1
|
Cai Q, Brooks HL. Phosphorylation of eIF2α via the general control kinase, GCN2, modulates the ability of renal medullary cells to survive high urea stress. Am J Physiol Renal Physiol 2011; 301:F1202-7. [PMID: 21880833 PMCID: PMC3233868 DOI: 10.1152/ajprenal.00272.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α) occurs under many stress conditions in mammalian cells and is mediated by one of four eIF2α kinases: PERK, PKR, GCN2, and HRI. Cells of the renal medulla are regularly exposed to fluctuating concentrations of urea and sodium, the extracellular solutes responsible for the high osmolality in the renal medulla, and thus the kidneys ability to concentrate the urine in times of dehydration. Urea stress is known to initiate molecular responses that diverge from those seen in response to hypertonic stress (NaCl). We show that urea-inducible GCN2 activation initiates the phosphorylation of eIF2α and the downstream increase of activating transcription factor 3 (ATF3). Loss of GCN2 sensitized cells to urea stress, increasing the expression of activated caspase-3 and decreasing cell survival. Loss of GCN2 ablated urea-induced phosphorylation of eIF2α and reduced the expression of ATF3.
Collapse
Affiliation(s)
- Qi Cai
- Dept. of Physiology, College of Medicine, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724, USA
| | | |
Collapse
|
2
|
Christoph K, Beck FX, Neuhofer W. Osmoadaptation of Mammalian cells - an orchestrated network of protective genes. Curr Genomics 2011; 8:209-18. [PMID: 18645598 DOI: 10.2174/138920207781386979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/27/2007] [Accepted: 03/03/2007] [Indexed: 11/22/2022] Open
Abstract
In mammals, the cells of the renal medulla are physiologically exposed to interstitial osmolalities several-fold higher that found in any other tissue. Nevertheless, these cells not only have the ability to survive in this harsh environment, but also to function normally, which is critical for maintenance of systemic electrolyte and fluid homeostasis. Over the last two decades, a substantial body of evidence has accumulated, indicating that sequential and well orchestrated genomic responses are required to provide tolerance to osmotic stress. This includes the enhanced expression and action of immediate-early genes, growth arrest and DNA damage inducible genes (GADDs), genes involved in cell cycle control and apoptosis, heat shock proteins, and ultimately that of genes involved in the intracellular accumulation of nonperturbing organic osmolytes. The present review summarizes the sequence of genomic responses conferring resistance against osmotic stress. In addition, the regulatory mechanisms mediating the coordinated genomic response to osmotic stress will be highlighted.
Collapse
Affiliation(s)
- Küper Christoph
- Department of Physiology, University of Munich, Munich, Germany
| | | | | |
Collapse
|
3
|
Gatidis S, Borst O, Föller M, Lang F. Effect of osmotic shock and urea on phosphatidylserine scrambling in thrombocyte cell membranes. Am J Physiol Cell Physiol 2010; 299:C111-8. [PMID: 20237147 DOI: 10.1152/ajpcell.00477.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood passing the renal medulla enters a strongly hypertonic environment challenging functional properties and survival of blood cells. In erythrocytes, exposure to hyperosmotic shock stimulates Ca(2+) entry and ceramide formation with subsequent cell membrane scrambling, an effect partially reversed by high concentrations of Cl(-) or urea. Cell membrane scrambling with phosphatidylserine exposure is part of the procoagulant phenotype of platelets. Coagulation in the hypertonic renal medulla would jeopardize blood flow in the vasa recta. The present study thus explored whether hypertonic environment and urea modify phosphatidylserine exposure of human platelets. FACS analysis was employed to estimate cytosolic Ca(2+) activity with Fluo3 fluorescence, ceramide formation, P-selectin, and glycoprotein IIb/IIIa activation with fluorescent antibodies and phosphatidylserine exposure with annexin V-binding. The spontaneous platelet aggregation was measured by impedance aggregometry. Hyperosmotic shock (addition of 500 mM sucrose or 250 mM NaCl) significantly enhanced cytosolic Ca(2+) activity, ceramide formation, phosphatidylserine exposure, platelet degranulation, and aggregability. Addition of 500 mM urea to isotonic saline did not significantly modify cytosolic Ca(2+) activity, ceramide abundance, or annexin V-binding but significantly blunted the respective effects of hypertonic shock following addition of 500 mM sucrose. In isotonic solutions, both ceramide (20 microM) and Ca(2+) ionophore ionomycin (0.5 microM) increased annexin V-binding, effects again significantly blunted by 500 mM urea. Moreover, oxidative stress by addition of 0.5 mM peroxynitrite increased cytosolic Ca(2+) activity and triggered annexin V-binding, effects again blunted in the presence of 500 mM urea. The observations reveal that hyperosmotic shock and oxidative stress trigger a procoagulant platelet phenotype, an effect blunted by the presence of high urea concentrations.
Collapse
Affiliation(s)
- Sergios Gatidis
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
4
|
Küper C, Steinert D, Fraek ML, Beck FX, Neuhofer W. EGF receptor signaling is involved in expression of osmoprotective TonEBP target gene aldose reductase under hypertonic conditions. Am J Physiol Renal Physiol 2009; 296:F1100-8. [PMID: 19225051 DOI: 10.1152/ajprenal.90402.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal medullary cells adapt to their hyperosmotic environment by enhanced expression of various osmoprotective genes. Although it is clearly established that TonEBP contributes to the expression of these genes, neither the precise signaling mechanism by which hypertonicity activates TonEBP is completely understood, nor is it known whether a membrane-bound osmosenser, corresponding to yeast and bacteria, is present in mammalian cells. We found evidence that metalloproteinase (MMP)-dependent activation of the epidermal growth factor receptor (EGFR) signals to TonEBP and stimulates the expression of the TonEBP target gene aldose reductase (AR) under hypertonic conditions. Phosphorylation of EGFR and the downstream MAP kinases ERK1/2 and p38 was significantly enhanced by high NaCl in Madin-Darby canine kidney (MDCK) cells. Conversely, the broad-spectrum MMP inhibitor GM6001 or the EGFR inhibitor AG1478 diminished phosphorylation of EGFR, p38, and ERK1/2, the induction of AR mRNA and protein, and AR promoter reporter activity in response to hypertonicity. Accordingly, neutralizing antibodies against the putative EGFR ligand transforming growth factor-alpha (TGF-alpha) abolished AR induction during osmotic stress. Furthermore, tonicity-induced phosphorylation of p38 and ERK1/2 and expression of AR were reduced significantly in MDCK cells transfected with a dominant-negative Ras construct. These effects were not caused by reduced nuclear abundance of TonEBP during osmotic stress; however, inhibition of EGFR or p38 diminished TonEBP transactivation activity under hypertonic conditions. The contribution of MMP/EGFR signaling in vivo was confirmed in C57BL/6 mice, in which treatment with GM6001 was associated with reduced AR induction following dehydration. Taken together, these results indicate that osmotic stress induces MMP-dependent activation of EGFR, likely via shedding of TGF-alpha, and downstream activation of Ras and the MAP kinases p38 and ERK1/2, which stimulate TonEBP transactivation activity. This EGFR-Ras-MAPK pathway contributes to TonEBP transcriptional activation and targets gene expression during osmotic stress, thus establishing a membrane-associated signal input that contributes to the regulation of TonEBP activity.
Collapse
Affiliation(s)
- Christoph Küper
- Department of Physiology, University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
5
|
Hasler U, Nunes P, Bouley R, Lu HAJ, Matsuzaki T, Brown D. Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem 2008; 283:26643-61. [PMID: 18664568 DOI: 10.1074/jbc.m801071200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser(256)-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.
Collapse
Affiliation(s)
- Udo Hasler
- Massachusetts General Hospital Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.
Collapse
|
7
|
Abstract
The Ras superfamily consists of over 50 low-molecular-weight proteins that cycle between an inactive guanosine diphosphate-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to measure the activation state of Ras proteins, defined as the percent of Ras molecules in the active GTP-bound state. We have previously developed a quantitative biochemical method that can be applied to animal and human tissues and have used it to measure the activation state of Ras, Rap1, Rheb, and Rho proteins in cultured cells and in animal and human tumors. Ras, Rac, and Rho all play roles in regulating the functions of T and B lymphocytes and dendritic cells, and these proteins are clearly important in maintaining normal immune system function.
Collapse
Affiliation(s)
- Juergen S Scheele
- Co-ordinating Center for Clinical Trials, Martin Luther University, Halle, Germany
| | | | | |
Collapse
|
8
|
Padda R, Wamsley-Davis A, Gustin MC, Ross R, Yu C, Sheikh-Hamad D. MEKK3-mediated signaling to p38 kinase and TonE in hypertonically stressed kidney cells. Am J Physiol Renal Physiol 2006; 291:F874-81. [PMID: 16684924 DOI: 10.1152/ajprenal.00377.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades contain a trio of kinases, MAPK kinase kinase (MKKK) --> MAPK kinase (MKK) --> MAPK, that mediate a variety of cellular responses to different signals including hypertonicity. The signaling response to hypertonicity is conserved across evolution from yeast to mammals in that it involves activation of p38/SAPK. However, very little is known about which upstream protein kinases mediate activation of p38 by hypertonicity in mammals. The MKKKs, MEKK3 and MEKK4, are upstream regulators of p38 in many cells. To investigate these signaling proteins as potential activators of p38 in the hypertonicity response, we generated stably transfected MDCK cells that express activated versions of MEKK3 or MEKK4, utilized RNA interference to deplete MEKK3, and employed pharmacological inhibition of p38 kinase. MEKK3-transfected cells demonstrated increased betaine transporter (BGT1) mRNA levels and upregulated tonicity enhancer (TonE)-driven luciferase activity under isotonic (basal) and hypertonic conditions compared with empty vector-transfected controls; small-interference RNA-mediated depletion of MEKK3 downregulated the activity of p38 kinase and decreased the expression of BGT1 mRNA. p38 Kinase inhibition abolished the effects of MEKK3 activation on BGT1 induction. In contrast, the response to hypertonicity in MEKK4-kA-transfected cells was similar to that observed in empty vector-transfected controls. Our data are consistent with the existence of an input from MEKK3 -->--> p38 kinase -->--> TonE.
Collapse
Affiliation(s)
- Ranjit Padda
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
SRC family kinases are a group of nine cytoplasmic protein tyrosine kinases essential for many cell functions. Some appear to be ubiquitously expressed, whereas others are highly tissue specific. The ability of members of the SRC family to influence ion transport has been recognized for several years. Mounting evidence suggests a broad role for SRC family kinases in the cell response to both hypertonic and hypotonic stress, and in the ensuing regulatory volume increase or decrease. In addition, members of this tyrosine kinase family participate in the mechanotransduction that accompanies cell membrane deformation. Finally, at least one SRC family member operates in concert with the p38 MAPK to regulate tonicity-dependent gene transcription.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology, Mailcode PP262, Oregon Health and Science Univ. 3314 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
10
|
Copp J, Wiley S, Ward MW, van der Geer P. Hypertonic shock inhibits growth factor receptor signaling, induces caspase-3 activation, and causes reversible fragmentation of the mitochondrial network. Am J Physiol Cell Physiol 2005; 288:C403-15. [PMID: 15456696 DOI: 10.1152/ajpcell.00095.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyperosmotic stress can be encountered by the kidney and the skin, as well as during treatment of acute brain damage. It can lead to cell cycle arrest or apoptosis. Exactly how mammalian cells detect hyperosmolarity and how the cell chooses between cell cycle arrest or death remains to be established. It has been proposed that hyperosmolarity is detected directly by growth factor receptor protein tyrosine kinases. To investigate this, we tested whether growth factors and osmotic stress cooperate in the activation of signaling pathways. Receptors responded normally to the presence of growth factors, and we observed normal levels of GTP-bound Ras under hyperosmotic conditions. In contrast, activation of Raf, Akt, ERK1, ERK2, and c-Jun NH2-terminal kinase was strongly reduced. These observations suggest that hyperosmotic conditions block signaling directly downstream of active Ras. It is thought that apoptotic cell death due to environmental stress is initiated by cytochrome c release from the mitochondria. Visualization of cytochrome c using immunofluorescence showed that hypertonic conditions result in a breakup of the mitochondrial network, which is reestablished within 1 h after hypertonic medium is replaced with isotonic medium. When we carried out live imaging, we observed that the mitochondrial membrane potential disappeared immediately after the onset of hyperosmotic shock. Our observations provide new insights into the hypertonic stress response pathway. In addition, they show that signaling downstream of Ras and mitochondrial dynamics can easily be manipulated by the exposure of cells to hyperosmotic conditions.
Collapse
Affiliation(s)
- Jeremy Copp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
11
|
Sheikh-Hamad D, Gustin MC. MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 2004; 287:F1102-10. [PMID: 15522988 DOI: 10.1152/ajprenal.00225.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adaptation to hypertonicity in mammalian cells is driven by multiple signaling pathways that include p38 kinase, Fyn, the catalytic subunit of PKA, ATM, and JNK2. In addition to the well-characterized tonicity enhancer (TonE)-TonE binding protein interaction, other transcription factors (and their respective cis elements) can potentially respond to hypertonicity. This review summarizes the current knowledge about the signaling pathways that regulate the adaptive response to osmotic stress and discusses new insights from yeast that could be relevant to the osmostress response in mammals.
Collapse
Affiliation(s)
- David Sheikh-Hamad
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
12
|
Xu H, Tian W, Lindsley JN, Oyama TT, Capasso JM, Rivard CJ, Cohen HT, Bagnasco SM, Anderson S, Cohen DM. EphA2: expression in the renal medulla and regulation by hypertonicity and urea stress in vitro and in vivo. Am J Physiol Renal Physiol 2004; 288:F855-66. [PMID: 15561974 DOI: 10.1152/ajprenal.00347.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
EphA2, a member of the large family of Eph receptor tyrosine kinases, is highly expressed in epithelial tissue and has been implicated in cell-cell and cell-matrix interactions, as well as cell growth and survival. Expression of EphA2 mRNA and protein was markedly upregulated by both hypertonic stress and by elevated urea concentrations in cells derived from the murine inner medullary collecting duct. This upregulation likely required transactivation of the epidermal growth factor (EGF) receptor tyrosine kinase and metalloproteinase-dependent ectodomain cleavage of an EGF receptor ligand, based on pharmacological inhibitor studies. A human EphA2 promoter fragment spanning nucleotides -4030 to +21 relative to the putative EphA2 transcriptional start site was responsive to tonicity but insensitive to urea. A promoter fragment spanning -1890 to +128 recapitulated both tonicity- and urea-dependent upregulation of expression, consistent with transcriptional activation. Neither the bona fide p53 response element at approximately -1.5 kb nor a pair of putative TonE elements at approximately -3 kb conferred the tonicity responsiveness. EphA2 mRNA and protein were expressed at low levels in rat renal cortex but at high levels in the collecting ducts of the renal medulla and papilla. Water deprivation in rats increased EphA2 expression in renal papilla, whereas dietary supplementation with 20% urea increased EphA2 expression in outer medulla. These data indicate that transcription and expression of the EphA2 receptor tyrosine kinase are regulated by tonicity and urea in vitro and suggest that this phenomenon is also operative in vivo. Renal medullary EphA2 expression may represent an adaptive response to medullary hypertonicity or urea exposure.
Collapse
Affiliation(s)
- Hongshi Xu
- Mailcode PP262, Oregon Health & Science Univ., 3314 S.W. US Veterans Hospital Rd., Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lang KS, Myssina S, Lang PA, Tanneur V, Kempe DS, Mack AF, Huber SM, Wieder T, Lang F, Duranton C. Inhibition of erythrocyte phosphatidylserine exposure by urea and Cl-. Am J Physiol Renal Physiol 2004; 286:F1046-53. [PMID: 15130896 DOI: 10.1152/ajprenal.00263.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osmotic shock by addition of sucrose to the medium stimulates erythrocyte sphingomyelinase with subsequent ceramide formation and triggers Ca(2+) entry through stimulation of cation channels. Both ceramide and Ca(2+) activate an erythrocyte scramblase, leading to breakdown of phosphatidylserine asymmetry, a typical feature of apoptosis. Because erythrocytes are regularly exposed to osmotic shock during passage of kidney medulla, the present study explored the influence of NaCl and urea on erythrocyte phosphatidylserine exposure as determined by annexin binding. The percentage of annexin-binding erythrocytes increased from <5 to 80 +/- 4% (n = 4) upon addition of 650 mM sucrose, an effect paralleled by activation of the cation channel and stimulation of ceramide formation. The number of annexin-binding erythrocytes increased only to 18% after addition of 325 mM NaCl and was not increased by addition of 650 mM urea. According to whole cell patch-clamp experiments, the cation conductance was activated by replacement of extracellular Cl(-) with gluconate at isotonic conditions or by addition of hypertonic sucrose or urea. Although stimulating the cation conductance, urea abrogated the annexin binding and concomitant increase of ceramide levels induced by osmotic cell shrinkage. In vitro sphingomyelinase assays demonstrated a direct inhibitory effect of urea on sphingomyelinase activity. Urea did not significantly interfere with annexin binding after addition of ceramide. In conclusion, both Cl(-) and urea blunt erythrocyte phosphatidylserine exposure after osmotic shock. Whereas Cl(-) is effective through inhibition of the cation conductance, urea exerts its effect through inhibition of sphingomyelinase, thus blunting formation of ceramide.
Collapse
Affiliation(s)
- Karl S Lang
- Physiologisches Institut, der Universität Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cerutti JM, Delcelo R, Amadei MJ, Nakabashi C, Maciel RMB, Peterson B, Shoemaker J, Riggins GJ. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest 2004; 113:1234-42. [PMID: 15085203 PMCID: PMC385398 DOI: 10.1172/jci19617] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 02/17/2004] [Indexed: 01/16/2023] Open
Abstract
Accurate diagnosis of thyroid tumors is challenging. A particular problem is distinguishing between follicular thyroid carcinoma (FTC) and benign follicular thyroid adenoma (FTA), where histology of fine-needle aspirates is not conclusive. It is often necessary to remove healthy thyroid to rule out carcinoma. In order to find markers to improve diagnosis, we quantified gene transcript expression from FTC, FTA, and normal thyroid, revealing 73 differentially expressed transcripts (P < or = 0.0001). Using an independent set of 23 FTCs, FTAs, and matched normal thyroids, 17 genes with large expression differences were tested by real-time RT-PCR. Four genes (DDIT3, ARG2, ITM1, and C1orf24) differed between the two classes FTC and FTA, and a linear combination of expression levels distinguished FTC from FTA with an estimated predictive accuracy of 0.83. Furthermore, immunohistochemistry for DDIT3 and ARG2 showed consistent staining for carcinoma in an independent set 59 follicular tumors (estimated concordance, 0.76; 95% confidence interval, [0.59, 0.93]). A simple test based on a combination of these markers might improve preoperative diagnosis of thyroid nodules, allowing better treatment decisions and reducing long-term health costs.
Collapse
Affiliation(s)
- Janete M Cerutti
- Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao H, Tian W, Xu H, Cohen DM. Urea signalling to immediate-early gene transcription in renal medullary cells requires transactivation of the epidermal growth factor receptor. Biochem J 2003; 370:479-87. [PMID: 12466022 PMCID: PMC1223202 DOI: 10.1042/bj20020565] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2002] [Revised: 12/03/2002] [Accepted: 12/05/2002] [Indexed: 11/17/2022]
Abstract
Signalling by physiological levels of urea (e.g. 200 mM) in cells of the mammalian renal medulla is reminiscent of activation of a receptor tyrosine kinase. The epidermal growth factor (EGF) receptor may be transactivated by a variety of G-protein-coupled receptors, primarily through metalloproteinase-dependent cleavage of a membrane-anchored EGF precursor. In the murine inner medullary collecting duct (mIMCD3) cell line, urea (200 mM) induced prompt (1-5 min) tyrosine phosphorylation of the EGF receptor. Pharmacological inhibition of EGF receptor kinase activity with AG1478 or PD153035 blocked urea-inducible transcription and expression of the immediate-early gene, Egr-1. AG1478 blocked, either fully or partially, other hallmarks of urea signalling including Elk-1 activation and extracellular signal-regulated kinase phosphorylation. EGF receptor kinase inhibition also blocked the cytoprotective effect of urea observed in the context of hypertonicity-inducible apoptosis. EGF receptor transactivation was likely to be attributable to metalloproteinase-dependent ectodomain shedding of an EGF receptor agonist because both specific and non-specific inhibitors of metalloproteinases blocked the urea effect. Heparin-binding EGF (HB-EGF), in particular, was implicated because the diphtheria toxin analogue and highly specific antagonist of HB-EGF, CRM197, also blocked urea-inducible transcription. In aggregate, these data indicate that signalling in response to urea in renal medullary cells requires EGF receptor transactivation, probably through autocrine action of HB-EGF.
Collapse
Affiliation(s)
- Hongyu Zhao
- Division of Nephrology, Department of Medicine, Oregon Health & Science University and the Portland Veterans Affairs Medical Center, 3314 S.W. US Veterans Hospital Road, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
16
|
Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S, Worley PF, Boss GR, Pilz RB. Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 2002; 21:6356-65. [PMID: 12214276 DOI: 10.1038/sj.onc.1205792] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Revised: 06/06/2002] [Accepted: 06/18/2002] [Indexed: 11/09/2022]
Abstract
Rheb (Ras homolog enriched in brain) is a member of the Ras family of proteins, and is in the immediate Ras/Rap/Ral subfamily. We found in three different mammalian cell lines that Rheb was highly activated, to levels much higher than for Ras or Rap 1, and that Rheb's activation state was unaffected by changes in growth conditions. Rheb's high activation was not secondary to unique glycine to arginine, or glycine to serine substitutions at positions 14 and 15, corresponding to Ras residues 12 and 13, since Rheb R14G and R14G, S15G mutants had similarly high activation levels as wild type Rheb. These data are consistent with earlier work which showed that purified Rheb has similar GTPase activity as Ras, and suggest a relative intracellular deficiency of Rheb GTPase activating proteins (GAPs) compared to Rheb activators. Further evidence for relatively low intracellular GAP activity was that increased Rheb expression led to a marked increase in Rheb activation. Rheb, like Ras and Rap1, bound B-Raf kinase, but in contrast to Ras and Rap 1, Rheb inhibited B-Raf kinase activity and prevented B-Raf-dependent activation of the transcription factor Elk-1. Thus, Rheb appears to be a unique member of the Ras/Rap/Ral subfamily, and in mammalian systems may serve to regulate B-Raf kinase activity.
Collapse
Affiliation(s)
- Edward Im
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California, CA 92093-0652, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tian W, Cohen DM. Urea stress is more akin to EGF exposure than to hypertonic stress in renal medullary cells. Am J Physiol Renal Physiol 2002; 283:F388-98. [PMID: 12167588 DOI: 10.1152/ajprenal.00031.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although urea is considered to be a cell stressor even in renal medullary cells perpetually exposed to this solute in vivo by virtue of the renal concentrating mechanism, aspects of urea signaling resemble that of a peptide mitogen. Urea was compared with epidermal growth factor and hypertonic NaCl or hypertonic mannitol using a large-scale expression array-based approach. The expression profile in response to urea stress more closely resembled that of EGF treatment than hypertonic stress, as determined by hierarchical cluster analysis; the effect of urea+NaCl was equidistant from that of either solute applied individually. Among the most highly urea- and hypertonicity-responsive transcripts were genes that had previously been shown to be responsive to these solutes, validating this approach. Increased expression of the activating transcription factor 3 by urea was newly detected via expression array and confirmed via immunoblot analysis. Earlier, we noted an abrogation of tonicity-dependent gene regulation by urea, primarily in a transient transfection-based model (Tian W and Cohen DM. Am J Physiol Renal Physiol 280: F904-F912, 2001). Here we applied K-means cluster analysis to demonstrate that the genes most profoundly up- or downregulated by hypertonic stress were partially restored toward basal levels in the presence of urea pretreatment. These global expression data are consistent with our earlier biochemical studies suggesting that urea affords cytoprotection in this context. In the aggregate, these data strongly support the hypothesis that the urea effect in renal medullary cells resembles that of a peptide mitogen in terms of the adaptive program of gene expression and in terms of cytoprotection from hypertonicity.
Collapse
Affiliation(s)
- Wei Tian
- Division of Nephrology, Department of Medicine, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | |
Collapse
|
18
|
Zhao H, Tian W, Cohen DM. Rottlerin inhibits tonicity-dependent expression and action of TonEBP in a PKCdelta-independent fashion. Am J Physiol Renal Physiol 2002; 282:F710-7. [PMID: 11880333 DOI: 10.1152/ajprenal.00303.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Novel protein kinase C (PKC) isoforms PKCdelta and PKCepsilon have recently been implicated in signaling by hypertonic stress. We investigated the role of the putative PKCdelta inhibitor rottlerin on tonicity-dependent gene regulation. In the renal medullary mIMCD3 cell line, rottlerin blocked tonicity-dependent transcription of a tonicity enhancer (TonE)-driven luciferase reporter gene, as well as tonicity-dependent transcription of the physiological tonicity effector gene aldose reductase, but not urea-dependent transcription. Consistent with these data, rottlerin inhibited tonicity-dependent expression of TonE binding protein (TonEBP) at the mRNA and protein levels. Another inhibitor of both novel and conventional PKC isoforms, GF-109203X, suppressed TonEBP-dependent transcription but failed to influence tonicity-inducible TonEBP expression. Global PKC downregulation with protracted phorbol ester treatment, however, failed to influence tonicity-dependent signaling, arguing against a PKCdelta-dependent mechanism of rottlerin action in this model. In addition, hypertonic stress failed to induce phosphorylation of PKCdelta. Furthermore, in a PC-12 cell model with a comparable degree of tonicity-dependent transcription, constitutive overexpression of dominant negative-acting PKCdelta or PKCepsilon effectively decreased tonicity signaling to extracellular signal-regulated kinase activation, as expected, but failed to influence TonE-dependent transcription. TonE-dependent transcription, however, remained rottlerin sensitive in this PC-12 cell model. In the aggregate, these data indicate that rottlerin dramatically inhibits tonicity-dependent TonEBP expression and TonE-dependent transcription but, despite its reputed mode of action, does so through a PKCdelta-independent pathway.
Collapse
Affiliation(s)
- Hongyu Zhao
- Division of Nephrology and Department of Cell and Developmental Biology, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
19
|
Tian W, Bonkovsky HL, Shibahara S, Cohen DM. Urea and hypertonicity increase expression of heme oxygenase-1 in murine renal medullary cells. Am J Physiol Renal Physiol 2001; 281:F983-91. [PMID: 11592956 DOI: 10.1152/ajprenal.0358.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial cells derived from the mammalian kidney medulla are responsive to urea at the levels of signal transduction and gene regulation. Hybridization of RNA harvested from control- and urea-treated murine inner medullary collecting duct (mIMCD3) cells with a cDNA expression array encoding stress-responsive genes suggested that heme oxygenase (HO)-1 mRNA was upregulated by urea. RNase protection assay confirmed this upregulation; hypertonicity also increased HO-1 mRNA expression but neither hypertonic NaCl nor urea were effective in the nonrenal 3T3 cell line. The effect on HO-1 expression appeared to be transcriptionally mediated on the basis of mRNA half-life studies and reporter gene analyses using the promoters of both human and chicken HO-1. Although urea signaling resembles that of heavy metal signaling in other contexts, the effect of urea on HO-1 transcription was independent of the cadmium response element in this promoter. Urea-inducible HO-1 expression was sensitive to antioxidants but not to scavengers of nitric oxide. Urea also upregulated HO-1 protein expression and pharmacological inhibition of HO-1 action with zinc protoporphyrin-sensitized mIMCD3 cells to the adverse effects of hypertonicity but not to urea. Coupled with the prior observation of others that HO-1 expression increases along the renal corticomedullary gradient, these data suggest that HO-1 expression may comprise an element of the adaptive response to hypertonicity and/or urea in renal epithelial cells.
Collapse
Affiliation(s)
- W Tian
- Division of Nephrology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
20
|
Tian W, Cohen DM. Signaling and gene regulation by urea in cells of the mammalian kidney medulla. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:429-36. [PMID: 11913456 DOI: 10.1016/s1095-6433(01)00441-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Signaling by urea, although incompletely understood, is relevant both to cells of the mammalian kidney inner medulla and to all cells of the organism in the setting of advanced renal failure with its attendant accumulation of urea in the systemic circulation. The molecular events initiated by urea stress are distinct from those occurring in response to hypertonic stress; urea activates a characteristic subset of signaling events, which are in large part specific to cultured renal tubular epithelial cells. Interestingly, urea is protective of hypertonic NaCl-inducible apoptosis in this model. Details of this phenomenon are reviewed. The effect of urea has been likened to that of either hypertonicity or of a peptide mitogen. In preliminary expression array analyses, the profile of genes activated by urea stress in renal medullary cells, however, was found to be unique.
Collapse
Affiliation(s)
- W Tian
- Division of Nephrology, Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
21
|
Abstract
Tonicity-responsive genes are regulated by the TonE enhancer element and the tonicity-responsive enhancer binding protein (TonEBP) transcription factor with which it interacts. Urea, a permeant solute coexistent with hypertonic NaCl in the mammalian renal medulla, activates a characteristic set of signaling events that may serve to counteract the effects of NaCl in some contexts. Urea inhibited the ability of hypertonic stressors to increase expression of TonEBP mRNA and also inhibited tonicity-inducible TonE-dependent reporter gene activity. The permeant solute glycerol failed to reproduce these effects, as did cell activators including peptide mitogens and phorbol ester. The inhibitory effect of urea was evident as late as 2 h after the application of hypertonicity. Pharmacological inhibitors of known urea-inducible signaling pathways failed to abolish the inhibitory effect of urea. TonEBP action is incompletely understood, but evidence supports a role for proteasome function and p38 action in regulation; urea failed to inhibit proteasome function or p38 signaling in response to hypertonicity. Consistent with its effect on TonEBP expression and action, urea pretreatment inhibited the effect of hypertonicity on expression of the physiological effector gene, aldose reductase. Taken together, these data 1) define a molecular mechanism of urea-mediated inhibition of tonicity-dependent signaling, and 2) underscore a role for TonEBP abundance in regulating TonE-mediated gene transcription.
Collapse
Affiliation(s)
- W Tian
- Division of Nephrology and Molecular Medicine, Oregon Health Sciences University and the Portland Veterans Affairs Medical Center, 3314 S.W. US Veterans Hospital Rd., Portland, OR 97201, USA
| | | |
Collapse
|
22
|
Yang XY, Zhao H, Zhang Z, Rodland KD, Roullet JB, Cohen DM. Urea signaling to ERK phosphorylation in renal medullary cells requires extracellular calcium but not calcium entry. Am J Physiol Renal Physiol 2001; 280:F162-71. [PMID: 11133526 DOI: 10.1152/ajprenal.2001.280.1.f162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal cell line mIMCD3 exhibits markedly upregulated phosphorylation of the extracellular signal-regulated kinase (ERK) 1 and 2 in response to urea treatment (200 mM for 5 min). Previous data have suggested the involvement of a classical protein kinase C (cPKC)-dependent pathway in downstream events related to urea signaling. We now show that urea-inducible ERK activation requires extracellular calcium; unexpectedly, it occurs independently of activation of cPKC isoforms. Pharmacological inhibitors of known intracellular calcium release pathways and extracellular calcium entry pathways fail to inhibit ERK activation by urea. Fura 2 ratiometry was used to assess the effect of urea treatment on intracellular calcium mobilization. In single-cell analyses using subconfluent monolayers and in population-wide analyses using both confluent monolayers and cells in suspension, urea failed to increase intracellular calcium concentration. Taken together, these data indicate that urea-inducible ERK activation requires calcium action but not calcium entry. Although direct evidence is lacking, one possible explanation could include involvement of a calcium-dependent extracellular moiety of a cell surface-associated protein.
Collapse
Affiliation(s)
- X Y Yang
- Divisions of Nephrology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
23
|
Nakayama Y, Peng T, Sands JM, Bagnasco SM. The TonE/TonEBP pathway mediates tonicity-responsive regulation of UT-A urea transporter expression. J Biol Chem 2000; 275:38275-80. [PMID: 10995747 DOI: 10.1074/jbc.m004678200] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rat renal urea transporter UT-A includes four isoforms. UT-A1, UT-A3, and UT-A4 are transcribed from a single initiation site at the 5'-end of the gene; a distinct internal initiation site is used for UT-A2 transcription. We cloned 1.3 kilobases (kb) of the 5'-flanking region upstream of the transcription start site of UT-A1, UT-A3, and UT-A4. This region contains three CCAAT sequences but lacks a TATA motif. A tonicity-responsive enhancer (TonE) was identified at -377bp. The 1.3-kb full fragment subcloned into pGL3 vector induced luciferase activity in Madin-Darby canine kidney cells and in mouse inner medullary collecting duct cells in isotonic medium. Luciferase activity was increased significantly in hypertonic medium, whereas deletion or mutation of the TonE sequence abolished this response. Electrophoretic mobility shift assay using the 5' UT-A TonE sequence as DNA probe showed formation of a specific DNA-protein complex with nuclear extracts from cells exposed to hypertonic medium and was weakly detectable in isotonic controls. A supershift in the mobility of the DNA-protein complex was observed with antiserum targeted to the TonE-binding protein (TonEBP). Co-transfection with dominant-negative TonEBP abolished the luciferase activity induced by the UT-A 1.3-kb construct under hypertonic and isotonic conditions. These data suggest that the TonE/TonEBP pathway mediates tonicity-responsive transcriptional regulation of UT-A1, UT-A3, and UT-A4 expression.
Collapse
Affiliation(s)
- Y Nakayama
- Renal Division, Department of Medicine and the Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
24
|
Leroy C, Colmont C, Pisam M, Rousselet G. Different responses to acute or progressive osmolarity increases in the mIMCD3 cell line. Eur J Cell Biol 2000; 79:936-42. [PMID: 11152284 DOI: 10.1078/0171-9335-00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells from the kidney medulla are able to survive and function when exposed to high concentrations of NaCl and urea. In vitro, cultured epithelial cells from the kidney medulla are able to survive stronger acute hyperosmotic shocks when both solutes are present. However, in vivo, increases in osmolarity are not acute. In this study, we compared the survival of a murine renal epithelial cell line during acute or progressive (two step) adaptation to hypertonic NaCl and/or urea. Increasing osmolarity to 700 mOsm/l with NaCl or urea in a single step led to massive cell death ( 50% in 24 hours). However, genomic DNA of dying cells was not degraded, and electron microscopy revealed weak condensation of chromatin, absence of membrane blebbing, and no nuclear indentation. Pre-adaptation to permissive concentrations of NaCl (200 mOsm/l giving a final osmolarity of 500 mOsm/l) protected cells against subsequent increases in osmolarity, allowing adaptation to final osmolarities as high as 900 mOsm/l. In contrast, pre-adaptation to permissive concentrations of urea (200 mOsm/l) did not lead to enhanced cell survival after a subsequent 200 mOsm/l step. Cell death was as rapid as after an acute shock, but was more typical of apoptosis (genomic DNA laddering, strong chromatin condensation, nuclear indentation, and blebbing of the membrane giving rise to apoptotic bodies). Thus, acute hyperosmolarity induces cell death with essentially similar responses to NaCl and urea. In contrast, progressive adaptation of mIMCD3 cells to NaCl allows cell survival, whereas progressive adaptation to hyperosmotic urea triggers a cell death pathway different from the one triggered by acute hyperosmotic shocks.
Collapse
Affiliation(s)
- C Leroy
- Service de Biologie Cellulaire, CEA/Saclay, Gif sur Yvette, France
| | | | | | | |
Collapse
|
25
|
Abstract
Following an overview of the biochemistry of mitogen-activated protein kinase (MAPK) pathways, the relevance of these signaling events to specific models of renal cell function and pathophysiology, both in vitro and in vivo, will be emphasized. In in vitro model systems, events activating the principal MAPK families [extracellular signal-regulated and c-Jun NH(2)-terminal kinase and p38] have been best characterized in mesangial and tubular epithelial cell culture systems and include peptide mitogens, cytokines, lipid mediators, and physical stressors. Several in vivo models of proliferative or toxic renal injury are also associated with aberrant MAPK regulation. It is anticipated that elucidation of downstream effector signaling mechanisms and a clearer understanding of the immediate and remote upstream activating pathways, when applied to these highly clinically relevant model systems, will ultimately provide much greater insight into the basis for specificity now seemingly absent from these signaling events.
Collapse
Affiliation(s)
- W Tian
- Divisions of Nephrology and Molecular Medicine, Oregon Health Sciences University, and Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
26
|
Zhang Z, Tian W, Cohen DM. Urea protects from the proapoptotic effect of NaCl in renal medullary cells. Am J Physiol Renal Physiol 2000; 279:F345-52. [PMID: 10919855 DOI: 10.1152/ajprenal.2000.279.2.f345] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertonic NaCl upregulated two sensitive and specific biochemical indices of apoptosis, caspase-3 activation and annexin V binding, in a time- and dose-dependent fashion in renal medullary mIMCD3 cells. Pretreatment with urea (200 mM for 30 min) protected from the proapoptotic effect of hypertonic stress (200 mosmol/kgH(2)O) in this model. The protective effect of urea was dose dependent and was effective even when applied a short time (< or =1 h) following NaCl exposure; this protective effect was not observed in the nonrenal 3T3 cell line. In both mIMCD3 and 3T3 cells, urea failed to protect from the proapoptotic stressor, ultraviolet (UV)-B irradiation. The ability of urea to protect from hypertonic stress was approximately comparable to the protective effect of peptide mitogens epidermal growth factor and insulin-like growth factor (IGF), but it potentiated the IGF effect. Interestingly, the tyrosine kinase inhibitor, genistein, potentiated the proapoptotic effect of urea yet abrogated the proapoptotic effect of hypertonic stress. In aggregate, these data indicate that urea protects from the proapoptotic effect of hypertonic stress in a potentially cell type-specific and stimulus-specific fashion.
Collapse
Affiliation(s)
- Z Zhang
- Divisions of Nephrology and Molecular Medicine, Oregon Health Sciences University and the Portland Veterans Affairs Medical Center, 97201, USA
| | | | | |
Collapse
|
27
|
Leroy C, Basset G, Gruel G, Ripoche P, Trinh-Trang-Tan MM, Rousselet G. Hyperosmotic NaCl and urea synergistically regulate the expression of the UT-A2 urea transporter in vitro and in vivo. Biochem Biophys Res Commun 2000; 271:368-73. [PMID: 10799304 DOI: 10.1006/bbrc.2000.2640] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UT-A2 urea transporter is involved in the recycling of urea through the kidney, a process required to maintain high osmotic gradients. Dehydration increases UT-A2 expression in vivo. The tissue distribution of UT-A2 suggested that hyperosmolarity, and not vasopressin, might mediate this effect. We have analyzed the regulation of UT-A2 expression by ambiant osmolarity both in vitro (mIMCD3 cell line) and in vivo (rat kidney medulla). The UT-A2 mRNA was found to be synergistically up-regulated by a combination of NaCl and urea. Curiously, the UT-A2 protein was undetectable in this hypertonic culture condition, or after transfection of the UT-A2 cDNA, whereas it could be detected in HEK-293 transfected cells. Treating rats with furosemide, a diuretic which decreases the kidney interstitium osmolarity without affecting vasopressin levels, led to decreased levels of the UT-A2 protein. Our results show that the UT-A2 urea transporter is regulated by hyperosmolarity both in vitro and in vivo.
Collapse
Affiliation(s)
- C Leroy
- Service de Biologie Cellulaire, CEA/Saclay, Bâtiment 532, Gif sur Yvette Cedex, 91191, France
| | | | | | | | | | | |
Collapse
|