1
|
Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology 2019; 156:2158-2173. [PMID: 30831083 PMCID: PMC6715393 DOI: 10.1053/j.gastro.2019.02.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Acidification of the gastric lumen poses a barrier to transit of potentially pathogenic bacteria and enables activation of pepsin to complement nutrient proteolysis initiated by salivary proteases. Histamine-induced activation of the PKA signaling pathway in gastric corpus parietal cells causes insertion of proton pumps into their apical plasma membranes. Parietal cell secretion and homeostasis are regulated by signaling pathways that control cytoskeletal changes required for apical membrane remodeling and organelle and proton pump activities. Helicobacter pylori colonization of human gastric mucosa affects gastric epithelial cell plasticity and homeostasis, promoting epithelial progression to neoplasia. By intervening in proton pump expression, H pylori regulates the abundance and diversity of microbiota that populate the intestinal lumen. We review stimulation-secretion coupling and renewal mechanisms in parietal cells and the mechanisms by which H pylori toxins and effectors alter cell secretory pathways (constitutive and regulated) and organelles to establish and maintain their inter- and intracellular niches. Studies of bacterial toxins and their effector proteins have provided insights into parietal cell physiology and the mechanisms by which pathogens gain control of cell activities, increasing our understanding of gastrointestinal physiology, microbial infectious disease, and immunology.
Collapse
Affiliation(s)
- Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia.
| | - Adam J. Smolka
- Gastroenterology and Hepatology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
2
|
Schlegel C, Weis VG, Knowles BC, Lapierre LA, Martin MG, Dickman P, Goldenring JR, Shub MD. Apical Membrane Alterations in Non-intestinal Organs in Microvillus Inclusion Disease. Dig Dis Sci 2018; 63:356-365. [PMID: 29218485 PMCID: PMC5797493 DOI: 10.1007/s10620-017-4867-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/22/2017] [Indexed: 12/09/2022]
Abstract
OBJECTIVES Microvillus inclusion disease (MVID) is a severe form of neonatal diarrhea, caused mainly by mutations in MYO5B. Inactivating mutations in MYO5B causes depolarization of enterocytes in the small intestine, which gives rise to chronic, unremitting secretory diarrhea. While the pathology of the small intestine in MVID patients is well described, little is known about extraintestinal effects of MYO5B mutation. METHODS We examined stomach, liver, pancreas, colon, and kidney in Navajo MVID patients, who share a single homozygous MYO5B-P660L (1979C>T p.Pro660Leu, exon 16). Sections were stained for markers of the apical membrane to assess polarized trafficking. RESULTS Navajo MVID patients showed notable changes in H/K-ATPase-containing tubulovesicle structure in the stomach parietal cells. Colonic mucosa was morphologically normal, but did show losses in apical ezrin and Syntaxin 3. Hepatocytes in the MVID patients displayed aberrant canalicular expression of the essential transporters MRP2 and BSEP. The pancreas showed small fragmented islets and a decrease in apical ezrin in pancreatic ducts. Kidney showed normal primary cilia. CONCLUSIONS These findings indicate that the effects of the P660L mutation in MYO5B in Navajo MVID patients are not limited to the small intestine, but that certain tissues may be able to compensate functionally for alterations in apical trafficking.
Collapse
Affiliation(s)
- Cameron Schlegel
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Victoria G Weis
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Byron C Knowles
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Lynne A Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Paul Dickman
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Mitchell D Shub
- Division of Gastroenterology, Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
3
|
Natarajan P, Crothers JM, Rosen JE, Nakada SL, Rakholia M, Okamoto CT, Forte JG, Machen TE. Myosin IIB and F-actin control apical vacuolar morphology and histamine-induced trafficking of H-K-ATPase-containing tubulovesicles in gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 2014; 306:G699-710. [PMID: 24578340 PMCID: PMC3989701 DOI: 10.1152/ajpgi.00316.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle.
Collapse
Affiliation(s)
- Paramasivam Natarajan
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - James M. Crothers
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Jared E. Rosen
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Stephanie L. Nakada
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Milap Rakholia
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Curtis T. Okamoto
- 2Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - John G. Forte
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | - Terry E. Machen
- 1Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| |
Collapse
|
4
|
Baranwal S, Naydenov NG, Harris G, Dugina V, Morgan KG, Chaponnier C, Ivanov AI. Nonredundant roles of cytoplasmic β- and γ-actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell 2012; 23:3542-53. [PMID: 22855531 PMCID: PMC3442403 DOI: 10.1091/mbc.e12-02-0162] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific siRNAs and cell-permeable inhibitory peptides. Unique roles of cytoplasmic actin isoforms in regulating structure and remodeling of adherens and tight junctions are revealed. Association with the actin cytoskeleton is critical for normal architecture and dynamics of epithelial tight junctions (TJs) and adherens junctions (AJs). Epithelial cells express β-cytoplasmic (β-CYA) and γ-cytoplasmic (γ-CYA) actins, which have different cellular localization and functions. This study elucidates the roles of cytoplasmic actins in regulating structure and remodeling of AJs and TJs in model intestinal epithelia. Immunofluorescence labeling and latrunculin B treatment reveal affiliation of dynamic β-CYA filaments with newly assembled and mature AJs, whereas an apical γ-CYA pool is composed of stable perijunctional bundles and rapidly turning-over nonjunctional filaments. The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific small interfering RNAs and cell-permeable inhibitory peptides. These experiments demonstrate unique roles of β-CYA and γ-CYA in regulating the steady-state integrity of AJs and TJs, respectively. Furthermore, β-CYA is selectively involved in establishment of apicobasal cell polarity. Both actin isoforms are essential for normal barrier function of epithelial monolayers, rapid AJ/TJ reassembly, and formation of three-dimensional cysts. Cytoplasmic actin isoforms play unique roles in regulating structure and permeability of epithelial junctions.
Collapse
Affiliation(s)
- Somesh Baranwal
- Department of Medicine, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhu L, Crothers J, Zhou R, Forte JG. A possible mechanism for ezrin to establish epithelial cell polarity. Am J Physiol Cell Physiol 2010; 299:C431-43. [PMID: 20505040 DOI: 10.1152/ajpcell.00090.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ezrin is an important membrane/actin cytoskeleton linker protein, especially in epithelia. Ezrin has two important binding domains: an NH(2)-terminal region that binds to plasma membrane and a COOH-terminal region that binds to F-actin only after a conformational activation by phosphorylation at Thr567 of ezrin. The present experiments were undertaken to investigate the detailed cellular changes in the time course of expression of ezrin-T567 mutants (nonphosphorylatable T567A and permanent phospho-mimic T567D) in parietal cells and to assess ezrin distribution and its influence on the elaborate membrane recruitment processes of these cells. T567A mutant and wild-type (WT) ezrin were consistently localized to the apical plasma membrane, even with overexpression. On the other hand, T567D went first to apical membrane at early times and low expression levels, then accumulated mainly at the basal surface after 24 h. Overexpression of WT or T567A led to incorporation of internal membranes to apical vacuoles, while overexpression of T567D led to large incorporation of apical and intracellular membranes (including H-K-ATPase) to the basal surface. Differences in polar distribution of ezrin suggest a role for the linker protein in promoting formation and plasticity of membrane surface projections, forming the basis for a novel theory for ezrin as an organizer and regulator of membrane recruitment. A model simulating the cellular distribution of ezrin and its associated membrane- and F-actin-binding forms is given to predict redistributions observed with phosphorylation and mutant overexpression, and it can easily be modified as more specific information regarding binding constants and specific sites becomes available.
Collapse
Affiliation(s)
- Lixin Zhu
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, New York, USA
| | | | | | | |
Collapse
|
6
|
Rubach M, Lang R, Skupin C, Hofmann T, Somoza V. Activity-guided fractionation to characterize a coffee beverage that effectively down-regulates mechanisms of gastric acid secretion as compared to regular coffee. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4153-4161. [PMID: 20235536 DOI: 10.1021/jf904493f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In some individuals, the consumption of coffee beverages is related to symptoms of gastric irritation. Hot water steam-treatment of raw coffee beans is hypothesized to reduce the contents of stomach irritating compounds, and products to which this technology is applied are launched as stomach-friendly coffee. However, data on the effect of steam-treated coffee on gastric acid secretion are conflicting and it has not been proven yet as to which coffee components act as pro- or antisecretory stimulants. The work presented here aimed at the characterization of a coffee beverage that effectively down-regulates mechanisms of proton secretion in human gastric cells (HGT-1). At first, a regular coffee beverage was fractionated by using solvents of different polarity: water, ethylacetate, dichloromethane, and pentane. Functional assays on the proton secretory activity (PSA) of these solvent fractions revealed the least pronounced effect for the water fraction, for which quantitative analyses demonstrated the highest distribution of chlorogenic acid (95%), (beta)N-alkanoyl-5-hydroxytryptamides (55%), and N-methylpyridinium (N-MP, >99%) among all fractions. Following experiments demonstrated that HGT-1 cells treated with regular coffee fortified with N-MP at a concentration of about 20 mg/mL N-MP showed a significantly decreased PSA as compared to cells which were exposed to coffee beverages containing higher (32-34 mg/L) or lower (5 mg/L) N-MP concentrations. Results from cellular pathway analyses of transcription (ATF-1 and Akt1) and signaling (cAMP and EGFr) factors and kinases (ERK1/2), and experiments on the gene expression of pro (histamine-HRH2 and acetylcholine-CHRM3)- and anti (somatostatin-SSTR1)-secretory receptors and H(+),K(+)-ATPase verified this antisecretory activity of N-MP in coffee beverages.
Collapse
Affiliation(s)
- Malte Rubach
- German Research Center for Food Chemistry, Garching, Germany
| | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- John G. Forte
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720;
| | - Lixin Zhu
- Department of Pediatrics, Digestive Disease and Nutrition Center, The State University of New York, Buffalo, New York 14214;
| |
Collapse
|
8
|
Pérez P, Aguilera S, Olea N, Alliende C, Molina C, Brito M, Barrera MJ, Leyton C, Rowzee A, González MJ. Aberrant localization of ezrin correlates with salivary acini disorganization in Sjogren's Syndrome. Rheumatology (Oxford) 2010; 49:915-23. [PMID: 20185532 DOI: 10.1093/rheumatology/keq033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To analyse whether the alterations in the structure and organization of microvilli in salivary acinar cells from SS patients are linked to changes in the expression and/or cellular localization of ezrin. METHODS Salivary gland (SG) acini from controls and SS patients were used to evaluate ezrin expression by western blot and localization of total and activated (phospho-Thr567) ezrin by IF and EM. RESULTS In acini from control labial SGs, ezrin was located predominantly at the apical pole and to a lesser extent at the basal region of these cells. Conversely, in acini extracts from SS patients, ezrin showed significantly elevated levels, which were accompanied with localization mostly at the basal region. Moreover, F-actin maintained its distribution in both the apical region and basolateral cortex; however, it was also observed in the acinar cytoplasm. Phospho-ezrin (active form) was located exclusively at the apical pole of acinar cells from control subjects and abundantly located at the basal cytoplasm in SS samples. These results were confirmed by immunogold studies. CONCLUSIONS The decrease of ezrin and phospho-ezrin at the apical pole and the cytoplasmic redistribution of F-actin suggest an altered interaction between the F-actin-cytoskeleton and plasma membrane in SS patient acini, which may explain the microvilli disorganization. These alterations could eventually contribute to SG hyposecretion in SS patients.
Collapse
Affiliation(s)
- Paola Pérez
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70061, Santiago 7, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur J Cell Biol 2008; 87:709-20. [DOI: 10.1016/j.ejcb.2008.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 12/18/2022] Open
|
10
|
Zhu L, Hatakeyama J, Chen C, Shastri A, Poon K, Forte JG. Comparative study of ezrin phosphorylation among different tissues: more is good; too much is bad. Am J Physiol Cell Physiol 2008; 295:C192-202. [PMID: 18480298 DOI: 10.1152/ajpcell.00159.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a comparison of three different tissues, the membrane cytoskeleton linker protein ezrin was found to assume high levels of phosphorylation on threonine-567 (T567) in the brush border membranes of renal proximal tubule cells and small intestine enterocytes, in contrast to the apical canalicular membrane of gastric parietal cells. Together with an earlier observation that increased T567 phosphorylation is associated with more elaborate microvilli in parietal cells, this comparative study suggested a higher phosphorylation level requirement for the denser and more uniform distribution of microvilli at brush border surfaces. Using a kinase inhibitor, staurosporin, and metabolic inhibitor, sodium azide, relatively high turnover of ezrin T567 phosphorylation was observed in all three epithelia. Aiming to understand the role of phosphorylation turnover in these tissues, detergent extraction analysis of gastric glands and proximal tubules revealed that an increased phosphorylation on ezrin T567 greatly enhanced its association with F-actin, while ezrin-membrane interaction persisted regardless of the changes of phosphorylation level on ezrin T567. Finally, expression of Thr567Asp mutant ezrin, which mimics the phospho-ezrin state but does not allow turnover, caused aberrant growth of membrane projections in cultured proximal tubule cells, consistent with what had previously been observed in several cell lines and gastric parietal cells. These results fit into a model of surface plasticity, which posits that the turnover of phosphorylation on T567 empowers ezrin to relax and reposition membrane to the underlying cytoskeleton under varying conditions of filament growth or rapid membrane expansion (or depletion).
Collapse
Affiliation(s)
- Lixin Zhu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
11
|
Lange K, Gartzke J. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling. J Cell Physiol 2006; 209:270-87. [PMID: 16823881 DOI: 10.1002/jcp.20717] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling.
Collapse
|
12
|
Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 2006; 83:84-96. [PMID: 16530759 DOI: 10.1016/j.exer.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/12/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins). Recent information describing fundamental changes in basic exocytotic mechanisms in the NOD mouse, an animal model of Sjögren's syndrome, is presented.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jerdeva GV, Wu K, Yarber FA, Rhodes CJ, Kalman D, Schechter JE, Hamm-Alvarez SF. Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J Cell Sci 2005; 118:4797-812. [PMID: 16219687 PMCID: PMC1482462 DOI: 10.1242/jcs.02573] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The acinar epithelial cells of the lacrimal gland exocytose the contents of mature secretory vesicles containing tear proteins at their apical membranes in response to secretagogues. Here we use time-lapse confocal fluorescence microscopy and fluorescence recovery after photobleaching to investigate the changes in actin filaments located beneath the apical membrane during exocytosis evoked by the muscarinic agonist, carbachol (100 microM). Time-lapse confocal fluorescence microscopy of apical actin filaments in reconstituted rabbit lacrimal acini transduced with replication-deficient adenovirus containing GFP-actin revealed a relatively quiescent apical actin array in resting acini. Carbachol markedly increased apical actin filament turnover and also promoted transient actin assembly around apparent fusion intermediates. Fluorescence recovery after photobleaching measurements revealed significant (P< or =0.05) increases and decreases, respectively, in mobile fraction (Mf) and turnover times (t1/2) for apical actin filaments in carbachol-stimulated acini relative to untreated acini. The myosin inhibitors, 2,3-butanedione monoxime (BDM, 10 mM, 15 minutes) and ML-7 (40 microM, 15 minutes), significantly decreased carbachol-stimulated secretion of bulk protein and the exogenous secretory vesicle marker, syncollin-GFP; these agents also promoted accumulation of actin-coated structures which were enriched, in transduced acini, in syncollin-GFP, confirming their identity as fusion intermediates. Actin-coated fusion intermediates were sized consistent with incorporation of multiple rather than single secretory vesicles; moreover, BDM and ML-7 caused a shift towards formation of multiple secretory vesicle aggregates while significantly increasing the diameter of actin-coated fusion intermediates. Our findings suggest that the increased turnover of apical actin filaments and the interaction of actin with non-muscle myosin II assembled around aggregates of secretory vesicles facilitate exocytosis in lacrimal acinar epithelial cells.
Collapse
Affiliation(s)
- Galina V Jerdeva
- Department of Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, PSC 406A, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhou R, Zhu L, Kodani A, Hauser P, Yao X, Forte JG. Phosphorylation of ezrin on threonine 567 produces a change in secretory phenotype and repolarizes the gastric parietal cell. J Cell Sci 2005; 118:4381-91. [PMID: 16144865 DOI: 10.1242/jcs.02559] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Phosphorylation of the membrane-cytoskeleton linker protein ezrin has been functionally linked to acid secretion and vesicle recruitment to the apical secretory membrane in gastric parietal cells. Phosphorylation of the conserved T567 residue of ezrin has been shown to alter the N/C oligomerization of ezrin and promote the formation of actin-rich surface projections in other cells. To test the importance of T567 as a regulatory site for ezrin in parietal cell activation, we incorporated wild-type (WT) and mutant forms of ezrin, including the nonphosphorylatable T567A mutation and a mutant mimicking permanent phosphorylation, T567D. All ezrin constructs included C-terminal cyan-fluorescent protein (CFP) and were incorporated into adenoviral constructs for efficient introduction into cultured parietal cells from rabbit stomach. Fluorescence microscopy was used to localize CFP-ezrin and monitor morphological responses. Accumulation of a weak base (aminopyrine) was used to monitor receptor-mediated acid secretory response of the cultured cells. Similar to endogenous ezrin, WT and T567A CFP-ezrin localized heavily to apical membrane vacuoles with considerably lower levels associated with the surrounding basolateral membrane. Interestingly, H,K-ATPase within cytoplasmic tubulovesicles was incorporated into the apical vacuoles along with WT and T567A mutant ezrin. In these parietal cells secretagogue stimulation produced a striking vacuolar expansion associated with HCl secretion and the secretory phenotype. Expression of T567D CFP-ezrin was quite different, being rarely associated with apical vacuoles. T567D was more typically localized to the basolateral membrane, often associated with long spikes and fingerlike projections. Moreover, the cells did not display secretagogue-dependent morphological changes and, to our surprise, H,K-ATPase was recruited to the T567D CFP-ezrin-enriched basolateral projections. We conclude that T567 phosphorylation, which is probably regulated through Rho signaling pathway, may direct ezrin to membrane-cytoskeletal activity at the basolateral membrane and away from apical secretory activity. The large basolateral expansion is predicted to recruit membranes from sources not normally targeted to that surface.
Collapse
Affiliation(s)
- Rihong Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
15
|
Bi Y, Williams JA. A role for Rho and Rac in secretagogue-induced amylase release by pancreatic acini. Am J Physiol Cell Physiol 2005; 289:C22-32. [PMID: 15743890 DOI: 10.1152/ajpcell.00395.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The actin cytoskeleton has long been implicated in protein secretion. We investigated whether Rho and Rac, known regulators of the cytoskeleton, are involved in amylase secretion by mouse pancreatic acini. Secretagogues, including cholecystokinin (CCK) and the acetylcholine analog carbachol, increased the amount of GTP-bound RhoA and Rac1 and induced translocation from cytosol to a membrane fraction. Immunocytochemistry revealed the translocation of Rho and Rac within the apical region of the cell. Expression by means of adenoviral vectors of dominant-negative Rho (RhoN19), dominant-negative Rac (RacN17), and Clostridium Botulinum C3 exotoxin, which ADP ribosylates and inactivates Rho, significantly inhibited amylase secretion by CCK and carbachol; inhibiting both Rho and Rac resulted in a greater reduction. This inhibitory effect of RhoN19 on CCK-induced amylase secretion was apparent in both the early and late phases of secretion, whereas RacN17 was more potent on the late phase of secretion. None of these three affected the basal Ca2+or the peak intracellular Ca2+concentration stimulated by CCK. Latrunculin, a marine toxin that sequesters actin monomers, time-dependently decreased the total amount of filamentous actin (F-actin) and dose-dependently decreased secretion by secretagogues without affecting Ca2+signaling. These data suggest that Rho and Rac are both involved in CCK-induced amylase release in pancreatic acinar cell possibly through an effect on the actin cytoskeleton.
Collapse
Affiliation(s)
- Yan Bi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
16
|
Turvey MR, Fogarty KE, Thorn P. Inositol (1,4,5)-trisphosphate receptor links to filamentous actin are important for generating local Ca2+ signals in pancreatic acinar cells. J Cell Sci 2005; 118:971-80. [PMID: 15713744 DOI: 10.1242/jcs.01693] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We explored a potential structural and functional link between filamentous actin (F-actin) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) in mouse pancreatic acinar cells. Using immunocytochemistry, F-actin and type 2 and 3 IP3Rs (IP3R2 and IP3R3) were identified in a cellular compartment immediately beneath the apical plasma membrane. In an effort to demonstrate that IP3R distribution is dependent on an intact F-actin network in the apical subplasmalemmal region, cells were treated with the actin-depolymerising agent latrunculin B. Immunocytochemistry indicated that latrunculin B treatment reduced F-actin in the basolateral subplasmalemmal compartment, and reduced and fractured F-actin in the apical subplasmalemmal compartment. This latrunculin-B-induced loss of F-actin in the apical region coincided with a reduction in IP3R2 and IP3R3, with the remaining IP3Rs localized with the remaining F-actin. Experiments using western blot analysis showed that IP3R3s are resistant to extraction by detergents, which indicates a potential interaction with the cytoskeleton. Latrunculin B treatment in whole-cell patch-clamped cells inhibited Ca2+-dependent Cl– current spikes evoked by inositol (2,4,5)-trisphosphate; this is due to an inhibition of the underlying local Ca2+ signal. Based on these findings, we suggest that IP3Rs form links with F-actin in the apical domain and that these links are essential for the generation of local Ca2+ spikes.
Collapse
Affiliation(s)
- Matthew R Turvey
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 IPD, UK
| | | | | |
Collapse
|
17
|
Tashiro K, Nagao T, Kurose H, Ichijo H, Urushidani T. Role of Rho in rabbit parietal cell. J Cell Physiol 2003; 197:409-17. [PMID: 14566970 DOI: 10.1002/jcp.10370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rho is known as an important regulator of actin microfilament formation. We were led to study it because a dynamic rearrangement of actin filaments occurs during activation of gastric acid secretion. In order to use specific probes, the rabbit gastric gland culture system was employed and the various genes were expressed using adenovirus vector. When the constitutive active mutant of Rho (RhoAV14) was expressed, histamine- or carbachol-stimulated acid secretion monitored by (14)C-aminopyrine accumulation was inhibited. Conversely, expression of C3 toxin, the specific inhibitor of Rho, and expression of G(12/13)-specific regulator of G-protein signaling domain, the specific inhibitor of G(12/13) which is considered to be an upstream mediator of Rho, both potentiated acid secretion stimulated by the agonists. F-actin staining of parietal cell expressing RhoAV14 revealed that the microfilament supporting the intracellular canaliculi (not on the basolateral membrane) almost disappeared. No clear changes in the intracellular localization of Rho were observed during stimulation of parietal cell. In resting glands, the endogenous active form of Rho was relatively high, and it decreased during histamine stimulation. The finding that any treatment which inhibit Rho augment acid secretion whereas those that activate Rho inhibit secretion strongly suggests that the Rho-pathway conducts a negatively regulating signal in parietal cell activation, possibly via site-specific regulation of actin microfilaments.
Collapse
Affiliation(s)
- Keiichiro Tashiro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo
| | | | | | | | | |
Collapse
|
18
|
Zhou R, Watson C, Fu C, Yao X, Forte JG. Myosin II is present in gastric parietal cells and required for lamellipodial dynamics associated with cell activation. Am J Physiol Cell Physiol 2003; 285:C662-73. [PMID: 12724136 DOI: 10.1152/ajpcell.00085.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonmuscle myosin II has been shown to participate in organizing the actin cytoskeleton in polarized epithelial cells. Vectorial acid secretion in cultured parietal cells involves translocation of proton pumps from cytoplasmic vesicular membranes to the apical plasma membrane vacuole with coordinated lamellipodial dynamics at the basolateral membrane. Here we identify nonmuscle myosin II in rabbit gastric parietal cells. Western blots with isoform-specific antibodies indicate that myosin IIA is present in both cytosolic and particulate membrane fractions whereas the IIB isoform is associated only with particulate fractions. Immunofluorescent staining demonstrates that myosin IIA is diffusely located throughout the cytoplasm of resting parietal cells. However, after stimulation, myosin IIA is rapidly redistributed to lamellipodial extensions at the cell periphery; virtually all the cytoplasmic myosin IIA joins the newly formed basolateral membrane extensions. 2,3-Butanedione monoximine (BDM), a myosin-ATPase inhibitor, greatly diminishes the lamellipodial dynamics elicited by stimulation and retains the pattern of myosin IIA cytoplasmic staining. However, BDM had no apparent effect on the stimulation associated redistribution of H,K-ATPase from a cytoplasmic membrane compartment to apical membrane vacuoles. The myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-7) also did not alter the stimulation-associated recruitment of H,K-ATPase to apical membrane vacuoles, but unlike BDM it had relatively minor inhibitory effects on lamellipodial dynamics. We conclude that specific disruption of the basolateral actomyosin cytoskeleton has no demonstrable effect on recruitment of H,K-ATPase-rich vesicles into the apical secretory membrane. However, myosin II plays an important role in regulating lamellipodial dynamics and cortical actomyosin associated with parietal cell activation.
Collapse
Affiliation(s)
- Rihong Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Acid secretion by the gastric parietal cell is regulated by paracrine, endocrine, and neural pathways. The physiological stimuli include histamine, acetylcholine, and gastrin via their receptors located on the basolateral plasma membranes. Stimulation of acid secretion typically involves an initial elevation of intracellular calcium and/or cAMP followed by activation of a cAMP-dependent protein kinase cascade that triggers the translocation and insertion of the proton pump enzyme, H,K-ATPase, into the apical plasma membrane of parietal cells. Whereas the H,K-ATPase contains a plasma membrane targeting motif, the stimulation-mediated relocation of the H,K-ATPase from the cytoplasmic membrane compartment to the apical plasma membrane is mediated by a SNARE protein complex and its regulatory proteins. This review summarizes the progress made toward an understanding of the cell biology of gastric acid secretion. In particular we have reviewed the early signaling events following histaminergic and cholinergic activation, the identification of multiple factors participating in the trafficking and recycling of the proton pump, and the role of the cytoskeleton in supporting the apical pole remodeling, which appears to be necessary for active acid secretion by the parietal cell. Emphasis is placed on identifying protein factors that serve as effectors for the mechanistic changes associated with cellular activation and the secretory response.
Collapse
Affiliation(s)
- Xuebiao Yao
- Department of Molecular and Cell Biology University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
20
|
Kusner DJ, Barton JA, Qin C, Wang X, Iyer SS. Evolutionary conservation of physical and functional interactions between phospholipase D and actin. Arch Biochem Biophys 2003; 412:231-41. [PMID: 12667487 DOI: 10.1016/s0003-9861(03)00052-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phospholipase D (PLD) enzymes from bacteria to mammals exhibit a highly conserved core structure and catalytic mechanism, but whether protein-protein interactions exhibit similar commonality is unknown. Our objective was to determine whether the physical and functional interactions of mammalian PLDs with actin are evolutionarily conserved among bacterial and plant PLDs. Highly purified bacterial and plant PLDs cosedimented with mammalian skeletal muscle alpha-actin, indicating direct interaction with F-actin. The binding of bacterial PLD to G-actin exhibited two affinity states, with dissociation constants of 1.13 pM and 0.58 microM. The effects of actin on the activities of bacterial and plant PLDs were polymerization dependent; monomeric G-actin inhibited PLD activity, whereas polymerized F-actin augmented PLD activity. Actin modulation of bacterial and plant PLDs demonstrated kinetic characteristics, efficacies, and potencies similar to those of human PLD1. Thus, physical and functional interactions between PLD and actin in PLD family members from bacteria to mammals are highly conserved throughout evolution.
Collapse
Affiliation(s)
- David J Kusner
- Department of Internal Medicine, University of Iowa Carrer College of Medicine and VA Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
21
|
Chew CS, Chen X, Parente JA, Tarrer S, Okamoto C, Qin HY. Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo. J Cell Sci 2002; 115:4787-99. [PMID: 12432067 DOI: 10.1242/jcs.00174] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of [cAMP]i in pancreas, intestine and gastric mucosa and is selectively expressed in cells within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation induces the partial translocation of lasp-1 to the apically directed F-actin-rich canalicular membrane, which is the site of active HCl secretion. Lasp-1 is an unusual modular protein that contains an N-terminal LIM domain, a C-terminal SH3 domain and two internal nebulin repeats. Domain-based analyses have recently categorized this protein as an epithelial representative of the nebulin family, which also includes the actin binding, muscle-specific proteins, nebulin, nebulette and N-RAP. In this study, we show that lasp-1 binds to non-muscle filamentous (F) actin in vitro in a phosphorylation-dependent manner. In addition, we provide evidence that lasp-1 is concentrated within focal complexes as well as in the leading edges of lamellipodia and the tips of filopodia in non-transformed gastric fibroblasts. In actin pull-down assays, the apparent K(d) of bacterially expressed his-tagged lasp-1 binding to F-actin was 2 micro M with a saturation stoichiometry of approximately 1:7. Phosphorylation of recombinant lasp-1 with recombinant PKA increased the K(d) and decreased the B(max) for lasp-1 binding to F-actin. Microsequencing and site-directed mutagenesis localized the major in vivo and in vitro PKA-dependent phosphorylation sites in rabbit lasp-1 to S(99) and S(146). BLAST searches confirmed that both sites are conserved in human and chicken homologues. Transfection of lasp-1 cDNA encoding for alanine substitutions at S(99) and S(146), into parietal cells appeared to suppress the cAMP-dependent translocation of lasp-1 to the intracellular canalicular region. In gastric fibroblasts, exposure to the protein kinase C activator, PMA, was correlated with the translocation of lasp-1 into newly formed F-actin-rich lamellipodial extensions and nascent focal complexes. Since lasp-1 does not appear to be phosphorylated by PKC, these data suggest that other mechanisms in addition to cAMP-dependent phosphorylation can mediate the translocation of lasp-1 to regions of dynamic actin turnover. The localization of lasp-1 to these subcellular regions under a range of experimental conditions and the phosphorylation-dependent regulation of this protein in F-actin rich epithelial cells suggests an integral and possibly cell-specific role in modulating cytoskeletal/membrane-based cellular activities.
Collapse
Affiliation(s)
- Catherine S Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-3175, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Matsukawa J, Tashiro K, Nagao T, Urushidani T. Role of small GTP-binding proteins and cytoskeleton in gastric acid secretion. Inflammopharmacology 2002. [DOI: 10.1163/156856002321544800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Duman JG, Singh G, Lee GY, Machen TE, Forte JG. Ca(2+) and Mg(2+)/ATP independently trigger homotypic membrane fusion in gastric secretory membranes. Traffic 2002; 3:203-17. [PMID: 11886591 DOI: 10.1034/j.1600-0854.2002.030306.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exocytic activation of gastric parietal cells represents a massive transformation. We studied a step in this process, homotypic fusion of H,K-ATPase-containing tubulovesicles, using R18 dequenching. Ca(2+) and Mg(2+)/ATP each caused dramatic dequenching, reflecting a change in R18 distribution from 5% to 65-90% of the assay's membranes in 2.5 min. These stimuli also triggered fusion between tubulovesicles and liposomes. Independent confirmation that dequenching represented membrane fusion was established by separating tubulovesicle-liposome fusion products on density gradients. Only agents that trigger fusion allowed the transmembrane H,K-ATPase to move to low-density fractions along with R18. EC(50) for Ca(2+)-triggered fusion was 150 nm and for Mg(2+)/ATP-triggered fusion 1 mm, the latter having a Hill coefficient of 2.5. ATP-triggered fusion was specific for Mg(2+)/ATP, required ATP hydrolysis, and was insensitive to inhibition of NSF and/or H,K-ATPase. Fusion initiated by either trigger caused tubulovesicles to become resistant to subsequent challenge by either trigger. Ca(2+) and Mg(2+)/ATP-triggered fusion required protein component(s) in tubulovesicles, though this was required in only one of the fusing membranes since tubulovesicles fused well with liposomes containing no proteins. Our data suggest that exocytosis in parietal cells is triggered by separate but interacting pathways and is regulated by self-inhibition.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
24
|
Rupes I, Webb BA, Mak A, Young PG. G2/M arrest caused by actin disruption is a manifestation of the cell size checkpoint in fission yeast. Mol Biol Cell 2001; 12:3892-903. [PMID: 11739788 PMCID: PMC60763 DOI: 10.1091/mbc.12.12.3892] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In budding yeast, actin disruption prevents nuclear division. This has been explained as activation of a morphogenesis checkpoint monitoring the integrity of the actin cytoskeleton. The checkpoint operates through inhibitory tyrosine phosphorylation of Cdc28, the budding yeast Cdc2 homolog. Wild-type Schizosaccharomyces pombe cells also arrest before mitosis after actin depolymerization. Oversized cells, however, enter mitosis uninhibited. We carried out a careful analysis of the kinetics of mitotic initiation after actin disruption in undersized and oversized cells. We show that an inability to reach the mitotic size threshold explains the arrest in smaller cells. Among the regulators that control the level of the inhibitory Cdc2-Tyr15 phosphorylation, the Cdc25 protein tyrosine phosphatase is required to link cell size monitoring to mitotic control. This represents a novel function of the Cdc25 phosphatase. Furthermore, we demonstrate that this cell size-monitoring system fulfills the formal criteria of a cell cycle checkpoint.
Collapse
Affiliation(s)
- I Rupes
- Departments of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
25
|
Goldenring JR. Pools of actin in polarized cells: some filaments are more stable than others. Focus on "Functionally distinct pools of actin in secretory cells". Am J Physiol Cell Physiol 2001; 281:C386-7. [PMID: 11443037 DOI: 10.1152/ajpcell.2001.281.2.c386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|