1
|
Ma Z, Viswanathan G, Sellig M, Jassal C, Choi I, Garikipati A, Xiong X, Nazo N, Rajagopal S. β-Arrestin–Mediated Angiotensin II Type 1 Receptor Activation Promotes Pulmonary Vascular Remodeling in Pulmonary Hypertension. JACC Basic Transl Sci 2021; 6:854-869. [PMID: 34869949 PMCID: PMC8617598 DOI: 10.1016/j.jacbts.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/05/2022]
Abstract
We tested the effects of a β-arrestin–biased agonist (TRV023) of the angiotensin II (AngII) type 1 receptor (AT1R), which acts as a vasodilator while not blocking cellular proliferation, compared to a balanced agonist, AngII, and an antagonist, losartan, in PAH. In acute infusion, AngII increased right ventricular pressures while TRV023 and losartan did not. However, in chronic infusion in monocrotaline PAH rats, both TRV023 and AngII had significantly worse survival than losartan. Both TRV023 and AngII enhanced proliferation and migration of pulmonary artery smooth muscle cells from patients with PAH. β-arrestin-mediated AT1R signaling promotes vascular remodeling and worsens PAH, and suggests that the benefit of current PAH therapies is primarily through pulmonary vascular reverse remodeling.
Pulmonary arterial hypertension (PAH) is a disease of abnormal pulmonary vascular remodeling whose medical therapies are thought to primarily act as vasodilators but also may have effects on pulmonary vascular remodeling. The angiotensin II type 1 receptor (AT1R) is a G protein–coupled receptor that promotes vasoconstriction through heterotrimeric G proteins but also signals via β-arrestins, which promote cardioprotective effects and vasodilation through promoting cell survival. We found that an AT1R β-arrestin-biased agonist promoted vascular remodeling and worsened PAH, suggesting that the primary benefit of current PAH therapies is through pulmonary vascular reverse remodeling in addition to their vasodilation.
Collapse
|
2
|
Targeting sphingosine kinase 1 for the treatment of pulmonary arterial hypertension. Future Med Chem 2019; 11:2939-2953. [DOI: 10.4155/fmc-2019-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), characterized by high morbidity and mortality, is a serious hazard to human life. Until now, the long-term survival of the PAH patients is still suboptimal. Recently, sphingosine kinase 1 (SPHK1) has drawn more and more attention due to its essential role in the pulmonary vasoconstriction, remodeling of pulmonary blood vessels and right cardiac lesions in PAH patients, and this enzyme is regarded as a new target for the treatment of PAH. Here, we discussed the multifarious functions of SPHK1 in PAH physiology and pathogenesis. Moreover, the structural features of SPHK1 and binding modes with different inhibitors were summarized. Finally, recent advances in the medicinal chemistry research of SPHK1 inhibitors are presented.
Collapse
|
3
|
Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, Zhuang J, Yu Q, Zhao Q, Xu Y, Zhang H, Peng W. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun 2018; 497:248-255. [DOI: 10.1016/j.bbrc.2018.02.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
4
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
5
|
Sysol JR, Natarajan V, Machado RF. PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 2016; 310:C983-92. [PMID: 27099350 DOI: 10.1152/ajpcell.00059.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease for which there is currently no curative treatment available. Pathologic changes in this disease involve remodeling of the pulmonary vasculature, including marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Recently, the bioactive lipid sphingosine-1-phosphate (S1P) and its activating kinase, sphingosine kinase 1 (SphK1), have been shown to be upregulated in PAH and promote PASMC proliferation. The mechanisms regulating the transcriptional upregulation of SphK1 in PASMCs are unknown. In this study, we investigated the role of platelet-derived growth factor (PDGF), a PAH-relevant stimuli associated with enhanced PASMC proliferation, on SphK1 expression regulation. In human PASMCs (hPASMCs), PDGF significantly increased SphK1 mRNA and protein expression and induced cell proliferation. Selective inhibition of SphK1 attenuated PDGF-induced hPASMC proliferation. In silico promoter analysis for SphK1 identified several binding sites for early growth response protein 1 (Egr-1), a PDGF-associated transcription factor. Luciferase assays demonstrated that PDGF activates the SphK1 promoter in hPASMCs, and truncation of the 5'-promoter reduced PDGF-induced SphK1 expression. Stimulation of hPASMCs with PDGF induced Egr-1 protein expression, and direct binding of Egr-1 to the SphK1 promoter was confirmed by chromatin immunoprecipitation analysis. Inhibition of ERK signaling prevented induction of Egr-1 by PDGF. Silencing of Egr-1 attenuated PDGF-induced SphK1 expression and hPASMC proliferation. These studies demonstrate that SphK1 is regulated by PDGF in hPASMCs via the transcription factor Egr-1, promoting cell proliferation. This novel mechanism of SphK1 regulation may be a therapeutic target in pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Justin R Sysol
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and
| | - Roberto F Machado
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
6
|
Dierks S, von Hardenberg S, Schmidt T, Bremmer F, Burfeind P, Kaulfuß S. Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon. Oncotarget 2016; 6:13591-606. [PMID: 26079947 PMCID: PMC4537036 DOI: 10.18632/oncotarget.3792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/18/2015] [Indexed: 12/15/2022] Open
Abstract
The focal adhesion protein leupaxin (LPXN) is overexpressed in a subset of prostate cancers (PCa) and is involved in the progression of PCa. In the present study, we analyzed the LPXN-mediated adhesive and cytoskeletal changes during PCa progression. We identified an interaction between the actin-binding protein caldesmon (CaD) and LPXN and this interaction is increased during PCa cell migration. Furthermore, knockdown of LPXN did not affect CaD expression but reduced CaD phosphorylation. This is known to destabilize the affinity of CaD to F-actin, leading to dynamic cell structures that enable cell motility. Thus, downregulation of CaD increased migration and invasion of PCa cells. To identify the kinase responsible for the LPXN-mediated phosphorylation of CaD, we used data from an antibody array, which showed decreased expression of TGF-beta-activated kinase 1 (TAK1) after LPXN knockdown in PC-3 PCa cells. Subsequent analyses of the downstream kinases revealed the extracellular signal-regulated kinase (ERK) as an interaction partner of LPXN that facilitates CaD phosphorylation during LPXN-mediated PCa cell migration. In conclusion, we demonstrate that LPXN directly influences cytoskeletal dynamics via interaction with the actin-binding protein CaD and regulates CaD phosphorylation by recruiting ERK to highly dynamic structures within PCa cells.
Collapse
Affiliation(s)
- Sascha Dierks
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Sandra von Hardenberg
- Institute of Human Genetics, University Medical Center Göttingen, Germany.,Center of Pharmacology and Toxicology, Hannover Medical School, Germany
| | - Thomas Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Germany.,Department of Anatomy, University of Witten/Herdecke, Witten, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| |
Collapse
|
7
|
Abstract
Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype requires the activation of pro-survival transcription factor like the signal transducers and activators of transcription-3 (STAT3). Using multidisciplinary and translational approaches, we and others have demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the modulation of the expression of several proteins already known as implicated in PAH pathogenesis, as well as for signal transduction to other transcription factors. Furthermore, recent data demonstrated that STAT3 could be therapeutically targeted in different animal models and some molecules are actually in clinical trials for cancer or PAH treatment.
Collapse
Affiliation(s)
- Roxane Paulin
- Vascular Biology Research Group; Department of Medicine; University of Alberta; Edmonton, AB Canada
| | | | | |
Collapse
|
8
|
Sangani R, Pandya CD, Bhattacharyya MH, Periyasamy-Thandavan S, Chutkan N, Markand S, Hill WD, Hamrick M, Isales C, Fulzele S. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells. Stem Cell Res 2013; 12:354-63. [PMID: 24365600 DOI: 10.1016/j.scr.2013.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/01/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022] Open
Abstract
Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.
Collapse
Affiliation(s)
- Rajnikumar Sangani
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Chirayu D Pandya
- Department of Psychiatry and Health Behavior, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | - Norman Chutkan
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Shanu Markand
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - William D Hill
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Mark Hamrick
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Carlos Isales
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
9
|
Chen YF, Wu KJ, Wood WG. Paeonia lactiflora Extract Attenuating Cerebral Ischemia and Arterial Intimal Hyperplasia Is Mediated by Paeoniflorin via Modulation of VSMC Migration and Ras/MEK/ERK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:482428. [PMID: 23818926 PMCID: PMC3684030 DOI: 10.1155/2013/482428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/21/2023]
Abstract
Paeonia lactiflora is a well-known traditional Chinese medicine. Paeoniflorin is an active component found in Paeonia lactiflora, which is used to treat smooth muscle spasms and pain and to protect the cardiovascular system. The objective of this study was to determine if Paeonia lactiflora would be protective in rodent models of cerebral ischemia and arterial intimal hyperplasia. Paeonia lactiflora extract (PLex) and paeoniflorin (PF) significantly attenuated cerebral infarction in ischemia/reperfusion injury rats and the severity of intimal hyperplasia in mice where the carotid artery was ligated. PLex and PF reduced PDGF-stimulated VSMC proliferation and migration in a dose-dependent manner by MTT, wound healing, and transwell assays. PF significantly reduced protein levels of Ras, MEK, p-MEK and p-ERK, but not MMP-2 and MMP-9. In summary, Paeonia lactiflora reduced cerebral ischemia and arterial intimal hyperplasia which were mainly made via the intermediary of PF. The protective effect of PF was related to the modulation of the Ras/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Yuh-Fung Chen
- Department of Pharmacology, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Pharmacy, China Medical University Hospital, No. 2 Yu-Der Road, Taichung 40447, Taiwan
| | - Kuo-Jen Wu
- Department of Pharmacology, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - W. Gibson Wood
- Department of Pharmacology, University of Minnesota and Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Meola J, Hidalgo GDS, Silva JCRE, Silva LECM, Paz CCP, Ferriani RA. Caldesmon: new insights for diagnosing endometriosis. Biol Reprod 2013; 88:122. [PMID: 23575144 DOI: 10.1095/biolreprod.112.103598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Considerable effort has been invested in searching for less invasive methods of diagnosing endometriosis. Previous studies have indicated altered levels of the CALD1 gene (encoding the protein caldesmon) in endometriosis. The aims of our study were to investigate whether average CALD1 expression and caldesmon protein levels are differentially altered in the endometrium and endometriotic lesions and to evaluate the performance of the CALD1 gene and caldesmon protein as potential biomarkers for endometriosis. Paired biopsies of endometrial tissue (eutopic endometrium) and endometriotic lesions (ectopic endometrium) were obtained from patients with endometriosis to evaluate CALD1 gene expression and caldesmon protein levels by real-time PCR and Western blot analysis, respectively. In addition, immunostaining for caldesmon to determine cellular localization was also performed. Endometrium from women without endometriosis was used as a control. Increased CALD1 expression and caldesmon levels were detected in the endometriotic lesions. The electrophoretic profile of caldesmon by Western blot analysis was clearly different between the control group (endometrium of women without endometriosis) and the group of women with endometriosis (eutopic endometrium and endometriotic lesions). Caldesmon expression as determined by immunostaining showed no variation among the cell types in endometriotic lesions and eutopic endometrium. Stromal cells marked positively in eutopic endometrium from control patients and in the endometriotic lesions. The presence of caldesmon in the endometrium of patients with and without endometriosis permitted diagnoses with 95% sensitivity (specificity 100%) and 100% sensitivity (specificity 100%) for the disease and for minimal to mild endometriosis in the proliferative phase of the menstrual cycle, respectively. In the secretory phase, minimal to mild endometriosis was detected with 90% sensitivity and 93.3% specificity. Caldesmon is a possible predictor of endometrial dysregulation in patients with endometriosis. A potential limitation of our study is the fact that other endometrial diseases were not excluded, and therefore prospective studies are needed to confirm the potential of caldesmon as a biomarker exclusively for endometriosis.
Collapse
Affiliation(s)
- Juliana Meola
- Department of Gynecology and Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Tojkander S, Gateva G, Lappalainen P. Actin stress fibers--assembly, dynamics and biological roles. J Cell Sci 2012; 125:1855-64. [PMID: 22544950 DOI: 10.1242/jcs.098087] [Citation(s) in RCA: 542] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Actin filaments assemble into diverse protrusive and contractile structures to provide force for a number of vital cellular processes. Stress fibers are contractile actomyosin bundles found in many cultured non-muscle cells, where they have a central role in cell adhesion and morphogenesis. Focal-adhesion-anchored stress fibers also have an important role in mechanotransduction. In animal tissues, stress fibers are especially abundant in endothelial cells, myofibroblasts and epithelial cells. Importantly, recent live-cell imaging studies have provided new information regarding the mechanisms of stress fiber assembly and how their contractility is regulated in cells. In addition, these studies might elucidate the general mechanisms by which contractile actomyosin arrays, including muscle cell myofibrils and cytokinetic contractile ring, can be generated in cells. In this Commentary, we discuss recent findings concerning the physiological roles of stress fibers and the mechanism by which these structures are generated in cells.
Collapse
Affiliation(s)
- Sari Tojkander
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
12
|
Upton Z, Wallace HJ, Shooter GK, van Lonkhuyzen DR, Yeoh-Ellerton S, Rayment EA, Fleming JM, Broszczak D, Queen D, Sibbald RG, Leavesley DI, Stacey MC. Human pilot studies reveal the potential of a vitronectin: growth factor complex as a treatment for chronic wounds. Int Wound J 2012; 8:522-32. [PMID: 21914133 DOI: 10.1111/j.1742-481x.2011.00859.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several different advanced treatments have been used to improve healing in chronic wounds, but none have shown sustained success. The application of topical growth factors (GFs) has displayed some potential, but the varying results, high doses and high costs have limited their widespread adoption. Many treatments have ignored the evidence that wound healing is driven by interactions between extracellular matrix proteins and GFs, not just GFs alone. We report herein that a clinical Good Manufacturing Practice-grade vitronectin:growth factor (cVN:GF) complex is able to stimulate functions relevant to wound repair in vitro, such as enhanced cellular proliferation and migration. Furthermore, we assessed this complex as a topical wound healing agent in a single-arm pilot study using venous leg ulcers, as well as several 'difficult to heal' case studies. The cVN:GF complex was safe and re-epithelialisation was observed in all but 1 of the 30 patients in the pilot study. In addition, the case studies show that this complex may be applied to several ulcer aetiologies, such as venous leg ulcers, diabetic foot ulcers and pressure ulcers. These findings suggest that further evaluation is warranted to determine whether the cVN:GF complex may be an effective topical treatment for chronic wounds.
Collapse
Affiliation(s)
- Zee Upton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lu KK, Trcka D, Bendeck MP. Collagen stimulates discoidin domain receptor 1-mediated migration of smooth muscle cells through Src. Cardiovasc Pathol 2011; 20:71-6. [DOI: 10.1016/j.carpath.2009.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/06/2009] [Accepted: 12/24/2009] [Indexed: 10/19/2022] Open
|
14
|
Mizuno N, Niitani M, Shiba H, Iwata T, Hayashi I, Kawaguchi H, Kurihara H. Proteome analysis of proteins related to aggressive periodontitis combined with neutrophil chemotaxis dysfunction. J Clin Periodontol 2011; 38:310-7. [PMID: 21226751 DOI: 10.1111/j.1600-051x.2010.01693.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIM Some patients suffering from aggressive periodontitis (Ag-P) also display neutrophil chemotaxis dysfunction. In this study, we attempted to identify the proteins involved in Ag-P associated with neutrophil chemotaxis dysfunction using proteome analysis. MATERIAL AND METHODS A two-dimensional fluorescence difference gel electrophoresis system was used to detect differences in protein expression between neutrophils from four patients suffering from Ag-P combined with neutrophil chemotaxis dysfunction and those from four controls. Moreover, the mRNA levels of the proteins identified by the above method were examined in neutrophils from four types of subjects using the real-time polymerase chain reaction: twenty patients suffering from Ag-P with or without the dysfunction, 15 patients with chronic periodontitis, and 15 controls. RESULTS Four proteins, lactoferrin, caldesmon, heat shock protein 70, and stac, displayed a higher protein expression level in the neutrophils from the patients suffering from Ag-P combined with the neutrophil dysfunction than in those from the control group. The caldesmon mRNA levels in the neutrophils from the patients suffering from Ag-P combined with the neutrophil dysfunction were high compared with those in the neutrophils from the patients suffering from the other two types of periodontitis and those from the control group. CONCLUSION Caldesmon may be a marker of Ag-P combined with neutrophil chemotaxis dysfunction.
Collapse
Affiliation(s)
- Noriyoshi Mizuno
- Department of Periodontal Medicine, Division of Frontier Medical Science, Graduate School of Biomedical Sciences Research Facility, Faculty of Dentistry, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Leung WKC, Ching AKK, Wong N. Phosphorylation of Caldesmon by PFTAIRE1 kinase promotes actin binding and formation of stress fibers. Mol Cell Biochem 2010; 350:201-6. [PMID: 21184254 DOI: 10.1007/s11010-010-0699-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/10/2010] [Indexed: 01/09/2023]
Abstract
Caldesmon (CaD) is an actin-binding protein that is capable of stabilizing actin filaments. Phosphorylation of CaD is widely accepted in the actin cytoskeletal modeling and promotion of cell migration. In this study, we show that CaD is a downstream phosphorylation substrate of PFTK1, a novel Cdc-2-related ser/thr protein kinase. Our study stemmed from an earlier investigation where we demonstrated that PFTK1 kinase conferred cell migratory advantages in human hepatocellular carcinoma (HCC) cells. Here, we showed that PFTK1-knockdown cells exhibited much reduced CaD phosphorylation and consequently caused dissociation of CaD from the F-actin fibers. The cellular localization of CaD was also altered in the absence of PFTK1. Immunofluorescence analysis revealed that PFTK1-abrogated cells exhibited a diffused and blurred appearance of CaD localization, whereas intact co-localization with F-actins was apparent in PFTK1-expressing cells. Without the binding of CaD to actin, disappearance of actin stress fibers was also evident in PFTK1-abrogated cells. In addition, we found that CaD is also commonly up-regulated in HCC tumors when compared to adjacent non-malignant liver (P = 0.022). Taken together, our results highlight a novel biological cascade that involved the phosphorylation activation of CaD by PFTK1 kinase in promoting formation of actin stress fibers.
Collapse
Affiliation(s)
- Wilson K C Leung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, N. T, Hong Kong, China
| | | | | |
Collapse
|
16
|
Appel S, Allen PG, Vetterkind S, Jin JP, Morgan KG. h3/Acidic calponin: an actin-binding protein that controls extracellular signal-regulated kinase 1/2 activity in nonmuscle cells. Mol Biol Cell 2010; 21:1409-22. [PMID: 20181831 PMCID: PMC2854098 DOI: 10.1091/mbc.e09-06-0451] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 01/29/2010] [Accepted: 02/17/2010] [Indexed: 01/03/2023] Open
Abstract
Migration of fibroblasts is important in wound healing. Here, we demonstrate a role and a mechanism for h3/acidic calponin (aCaP, CNN3) in REF52.2 cell motility, a fibroblast line rich in actin filaments. We show that the actin-binding protein h3/acidic calponin associates with stress fibers in the absence of stimulation but is targeted to the cell cortex and podosome-like structures after stimulation with a phorbol ester, phorbol-12,13-dibutyrate (PDBu). By coimmunoprecipitation and colocalization, we show that extracellular signal-regulated kinase (ERK)1/2 and protein kinase C (PKC)alpha constitutively associate with h3/acidic calponin and are cotargeted with h3/acidic calponin in the presence of PDBu. This targeting can be blocked by a PKC inhibitor but does not require phosphorylation of h3/acidic calponin at the PKC sites S175 or T184. Knockdown of h3/acidic calponin results in a loss of PDBu-mediated ERK1/2 targeting, whereas PKCalpha targeting is unaffected. Caldesmon is an actin-binding protein that regulates actomyosin interactions and is a known substrate of ERK1/2. Both ERK1/2 activity and nonmuscle l-caldesmon phosphorylation are blocked by h3/acidic calponin knockdown. Furthermore, h3/acidic calponin knockdown inhibits REF52.2 migration in an in vitro wound healing assay. Our findings are consistent with a model whereby h3/acidic calponin controls fibroblast migration by regulation of ERK1/2-mediated l-caldesmon phosphorylation.
Collapse
Affiliation(s)
| | - Philip G. Allen
- Whitaker Imaging Facility, Biomedical Engineering, Boston University, Boston, MA 02215; and
| | | | - Jian-Ping Jin
- School of Medicine, Wayne State University, Detroit, MI 48201
| | | |
Collapse
|
17
|
Jiang Q, Huang R, Cai S, Wang CLA. Caldesmon regulates the motility of vascular smooth muscle cells by modulating the actin cytoskeleton stability. J Biomed Sci 2010; 17:6. [PMID: 20128924 PMCID: PMC2846900 DOI: 10.1186/1423-0127-17-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/03/2010] [Indexed: 02/16/2023] Open
Abstract
Background Migration of vascular smooth muscle cells (SMCs) from the media to intima constitutes a critical step in the development of proliferative vascular diseases. To elucidate the regulatory mechanism of vacular SMC motility, the roles of caldesmon (CaD) and its phosphorylation were investigated. Methods We have performed Transwell migration assays, immunofluorescence microscopy, traction microscopy and cell rounding assays using A7r5 cells transfected with EGFP (control), EGFP-wtCaD or phosphomimetic CaD mutants, including EGFP-A1A2 (the two PAK sites Ser452 and Ser482 converted to Ala), EGFP-A3A4 (the two Erk sites Ser497 and Ser527 converted to Ala), EGFP-A1234 (both PAK- and Erk-sites converted to Ala) and EGFP-D1234 (both PAK- and Erk-sites converted to Asp). Results We found that cells transfected with wtCaD, A1A2 or A3A4 mutants of CaD migrated at a rate approximately 50% more slowly than those EGFP-transfected cells. The migration activity for A1234 cells was only about 13% of control cells. Thus it seems both MAPK and PAK contribute to the motility of A7r5 cells and the effects are comparable and additive. The A1234 mutant also gave rise to highest strain energy and lowest rate of cell rounding. The migratory and contractile properties of these cells are consistent with stabilized actin cytoskeletal structures. Indeed, the A1234 mutant cells exhibited most robust stress fibers, whereas cells transfected with wtCaD or A3A4 (and A1A2) had moderately reinforced actin cytoskeleton. The control cells (transfected with EGFP alone) exhibited actin cytoskeleton that was similar to that in untransfected cells, and also migrated at about the same speed as the untransfected cells. Conclusions These results suggest that both the expression level and the level of MAPK- and/or PAK-mediated phosphorylation of CaD play key roles in regulating the cell motility by modulating the actin cytoskeleton stability in dedifferentiated vascular SMCs such as A7r5.
Collapse
Affiliation(s)
- Qifeng Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | | | | | |
Collapse
|
18
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
19
|
Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. PLoS One 2009; 4:e5978. [PMID: 19543386 PMCID: PMC2694354 DOI: 10.1371/journal.pone.0005978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/29/2009] [Indexed: 11/29/2022] Open
Abstract
Background Hypoxia and pressure-overload induce heme oxygenase-1 (HO-1) in cardiomyocytes and vascular smooth muscle cells (VSMCs). HO-1−/− mice exposed to chronic hypoxia develop pulmonary arterial hypertension (PAH) with exaggerated right ventricular (RV) injury consisting of dilation, fibrosis, and mural thrombi. Our objective was to indentify the HO-1 product(s) mediating RV protection from hypoxic injury in HO-1−/− mice. Methodology/Principal Findings HO-1−/− mice were exposed to seven weeks of hypoxia and treated with inhaled CO or biliverdin injections. CO reduced right ventricular systolic pressure (RVSP) and prevented hypoxic pulmonary arteriolar remodeling in both HO-1−/− and control mice. Biliverdin had no significant effect on arteriolar remodeling or RVSP in either genotype. Despite this, biliverdin prevented RV failure in the hypoxic HO-1−/− mice (0/14 manifested RV wall fibrosis or thrombus), while CO-treated HO-1−/− mice developed RV insults similar to untreated controls. In vitro, CO inhibited hypoxic VSMC proliferation and migration but did not prevent cardiomyocyte death from anoxia-reoxygenation (A-R). In contrast, bilirubin limited A-R-induced cardiomyocyte death but did not inhibit VSMC proliferation and migration. Conclusions/Significance CO and bilirubin have distinct protective actions in the heart and pulmonary vasculature during chronic hypoxia. Moreover, reducing pulmonary vascular resistance may not prevent RV injury in hypoxia-induced PAH; supporting RV adaptation to hypoxia and preventing RV failure must be a therapeutic goal.
Collapse
|
20
|
van Wieringen T, Kimani SG, Hultgård-Ekwall AK, Forsberg J, Reyhani V, Engström Å, Rubin K. Opposite effects of PDGF-BB and prostaglandin E1 on cell-motility related processes are paralleled by modifications of distinct actin-binding proteins. Exp Cell Res 2009; 315:1745-58. [DOI: 10.1016/j.yexcr.2009.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/30/2009] [Accepted: 02/04/2009] [Indexed: 01/27/2023]
|
21
|
Lin JJ, Li Y, Eppinga RD, Wang Q, Jin J. Chapter 1 Roles of Caldesmon in Cell Motility and Actin Cytoskeleton Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:1-68. [DOI: 10.1016/s1937-6448(08)02001-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Abstract
Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including beta-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling.
Collapse
|
23
|
Pyne-Geithman GJ, Nair SG, Caudell DN, Clark JF. PKC and Rho in vascular smooth muscle: activation by BOXes and SAH CSF. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:1526-34. [PMID: 17981646 PMCID: PMC2430991 DOI: 10.2741/2778] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cerebral vasospasm (CV) remains a significant cause of delayed neurological deficit and ischemic damage after subarachnoid hemorrhage (SAH), despite intensive research effort. The current lack of an effective therapeutic approach is somewhat due to our lack of understanding regarding the mechanism by which this pathological constriction develops. Recent evidence implicates bilirubin oxidation products (BOXes) in the etiology of CV after SAH: BOXes are found in cerebrospinal fluid from SAH patients with symptomatic or angiographically visible vasospasm (CSFV) but not in CSF from SAH patients with no vasospasm (CSFC). We have previously published research suggesting that the etiology of CV comprises two components: a physiological stimulation to constrict and a pathological failure to relax. Both these components are elicited by CSFV, but not CSFC, and BOXes synthesized in the laboratory potentiate physiological constriction in arterial smooth muscle in vitro, and elicit contraction in pial arteries in vivo. In this paper, we will present our results concerning the action of BOXes on arterial smooth muscle constriction, compared with CSFV. We will also present evidence implicating temporal changes in PKC isoforms and Rho expression in both BOXes- and CSFV-elicited smooth muscle responses.
Collapse
Affiliation(s)
- Gail J Pyne-Geithman
- Department of Neurology, University of Cincinnati, 2324 Vontz Center, 3125 Eden Avenue, Cincinnati, OH 45267-0536, USA.
| | | | | | | |
Collapse
|
24
|
Wang CLA. Caldesmon and the regulation of cytoskeletal functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:250-72. [PMID: 19209827 PMCID: PMC2975104 DOI: 10.1007/978-0-387-85766-4_19] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caldesmon (CaD) is an extraordinary actin-binding protein, because in addition to actin, it also bindsmyosin, calmodulin and tropomyosin. As a component of the smoothmuscle and nonmuscle contractile apparatus CaD inhibits the actomyosin ATPase activity and its inhibitory action is modulated by both Ca2+ and phosphorylation. The multiplicity of binding partners and diverse biochemical properties suggest CaD is a potent and versatile regulatory protein both in contractility and cell motility. However, after decades ofinvestigation in numerous laboratories, hard evidence is still lacking to unequivocally identify its in vivo functions, although indirect evidence is mounting to support an important role in connection with the actin cytoskeleton. This chapter reviews the highlights of the past findings and summarizes the current views on this protein, with emphasis of its interaction with tropomyosin.
Collapse
Affiliation(s)
- C L Albert Wang
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.
| |
Collapse
|
25
|
Van Lonkhuyzen DR, Hollier BG, Shooter GK, Leavesley DI, Upton Z. Chimeric vitronectin:insulin-like growth factor proteins enhance cell growth and migration through co-activation of receptors. Growth Factors 2007; 25:295-308. [PMID: 18236208 DOI: 10.1080/08977190701803752] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complexes comprised of IGF-I, IGF-binding proteins and the ECM protein vitronectin (VN) stimulate cell migration and growth and can replace the requirement for serum for the ex vivo expansion of cells, as well as promote wound healing in vivo. Moreover, the activity of the complexes is dependent on co-activation of the IGF-I receptor and VN-binding integrins. In view of this we sought to develop chimeric proteins able to recapitulate the action of the multiprotein complex within a single molecular species. We report here the production of two recombinant chimeric proteins, incorporating domains of VN linked to IGF-I, which mimic the functions of the complex. Further, the activity of the chimeric proteins is dependent on co-activation of the IGF-I- and VN-binding cell surface receptors. Clearly the use of chimeras that mimic the activity of growth factor:ECM complexes, such as these, offer manufacturing advantages that ultimately will facilitate translation to cost-effective therapies.
Collapse
Affiliation(s)
- Derek R Van Lonkhuyzen
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chemical and functional families is presented, along with a summary of key signaling events mediating migration. Extracellular molecules that modulate migration include small biogenic amines, peptide growth factors, cytokines, extracellular matrix components, and drugs used in cardiovascular medicine. Promigratory stimuli activate signal transduction cascades that trigger remodeling of the cytoskeleton, change the adhesiveness of the cell to the matrix, and activate motor proteins. This review focuses on the signaling pathways and effector proteins regulated by promigratory and antimigratory molecules. Prominent pathways include phosphatidylinositol 3-kinases, calcium-dependent protein kinases, Rho-activated protein kinase, p21-activated protein kinases, LIM kinase, and mitogen-activated protein kinases. Important downstream targets include myosin II motors, actin capping and severing proteins, formins, profilin, cofilin, and the actin-related protein-2/3 complex. Actin filament remodeling, focal contact remodeling, and molecular motors are coordinated to cause cells to migrate along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. The result is recruitment of cells to areas where the vessel wall is being remodeled. Vessel wall remodeling can be antagonized by common cardiovascular drugs that act in part by inhibiting vascular smooth muscle cell migration. Several therapeutically important drugs act by inhibiting cell cycle progression, which may reduce the population of migrating cells.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
27
|
Fujikawa T, Shiraha H, Nakanishi Y, Takaoka N, Ueda N, Suzuki M, Shiratori Y. Cimetidine inhibits epidermal growth factor-induced cell signaling. J Gastroenterol Hepatol 2007; 22:436-43. [PMID: 17295779 DOI: 10.1111/j.1440-1746.2006.04541.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cimetidine, a histamine-2 (H2) receptor antagonist, has been demonstrated to have anticancer effects on colorectal cancer, melanoma and renal cell carcinoma. In the current study, we clarified that cimetidine inhibits both epidermal growth factor (EGF)-induced cell proliferation and migration in hepatocellular carcinoma (HCC) cell lines. METHOD HCC cell lines (Hep3B, HLF, SK-Hep-1, JHH-2, PLC/PRF/5 and HLE) were used and cell proliferation was assessed by [3H]-thymidine incorporation assay. Cell migration was measured by in vitro cell migration assay. Biological effects of cimetidine were assessed with human EGF receptor (EGFR)-expressing mouse fibroblast cells (NR6-WT). The autophosphorylation of EGFR and the activation of other downstream effectors were analyzed by immunoprecipitation and immunoblotting. The concentration of intracellular cyclic AMP (cAMP) was measured by competitive enzyme immunoassay. RESULTS Cimetidine inhibited both EGF-induced cell proliferation and migration in Hep3B, HLF, SK-Hep-1 and JHH-2, while cimetidine did not affect EGF-induced cell proliferation and migration in PLC/PRF/5 and HLE. Cimetidine was revealed to disrupt the EGF-induced autophosphorylation of EGFR and its downstream effectors, mitogen activated protein kinases and phospholipase C-gamma. To define the molecular basis of this negative regulation, we identified that cimetidine significantly decreased intracellular cAMP levels and that decrement of cAMP inhibited autophosphorylation of EGFR. The cell permeable cAMP analog, CPT-cAMPS reversed the cimetidine-induced inhibition of EGF-induced cell proliferation and cell migration by restoring autophosphorylation of EGFR. CONCLUSION Cimetidine inhibited EGF-induced cell proliferation and migration in HCC cell lines by decreasing the concentration of intracellular cAMP levels. Cimetidine may be a candidate chemopreventive agent for HCC.
Collapse
Affiliation(s)
- Tatsuya Fujikawa
- Department of Medicine and Medical Science, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Govindaraju V, Michoud MC, Al-Chalabi M, Ferraro P, Powell WS, Martin JG. Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol 2006; 291:C957-65. [PMID: 16822944 DOI: 10.1152/ajpcell.00451.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In patients with cystic fibrosis (CF) and asthma, elevated levels of interleukin-8 (IL-8) are found in the airways. IL-8 is a CXC chemokine that is a chemoattractant for neutrophils through CXCR1 and CXCR2 G protein-coupled receptors. We hypothesized that IL-8 acts directly on airway smooth muscle cells (ASMC) in a way that may contribute to the enhanced airway responsiveness and airway remodeling observed in CF and asthma. The aim of this study was to determine whether human ASMC (HASMC) express functional IL-8 receptors (CXCR1 and CXCR2) linked to cell contraction and migration. Experiments were conducted on cells harvested from human lung specimens. Real-time PCR and fluorescence-activated cell sorting analysis showed that HASMC expressed mRNA and protein for both CXCR1 and CXCR2. Intracellular Ca2+ concentration ([Ca2+]i) increased from 115 to 170 nM in response to IL-8 (100 nM) and decreased after inhibition of phospholipase C (PLC) with U-73122. On blocking the receptors with specific neutralizing antibodies, changes in [Ca2+]i were abrogated. IL-8 also contracted the HASMC, decreasing the length of cells by 15%, and induced a 2.5-fold increase in migration. These results indicate that HASMC constitutively express functional CXCR1 and CXCR2 that mediate IL-8-triggered Ca2+ release, contraction, and migration. These data suggest a potential role for IL-8 in causing abnormal airway structure and function in asthma and CF.
Collapse
MESH Headings
- Antibodies/immunology
- Calcium/metabolism
- Cell Movement/drug effects
- Cells, Cultured
- Estrenes/pharmacology
- Flow Cytometry
- Gene Expression Regulation/drug effects
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Interleukin-8/pharmacology
- Macrocyclic Compounds/pharmacology
- Muscle Contraction/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Neutralization Tests
- Oxazoles/pharmacology
- Pyrrolidinones/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8B/genetics
- Respiratory System/cytology
- Type C Phospholipases/antagonists & inhibitors
Collapse
Affiliation(s)
- Vasanthi Govindaraju
- Seymoure Heisler Laboratory of the Montreal Chest Institute Research Center, McGill University, Montreal, Quebec, Canada H2X 2P2
| | | | | | | | | | | |
Collapse
|
29
|
Yokouchi K, Numaguchi Y, Kubota R, Ishii M, Imai H, Murakami R, Ogawa Y, Kondo T, Okumura K, Ingber DE, Murohara T. l-Caldesmon Regulates Proliferation and Migration of Vascular Smooth Muscle Cells and Inhibits Neointimal Formation After Angioplasty. Arterioscler Thromb Vasc Biol 2006; 26:2231-7. [PMID: 16888241 DOI: 10.1161/01.atv.0000239441.29687.97] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Light-type caldesmon (l-CaD) is a potent cytostatic and antiangiogenic protein that regulates cell growth and survival via modulation of the cell shape and cytoskeleton. The aim of this study is to explore the potential value of l-CaD for use as a cytostatic agent to inhibit neointimal formation after angioplasty by suppressing vascular smooth muscle cell (VSMC) growth and migration. METHODS AND RESULTS We tested the cytostatic function of l-CaD in cultured VSMCs using assays for apoptosis, cell proliferation, and migration, and evaluated the expression pattern of relevant signaling proteins (focal adhesion kinase [FAK] and mitogen-activated protein kinases) in VSMCs. Transfection of adenoviral vector encoding l-CaD (Ad-l-CaD) resulted in progressive loss of actin stress fibers and cell retraction. Enzyme-linked immunosorbent assay demonstrated that Ad-l-CaD transfection increased the apoptosis rate by 75% and reduced BrdU uptake by 49%. Furthermore, transfection of Ad-l-CaD inhibited migration of VSMCs induced by platelet-derived growth factor-BB (PDGF) by 36% (P<0.05). Immunoblotting analysis revealed that l-CaD overexpression reduced PDGF-induced phosphorylation of both FAK and extracellular signal regulated-kinase (ERK). In balloon-injured rat carotid arteries, Ad-l-CaD transfection inhibited neointimal formation by 37% (P<0.05) without delaying re-endothelialization at 14 days. CONCLUSIONS Overexpression of l-CaD suppressed cell growth and survival in VSMCs and inhibited neointimal formation after experimental angioplasty, partly by regulating the cytoskeletal tension-FAK-ERK axis.
Collapse
|
30
|
Kordowska J, Huang R, Wang CLA. Phosphorylation of caldesmon during smooth muscle contraction and cell migration or proliferation. J Biomed Sci 2006; 13:159-72. [PMID: 16453176 DOI: 10.1007/s11373-005-9060-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The actin-binding protein caldesmon (CaD) exists both in smooth muscle (the heavy isoform, h-CaD) and non-muscle cells (the light isoform, l-CaD). In smooth muscles h-CaD binds to myosin and actin simultaneously and modulates the actomyosin interaction. In non-muscle cells l-CaD binds to actin and stabilizes the actin stress fibers; it may also mediate the interaction between actin and non-muscle myosins. Both h- and l-CaD are phosphorylated in vivo upon stimulation. The major phosphorylation sites of h-CaD when activated by phorbol ester are the Erk-specific sites, modification of which is attenuated by the MEK inhibitor PD98059. The same sites in l-CaD are also phosphorylated when cells are stimulated to migrate, whereas in dividing cells l-CaD is phosphorylated more extensively, presumably by cdc2 kinase. Both Erk and cdc2 are members of the MAPK family. Thus it appears that CaD is a downstream effector of the Ras signaling pathways. Significantly, the phosphorylatable serine residues shared by both CaD isoforms are in the C-terminal region that also contains the actin-binding sites. Biochemical and structural studies indicated that phosphorylation of CaD at the Erk sites is accompanied by a conformational change that partially dissociates CaD from actin. Such a structural change in h-CaD exposes the myosin-binding sites on the actin surface and allows actomyosin interactions in smooth muscles. In the case of non-muscle cells, the change in l-CaD weakens the stability of the actin filament and facilitates its disassembly. Indeed, the level of l-CaD modification correlates very well in a reciprocal manner with the level of actin stress fibers. Since both cell migration and cell division require dynamic remodeling of actin cytoskeleton that leads to cell shape changes, phosphorylation of CaD may therefore serve as a plausible means to regulate these processes. Thus CaD not only links the smooth muscle contractility and non-muscle motility, but also provides a common mechanism for the regulation of cell migration and cell proliferation.
Collapse
Affiliation(s)
- Jolanta Kordowska
- Boston Biomedical Research Institute, 64 Grove Street, 02472, Watertown, MA, USA
| | | | | |
Collapse
|
31
|
Marganski WA, Gangopadhyay SS, Je HD, Gallant C, Morgan KG. Targeting of a novel Ca+2/calmodulin-dependent protein kinase II is essential for extracellular signal-regulated kinase-mediated signaling in differentiated smooth muscle cells. Circ Res 2005; 97:541-9. [PMID: 16109919 DOI: 10.1161/01.res.0000182630.29093.0d] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Subcellular targeting of kinases controls their activation and access to substrates. Although Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to regulate differentiated smooth muscle cell (dSMC) contractility, the importance of targeting in this regulation is not clear. The present study investigated the function in dSMCs of a novel variant of the gamma isoform of CaMKII that contains a potential targeting sequence in its association domain (CaMKIIgamma G-2). Antisense knockdown of CaMKIIgamma G-2 inhibited extracellular signal-related kinase (ERK) activation, myosin phosphorylation, and contractile force in dSMCs. Confocal colocalization analysis revealed that in unstimulated dSMCs CaMKIIgamma G-2 is bound to a cytoskeletal scaffold consisting of interconnected vimentin intermediate filaments and cytosolic dense bodies. On activation with a depolarizing stimulus, CaMKIIgamma G-2 is released into the cytosol and subsequently targeted to cortical dense plaques. Comparison of phosphorylation and translocation time courses indicates that, after CaMKIIgamma G-2 activation, and before CaMKIIgamma G-2 translocation, vimentin is phosphorylated at a CaMKII-specific site. Differential centrifugation demonstrated that phosphorylation of vimentin in dSMCs is not sufficient to cause its disassembly, in contrast to results in cultured cells. Loading dSMCs with a decoy peptide containing the polyproline sequence within the association domain of CaMKIIgamma G-2 inhibited targeting. Furthermore, prevention of CaMKIIgamma G-2 targeting led to significant inhibition of ERK activation as well as contractility. Thus, for the first time, this study demonstrates the importance of CaMKII targeting in dSMC signaling and identifies a novel targeting function for the association domain in addition to its known role in oligomerization.
Collapse
|
32
|
Mehrotra M, Krane SM, Walters K, Pilbeam C. Differential regulation of platelet-derived growth factor stimulated migration and proliferation in osteoblastic cells. J Cell Biochem 2005; 93:741-52. [PMID: 15660418 DOI: 10.1002/jcb.20138] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Osteoblastic migration and proliferation in response to growth factors are essential for skeletal development, bone remodeling, and fracture repair, as well as pathologic processes, such as metastasis. We studied migration in response to platelet-derived growth factor (PDGF, 10 ng/ml) in a wounding model. PDGF stimulated a twofold increase in migration of osteoblastic MC3T3-E1 cells and murine calvarial osteoblasts over 24-48 h. PDGF also stimulated a tenfold increase in 3H-thymidine (3H-TdR) incorporation in MC3T3-E1 cells. Migration and DNA replication, as measured by BrdU incorporation, could be stimulated in the same cell. Blocking DNA replication with aphidicolin did not reduce the distance migrated. To examine the role of mitogen-activated protein (MAP) kinases in migration and proliferation, we used specific inhibitors of p38 MAP kinase, extracellular signal regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). For these signaling studies, proliferation was measured by carboxyfluorescein diacetate succinimidyl ester (CFSE) using flow cytometry. Inhibition of the p38 MAP kinase pathway by SB203580 and SB202190 blocked PDGF-stimulated migration but had no effect on proliferation. Inhibition of the ERK pathway by PD98059 and U0126 inhibited proliferation but did not inhibit migration. Inhibition of JNK activity by SP600125 inhibited both migration and proliferation. Hence, the stimulation of migration and proliferation by PDGF occurred by both overlapping and independent pathways. The JNK pathway was involved in both migration and proliferation, whereas the p38 pathway was predominantly involved in migration and the ERK pathway predominantly involved in proliferation.
Collapse
Affiliation(s)
- Meenal Mehrotra
- University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
33
|
Campbell M, Trimble ER. Modification of PI3K- and MAPK-Dependent Chemotaxis in Aortic Vascular Smooth Muscle Cells by Protein Kinase C
βII. Circ Res 2005; 96:197-206. [PMID: 15591231 DOI: 10.1161/01.res.0000152966.88353.9d] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-β receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKC
α
and PKC
βII
levels were increased in 25 mmol/L glucose. However, only PKC
βII
inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-β receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKC
βII
were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKC
βII
inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKC
βII
was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKC
βII
-dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.
Collapse
Affiliation(s)
- Malcolm Campbell
- Department of Clinical Biochemistry and Metabolic Medicine, Queen's University Belfast, Institute of Clinical Science, Royal Victoria Hospital, Grosvenor Rd, Belfast BT12 6BJ, UK.
| | | |
Collapse
|
34
|
Oeckler RA, Arcuino E, Ahmad M, Olson SC, Wolin MS. Cytosolic NADH redox and thiol oxidation regulate pulmonary arterial force through ERK MAP kinase. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1017-25. [PMID: 15665044 DOI: 10.1152/ajplung.00223.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An ERK MAP kinase-mediated contractile mechanism previously reported to be activated by peroxide and stretch in bovine coronary arteries is shown in this study to be present in endothelium-denuded bovine pulmonary arteries and subject to regulation by modulation of cytosolic NAD(H) redox through the lactate dehydrogenase reaction. Although our previous work identified an acute PO2-dependent peroxide-mediated relaxation of bovine pulmonary arteries on exposure to lactate, a 30-min treatment with 10 mM lactate enhanced ERK phosphorylation and increased force generation to 30 mM KCl. Hypoxia inhibited these responses to lactate. Increases in ERK phosphorylation and the enhancement of force generation by lactate and stretch are attenuated in the presence of inhibitors of Nox oxidase (0.1 mM apocynin) or ERK activation (10 microM PD-98059) and by 0.1 mM ebselen. Additionally, incubation of pulmonary arteries with 10 mM pyruvate lowered basal levels of ERK phosphorylation, and it inhibited both the ERK phosphorylation and the enhancement in force generation to 30 mM KCl caused by stretch. Treatment of pulmonary arteries with the thiol oxidant diamide (1 microM) elicited what appears to be a peroxide-independent increase in force and ERK phosphorylation that were both attenuated by PD-98059. Thus pulmonary arteries possess a peroxide-elicited contractile mechanism involving ERK MAP kinase, which is stimulated by stretch and regulated through the control of Nox oxidase activity by the availability of cytosolic NADH.
Collapse
Affiliation(s)
- Richard A Oeckler
- Dept. of Physiology, Basic Science Bldg., Rm. 604, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
35
|
Mirzapoiazova T, Kolosova IA, Romer L, Garcia JGN, Verin AD. The role of caldesmon in the regulation of endothelial cytoskeleton and migration. J Cell Physiol 2005; 203:520-8. [PMID: 15521070 DOI: 10.1002/jcp.20244] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The actin- and myosin-binding protein, caldesmon (CaD) is an essential component of the cytoskeleton in smooth muscle and non-muscle cells and is involved in the regulation of cell contractility, division, and assembly of actin filaments. CaD is abundantly present in endothelial cells (EC); however, the contribution of CaD in endothelial cytoskeletal arrangement is unclear. To examine this contribution, we generated expression constructs of l-CaD cloned from bovine endothelium. Wild-type CaD (WT-CaD) and truncated mutants lacking either the N-terminal myosin-binding site or the C-terminal domain 4b (containing actin- and calmodulin-binding sites) were transfected into human pulmonary artery EC. Cell fractionation experiments and an actin overlay assay demonstrated that deleting domain 4b, but not the N-terminal myosin-binding site, resulted in decreased affinity to both the detergent-insoluble cytoskeleton and soluble actin. Recombinant WT-CaD co-localized with acto-myosin filaments in vivo, but neither of CaD mutants did. Thus both domain 4b and the myosin-binding site are essential for proper localization of CaD in EC. Overexpression of WT-CaD led to cell rounding and formation of a thick peripheral subcortical actin rim in quiescent EC, which correlated with decreased cellular migration. Pharmacological inhibition of p38 MAPK, but not ERK MAPK, caused disassembly of this peripheral actin rim in CaD-transfected cells and decreased CaD phosphorylation at Ser531 (Ser789 in human h-CaD). These results suggest that CaD is critically involved in the regulation of the actin cytoskeleton and migration in EC, and that p38 MAPK-mediated CaD phosphorylation may be involved in endothelial cytoskeletal remodeling.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
36
|
Foster DB, Huang R, Hatch V, Craig R, Graceffa P, Lehman W, Wang CLA. Modes of Caldesmon Binding to Actin. J Biol Chem 2004; 279:53387-94. [PMID: 15456752 DOI: 10.1074/jbc.m410109200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Smooth muscle caldesmon binds actin and inhibits actomyosin ATPase activity. Phosphorylation of caldesmon by extracellular signal-regulated kinase (ERK) reverses this inhibitory effect and weakens actin binding. To better understand this function, we have examined the phosphorylation-dependent contact sites of caldesmon on actin by low dose electron microscopy and three-dimensional reconstruction of actin filaments decorated with a C-terminal fragment, hH32K, of human caldesmon containing the principal actin-binding domains. Helical reconstruction of negatively stained filaments demonstrated that hH32K is located on the inner portion of actin subdomain 1, traversing its upper surface toward the C-terminal segment of actin, and forms a bridge to the neighboring actin monomer of the adjacent long pitch helical strand by connecting to its subdomain 3. Such lateral binding was supported by cross-linking experiments using a mutant isoform, which was capable of cross-linking actin subunits. Upon ERK phosphorylation, however, the mutant no longer cross-linked actin to polymers. Three-dimensional reconstruction of ERK-phosphorylated hH32K indeed indicated loss of the interstrand connectivity. These results, together with fluorescence quenching data, are consistent with a phosphorylation-dependent conformational change that moves the C-terminal end segment of caldesmon near the phosphorylation site but not the upstream region around Cys(595), away from F-actin, thus neutralizing its inhibitory effect on actomyosin interactions. The binding pattern of hH32K suggests a mechanism by which unphosphorylated, but not ERK-phosphorylated, caldesmon could stabilize actin filaments and resist F-actin severing or depolymerization in both smooth muscle and nonmuscle cells.
Collapse
Affiliation(s)
- D Brian Foster
- Boston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jadeski LC, Chakraborty C, Lala PK. Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 2003; 106:496-504. [PMID: 12845643 DOI: 10.1002/ijc.11268] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using clonal derivatives of spontaneous mammary tumours in C3H/HeJ mice, we had earlier shown that tumour-derived nitric oxide (NO), resulting from endothelial type (e) NO synthase (NOS) expression by tumour cells, promoted tumour growth and metastasis by multiple mechanisms: stimulation of tumour cell invasiveness, migration and angiogenesis. Our present study examined the signaling mechanisms underlying NO-mediated promotion of tumour cell migration in a highly metastatic and high eNOS-expressing C3H/HeJ mammary tumour cell line, C3L5. C3L5 cell migration was reduced in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor) in a concentration-dependent manner and restored in the additional presence of excess L-arginine (NOS substrate), confirming a migration-promoting role of endogenous NO. Migratory capacity of C3L5 cells was reduced after treatment with the guanylate cyclase (GC) inhibitor 1-H-[1,2,4]oxadiaxolo[4,3-a]quinolalin-1-one (ODQ) and restored in the additional presence of 8-bromoguanosine 3'5'-cyclic monophosphate (8-Br cGMP, cGMP analogue), demonstrating a pivotal role for GC in C3L5 cell migration. Mitogen-activated protein kinase kinase (MAPKK; MEK) inhibitor, UO126, blocked migration, demonstrating MEK involvement in C3L5 cell migration. Furthermore, both ODQ and UO126 blocked migration-restoring effects of L-arginine in L-NAME-treated cells, indicating that GC and MAPK pathways are required for endogenous NO-mediated migratory responses. Similarly, L-NAME reduced and additional treatment with excess L-arginine or sodium nitroprusside (SNP, NO donor) stimulated phosphorylation of extracellular signal-regulated kinases (ERK(1/2)), demonstrating a role for endogenous and exogenous NO in ERK(1/2) activation. ODQ inhibited ERK(1/2) activation, whereas 8-Br cGMP stimulated ERK(1/2) phosphorylation in L-NAME-treated cells, indicating that cGMP is a downstream effector of NOS for ERK(1/2) activation. Finally, both ODQ and UO126 blocked the capacity of L-arginine to restore ERK(1/2) phosphorylation in L-NAME-treated cells, demonstrating that GC and MEK are both required for endogenous NO-mediated MAPK activation. Together, these results indicate sequential activation of NOS, GC and MAPK pathways in mediating signals for C3L5 cell migration, an essential step in invasion and metastasis. Since NOS activity is positively associated with human breast cancer progression, the present results are relevant for development of therapeutic modalities for this disease.
Collapse
Affiliation(s)
- Lorraine C Jadeski
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Chandan Chakraborty
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Pathology, The University of Western Ontario, London, Ontario, Canada
| | - Peeyush K Lala
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Sundberg LJ, Galante LM, Bill HM, Mack CP, Taylor JM. An endogenous inhibitor of focal adhesion kinase blocks Rac1/JNK but not Ras/ERK-dependent signaling in vascular smooth muscle cells. J Biol Chem 2003; 278:29783-91. [PMID: 12782622 DOI: 10.1074/jbc.m303771200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Humoral factors and extracellular matrix are critical co-regulators of smooth muscle cell (SMC) migration and proliferation. We reported previously that focal adhesion kinase (FAK)-related non-kinase (FRNK) is expressed selectively in SMC and can inhibit platelet-derived growth factor BB homodimer (PDGF-BB)-induced proliferation and migration of SMC by attenuating FAK activity. The goal of the current studies was to identify the mechanism by which FAK/FRNK regulates SMC growth and migration in response to diverse mitogenic signals. Transient overexpression of FRNK in SMC attenuated autophosphorylation of FAK at Tyr-397, reduced Src family-dependent tyrosine phosphorylation of FAK at Tyr-576, Tyr-577, and Tyr-881, and reduced phosphorylation of the FAK/Src substrates Cas and paxillin. However, FRNK expression did not alter the magnitude or dynamics of ERK activation induced by PDGF-BB or angiotensin II. Instead, FRNK expression markedly attenuated PDGF-BB-, angiotensin II-, and integrin-stimulated Rac1 activity and attenuates downstream signaling to JNK. Importantly, constitutively active Rac1 rescued the proliferation defects in FRNK expressing cells. Based on these observations, we hypothesize that FAK activation is required to integrate integrin signals with those from receptor tyrosine kinases and G protein-coupled receptors through downstream activation of Rac1 and that in SMC, FRNK may control proliferation and migration by buffering FAK-dependent Rac1 activation.
Collapse
Affiliation(s)
- Liisa J Sundberg
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
39
|
Goncharova EA, Billington CK, Irani C, Vorotnikov AV, Tkachuk VA, Penn RB, Krymskaya VP, Panettieri RA. Cyclic AMP-mobilizing agents and glucocorticoids modulate human smooth muscle cell migration. Am J Respir Cell Mol Biol 2003; 29:19-27. [PMID: 12600820 DOI: 10.1165/rcmb.2002-0254oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hyperplasia and cell migration of smooth muscle are features of both airway and pulmonary vascular diseases. The precise cellular and molecular mechanisms that regulate smooth muscle migration in the lungs remain unknown. In this study, we examined the effect of cAMP-mobilizing agents and steroids on smooth muscle cell migration. Platelet-derived growth factor (PDGF), transforming growth factor-alpha, vascular endothelial growth factor, and basic fibroblast growth factor significantly stimulated cell migration in pulmonary vascular smooth muscle (PVSM) cells. Airway smooth muscle (ASM) migration was also stimulated by PDGF, transforming growth factor-alpha, and basic fibroblast growth factor, but vascular endothelial growth factor was without effect. Interestingly, the smooth muscle mitogen thrombin did not stimulate migration of either cell type. Agents capable of elevating intracellular cAMP inhibited basal (unstimulated) cell migration in both cell types, whereas their effects on PDGF-stimulated migration were more variable. Prostaglandin E2, salmeterol, and the phosphodiesterase type 4 inhibitor cilomolast inhibited basal ASM and PVSM migration by 30-60%. Prostaglandin E2 and cilomolast also inhibited PDGF-stimulated migration of ASM and PVSM cells, but salmeterol was without effect. Preincubation of ASM cells with dexamethasone or fluticasone inhibited basal and PDGF-stimulated migration, and enabled an inhibitory effect of salmeterol on PDGF-induced cell migration. Steroids alone did not stimulate cAMP production or cAMP/PKA-dependent gene transcription (CRE-Luc activity), but slightly augmented salmeterol-stimulated CRE-Luc activity. Collectively, these findings demonstrate that cAMP-mobilizing agents and steroids modulate human smooth muscle cell migration, likely by distinct mechanisms.
Collapse
MESH Headings
- Albuterol/analogs & derivatives
- Albuterol/pharmacology
- Androstadienes/pharmacology
- Cell Movement/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/drug effects
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dexamethasone/pharmacology
- Dinoprostone/pharmacology
- Fibroblast Growth Factor 2/pharmacology
- Fluticasone
- Glucocorticoids/pharmacology
- Humans
- Mitogens/pharmacology
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic/drug effects
- Response Elements/drug effects
- Response Elements/genetics
- Salmeterol Xinafoate
- Transforming Growth Factor alpha/pharmacology
Collapse
Affiliation(s)
- Elena A Goncharova
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- J Mark Madison
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA.
| |
Collapse
|
41
|
Yamakita Y, Oosawa F, Yamashiro S, Matsumura F. Caldesmon inhibits Arp2/3-mediated actin nucleation. J Biol Chem 2003; 278:17937-44. [PMID: 12637566 DOI: 10.1074/jbc.m208739200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Arp2/3 complex greatly accelerates actin polymerization, which is thought to play a major role in cell motility by inducing membrane protrusions including ruffling movements. Membrane ruffles contain a variety of actin-binding proteins, which would modulate Arp2/3-dependent actin polymerization. However, their exact roles in actin polymerization remain to be established. Because caldesmon is present in membrane ruffles, as well as in stress fibers, it may alter Arp2/3-mediated actin polymerization. We have found that caldesmon greatly retards Arp2/3-induced actin polymerization. Kinetic analyses have revealed that caldesmon inhibits the nucleation process, whereas it does not largely reduce elongation. Caldesmon is found to inhibit binding of Arp2/3 to F-actin, which apparently reduces the ability of F-actin as a secondary activator of Arp2/3-mediated nucleation. We also have found that the inhibition of the binding between actin and caldesmon either by Ca(2+)/calmodulin or by phosphorylation with cdc2 kinase reverses the inhibitory effect of caldesmon on Arp2/3-induced actin polymerization. Our results suggest that caldesmon may be a key protein that modulates membrane ruffling and that this may involve changes in caldesmon phosphorylation and/or intracellular calcium concentrations during signal transduction.
Collapse
Affiliation(s)
- Yoshihiko Yamakita
- Rutgers University, Department of Molecular Biology and Biochemistry, Nelson Laboratories, Busch Campus, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
42
|
Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JXJ. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 2003; 284:C316-30. [PMID: 12529250 DOI: 10.1152/ajpcell.00125.2002] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capacitative Ca(2+) entry (CCE) through store-operated Ca(2+) (SOC) channels plays an important role in returning Ca(2+) to the sarcoplasmic reticulum (SR) and regulating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)). A rise in [Ca(2+)](cyt) and sufficient Ca(2+) in the SR are required for pulmonary artery smooth muscle cell (PASMC) proliferation. We tested the hypothesis that platelet-derived growth factor (PDGF)-mediated PASMC growth involves upregulation of c-Jun and TRPC6, a transient receptor potential cation channel. In rat PASMC, PDGF (10 ng/ml for 0.5-48 h) phosphorylated signal transducer and activator of transcription (STAT3), increased mRNA and protein levels of c-Jun, and stimulated cell proliferation. PDGF treatment also upregulated TRPC6 expression and augmented CCE, elicited by passive depletion of Ca(2+) from the SR using cyclopiazonic acid. Furthermore, overexpression of c-Jun stimulated TRPC6 expression and CCE amplitude in PASMC. Downregulation of TRPC6 using an antisense oligonucleotide specifically for human TRPC6 decreased CCE and inhibited PDGF-mediated PASMC proliferation. These results suggest that PDGF-mediated PASMC proliferation is associated with c-Jun/STAT3-induced upregulation of TRPC6 expression. The resultant increase in CCE raises [Ca(2+)](cyt), facilitates return of Ca(2+) to the SR, and enhances PASMC growth.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Transporting ATPases/antagonists & inhibitors
- Calcium-Transporting ATPases/metabolism
- Cell Division/drug effects
- Cell Division/physiology
- Cells, Cultured
- Culture Media, Serum-Free/pharmacology
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genetic Vectors
- Lung/blood supply
- Lung/growth & development
- Lung/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-jun/genetics
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- STAT3 Transcription Factor
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- TRPC Cation Channels
- Trans-Activators/drug effects
- Trans-Activators/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Ying Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, California 92103, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhong J, Wang GX, Hatton WJ, Yamboliev IA, Walsh MP, Hume JR. Regulation of volume-sensitive outwardly rectifying anion channels in pulmonary arterial smooth muscle cells by PKC. Am J Physiol Cell Physiol 2002; 283:C1627-36. [PMID: 12388117 DOI: 10.1152/ajpcell.00152.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the possible role of endogenous protein kinase C (PKC) in the regulation of native volume-sensitive organic osmolyte and anion channels (VSOACs) in acutely dispersed canine pulmonary artery smooth muscle cells (PASMC). Hypotonic cell swelling activated native volume-regulated Cl(-) currents (I(Cl.vol)) which could be reversed by exposure to phorbol 12,13-dibutyrate (0.1 microM) or by hypertonic cell shrinkage. Under isotonic conditions, calphostin C (0.1 microM) or Ro-31-8425 (0.1 microM), inhibitors of both conventional and novel PKC isozymes, significantly activated I(Cl.vol) and prevented further modulation by subsequent hypotonic cell swelling. Bisindolylmaleimide (0.1 microM), a selective conventional PKC inhibitor, was without effect. Dialyzing acutely dispersed and cultured PASMC with epsilon V1-2 (10 microM), a translocation inhibitory peptide derived from the V1 region of epsilon PKC, activated I(Cl.vol) under isotonic conditions and prevented further modulation by cell volume changes. Dialyzing PASMC with beta C2-2 (10 microM), a translocation inhibitory peptide derived from the C2 region of beta PKC, had no detectable effect. Immunohistochemistry in cultured canine PASMC verified that hypotonic cell swelling is accompanied by translocation of epsilon PKC from the vicinity of the membrane to cytoplasmic and perinuclear locations. These data suggest that membrane-bound epsilon PKC controls the activation state of native VSOACs in canine PASMC under isotonic and anisotonic conditions.
Collapse
Affiliation(s)
- Juming Zhong
- Center of Biomedical Research Excellence, Department of Pharmacology, University of Nevada, Reno, Nevada 89557-0046, USA
| | | | | | | | | | | |
Collapse
|
44
|
Yamboliev IA, Ward SM, Mutafova-Yambolieva VN. Canine mesenteric artery and vein convey no difference in the content of major contractile proteins. BMC PHYSIOLOGY 2002; 2:17. [PMID: 12445326 PMCID: PMC138811 DOI: 10.1186/1472-6793-2-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 11/25/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mesenteric arteries and veins are composed of tonic smooth muscles and serve distinct functions in the peripheral circulation. However, the basis for the functional disparity of the resistive and capacitative parts of the mesenteric circulation is poorly understood. We studied potential differences in the expression levels of six contractile proteins in secondary and tertiary branches of the inferior mesenteric artery and vein along with differences in the vessel wall morphology. RESULTS Bright field and electron microscopy showed that both vessel walls had the same major structural elements. The arterial walls, however, had greater number, and more tightly assembled, smooth muscle cell layers compared to vein walls. The content of actin, myosin heavy chain, myosin light chain, and calponin was similar in the two blood vessels. The artery expressed higher amount of the actin-binding protein caldesmon than the vein (41.86 +/- 2.33 and 30.13 +/- 3.37 microg/mg respectively, n = 12). Although the total tropomyosin content was almost identical in both blood vessels, the alpha isoform dominated in the artery, while the beta isoform prevailed in the vein. CONCLUSIONS Canine mesenteric artery and vein differ in vessel wall morphology but do not convey differences in the expression levels of actin, myosin light chain, myosin heavy chain and calponin. The two vascular networks express distinct amounts of caldesmon and tropomyosin, which might contribute to the fine tuning of the contractile machinery in a manner consistent with the physiological functions of the two vascular networks.
Collapse
Affiliation(s)
- Ilia A Yamboliev
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0046, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0046, USA
| | | |
Collapse
|
45
|
Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 2002; 45:173-202. [PMID: 12525995 DOI: 10.1053/pcad.2002.130041] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical pulmonary hypertension is characterized by a sustained elevation in pulmonary arterial pressure. Pulmonary vascular remodeling involves structural changes in the normal architecture of the walls of pulmonary arteries. The process of vascular remodeling can occur as a primary response to injury, or stimulus such as hypoxia, within the resistance vessels of the lung. Alternatively, the changes seen in more proximal vessels may arise secondary to a sustained increase in intravascular pressure. To withstand the chronic increase in intraluminal pressure, the vessel wall becomes thickened and stronger. This "armouring" of the vessel wall with extra-smooth muscle and extracellular matrix leads to a decrease in lumen diameter and reduced capacity for vasodilatation. This maladaptive response results in increased pulmonary vascular resistance and consequently, sustained pulmonary hypertension. The process of pulmonary vascular remodeling involves all layers of the vessel wall and is complicated by the finding that cellular heterogeneity exists within the traditional compartments of the vascular wall: intima, media, and adventitia. In addition, the developmental stage of the organism greatly modifies the response of the pulmonary circulation to injury. This review focuses on the latest advances in our knowledge of these processes as they relate to specific forms of pulmonary hypertension and particularly in the light of recent genetic studies that have identified specific pathways involved in the pathogenesis of severe pulmonary hypertension.
Collapse
Affiliation(s)
- T K Jeffery
- Respiratory Medicine Unit, Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | |
Collapse
|
46
|
Bogatcheva NV, Garcia JGN, Verin AD. Role of tyrosine kinase signaling in endothelial cell barrier regulation. Vascul Pharmacol 2002; 39:201-12. [PMID: 12747960 DOI: 10.1016/s1537-1891(03)00009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phosphorylation of proteins on tyrosine acts as a reversible and specific trigger mechanism, forming or disrupting regulatory connections between proteins. Tyrosine kinases and phosphatases participate in multiple cellular processes, and considerable evidence now supports a role for tyrosine phosphorylation in vascular permeability. A semipermeable barrier between the vascular compartment and the interstitium is maintained by the integrity of endothelial monolayer, controlling movement of fluids, macromolecules and leucocytes. Barrier function is regulated by the adjustment of paracellular gaps between endothelial cells (ECs) by two antagonistic forces, centripetal cytoskeletal tension and opposing cell-cell and cell-matrix adhesion forces. Both cytoskeletal filaments and adhesion sites are intimately linked in complex machinery which is regulated by multiple signaling events including protein phosphorylation and/or protein translocation to specific intracellular positions. Tyrosine kinases occupy key positions in the mechanism controlling cell responses mediated through various cell surface receptors, which use tyrosine phosphorylation to transduce extracellular signal.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Johns Hopkins Asthma and Allergy Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins, Bayview Circle, Baltimore, MD 21224-6801, USA
| | | | | |
Collapse
|
47
|
Kjøller L. The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol Chem 2002; 383:5-19. [PMID: 11928822 DOI: 10.1515/bc.2002.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cell migration is a complex process requiring tight control of several mechanisms including dynamic reorganization of the actin cytoskeleton and adhesion to the extracellular matrix. The GPI-anchored urokinase plasminogen activator receptor (uPAR) has an important role in the regulation of cell motility in many cell types. This is partly due to the localization of proteolytic activity on the cell surface by binding of the serine protease uPA. Results accumulated over the last decade suggest that uPAR is also involved in motility control through other mechanisms. These include induction of signal transduction events after ligation with uPA, binding to the extracellular matrix molecule vitronectin (VN), and association with integrins and other transmembrane partners. In this review these mechanisms will be discussed with a special emphasis on how the GPI-linked receptor transmits signals to the intracellular milieu and how uPAR participates in the regulation of actin cytoskeleton reorganization and cell adhesion during cell migration.
Collapse
Affiliation(s)
- Lars Kjøller
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
48
|
|