1
|
Naryzhny S, Legina O. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. BIOMEDITSINSKAYA KHIMIYA 2022; 68:309-320. [DOI: 10.18097/pbmc20226805309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Collapse
Affiliation(s)
- S.N. Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| | - O.K. Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
| |
Collapse
|
2
|
Dubreuil JD. EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals. J Microbiol 2019; 57:541-549. [PMID: 31016564 DOI: 10.1007/s12275-019-8651-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 11/27/2022]
Abstract
EAST1 is produced by a subset of enteroaggregative Escherichia coli strains. This toxin is a 38-amino acid peptide of 4100 Da. It shares 50% homology with the enterotoxic domain of STa and interacts with the same receptor. The mechanism of action of EAST1is proposed to be identical to that of STa eliciting a cGMP increase. EAST1 is associated with diarrheal disease in Man and various animal species including cattle and swine. Nevertheless, as EAST1-positive strains as well as culture supernatants did not provoke unequivocally diarrhea either in animal models or in human volunteers, the role of this toxin in disease is today still debated. This review intent is to examine the role of EAST1 toxin in diarrheal illnesses.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de médecine vétérinaire, Université de Montréal, Montréal, Québec, J2S 2M2, Canada.
| |
Collapse
|
3
|
Levy M, Thaiss CA, Elinav E. The Microbiota: A New Player in the Etiology of Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0196-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Hendricks MR, Bomberger JM. Who's really in control: microbial regulation of protein trafficking in the epithelium. Am J Physiol Cell Physiol 2013; 306:C187-97. [PMID: 24133062 DOI: 10.1152/ajpcell.00277.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to evolutionary pressure, there are many complex interactions at the interface between pathogens and eukaryotic host cells wherein host cells attempt to clear invading microorganisms and pathogens counter these mechanisms to colonize and invade host tissues. One striking observation from studies focused on this interface is that pathogens have multiple mechanisms to modulate and disrupt normal cellular physiology to establish replication niches and avoid clearance. The precision by which pathogens exert their effects on host cells makes them excellent tools to answer questions about cell physiology of eukaryotic cells. Furthermore, an understanding of these mechanisms at the host-pathogen interface will benefit our understanding of how pathogens cause disease. In this review, we describe a few examples of how pathogens disrupt normal cellular physiology and protein trafficking at epithelial cell barriers to underscore how pathogens modulate cellular processes to cause disease and how this knowledge has been utilized to learn about cellular physiology.
Collapse
Affiliation(s)
- Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
5
|
Ghosh AR. Appraisal of microbial evolution to commensalism and pathogenicity in humans. CLINICAL MEDICINE INSIGHTS. GASTROENTEROLOGY 2013; 6:1-12. [PMID: 24833938 PMCID: PMC4020404 DOI: 10.4137/cgast.s11858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human body is host to a number of microbes occurring in various forms of host-microbe associations, such as commensals, mutualists, pathogens and opportunistic symbionts. While this association with microbes in certain cases is beneficial to the host, in many other cases it seems to offer no evident benefit or motive. The emergence and re-emergence of newer varieties of infectious diseases with causative agents being strains that were once living in the human system makes it necessary to study the environment and the dynamics under which this host microbe relationship thrives. The present discussion examines this interaction while tracing the origins of this association, and attempts to hypothesize a possible framework of selective pressures that could have lead microbes to inhabit mammalian host systems.
Collapse
Affiliation(s)
- Asit Ranjan Ghosh
- Centre for Infectious Diseases and Control, Division of Medical Biotechnology, School of Biosciences and Technology, VIT University, India
| |
Collapse
|
6
|
Nakashima R, Kamata Y, Nishikawa Y. Effects of Escherichia coli heat-stable enterotoxin and guanylin on the barrier integrity of intestinal epithelial T84 cells. Vet Immunol Immunopathol 2013; 152:78-81. [DOI: 10.1016/j.vetimm.2012.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Zhu Q, Gao R, Wu W, Qin H. The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol 2013; 34:1285-300. [PMID: 23397545 DOI: 10.1007/s13277-013-0684-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/28/2013] [Indexed: 12/14/2022] Open
Abstract
The human gastrointestinal tract harbors a complex and abundant microbial community that can reach levels as high as 10(13)-10(14) microorganisms in the colon. These microorganisms are essential to a host's well-being in terms of nutrition and mucosa immunity. However, numerous studies have also implicated members of the colonic microbiota in the development of colorectal cancer (CRC). While CRC involves a genetic component where damaged DNA and genetic instability initiates a malignant transformation, environmental factors can also contribute to the onset of CRC. Furthermore, considering the constant exposure of the colonic mucosa to the microbiome and/or its metabolites, the mucosa has long been proposed to contribute to colon tumorigenesis. However, the mechanistic details of these associations remain unknown. Fortunately, due to technical and conceptual advances, progress in characterizing the taxonomic composition, metabolic capacity, and immunomodulatory activity of human gut microbiota have been made, thereby elucidating its role in human health and disease. Furthermore, the use of experimental animal models and clinical/epidemiological studies of environmental etiological factors has identified a correlation between gut microbiota composition and gastrointestinal cancers. Bacteria continuously stimulate activated immunity in the gut mucosa and also contribute to the metabolism of bile and food components. However, the highest levels of carcinogen production are also associated with gut anaerobic bacteria and can be lowered with live lactobacilli supplements. In this review, evidence regarding the relationship between microbiota and the development of CRC will be discussed, as well as the role for microbial manipulation in affecting disease development.
Collapse
Affiliation(s)
- Qingchao Zhu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | | | | | | |
Collapse
|
8
|
Ricci V, Romano M, Boquet P. Molecular cross-talk between Helicobacter pylori and human gastric mucosa. World J Gastroenterol 2011; 17:1383-99. [PMID: 21472096 PMCID: PMC3070011 DOI: 10.3748/wjg.v17.i11.1383] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/19/2010] [Accepted: 12/26/2010] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) has co-evolved with humans to be transmitted from person to person and to colonize the stomach persistently. A well-choreographed equilibrium between the bacterial effectors and host responses permits microbial persistence and health of the host, but confers a risk for serious diseases including gastric cancer. During its long coexistence with humans, H. pylori has developed complex strategies to limit the degree and extent of gastric mucosal damage and inflammation, as well as immune effector activity. The present editorial thus aims to introduce and comment on major advances in the rapidly developing area of H. pylori/human gastric mucosa interaction (and its pathological sequelae), which is the result of millennia of co-evolution of, and thus of reciprocal knowledge between, the pathogen and its human host.
Collapse
|
9
|
Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments: a review. Toxins (Basel) 2010; 2:2359-410. [PMID: 22069558 PMCID: PMC3153167 DOI: 10.3390/toxins2102359] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/01/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed.
Collapse
Affiliation(s)
- Elisabete Valério
- Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal;
| | - Sandra Chaves
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| | - Rogério Tenreiro
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| |
Collapse
|
10
|
Lorrot M, Vasseur M. How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J 2007; 4:31. [PMID: 17376232 PMCID: PMC1839081 DOI: 10.1186/1743-422x-4-31] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 03/21/2007] [Indexed: 01/02/2023] Open
Abstract
Rotavirus is the major cause of infantile gastroenteritis and each year causes 611,000 deaths worldwide. The virus infects the mature enterocytes of the villus tip of the small intestine and induces a watery diarrhea. Diarrhea can occur with no visible tissue damage and, conversely, the histological lesions can be asymptomatic. Rotavirus impairs activities of intestinal disaccharidases and Na+-solute symports coupled with water transport. Maldigestion of carbohydrates and their accumulation in the intestinal lumen as well as malabsorption of nutrients and a concomitant inhibition of water reabsorption can lead to a malabsorption component of diarrhea. Since the discovery of the NSP4 enterotoxin, diverse hypotheses have been proposed in favor of an additional secretion component in the pathogenesis of diarrhea. Rotavirus induces a moderate net chloride secretion at the onset of diarrhea, but the mechanisms appear to be quite different from those used by bacterial enterotoxins that cause pure secretory diarrhea. Rotavirus failed to stimulate Cl- secretion in crypt, whereas it stimulated Cl- reabsorption in villi, questioning, therefore, the origin of net Cl- secretion. A solution to this riddle was that intestinal villi do in fact secrete chloride as a result of rotavirus infection. Also, the overall chloride secretory response is regulated by a phospholipase C-dependent calcium signaling pathway induced by NSP4. However, the overall response is weak, suggesting that NSP4 may exert both secretory and subsequent anti-secretory actions, as did carbachol, hence limiting Cl- secretion. All these characteristics provide the means to make the necessary functional distinction between viral NSP4 and bacterial enterotoxins.
Collapse
Affiliation(s)
- Mathie Lorrot
- Hôpital Robert Debré, Service de Pédiatrie Générale, Paris, F-75019, France
| | - Monique Vasseur
- INSERM, UMR-S756, Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, F-92296, France
| |
Collapse
|
11
|
Lorrot M, Benhamadouche-Casari H, Vasseur M. Mechanisms of net chloride secretion during rotavirus diarrhea in young rabbits: do intestinal villi secrete chloride? Cell Physiol Biochem 2006; 18:103-12. [PMID: 16914895 DOI: 10.1159/000095174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rotaviral diarrheal illness is one of the most common infectious diseases in children worldwide, but our understanding of its pathophysiology is limited. This study examines whether the enhanced net chloride secretion during rotavirus infection in young rabbits may occur as a result of hypersecretion in crypt cells that would exceed the substantial Cl(-) reabsorption observed in villi. By using a rapid filtration technique, we evaluated transport of (36)Cl and D-(14)C glucose across brush border membrane (BBM) vesicles purified from villus tip and crypt cells isolated in parallel from the entire small intestine. Rotavirus infection impaired SGLT1-mediated Na(+)-D-glucose symport activity in both villus and crypt cell BBM, hence contributing to the massive water loss along the cryptvillus axis. In the same BBM preparations, rotavirus failed to stimulate the Cl(-) transport activities (Cl(-)/H(+) symport, Cl(-)/anion exchange and voltage-activated Cl(-) conductance) at the crypt level, but not at the villus level, questioning, therefore, the origin of net chloride secretion. We propose that the chloride carrier might function in both normal (absorption) and reversed (secretion) modes in villi, depending on the direction of the chloride electrochemical gradient resulting from rotavirus infection, agreeing with our results that rotavirus accelerated both Cl(-) influx and Cl(-) efflux rates across villi BBM.
Collapse
Affiliation(s)
- Mathie Lorrot
- INSERM UMR 756, Université Paris XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | |
Collapse
|
12
|
Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28:405-40. [PMID: 15374659 DOI: 10.1016/j.femsre.2004.01.003] [Citation(s) in RCA: 763] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/19/2003] [Accepted: 01/28/2004] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Pathogénes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
13
|
Cheroutre H, Madakamutil L. Acquired and natural memory T cells join forces at the mucosal front line. Nat Rev Immunol 2004; 4:290-300. [PMID: 15057787 DOI: 10.1038/nri1333] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121, USA.
| | | |
Collapse
|
14
|
Heavey PM, Rowland IR. Microbial-gut interactions in health and disease. Gastrointestinal cancer. Best Pract Res Clin Gastroenterol 2004; 18:323-36. [PMID: 15123073 DOI: 10.1016/j.bpg.2003.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A combination of both environmental and genetic factors contributes to the vast majority of human cancers and in particular cancers of the gastrointestinal tract, including the stomach, colon and rectum. The mechanisms associated with cancer causation or prevention are largely unknown and the subject of much research. Many of these mechanisms implicate the metabolic activities of the bacterial flora normally resident in the gastrointestinal tract. This paper examines both the detrimental and beneficial consequences of bacterial activity of the gastrointestinal tract, focusing in particular on the stomach and large intestine.
Collapse
Affiliation(s)
- Patricia M Heavey
- Northern Ireland Centre for Diet and Health, Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Ireland.
| | | |
Collapse
|
15
|
Ménard LP, Lussier JG, Lépine F, Paiva de Sousa C, Dubreuil JD. Expression, purification, and biochemical characterization of enteroaggregative Escherichia coli heat-stable enterotoxin 1. Protein Expr Purif 2004; 33:223-31. [PMID: 14711510 DOI: 10.1016/j.pep.2003.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) heat-stable enterotoxin 1 (EAST1) is a 4.1k Da protein originally discovered in EAEC but known to be scattered in other diarrheagenic E. coli as well, possibly causing diarrhea in humans and animals. We report for the first time a method to express and purify EAST1 using the Glutathione S-transferase (GST) fusion system. The gst and astA genes were fused together on a pGEX-2T plasmid vector to produce a GST-EAST1 fusion protein. Using Glutathione Sepharose affinity chromatography and C(8) reverse phase high pressure liquid chromatography, EAST1 was purified to homogeneity with a yield of 0.29 mg/L of culture. The protein purified by this method was confirmed to be EAST1 by NH(2)-terminal sequencing and mass spectrometry. The molecular weight of EAST1 is 4104.0 Da, confirming a 38 amino acid peptide as predicted by the astA gene sequence. Mass spectrometry analysis of EAST1 and of two generated peptides established the presence and suggested the position of two disulfide bridges of EAST1 in the conformations C1-C2 and C3-C4. Polyclonal antibodies were raised against EAST1 in New Zealand white rabbits to a titer of 1:8000 using affinity-purified GST-EAST1 fusion protein and to a titer of 1:100 using HPLC-purified EAST1. The biological activity of various EAST1 preparations was tested using the suckling mouse assay with CD-1 and CFW mice strains, but failed to produce fluid accumulation in the intestine.
Collapse
Affiliation(s)
- Louis-Philippe Ménard
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000 Saint-Hyacinthe, Quebec J2S 7C6, Canada
| | | | | | | | | |
Collapse
|
16
|
El Asmar R, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, Catassi C, Fasano A, El Asmar R. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 2002; 123:1607-15. [PMID: 12404235 DOI: 10.1053/gast.2002.36578] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Enteric infections have been implicated in the pathogenesis of both food intolerance and autoimmune diseases secondary to the impairment of the intestinal barrier. On the basis of our recent discovery of zonulin, a modulator of small-intestinal tight junctions, we asked whether microorganisms might induce zonulin secretion and increased small-intestinal permeability. METHODS Both ex vivo mammalian small intestines and intestinal cell monolayers were exposed to either pathogenic or nonpathogenic enterobacteria. Zonulin production and changes in paracellular permeability were monitored in Ussing chambers and micro-snapwells. Zonula occludens 1 protein redistribution after bacteria colonization was evaluated on cell monolayers. RESULTS Small intestines exposed to enteric bacteria secreted zonulin. This secretion was independent of either the species of the small intestines or the virulence of the microorganisms tested, occurred only on the luminal aspect of the bacteria-exposed small-intestinal mucosa, and was followed by a decrease in small-intestinal tissue resistance (transepithelial electrical resistance). The transepithelial electrical resistance decrement was secondary to the zonulin-induced tight junction disassembly, as also shown by the disengagement of the protein zonula occludens 1 protein from the tight junctional complex. CONCLUSIONS This zonulin-driven opening of the paracellular pathway may represent a defensive mechanism, which flushes out microorganisms and contributes to the host response against bacterial colonization of the small intestine.
Collapse
Affiliation(s)
- Ramzi El Asmar
- Department of Pediatrics and Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- V Ricci
- Institute of Human Physiology, University of Pavia, Italy
| | | | | |
Collapse
|
18
|
Affiliation(s)
- A Fasano
- Division of Pediatric Gastroenterology and Nutrition, University of Maryland School of Medicine, Baltimore, 21201, USA.
| |
Collapse
|
19
|
Poolman JT, Bakaletz L, Cripps A, Denoel PA, Forsgren A, Kyd J, Lobet Y. Developing a nontypeable Haemophilus influenzae (NTHi) vaccine. Vaccine 2000; 19 Suppl 1:S108-15. [PMID: 11163473 DOI: 10.1016/s0264-410x(00)00288-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is a current high demand for nontypable Haemophilus influenzae (NTHi) vaccines. Various options for the composition of such vaccines are possible. Decisions about the vaccine composition have to take into account the antigenic variability of NTHi, so even complex immunogens such as whole bacteria would preferentially have a tailor-made antigenic composition. We will present a summary of NTHi vaccine development, describing research efforts from SmithKline Beecham and other laboratories. Currently, major (P1, P2, P4, P5) and minor (P6, D15, TbpA/B, ellipsis) outer membrane proteins, LPS, adhesins (HMW, Hia, pili, P5) are being studied. Preclinical results with LPD, P5 (LB1) and OMP26 from our laboratories will be described including the use of animal models of otitis and lung infection.
Collapse
Affiliation(s)
- J T Poolman
- SmithKline Beecham Biologicals, Rue de l'Institut 89, 1330 Rixensart, Belgium.
| | | | | | | | | | | | | |
Collapse
|
20
|
Takahashi A, Kenjyo N, Imura K, Myonsun Y, Honda T. Cl(-) secretion in colonic epithelial cells induced by the vibrio parahaemolyticus hemolytic toxin related to thermostable direct hemolysin. Infect Immun 2000; 68:5435-8. [PMID: 10948178 PMCID: PMC101812 DOI: 10.1128/iai.68.9.5435-5438.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hemolytic toxin related to thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH), produced by Kanagawa-phenomenon-negative Vibrio parahaemolyticus is suspected of playing an important, but yet-to-be-elucidated role in diarrhea caused by this organism. In cultured human colonic epithelial cells, TRH increases Cl(-) secretion, followed by elevation of intracellular calcium.
Collapse
Affiliation(s)
- A Takahashi
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, 770-8503, Japan.
| | | | | | | | | |
Collapse
|
21
|
Lu R, Wang W, Uzzau S, Vigorito R, Zielke HR, Fasano A. Affinity purification and partial characterization of the zonulin/zonula occludens toxin (Zot) receptor from human brain. J Neurochem 2000; 74:320-6. [PMID: 10617135 DOI: 10.1046/j.1471-4159.2000.0740320.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intercellular tight junctions (TJs) of endothelial cells represent the limiting structure for the permeability of the blood-brain barrier (BBB). Although the BBB has been recognized as being the interface between the bloodstream and the brain, little is known about its regulation. Zonulin and its prokaryotic analogue, zonula occludens toxin (Zot) elaborated by Vibrio cholerae, both modulate intercellular TJs by binding to a specific surface receptor with subsequent activation of an intracellular signaling pathway involving phospholipase C and protein kinase C activation and actin polymerization. Affinity column purification revealed that human brain plasma membrane preparations contain two Zot binding proteins of approximately 55 and approximately 45 kDa. Structural and kinetic studies, including saturation and competitive assays, identified the 55-kDa protein as tubulin, whereas the 45-kDa protein represents the zonulin/Zot receptor. Biochemical characterization provided evidence that this receptor is a glycoprotein containing multiple sialic acid residues. Comparison of the N-terminal sequence of the zonulin/Zot receptor with other protein sequences by BLAST analysis revealed a striking similarity with MRP-8, a 14-kDa member of the S-100 family of calcium binding proteins. The discovery and characterization of this receptor from human brain may significantly contribute to our knowledge on the pathophysiological regulation of the BBB.
Collapse
Affiliation(s)
- R Lu
- Division of Pediatric Gastroenterology and Nutrition and Center for Vaccine Development, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The application of molecular techniques to the study of bacterial pathogenesis has made possible discoveries that are changing the way scientists view the bacterium-host interaction. Today, research on the molecular basis of the pathogenesis of infective diarrheal diseases of necessity transcends established boundaries between cell biology, bacteriology, intestinal pathophysiology, and immunology. A comprehensive approach has been taken here to outline the most recent findings on the interaction between enteric pathogens and their target eukaryotic cells through the elaboration of toxins.
Collapse
Affiliation(s)
- A Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|