Medicines, University of Modena & Reggio Emilia, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| | - Federico Ravaioli
- Gastroenterology Unit, Department of Specialistic Medicines, University of Modena & Reggio Emilia, University Hospital of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Fan G, Tang JJ, Bhadauria M, Nirala SK, Dai F, Zhou B, Li Y, Liu ZL. Resveratrol ameliorates carbon tetrachloride-induced acute liver injury in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:350-356. [PMID: 21784026 DOI: 10.1016/j.etap.2009.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 05/31/2023]
Abstract
Present investigation aimed to evaluate the hepatoprotective potential of resveratrol (30mg/kg, po) in mice following two different routes (po and sc) of exposure to carbon tetrachloride (CCl(4), 1.0ml/kg). Administration of CCl(4) caused significant increase in the release of transaminases, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transpeptidase, creatinine kinase, total bilirubin, urea and uric acid in serum. Significantly enhanced hepatic lipid peroxidation and oxidized glutathione with marked depletion in reduced glutathione were observed after CCl(4) intoxication. It was also found that CCl(4) administration caused severe alterations in liver histology. Hepatic injury was more severe in those animals who received CCl(4) by oral route than those who exposed to CCl(4) subcutaneously. Resveratrol treatment was able to mitigate hepatic damage induced by acute intoxication of CCl(4) and showed pronounced curative effect against lipid peroxidation and deviated serum enzymatic variables as well as maintained glutathione status toward control. Treatment of resveratrol lessened CCl(4) induced damage in liver. The results of the present study suggest that resveratrol has potential to exert curative effects against liver injury.
Collapse
Affiliation(s)
- Guijuan Fan
- National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Crumm S, Cofan M, Juskeviciute E, Hoek JB. Adenine nucleotide changes in the remnant liver: An early signal for regeneration after partial hepatectomy. Hepatology 2008; 48:898-908. [PMID: 18697206 PMCID: PMC3348855 DOI: 10.1002/hep.22421] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED Liver regeneration after partial hepatectomy (PHx) is orchestrated by multiple signals from cytokines and growth factors. We investigated whether increased energy demand on the remnant liver after PHx contributes to regenerative signals. Changes in the tissue's energy state were determined from adenine nucleotide levels. Adenosine triphosphate (ATP) levels in remnant livers decreased markedly and rapidly (to 48% of control by 30 seconds post-PHx) and remained significantly lower than those in sham-operated controls for 24 to 48 hours. The ATP decrease was not reflected in corresponding increases in adenosine diphosphate (ADP) and adenosine monophosphate (AMP), resulting in a marked decline in total adenine nucleotides (TAN). We found no evidence of mitochondrial damage or uncoupling of oxidative phosphorylation. Multiple lines of evidence indicated that the decline in TAN was not caused by increased energy demand, but by ATP release from the liver. The extent of ATP loss was identical after 30% or 70% PHx, whereas fasting or hyperglycemia, conditions that greatly alter energy demand for gluconeogenesis, affected the ATP/ADP decline but not the loss of TAN. Presurgical treatment with the alpha-adrenergic antagonist phentolamine completely prevented loss of TAN, although changes in ATP/ADP were still apparent. Importantly, phentolamine treatment inhibited early signaling events associated with the priming stages of liver regeneration and suppressed the expression of c-fos. Pretreatment with the purinergic receptor antagonist suramin also partly suppressed early regenerative signals and c-fos expression, but without preventing TAN loss. CONCLUSION The rapid loss of adenine nucleotides after PHx generates early stress signals that contribute to the onset of liver regeneration.
Collapse
Affiliation(s)
- Sara Crumm
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
4
|
Landis CS, Yamanouchi K, Zhou H, Mohan S, Roy-Chowdhury N, Shafritz DA, Koretsky A, Roy-Chowdhury J, Hetherington HP, Guha C. Noninvasive evaluation of liver repopulation by transplanted hepatocytes using 31P MRS imaging in mice. Hepatology 2006; 44:1250-8. [PMID: 17058269 DOI: 10.1002/hep.21382] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatocyte transplantation (HT) is being explored as a substitute for liver transplantation for the treatment of liver diseases. For the clinical application of HT, a preparative regimen that allows preferential proliferation of transplanted cells in the host liver and a noninvasive method to monitor donor cell engraftment, proliferation, and immune rejection would be useful. We describe an imaging method that employs the creatine kinase (CK) gene as a marker of donor hepatocytes. Creatine kinase is unique among marker genes, because it is normally expressed in brain and muscle tissues and is therefore not immunogenic. Preferential proliferation of transplanted CK-expressing hepatocytes was induced by preparative hepatic irradiation and expression of hepatocyte growth factor using a recombinant adenoviral vector. CK is normally not expressed in mouse liver and its expression by the donor cells led to the production of phosphocreatine in the host liver, permitting (31)P magnetic resonance spectroscopic imaging of liver repopulation by engrafted hepatocytes. In conclusion, this study combined a noninvasive imaging technique to assess donor hepatocyte proliferation with a preparative regimen of partial liver irradiation that allowed regional repopulation of the host liver. Our results provide groundwork for future development of clinical protocols for HT.
Collapse
Affiliation(s)
- Charles S Landis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zupanc MM, Wellbrock UM, Zupanc GKH. Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics 2006; 6:677-96. [PMID: 16372261 DOI: 10.1002/pmic.200500167] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In contrast to mammals, adult teleost fish exhibit an enormous potential to regenerate neuronal tissue after injuries to the CNS. By combining a well-defined cerebellar lesion paradigm with differential proteome analysis at a post-lesion survival time of 3 days, we screened for protein candidates involved in repair of the fish brain. Out of nearly 900 protein spots detected on 2-D gels, spot intensity was significantly increased at least twofold in 30 spots and decreased to at least half the intensity of control tissue in 23 spots. The proteins associated with 24 of the spots were identified by PMF and MS/MS fragmentation. The cellular localization and the spatiotemporal patterns of two of these proteins, beta-actin and beta-tubulin, were further characterized through immunohistochemistry. Comparison of the observed changes in protein abundance with the previously characterized events underlying regeneration of the cerebellum suggests that the proteins identified are especially involved in cellular proliferation and survival, as well as axonal sprouting.
Collapse
Affiliation(s)
- Marianne M Zupanc
- School of Engineering and Science, International University Bremen, Bremen, Germany
| | | | | |
Collapse
|
6
|
Elevated creatine kinase activity in primary hepatocellular carcinoma. BMC Gastroenterol 2005; 5:9. [PMID: 15748292 PMCID: PMC555552 DOI: 10.1186/1471-230x-5-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 03/05/2005] [Indexed: 11/21/2022] Open
Abstract
Background Inconsistent findings have been reported on the occurrence and relevance of creatine kinase (CK) isoenzymes in mammalian liver cells. Part of this confusion might be due to induction of CK expression during metabolic and energetic stress. Methods The specific activities and isoenzyme patterns of CK and adenylate kinase (AdK) were analysed in pathological liver tissue of patients undergoing orthotopic liver transplantation. Results The brain-type, cytosolic BB-CK isoenzyme was detected in all liver specimens analysed. Conversely, CK activity was strongly increased and a mitochondrial CK (Mi-CK) isoenzyme was detected only in tissue samples of two primary hepatocellular carcinomas (HCCs). Conclusion The findings do not support significant expression of CK in normal liver and most liver pathologies. Instead, many of the previous misconceptions in this field can be explained by interference from AdK isoenzymes. Moreover, the data suggest a possible interplay between p53 mutations, HCC, CK expression, and the growth-inhibitory effects of cyclocreatine in HCC. These results, if confirmed, could provide important hints at improved therapies and cures for HCC.
Collapse
|
7
|
Sauer U, Schlattner U. Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metab Eng 2005; 6:220-8. [PMID: 15256212 DOI: 10.1016/j.ymben.2003.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 11/13/2003] [Indexed: 11/23/2022]
Abstract
Inverse metabolic engineering attempts to identify or construct desired phenotypes of applied interest to endow them on appropriate host organisms. A particular desirable phenotype is the ATP homeostasis exhibited by animal cells with high and variable ATP turnover through temporal and spatial energy buffering. This buffering is achieved by phosphagen kinase systems that consist of a specific kinase and its cognate phosphagen, which functions as a large pool of 'high-energy phosphates' that are used to replenish ATP during periods of high energetic demand. This review discusses recent advances and potentials of inverse metabolic engineering of cell types that do not normally contain such systems--bacteria, yeast, plants, and liver--with creatine or arginine kinase systems. Examples are discussed that illustrate how microbial metabolism can be tailored for large-scale industrial processes with imperfect mixing and how the liver can be protected from metabolic insults or stimulated for better regeneration.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, Swiss Federal Institute of Technology (ETH) Zürich, CH-8093.
| | | |
Collapse
|
8
|
Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc 2003; 35:923-9. [PMID: 12783039 DOI: 10.1249/01.mss.0000069746.05241.f0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study examined 12 wk of creatine (Cr) supplementation and heavy resistance training on skeletal muscle creatine kinase (M-CK) mRNA expression and the mRNA and protein expression of the myogenic regulatory factors Myo-D, myogenin, MFR-4, and Myf5. METHODS Twenty-two untrained males were randomly assigned to either a control (CON), placebo (PLC), or Cr (CRT) group in a double-blind fashion. Muscle biopsies were obtained before and after training. PLC and CRT trained thrice weekly using 3 sets of 6-8 repetitions at 85-90% 1-RM on the leg press, knee extension, and knee curl exercises. CRT ingested 6 g.d-1 of Cr for 12 wk while PLC consumed the equal amount of placebo. RESULTS After training, M-CK mRNA expression, as well as myogenin and MRF-4 mRNA and protein expression, were found to be significantly greater for CRT compared with PLC and CON, whereas PLC was also significantly different from CON (P < 0.05). For Myo-D mRNA and protein, both CRT and PLC were significantly different from CON (P < 0.05), but CRT and PLC were not different from one another. No significant differences were located for Myf5 mRNA or protein (P > 0.05). M-CK mRNA was correlated with myogenin (r = 0.916) and MRF-4 (r = 0.883) protein (P < 0.05). CONCLUSION When combined with heavy resistance training, Cr supplementation increases M-CK mRNA expression, likely due to concomitant increases in the expression of myogenin and MRF-4. Therefore, increases in myogenin and MRF-4 mRNA and protein may play a role in increasing myosin heavy chain expression, already shown to occur with Cr supplementation.
Collapse
Affiliation(s)
- Darryn S Willoughby
- Department of Kinesiology, Texas Christian University, Fort Worth 76129, USA.
| | | |
Collapse
|
9
|
Askenasy N, Koretsky AP. Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels. Am J Physiol Cell Physiol 2002; 282:C338-46. [PMID: 11788345 DOI: 10.1152/ajpcell.00404.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The function of creatine kinase (CK) and its effect on phosphorus metabolites was studied in livers of transgenic mice expressing human ubiquitous mitochondrial CK (CK-Mit) and rat brain CK (CK-B) isoenzymes and their combination. (31)P NMR spectroscopy and saturation transfer were recorded in livers of anesthetized mice to measure high-energy phosphates and hepatic CK activity. CK reaction velocity was related to total enzyme activity irrespective of the isoenzyme expressed, and it increased with increasing concentrations of creatine (Cr). The fluxes mediated by both isoenzymes in both directions (phosphocreatine or ATP synthesis) were equal. Over a 20-fold increase in CK-Mit activity (28-560 micromol. g wet wt(-1). min(-1)), the fraction of phosphorylated Cr increased 1.6-fold. Hepatic free ADP concentrations calculated by assuming equilibrium of the CK-catalyzed reaction in vivo decreased from 84 +/- 9 to 38 +/- 4 nmol/g wet wt. Calculated free ADP levels in mice expressing high levels of CK-B (920-1,635 micromol. g wet wt(-1). min(-1)) were 52 +/- 6 nmol/g wet wt. Mice expressing both isoenzymes had calculated free ADP levels of 36 +/- 4 nmol/g wet wt. These findings indicate that CK-Mit catalyzes its reaction equally well in both directions and can lower hepatic apparent free ADP concentrations.
Collapse
Affiliation(s)
- Nadir Askenasy
- Department of Biological Sciences, Pittsburgh NMR Center for Biomedical Research, and Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. askenasy+@andrew.cmu.edu
| | | |
Collapse
|
10
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
11
|
Kukowska-Latallo JF, Chen C, Eichman J, Bielinska AU, Baker JR. Enhancement of dendrimer-mediated transfection using synthetic lung surfactant exosurf neonatal in vitro. Biochem Biophys Res Commun 1999; 264:253-61. [PMID: 10527874 DOI: 10.1006/bbrc.1999.1458] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactants enhance adenovirus-mediated gene transfer but inhibit cationic liposome-mediated transfection in lung epithelial cells in vitro. This study examines the effect of the synthetic lung surfactant Exosurf on dendrimer-mediated transfection in eukaryotic cells. Exosurf significantly enhanced dendrimer-luciferase plasmid transfection in a number of cell lines and was very effective in primary cells. Luciferase expression increased up to 40-fold in primary normal human bronchial/tracheal epithelial cells (NHBE). FACScan analysis demonstrated that the transfection rate of the human T cell leukemia Jurkat cell line has significantly improved from 10 to 90% of cells at 24 h after transfection. Analysis of the components of Exosurf revealed that the nonionic surfactant tyloxapol was responsible for the enhancement of dendrimer-mediated gene transfer. The tyloxapol effect was due to increased cell membrane porosity and DNA uptake. Our results demonstrate that Exosurf and its component, tyloxapol, constitute a powerful enhancer for dendrimer-mediated gene transfer in vitro.
Collapse
Affiliation(s)
- J F Kukowska-Latallo
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, 48109-064
| | | | | | | | | |
Collapse
|
12
|
Kristensen CA, Askenasy N, Jain RK, Koretsky AP. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies. Br J Cancer 1999; 79:278-85. [PMID: 9888469 PMCID: PMC2362210 DOI: 10.1038/sj.bjc.6690045] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Creatine (Cr) and cyclocreatine (cyCr) have been shown to inhibit the growth of a variety of human and murine tumours. The purpose of this study was to evaluate the anti-tumour effect of these molecules in relation to drug accumulation, energy metabolism, tumour water accumulation and toxicity. Nude mice carrying a human colon adenocarcinoma (LS174T) with a creatine kinase (CK) activity of 2.12 units mg(-1) protein were fed Cr (2.5% or 5%) or cyCr (0.025%, 0.1% or 0.5%) for 2 weeks and compared with controls fed standard diet. Cr concentrations of 2.5% and 5% significantly inhibited tumour growth, as did 0.1% and 0.5% cyCr. In vivo 31P magnetic resonance spectroscopy (MRS) after 2 weeks of treatment showed an increase in [phosphocreatine (PCr)+phosphocyclocreatine (PcyCr)]/nucleoside triphosphate (NTP) with increasing concentrations of dietary Cr and cyCr, without changes in absolute NTP contents. The antiproliferative effect of the substrates of CK was not related to energy deficiency but was associated with acidosis. Intratumoral substrate concentrations (measured by 1H-MRS) of 4.8 micromol g(-1) wet weight Cr (mice fed 2.5% Cr) and 6.2 micromol g(-1) cyCr (mice fed 0.1% cyCr) induced a similar decrease in growth rate, indicating that both substrates were equally potent in tumour growth inhibition. The best correlant of growth inhibition was the total Cr or (cyCr+Cr) concentrations in the tissue. In vivo, these agents did not induce excessive water accumulation and had no systemic effects on the mice (weight loss, hypoglycaemia) that may have caused growth inhibition.
Collapse
Affiliation(s)
- C A Kristensen
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | |
Collapse
|