1
|
Solomando JC, Antequera T, Estaras M, González A, Perez‐Palacios T. In vitro digestion and culture in Caco-2 cells to assess the bioavailability of fatty acids: A case study in meat matrix enriched with ω-3 microcapsules. Food Sci Nutr 2024; 12:6338-6352. [PMID: 39554339 PMCID: PMC11561814 DOI: 10.1002/fsn3.4241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 11/19/2024] Open
Abstract
This work aimed to evaluate the Caco-2 cells as a model to study the epithelial transport of intestinal lipid extracts subjected to in vitro digestion, to establish a standard protocol for the determination of bioaccessibility and bioavailability of fatty acids in meat matrix, especially in those enriched with ω-3 (eicosapentaenoic (EPA) and docosahexaenoic acids (DHA)). Samples were first subjected to in vitro digestion, and then, the intestinal extract was incubated with Caco-2 cells. A first trial was conducted to select the most influencing variables on the fatty acid transport during Caco-2 cell incubation: fat quantity on the intestinal extract, incubation time, and shaking. Then, a second experiment was carried out to determine the influence of these variables, being the fat quantity and the incubation time the most influencing factors on the transport and bioavailability of fatty acids. The effect of shaking was not so marked but seemed to improve the bioavailability of saturated fatty acids. This study also allows establishing the most suitable conditions: intestinal extracts with 30 mg of fat, longer incubation times (8 h), and shaking, achieving active and passive fatty acid transport without compromising the integrity of the Caco-2 cell monolayer. The accurate results obtained for major and minor fatty acids, especially EPA and DHA are remarkable, due to the interest in these bioactive compounds. Thus, this study provides a combined protocol based on static in vitro digestion followed by Caco-2 cell incubation to assess the bioaccessibility and bioavailability of fatty acids in meat samples.
Collapse
Affiliation(s)
- Juan Carlos Solomando
- Research Institute of Meat and Meat Products (IProCar)University of ExtremaduraCáceresSpain
| | - Teresa Antequera
- Research Institute of Meat and Meat Products (IProCar)University of ExtremaduraCáceresSpain
| | - Matías Estaras
- Department of Physiology, Institute of Biomarkers and Molecular PathologiesUniversity of ExtremaduraCáceresSpain
| | - Antonio González
- Department of Physiology, Institute of Biomarkers and Molecular PathologiesUniversity of ExtremaduraCáceresSpain
| | | |
Collapse
|
2
|
Ghanem M, Lewis GF, Xiao C. Recent advances in cytoplasmic lipid droplet metabolism in intestinal enterocyte. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159197. [PMID: 35820577 DOI: 10.1016/j.bbalip.2022.159197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Processing of dietary fats in the intestine is a highly regulated process that influences whole-body energy homeostasis and multiple physiological functions. Dysregulated lipid handling in the intestine leads to dyslipidemia and atherosclerotic cardiovascular disease. In intestinal enterocytes, lipids are incorporated into lipoproteins and cytoplasmic lipid droplets (CLDs). Lipoprotein synthesis and CLD metabolism are inter-connected pathways with multiple points of regulation. This review aims to highlight recent advances in the regulatory mechanisms of lipid processing in the enterocyte, with particular focus on CLDs. In-depth understanding of the regulation of lipid metabolism in the enterocyte may help identify therapeutic targets for the treatment and prevention of metabolic disorders.
Collapse
Affiliation(s)
- Murooj Ghanem
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology, University of Toronto, and University Health Network, Toronto, ON, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Stone SJ. Mechanisms of intestinal triacylglycerol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159151. [PMID: 35296424 DOI: 10.1016/j.bbalip.2022.159151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Triacylglycerols are a major source of stored energy that are obtained either from the diet or can be synthesized to some extent by most tissues. Alterations in pathways of triacylglycerol metabolism can result in their excessive accumulation leading to obesity, insulin resistance, cardiovascular disease and nonalcoholic fatty liver disease. Most tissues in mammals synthesize triacylglycerols via the glycerol 3-phosphate pathway. However, in the small intestine the monoacylglycerol acyltransferase pathway is the predominant pathway for triacylglycerol biosynthesis where it participates in the absorption of dietary triacylglycerol. In this review, the enzymes that are part of both the glycerol 3-phosphate and monoacylglycerol acyltransferase pathways and their contributions to intestinal triacylglycerol metabolism are reviewed. The potential of some of the enzymes involved in triacylglycerol synthesis in the small intestine as possible therapeutic targets for treating metabolic disorders associated with elevated triacylglycerol is briefly discussed.
Collapse
Affiliation(s)
- Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
4
|
Liu S, Ni C, Li Y, Yin H, Xing C, Yuan Y, Gong Y. The Involvement of TRIB3 and FABP1 and Their Potential Functions in the Dynamic Process of Gastric Cancer. Front Mol Biosci 2021; 8:790433. [PMID: 34957220 PMCID: PMC8696077 DOI: 10.3389/fmolb.2021.790433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Dysregulated expression of TRIB3 and FABP1 have been previously observed in human cancer tissues. However, there are little information as to their expression change in dynamic gastric diseases and the functional roles. Methods: Tissues from a total of 479 patients, including 89 GS, 102 IM-GA, 144 EGC, and 144 AGC were collected. The protein expressions of TRIB3 and FABP1 were detected by immunohistochemical staining. Meanwhile, the potential functions of TRIB3 and FABP1 in GC were further analyzed by R software and some internet public databases, such as TCGA and DAVID. Results: During this multi-stage process that go through GS to EGC, the expression trend of TRIB3 and FABP1 protein was GS > IM-GA > EGC. Besides, the expression of TRIB3 protein continued to decrease in AGC, while the expression of FABP1 was abnormally increased. Hp infection was significantly associated with the decreased expression of TRIB3 and FABP1. In addition, the diagnostic efficiency of the combination of these two indicators to diagnose EGC was higher than that of a single indicator. Survival analysis showed that higher expression of TRIB3 or FABP1 could indicate a better prognosis of GC. The protein expressions of TRIB3 and FABP1 were significantly positively correlated. Moreover, CEACAM5 and PRAP1 were positively correlated with both TRIB3 and FABP1 expressions, while GABRP and THBS4 were negatively correlated. The macrophages M0 infiltration was positively correlated with both TRIB3 and FABP1 expressions. Conclusion: The protein expressions of TRIB3 and FABP1 gradually decreased with the gastric disease progress, and was positively correlated. Hp infection may reduce the protein expression of TRIB3 and FABP1. Combing TRIB3 and FABP1 expressions can improve the diagnostic efficiency for EGC. Either a high expression of TRIB3 or FABP1 indicates a better prognosis for GC. TRIB3 and FABP1 may interact with CEACAM5, PRAP1, GABRP and THBS4, and affect tumor immune microenvironment by regulating immune cells, and participate in the development and progression of GC.
Collapse
Affiliation(s)
- Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chuxuan Ni
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yizhi Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Abstract
Lipids are natural substances found in all living organisms and involved in many biological functions. Imbalances in the lipid metabolism are linked to various diseases such as obesity, diabetes, or cardiovascular disease. Lipids comprise thousands of chemically distinct species making them a challenge to analyze because of their great structural diversity.Thanks to the technological improvements in the fields of chromatography, high-resolution mass spectrometry, and bioinformatics over the last years, it is now possible to perform global lipidomics analyses, allowing the concomitant detection, identification, and relative quantification of hundreds of lipid species. This review shall provide an insight into a general lipidomics workflow and its application in metabolic biomarker research.
Collapse
|
6
|
Liu X, Lyu W, Liu L, Lv K, Zheng F, Wang Y, Chen J, Dai B, Yang H, Xiao Y. Comparison of Digestive Enzyme Activities and Expression of Small Intestinal Transporter Genes in Jinhua and Landrace Pigs. Front Physiol 2021; 12:669238. [PMID: 34194337 PMCID: PMC8236719 DOI: 10.3389/fphys.2021.669238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Digestive enzyme activity is involved in the regulation of growth performance because digestive enzymes function to improve the feed efficiency by digestion and in turn to modulate the process of nutrient metabolism. The objective of this study was to investigate the differences of the digestive enzyme activities and expression of nutrient transporters in the intestinal tract between Jinhua and Landrace pigs and to explore the potential breed-specificity in digestion and absorption. The pancreas segments and the digesta and mucosa of the duodenum, jejunum, and ileum were collected from 10 Jinhua pigs and Landrace pigs, respectively. The activities of trypsin, chymotrypsin, amylase, maltase, sucrase, and lipase were measured and the expression levels of PepT1, GLUT2, SGLT1, FABP1, FABP2, and FABP4 were examined. Results showed that the trypsin activity in the pancreas of Jinhua pigs was higher than that in Landrace pigs, but was lower in the small intestine, except for in the jejunal mucosa. The chymotrypsin activity in the small intestine of Jinhua pigs was higher than that in Landrace pigs, except for in jejunal mucosa and contents. Compared with Landrace pigs, the amylase and maltase activity in the small intestine of Jinhua pigs was lower, except for in ileal mucosa. The sucrase activity in the small intestine of Jinhua pigs was also lower than Landrace pigs, except for in jejunal mucosa. Furthermore, the lipase activity in the small intestine of Jinhua pigs was higher than that in Landrace pigs. The mRNA levels of PepT1 and GLUT2 in duodenal, jejunal and ileal mucosa showed no difference between Jinhua and Landrace pigs, whereas SGLT1 in ileal mucosa was lower in Jinhua pigs. The mRNA levels of FABP1, FABP2 and FABP4 in the small intestinal mucosa of Jinhua pigs were higher than in Landrace pigs. These findings indicate that there is a certain difference in the digestibility and absorption of nutrients in small intestine of Jinhua and Landrace pigs, partially resulting in their differences in growth development and fat deposition.
Collapse
Affiliation(s)
- Xiuting Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lei Liu
- Zhejiang Goshine Test Technologies Co., Ltd., Hangzhou, China
| | - Kaikai Lv
- Zhejiang Goshine Test Technologies Co., Ltd., Hangzhou, China
| | - Fen Zheng
- Agricultural and Rural Bureau of Kaihua County, Kaihua, China
| | - Yuanxia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinggang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bing Dai
- Zhejiang Goshine Test Technologies Co., Ltd., Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Lutkewitte AJ, Singer JM, Shew TM, Martino MR, Hall AM, He M, Finck BN. Multiple antisense oligonucleotides targeted against monoacylglycerol acyltransferase 1 (Mogat1) improve glucose metabolism independently of Mogat1. Mol Metab 2021; 49:101204. [PMID: 33676028 PMCID: PMC8027266 DOI: 10.1016/j.molmet.2021.101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Monoacylglycerol acyltransferase (MGAT) enzymes catalyze the synthesis of diacylglycerol from monoacylglycerol. Previous work has suggested the importance of MGAT activity in the development of obesity-related hepatic insulin resistance. Indeed, antisense oligonucleotide (ASO)-mediated knockdown of Mogat1 mRNA, which encodes MGAT1, reduced hepatic MGAT activity and improved glucose tolerance and insulin resistance in high-fat diet (HFD)-fed mice. However, recent work has suggested that some ASOs may have off-target effects on body weight and metabolic parameters via activation of the interferon alpha/beta receptor 1 (IFNAR-1) pathway. METHODS Mice with whole-body Mogat1 knockout or a floxed allele for Mogat1 to allow for liver-specific Mogat1-knockout (by either a liver-specific transgenic or adeno-associated virus-driven Cre recombinase) were generated. These mice were placed on an HFD, and glucose metabolism and insulin sensitivity were assessed after 16 weeks on diet. In some experiments, mice were treated with control scramble or Mogat1 ASOs in the presence or absence of IFNAR-1 neutralizing antibody. RESULTS Genetic deletion of hepatic Mogat1, either acutely or chronically, did not improve hepatic steatosis, glucose tolerance, or insulin sensitivity in HFD-fed mice. Furthermore, constitutive Mogat1 knockout in all tissues actually exacerbated HFD-induced obesity, insulin sensitivity, and glucose intolerance on an HFD. Despite markedly reduced Mogat1 expression, liver MGAT activity was unaffected in all knockout mouse models. Mogat1 overexpression in hepatocytes increased liver MGAT activity and TAG content in low-fat-fed mice but did not cause insulin resistance. Multiple Mogat1 ASO sequences improved glucose tolerance in both wild-type and Mogat1 null mice, suggesting an off-target effect. Hepatic IFNAR-1 signaling was activated by multiple Mogat1 ASOs, but its blockade did not prevent the effects of either Mogat1 ASO on glucose homeostasis. CONCLUSION These results indicate that genetic loss of Mogat1 does not affect hepatic MGAT activity or metabolic homeostasis on HFD and show that multiple Mogat1 ASOs improve glucose metabolism through effects independent of targeting Mogat1 or activation of IFNAR-1 signaling.
Collapse
Affiliation(s)
- Andrew J Lutkewitte
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jason M Singer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R Martino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Angela M Hall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
8
|
Gori M, Altomare A, Cocca S, Solida E, Ribolsi M, Carotti S, Rainer A, Francesconi M, Morini S, Cicala M, Pier Luca Guarino M. Palmitic Acid Affects Intestinal Epithelial Barrier Integrity and Permeability In Vitro. Antioxidants (Basel) 2020; 9:417. [PMID: 32414055 PMCID: PMC7278681 DOI: 10.3390/antiox9050417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Palmitic acid (PA), a long-chain saturated fatty acid, might activate innate immune cells. PA plays a role in chronic liver disease, diabetes and Crohn's disease, all of which are associated with impaired intestinal permeability. We investigated the effect of PA, at physiological postprandial intestinal concentrations, on gut epithelium as compared to lipopolysaccharide (LPS) and ethanol, using an in vitro gut model, the human intestinal epithelial cell line Caco-2 grown on transwell inserts. Cytotoxicity and oxidative stress were evaluated; epithelial barrier integrity was investigated by measuring the paracellular flux of fluorescein, and through RT-qPCR and immunofluorescence of tight junction (TJ) and adherens junction (AJ) mRNAs and proteins, respectively. In PA-exposed Caco-2 monolayers, cytotoxicity and oxidative stress were not detected. A significant increase in fluorescein flux was observed in PA-treated monolayers, after 90 min and up to 360 min, whereas with LPS and ethanol, this was only observed at later time-points. Gene expression and immunofluorescence analysis showed TJ and AJ alterations only in PA-exposed monolayers. In conclusion, PA affected intestinal permeability without inducing cytotoxicity or oxidative stress. This effect seemed to be faster and stronger than those with LPS and ethanol. Thus, we hypothesized that PA, besides having an immunomodulatory effect, might play a role in inflammatory and functional intestinal disorders in which the intestinal permeability is altered.
Collapse
Affiliation(s)
- Manuele Gori
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Annamaria Altomare
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Silvia Cocca
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Eleonora Solida
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Mentore Ribolsi
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Alberto Rainer
- Tissue Engineering Laboratory, Department of Engineering, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Maria Francesconi
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Sergio Morini
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Michele Cicala
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| |
Collapse
|
9
|
Tang Z, Xie H, Heier C, Huang J, Zheng Q, Eichmann TO, Schoiswohl G, Ni J, Zechner R, Ni S, Hao H. Enhanced monoacylglycerol lipolysis by ABHD6 promotes NSCLC pathogenesis. EBioMedicine 2020; 53:102696. [PMID: 32143183 PMCID: PMC7057193 DOI: 10.1016/j.ebiom.2020.102696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumor cells display metabolic changes that correlate with malignancy, including an elevated hydrolysis of monoacylglycerol (MAG) in various cancer types. However, evidence is absent for the relationship between MAG lipolysis and NSCLC. METHODS MAG hydrolase activity assay, migration, invasion, proliferation, lipids quantification, and transactivation assays were performed in vitro. Tumor xenograft studies and lung metastasis assays were examined in vivo. The correlations of MAGL/ABHD6 expression in cancerous tissues with the clinicopathological characteristics and survival of NSCLC patients were validated. FINDINGS ABHD6 functions as the primary MAG lipase and an oncogene in NSCLC. MAG hydrolase activities were more than 11-fold higher in cancerous lung tissues than in paired non-cancerous tissues derived from NSCLC patients. ABHD6, instead of MAGL, was significantly associated with advanced tumor node metastasis (TNM) stage (HR, 1.382; P = 0.004) and had a negative impact on the overall survival of NSCLC patients (P = 0.001). ABHD6 silencing reduced migration and invasion of NSCLC cells in vitro as well as metastatic seeding and tumor growth in vivo. Conversely, ectopic overexpression of ABHD6 provoked the pathogenic potential. ABHD6 blockade significantly induced intracellular MAG accumulation which activated PPARα/γ signaling and inhibited cancer pathophysiology. INTERPRETATION The present study provide evidence for a previously uncovered pro-oncogenic function of ABHD6 in NSCLC, with the outlined metabolic mechanisms shedding light on new potential strategies for anticancer therapy. FUND: This work was supported by the Project for Major New Drug Innovation and Development (2015ZX09501010 and 2018ZX09711001-002-003).
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qiuling Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| | | | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fujian 350000, China
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Songshi Ni
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Haiping Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
10
|
Jay AG, Simard JR, Huang N, Hamilton JA. SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation. J Lipid Res 2020; 61:790-807. [PMID: 32102800 DOI: 10.1194/jlr.ra120000648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.
Collapse
Affiliation(s)
- Anthony G Jay
- Department of Physiology and Biomedical Engineering,Mayo Clinic, Rochester, MN 55905; Departments of Biochemistry,Boston University School of Medicine, Boston, MA 02118. mailto:
| | - Jeffrey R Simard
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118; Pharmacology and Experimental Therapeutics,Boston University School of Medicine, Boston, MA 02118
| | - Nasi Huang
- Section of Infectious Diseases Department of Medicine,Boston University School of Medicine, Boston, MA 02118
| | - James A Hamilton
- Physiology and Biophysics,Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
11
|
González-Fernández MJ, Fabrikov D, Ramos-Bueno RP, Guil-Guerrero JL, Ortea I. SWATH Differential Abundance Proteomics and Cellular Assays Show In Vitro Anticancer Activity of Arachidonic Acid- and Docosahexaenoic Acid-Based Monoacylglycerols in HT-29 Colorectal Cancer Cells. Nutrients 2019; 11:E2984. [PMID: 31817645 PMCID: PMC6950369 DOI: 10.3390/nu11122984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and mortal types of cancer. There is increasing evidence that some polyunsaturated fatty acids (PUFAs) exercise specific inhibitory actions on cancer cells through different mechanisms, as a previous study on CRC cells demonstrated for two very long-chain PUFA. These were docosahexaenoic acid (DHA, 22:6n3) and arachidonic acid (ARA, 20:4n6) in the free fatty acid (FFA) form. In this work, similar design and technology have been used to investigate the actions of both DHA and ARA as monoacylglycerol (MAG) molecules, and results have been compared with those obtained using the corresponding FFA. Cell assays revealed that ARA- and DHA-MAG exercised dose- and time-dependent antiproliferative actions, with DHA-MAG acting on cancer cells more efficiently than ARA-MAG. Sequential window acquisition of all theoretical mass spectra (SWATH) - mass spectrometry massive quantitative proteomics, validated by parallel reaction monitoring and followed by pathway analysis, revealed that DHA-MAG had a massive effect in the proteasome complex, while the ARA-MAG main effect was related to DNA replication. Prostaglandin synthesis also resulted as inhibited by DHA-MAG. Results clearly demonstrated the ability of both ARA- and DHA-MAG to induce cell death in colon cancer cells, which suggests a direct relationship between chemical structure and antitumoral actions.
Collapse
Affiliation(s)
- María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - Dmitri Fabrikov
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - Rebeca P. Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, 40120 Almería, Spain; (M.J.G.-F.); (D.F.); (R.P.R.-B.); (J.L.G.-G.)
| | - Ignacio Ortea
- Proteomics Unit, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
12
|
Tian C, Guo J, Wang G, Sun B, Na K, Zhang X, Xu Z, Cheng M, He Z, Sun J. Efficient Intestinal Digestion and On Site Tumor-Bioactivation are the Two Important Determinants for Chylomicron-Mediated Lymph-Targeting Triglyceride-Mimetic Docetaxel Oral Prodrugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901810. [PMID: 31871861 PMCID: PMC6918103 DOI: 10.1002/advs.201901810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The oral absorption of chemotherapeutical drugs is restricted by poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity. Intestinal lymphatic transport of lipophilic prodrugs is a promising strategy to improve the oral delivery efficiency of anticancer drugs via entrapment into a lipid formulation and to avoid first-pass metabolism. However, several basic principles have still not been clarified, such as intestinal digestibility and stability and on-site tumor bioactivation. Herein, triglyceride-mimetic prodrugs of docetaxel (DTX) are designed by conjugating them to the sn-2 position of triglyceride (TG) through different linkage bonds. The role of intestinal digestion in oral absorption of TG-like prodrugs is then investigated by introducing significant steric-hindrance α-substituents into the prodrugs. It is surprisingly found that poor intestinal digestion leads to an unsatisfactory bioavailability but efficient intestinal digestion of TG-like prodrugs with a less steric-hindrance linkage (DTX-S-S-TG) facilitating oral absorption. Moreover, it is found that the TG-like reduction-sensitive prodrug (DTX-S-S-TG) has good stability during intestinal transport and blood circulation, and on-demand release of docetaxel at the tumor site, leading to a significantly improved antitumor efficiency with negligible gastrointestinal toxicity. In summary, the chylomicron-mediated lymph-targeting triglyceride-mimetic oral prodrug approach provides a good foundation for the development of oral chemotherapeutical formulations.
Collapse
Affiliation(s)
- Chutong Tian
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Jingjing Guo
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Gang Wang
- School of PharmacyGuang Xi University of Chinese MedicineWuhe RodeNanning530200China
| | - Bingjun Sun
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Kexin Na
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Xuanbo Zhang
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Zhuangyan Xu
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Maosheng Cheng
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of EducationShenyang Pharmaceutical UniversityShenyang110016China
| | - Zhonggui He
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityShenyang110016P. R. China
| | - Jin Sun
- Municipal Key Laboratory of BiopharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityShenyang110016P. R. China
| |
Collapse
|
13
|
Lieder B, Hans J, Hentschel F, Geissler K, Ley J. Biological Evaluation of Natural and Synthesized Homovanillic Acid Esters as Inhibitors of Intestinal Fatty Acid Uptake in Differentiated Caco-2 Cells. Molecules 2019; 24:E3599. [PMID: 31591297 PMCID: PMC6803983 DOI: 10.3390/molecules24193599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023] Open
Abstract
With raising prevalence of obesity, the regulation of human body fat is increasingly relevant. The modulation of fatty acid uptake by enterocytes represents a promising target for body weight maintenance. Recent results demonstrated that the trigeminal active compounds capsaicin, nonivamide, and trans-pellitorine dose-dependently reduce fatty acid uptake in differentiated Caco-2 cells as a model for the intestinal barrier. However, non-pungent alternatives have not been investigated and structural determinants for the modulation of intestinal fatty acid uptake have not been identified so far. Thus, based on the previous results, we synthesized 23 homovanillic acid esters in addition to the naturally occurring capsiate and screened them for their potential to reduce intestinal fatty acid uptake using the fluorescent fatty acid analog Bodipy-C12 in differentiated Caco‑2 cells as an enterocyte model. Whereas pre-incubation with 100 µM capsiate did not change fatty acid uptake by Caco-2 enterocytes, a maximum inhibition of -47% was reached using 100 µM 1‑methylpentyl-2-(4-hydroxy-3-methoxy-phenyl)acetate. Structural analysis of the 24 structural analogues tested in the present study revealed that a branched fatty acid side chain, independent of the chain length, is one of the most important structural motifs associated with inhibition of fatty acid uptake in Caco-2 enterocytes. The results of the present study may serve as an important basis for designing potent dietary inhibitors of fatty acid uptake.
Collapse
Affiliation(s)
- Barbara Lieder
- Symrise AG, Muehlenfeldstrasse 1, 53479 Holzminden, Germany.
- Department of Physiological Chemistry, University of Vienna, CDL for Taste Research, Althanstrasse 14, Vienna 1090, Austria.
| | - Joachim Hans
- Symrise AG, Muehlenfeldstrasse 1, 53479 Holzminden, Germany.
| | - Fabia Hentschel
- Symrise AG, Muehlenfeldstrasse 1, 53479 Holzminden, Germany.
| | - Katrin Geissler
- Symrise AG, Muehlenfeldstrasse 1, 53479 Holzminden, Germany.
| | - Jakob Ley
- Symrise AG, Muehlenfeldstrasse 1, 53479 Holzminden, Germany.
| |
Collapse
|
14
|
Luo H, Jiang M, Lian G, Liu Q, Shi M, Li TY, Song L, Ye J, He Y, Yao L, Zhang C, Lin ZZ, Zhang CS, Zhao TJ, Jia WP, Li P, Lin SY, Lin SC. AIDA Selectively Mediates Downregulation of Fat Synthesis Enzymes by ERAD to Retard Intestinal Fat Absorption and Prevent Obesity. Cell Metab 2018; 27:843-853.e6. [PMID: 29617643 DOI: 10.1016/j.cmet.2018.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/05/2017] [Accepted: 02/21/2018] [Indexed: 01/24/2023]
Abstract
The efficiency of intestinal absorption of dietary fat constitutes a primary determinant accounting for individual vulnerability to obesity. However, how fat absorption is controlled and contributes to obesity remains unclear. Here, we show that inhibition of endoplasmic-reticulum-associated degradation (ERAD) increases the abundance of triacylglycerol synthesis enzymes and fat absorption in small intestine. The C2-domain protein AIDA acts as an essential factor for the E3-ligase HRD1 of ERAD to downregulate rate-limiting acyltransferases GPAT3, MOGAT2, and DGAT2. Aida-/- mice, when grown in a thermal-neutral condition or fed high-fat diet, display increased intestinal fatty acid re-esterification, circulating and tissue triacylglycerol, accompanied with severely increased adiposity without enhancement of adipogenesis. Intestine-specific knockout of Aida largely phenocopies its whole-body knockout, strongly indicating that increased intestinal TAG synthesis is a primary impetus to obesity. The AIDA-mediated ERAD system may thus represent an anti-thrifty mechanism impinging on the enzymes for intestinal fat absorption and systemic fat storage.
Collapse
Affiliation(s)
- Hui Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guili Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Terytty Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Peng Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
15
|
Cifarelli V, Abumrad NA. Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr Physiol 2018; 8:493-507. [PMID: 29687890 PMCID: PMC6247794 DOI: 10.1002/cphy.c170026] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several proteins have been implicated in fatty acid (FA) transport by enterocytes including the scavenger receptor CD36 (SR-B2), the scavenger receptor B1 (SR-B1) a member of the CD36 family and the FA transport protein 4 (FATP4). Here, we review the regulation of enterocyte FA uptake and its function in lipid absorption including prechylomicron formation, assembly and transport. Emphasis is given to CD36, which is abundantly expressed along the digestive tract of rodents and humans and has been the most studied. We also address the pleiotropic functions of CD36 that go beyond lipid absorption and metabolism to include recent evidence of its impact on intestinal homeostasis and barrier maintenance. Areas of progress involving contribution of membrane phospholipid remodeling and of cytosolic FA-binding proteins, FABP1 and FABP2 to fat absorption will be covered. © 2018 American Physiological Society. Compr Physiol 8:493-507, 2018.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nada A. Abumrad
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
16
|
Dasilva G, Boller M, Medina I, Storch J. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake. J Nutr Biochem 2017; 55:68-75. [PMID: 29413491 DOI: 10.1016/j.jnutbio.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
Abstract
Previous research showed that increasing the proportion of docosahexaenoic acid (DHA) in marine lipid supplements significantly reduces associated health benefits compared with balanced eicosapentaenoic acid (EPA):DHA supplementation Dasilva et al., 2015 [1]. It was therefore hypothesized that the EPA and DHA molecules might have differential resistance to oxidation during gastric digestion and that the oxidation level achieved could be inversely correlated with intestinal absorption and, hence, with the resultant health benefits. Accordingly, we tested this proposed mechanism of action by investigating the degree of oxidation in the stomach, and the levels of bioaccessible lipids, of varying molar proportions of DHA and EPA (2:1, 1:1 and 1:2) using the dynamic gastrointestinal tract model TIM-1. In addition, small intestine enterocyte absorption and metabolism were simulated by Caco-2 cell monolayers that were incubated with these same varying proportions of DHA and EPA, and comparing oxidized and nonoxidized polyunsaturated fatty acids (PUFAs). The results show an inverse correlation between lipid oxidation products in the stomach and the levels of bioaccessible lipids. The balanced 1:1 EPA:DHA diet resulted in lower oxidation of PUFAs during stomach digestion relative to the other ratios tested. Finally, cell-based studies showed significantly lower assimilation of oxidized EPA and DHA substrates compared to nonoxidized PUFAs, as well as significant differences between the net uptake of EPA and DHA. Overall, the present work suggests that the correct design of diets and/or supplements containing marine lipids can strongly influence the stability and bioaccessibility of PUFAs during gastrointestinal digestion and subsequent absorption. This could modulate their health benefits related with inflammation, oxidative stress and metabolic disorders.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain; Department of Analytical Chemistry, Nutrition and Bromatology and Research Institute for Food Analysis (I.I.A.A.), University of Santiago de Compostela, E-15782, Spain.
| | - Matthew Boller
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Poquet L, Wooster TJ. Infant digestion physiology and the relevance of in vitro biochemical models to test infant formula lipid digestion. Mol Nutr Food Res 2017; 60:1876-95. [PMID: 27279140 DOI: 10.1002/mnfr.201500883] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 01/30/2023]
Abstract
Lipids play an important role in the diet of preterm and term infants providing a key energy source and essential lipid components for development. While a lot is known about adult lipid digestion, our understanding of infant digestion physiology is still incomplete, the greatest gap being on the biochemistry of the small intestine, particularly the activity and relative importance of the various lipases active in the intestine. The literature has been reviewed to identify the characteristics of lipid digestion of preterm and term infants, but also to better understand the physiology of the infant gastrointestinal tract compared to adults that impacts the absorption of lipids. The main differences are a higher gastric pH, submicellar bile salt concentration, a far more important role of gastric lipases as well as differences at the level of the intestinal barrier. Importantly, the consequences of improper in vitro replication of gastric digestions conditions (pH and lipase specificity) are demonstrated using examples from the most recent of studies. It is true that some animal models could be adapted to study infant lipid digestion physiology, however the ethical relevance of such models is questionable, hence the development of accurate in vitro models is a must. In vitro models that combine up to date knowledge of digestion biochemistry with intestinal cells in culture are the best choice to replicate digestion and absorption in infant population, this would allow the adaptation of infant formula for a better digestion and absorption of dietary lipids by preterm and term infants.
Collapse
Affiliation(s)
- Laure Poquet
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne 26, Switzerland
| | - Tim J Wooster
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne 26, Switzerland
| |
Collapse
|
18
|
Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, Falomir Lockhart LJ, Franchini GR, Storch J, Córsico B. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1587-1594. [PMID: 28919479 DOI: 10.1016/j.bbalip.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
Abstract
Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia María Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Lisandro Jorge Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gisela Raquel Franchini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Rai S, Bhatnagar S. Novel Lipidomic Biomarkers in Hyperlipidemia and Cardiovascular Diseases: An Integrative Biology Analysis. ACTA ACUST UNITED AC 2017; 21:132-142. [DOI: 10.1089/omi.2016.0178] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| |
Collapse
|
20
|
Rezhdo O, Speciner L, Carrier R. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement. J Control Release 2016; 240:544-560. [PMID: 27520734 PMCID: PMC5082615 DOI: 10.1016/j.jconrel.2016.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023]
Abstract
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented.
Collapse
Affiliation(s)
- Oljora Rezhdo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Lauren Speciner
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
21
|
Mansbach CM, Siddiqi S. Control of chylomicron export from the intestine. Am J Physiol Gastrointest Liver Physiol 2016; 310:G659-68. [PMID: 26950854 DOI: 10.1152/ajpgi.00228.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/22/2016] [Indexed: 01/31/2023]
Abstract
The control of chylomicron output by the intestine is a complex process whose outlines have only recently come into focus. In this review we will cover aspects of chylomicron formation and prechylomicron vesicle generation that elucidate potential control points. Substrate (dietary fatty acids and monoacylglycerols) availability is directly related to the output rate of chylomicrons. These substrates must be converted to triacylglycerol before packaging in prechylomicrons by a series of endoplasmic reticulum (ER)-localized acylating enzymes that rapidly convert fatty acids and monoacylglycerols to triacylglycerol. The packaging of the prechylomicron with triacylglycerol is controlled by the microsomal triglyceride transport protein, another potential limiting step. The prechylomicrons, once loaded with triacylglycerol, are ready to be incorporated into the prechylomicron transport vesicle that transports the prechylomicron from the ER to the Golgi. Control of this exit step from the ER, the rate-limiting step in the transcellular movement of the triacylglycerol, is a multistep process involving the activation of PKCζ, the phosphorylation of Sar1b, releasing the liver fatty acid binding protein from a heteroquatromeric complex, which enables it to bind to the ER and organize the prechylomicron transport vesicle budding complex. We propose that control of PKCζ activation is the major physiological regulator of chylomicron output.
Collapse
Affiliation(s)
- Charles M Mansbach
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| | - Shahzad Siddiqi
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| |
Collapse
|
22
|
Wang B, Rong X, Duerr MA, Hermanson DJ, Hedde PN, Wong JS, Vallim TQDA, Cravatt BF, Gratton E, Ford DA, Tontonoz P. Intestinal Phospholipid Remodeling Is Required for Dietary-Lipid Uptake and Survival on a High-Fat Diet. Cell Metab 2016; 23:492-504. [PMID: 26833026 PMCID: PMC4785086 DOI: 10.1016/j.cmet.2016.01.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023]
Abstract
Phospholipids are important determinants of membrane biophysical properties, but the impact of membrane acyl chain composition on dietary-lipid absorption is unknown. Here we demonstrate that the LXR-responsive phospholipid-remodeling enzyme Lpcat3 modulates intestinal fatty acid and cholesterol absorption and is required for survival on a high-fat diet. Mice lacking Lpcat3 in the intestine thrive on carbohydrate-based chow but lose body weight rapidly and become moribund on a triglyceride-rich diet. Lpcat3-dependent incorporation of polyunsaturated fatty acids into phospholipids is required for the efficient transport of dietary lipids into enterocytes. Furthermore, loss of Lpcat3 amplifies the production of gut hormones, including GLP-1 and oleoylethanolamide, in response to high-fat feeding, contributing to the paradoxical cessation of food intake in the setting of starvation. These results reveal that membrane phospholipid composition is a gating factor in passive lipid absorption and implicate LXR-Lpcat3 signaling in a gut-brain feedback loop that couples absorption to food intake.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Duerr
- Department of Biochemistry and Molecular Biology, Center for Cardiovascular Research, Saint Louis University, St. Louis, MO 63104, USA
| | - Daniel J Hermanson
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Per Niklas Hedde
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Jinny S Wong
- Electron Microscopy Core, Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Thomas Q de Aguiar Vallim
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Center for Cardiovascular Research, Saint Louis University, St. Louis, MO 63104, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res 2015; 56:2238-47. [PMID: 26443794 DOI: 10.1194/jlr.r056705] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency).
Collapse
Affiliation(s)
- GuQi Wang
- Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC
| | - Herbert L Bonkovsky
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Andrew de Lemos
- Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | |
Collapse
|
24
|
Yen CLE, Nelson DW, Yen MI. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res 2014; 56:489-501. [PMID: 25231105 DOI: 10.1194/jlr.r052902] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
25
|
Cottenye N, Carbajal G, Cui ZK, Ducharme PD, Mauzeroll J, Lafleur M. Formation, stability, and pH sensitivity of free-floating, giant unilamellar vesicles using palmitic acid-cholesterol mixtures. SOFT MATTER 2014; 10:6451-6456. [PMID: 25058525 DOI: 10.1039/c4sm00883a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite the fact that palmitic acid (PA) and cholesterol (Chol) do not form fluid bilayers once hydrated individually, giant unilamellar vesicles (GUVs) were formed from a mixture of palmitic acid and cholesterol, 30/70 mol/mol. These free-floating GUVs were stable over weeks, did not aggregate and were shown to be highly stable in alkaline pH compared to conventional phospholipid-based GUVs. Acidic pH-triggered payload release from the GUVs was associated with the protonation state of palmitic acid that dictated the mixing lipid properties, thus affecting the stability of the fluid lamellar phase. The successful formation of PA-Chol GUVs reveals the possibility to create monoalkylated amphiphile-based GUVs with distinct pH stability/sensitivity.
Collapse
Affiliation(s)
- Nicolas Cottenye
- Department of Chemistry, Center for Self-Assembled Chemical Structures, Université de Montréal, PO Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Swarnakar NK, Thanki K, Jain S. Lyotropic Liquid Crystalline Nanoparticles of CoQ10: Implication of Lipase Digestibility on Oral Bioavailability, in Vivo antioxidant activity, and in Vitro–in Vivo Relationships. Mol Pharm 2014; 11:1435-49. [DOI: 10.1021/mp400601g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nitin K. Swarnakar
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab -160062, India
| | - Kaushik Thanki
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab -160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical
Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab -160062, India
| |
Collapse
|
27
|
Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res 2013; 31:1219-38. [PMID: 24218223 DOI: 10.1007/s11095-013-1244-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process variables and lyophilized. Structural elucidation of the reconstituted formulation was performed using HR-TEM and SAXS analysis. The developed formulation was subjected to exhaustive cell culture experiments for delivery potential (Caco-2 cells) and efficacy (MCF-7 cells). Finally, in vivo pharmacokinetics, pharmacodynamic studies in DMBA induced breast cancer model and cardiotoxicity were also evaluated. RESULTS The reconstituted formulation exhibited Pn3m type cubic structure, evident by SAXS and posed stability in simulated gastrointestinal fluids and at accelerated stability conditions for 6 months. Dox-LCNPs revealed significantly higher cell cytotoxicity (16.23-fold) against MCF-7 cell lines as compared to free drug owing to its preferential localization in the vicinity of nucleus. Furthermore, Caco-2 cell experiments revealed formation of reversible "virtual pathways" in the cell membrane for Dox-LCNPs and hence posed significantly higher relative oral bioavailability (17.74-fold). Subsequently, Single dose of Dox-LCNPs (per oral) led to significant reduction in % tumor burden (~42%) as compared that of ~31% observed in case of Adriamycin® (i.v.) when evaluated in DMBA induced breast cancer model. Moreover, Dox induced cardiotoxicity was also found to be significantly lower in case of Dox-LCNPs as compared to clinical formulations (Adriamycin® and Lipodox®). CONCLUSION Incorporation of Dox in the novel LCNPs demonstrated improved antitumor efficacy and safety profile and can be a viable option for oral chemotherapy.
Collapse
|
28
|
Goncalves A, Gleize B, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot MJ, Reboul E. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. J Nutr Biochem 2013; 24:1751-7. [DOI: 10.1016/j.jnutbio.2013.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 10/26/2022]
|
29
|
Lagakos WS, Guan X, Ho SY, Sawicki LR, Corsico B, Kodukula S, Murota K, Stark RE, Storch J. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol. J Biol Chem 2013; 288:19805-15. [PMID: 23658011 DOI: 10.1074/jbc.m113.473579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG.
Collapse
Affiliation(s)
- William S Lagakos
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gao Y, Nelson DW, Banh T, Yen MI, Yen CLE. Intestine-specific expression of MOGAT2 partially restores metabolic efficiency in Mogat2-deficient mice. J Lipid Res 2013; 54:1644-1652. [PMID: 23536640 DOI: 10.1194/jlr.m035493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acyl CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the resynthesis of triacylglycerol, a crucial step in the absorption of dietary fat. Mice lacking the gene Mogat2, which codes for an MGAT highly expressed in the small intestine, are resistant to obesity and other metabolic disorders induced by high-fat feeding. Interestingly, these Mogat2⁻/⁻ mice absorb normal amounts of dietary fat but exhibit a reduced rate of fat absorption, increased energy expenditure, decreased respiratory exchange ratio, and impaired metabolic efficiency. MGAT2 is expressed in tissues besides intestine. To test the hypothesis that intestinal MGAT2 enhances metabolic efficiency and promotes the storage of metabolic fuels, we introduced the human MOGAT2 gene driven by the intestine-specific villin promoter into Mogat2⁻/⁻ mice. We found that the expression of MOGAT2 in the intestine increased intestinal MGAT activity, restored fat absorption rate, partially corrected energy expenditure, and promoted weight gain upon high-fat feeding. However, the changes in respiratory exchange ratio were not reverted, and the recoveries in metabolic efficiency and weight gain were incomplete. These data indicate that MGAT2 in the intestine plays an indispensable role in enhancing metabolic efficiency but also raise the possibility that MGAT2 in other tissues may contribute to the regulation of energy metabolism.
Collapse
Affiliation(s)
- Yu Gao
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Taylor Banh
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI.
| |
Collapse
|
31
|
Danielsen EM, Hansen GH, Rasmussen K, Niels-Christiansen LL. Permeabilization of enterocytes induced by absorption of dietary fat. Mol Membr Biol 2013; 30:261-72. [DOI: 10.3109/09687688.2013.780642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Maestre R, Douglass JD, Kodukula S, Medina I, Storch J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J Nutr 2013; 143:295-301. [PMID: 23325921 PMCID: PMC3713019 DOI: 10.3945/jn.112.160101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The (n-3) PUFAs 20:5 (n-3) (EPA) and 22:6 (n-3) (DHA) are thought to benefit human health. The presence of prooxidant compounds in foods, however, renders them susceptible to oxidation during both storage and digestion. The development of oxidation products during digestion and the potential effects on intestinal PUFA uptake are incompletely understood. In the present studies, we examined: (1) the development and bioaccessibility of lipid oxidation products in the gastrointestinal lumen during active digestion of fatty fish using the in vitro digestive tract TNO Intestinal Model-1 (TIM-1); (2) the mucosal cell uptake and metabolism of oxidized compared with unoxidized PUFAs using Caco-2 intestinal cells; and 3) the potential to limit the development of oxidation products in the intestine by incorporating antioxidant polyphenols in food. We found that during digestion, the development of oxidation products occurs in the stomach compartment, and increased amounts of oxidation products became bioaccessible in the jejunal and ileal compartments. Inclusion of a polyphenol-rich grape seed extract (GSE) during the digestion decreased the amounts of oxidation products in the stomach compartment and intestinal dialysates (P < 0.05). In Caco-2 intestinal cells, the uptake of oxidized (n-3) PUFAs was ~10% of the uptake of unoxidized PUFAs (P < 0.05) and addition of GSE or epigallocatechin gallate protected against the development of oxidation products, resulting in increased uptake of PUFAs (P < 0.05). These results suggest that addition of polyphenols during active digestion can limit the development of (n-3) PUFA oxidation products in the small intestine lumen and thereby promote intestinal uptake of the beneficial, unoxidized, (n-3) PUFAs.
Collapse
Affiliation(s)
- Rodrigo Maestre
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain.
| | - John D. Douglass
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Sarala Kodukula
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Isabel Medina
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain; and
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
33
|
Chen C, Fan T, Jin Y, Zhou Z, Yang Y, Zhu X, Zhang ZR, Zhang Q, Huang Y. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids. Nanomedicine (Lond) 2012; 8:1085-100. [PMID: 23075315 DOI: 10.2217/nnm.12.141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The purpose of this study was to develop a new orally delivered nanoparticulate system to improve the bioavailability of salmon calcitonin (sCT). MATERIALS & METHODS Four sCT-loaded solid lipid nanoparticles (SLNs) were prepared successfully by micelle-double emulsion technique via either the sole use of stearic acid (SA) or the combined use of SA and triglycerides (including tripalmitin [TP], trimyristin or trilaurin). RESULTS Compared with other SLNs, the combination of SA and TP could not only significantly improve the colloidal stability of SLNs and enhance the drug stability in the simulated intestinal fluids, but also intensively increase the intracellular uptake of drugs compared with the other SLNs (p < 0.05). The mechanism of internalization was an active transport involved in clathrin- and caveolae-dependent endocytosis. In vivo, the sCT SLNs prepared with SA and TP exhibited the highest reduction of plasma Ca(2+) level (17.44 ± 3.68%) with a bioavailability of 13.01 ± 3.24%. CONCLUSION The SLNs formed by SA and TP as the solid lipids may be a promising carrier for oral delivery of peptide drugs.
Collapse
Affiliation(s)
- Chunhui Chen
- Key Laboratory of Drug Targeting & Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Number 17 Block 3 Southern Renmin Road, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kuan CY, Walker TH, Luo PG, Chen CF. Long-Chain Polyunsaturated Fatty Acids Promote Paclitaxel Cytotoxicity via Inhibition of the MDR1 Gene in the Human Colon Cancer Caco-2 Cell Line. J Am Coll Nutr 2011; 30:265-73. [DOI: 10.1080/07315724.2011.10719969] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Radtke AL, Wilson JW, Sarker S, Nickerson CA. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One 2010; 5:e15750. [PMID: 21206750 PMCID: PMC3012082 DOI: 10.1371/journal.pone.0015750] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 02/07/2023] Open
Abstract
The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrea L. Radtke
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - James W. Wilson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Shameema Sarker
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
36
|
Barauskas J, Cervin C, Jankunec M, Špandyreva M, Ribokaitė K, Tiberg F, Johnsson M. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int J Pharm 2010; 391:284-91. [DOI: 10.1016/j.ijpharm.2010.03.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/18/2010] [Accepted: 03/01/2010] [Indexed: 11/25/2022]
|
37
|
Epriliati I, D'Arcy B, Gidley M. Nutriomic analysis of fresh and processed fruit products. 2. During in vitro simultaneous molecular passages using Caco-2 cell monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3377-3388. [PMID: 19290640 DOI: 10.1021/jf802226n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many studies have used Caco-2 cell monolayers as human intestinal absorption models. However, only a few studied digested foods, instead of pure standard compounds. Moreover, beneficial and nutritional molecules (nutriome) have not been investigated simultaneously. The present study explored nutriome passages from digest solution of fresh, dried, and juiced tomato, mango, and papaya using Caco-2 cell monolayers in apical-->basolateral directions. A validation method using complementary TEER and P(app) values or internal standard caffeine is recommended because physiologically passive diffusion is unlikely to happen. Sugars were transported into basolateral sides, resulting in potential glucose equivalent bioavailability of 2.26-75 mg h(-1)/100 g (WB). Using sugar passage rates (DB) of juices as 100% references, the rate order was tomato (49.8% dried; 89.5% fresh) > mango (56.8% dried; 22.8% fresh) > papaya (18.7% dried; 36.7% fresh). Major indications that phytochemical absorption does not occur in the small intestine were obtained from the bioassay condition selected. Apical organic acid levels decreased, which occasionally were transported into basolateral sides, whereas the disappearances of apical carotenoids and phenolics were not. Pectin substances were predicted to be responsible for the disappearances of bioactive compounds in those pectin-rich fruits. Further investigations on the role of pectin substances in intestinal passages are recommended.
Collapse
Affiliation(s)
- Indah Epriliati
- School of Land, Crop and Food Sciences, The University of Queensland, St. Lucia, Australia.
| | | | | |
Collapse
|
38
|
Geurden I, Jutfelt F, Olsen RE, Sundell KS. A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:552-9. [PMID: 19166958 DOI: 10.1016/j.cbpa.2008.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 12/01/2022]
Abstract
Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.
Collapse
Affiliation(s)
- Inge Geurden
- INRA UMR1067 Laboratory of Nutrition, Aquaculture and Genomics, NuAGe, INRA Hydrobiology Station, F-64310 Saint Pée-sur-Nivelle, France.
| | | | | | | |
Collapse
|
39
|
Vasl J, Prohinar P, Gioannini TL, Weiss JP, Jerala R. Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. THE JOURNAL OF IMMUNOLOGY 2008; 180:6107-15. [PMID: 18424732 DOI: 10.4049/jimmunol.180.9.6107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.
Collapse
Affiliation(s)
- Jozica Vasl
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
40
|
Storch J, Zhou YX, Lagakos WS. Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J Lipid Res 2008; 49:1762-9. [PMID: 18421071 DOI: 10.1194/jlr.m800116-jlr200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolic fates of radiolabeled sn-2-monoacylglycerol (MG) and oleate (FA) in rat and mouse intestine, added in vivo to the apical (AP) surface in bile salt micelles, or to the basolateral (BL) surface via albumin-bound solution, were examined. Mucosal lipid products were quantified, and the results demonstrate a dramatic difference in the esterification patterns for both MG and FA, depending upon their site of entry into the enterocyte. For both lipids, the ratio of triacylglycerol to phospholipid (TG:PL) formed was approximately 10-fold higher for delivery at the AP relative to the BL surface. Further, a 3-fold higher level of FA oxidation was found for BL compared with AP substrate delivery. Incorporation of FA into individual PL species was also significantly different, with >2-fold greater incorporation into phosphatidylethanolamine (PE) and a 3-fold decrease in the phosphatidylcholine:PE ratio for AP- compared with BL-added lipid. Overnight fasting increased the TG:PL incorporation ratio for both AP and BL lipid addition, suggesting that metabolic compartmentation is a physiologically regulated phenomenon. These results support the existence of separate pools of TG and glycerolipid intermediates in the intestinal epithelial cell, and underscore the importance of substrate trafficking in the regulation of enterocyte lipid metabolism.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
41
|
Charavaryamath C, Juneau V, Suri SS, Janardhan KS, Townsend H, Singh B. Role of Toll-like receptor 4 in lung inflammation following exposure to swine barn air. Exp Lung Res 2008; 34:19-35. [PMID: 18205075 DOI: 10.1080/01902140701807779] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The authors tested a hypothesis that lung inflammation and airway hyperresponsiveness (AHR) induced following barn air exposure are dependent on Toll-like receptor 4 (TLR4) by exposing C3HeB/FeJ (intact TLR4, wild type [WT]) and C3H/HeJ (defective TLR4, mutant) mice either to the barn air (8 hours/day for 1, 5, or 20 days) or ambient air. Both strains of mice, compared to their respective controls, showed increased AHR following 5 exposures but dampened AHR after 20 exposures to show lack of effect of TLR4 on AHR. However, swine barn air induced lung inflammation with recruitment of inflammatory cells and cytokine expression was observed in WT but not in mutant mice. These data show different roles of TLR4 in lung inflammation and AHR in mice exposed to swine barn air.
Collapse
Affiliation(s)
- Chandrashekhar Charavaryamath
- Immunology Research Group, and Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 2008; 60:702-16. [PMID: 18155316 PMCID: PMC7103284 DOI: 10.1016/j.addr.2007.09.007] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 09/30/2007] [Indexed: 12/11/2022]
Abstract
After oral administration, the majority of drug molecules are absorbed across the small intestine and enter the systemic circulation via the portal vein and the liver. For some highly lipophilic drugs (typically log P > 5, lipid solubility > 50 mg/g), however, association with lymph lipoproteins in the enterocyte leads to transport to the systemic circulation via the intestinal lymph. The attendant delivery benefits associated with lymphatic drug transport include a reduction in first-pass metabolism and lymphatic exposure to drug concentrations orders of magnitude higher than that attained in systemic blood. In the current review we briefly describe the mechanisms by which drug molecules access the lymph and the formulation strategies that may be utilised to enhance lymphatic drug transport. Specific focus is directed toward recent advances in understanding regarding the impact of lipid source (both endogenous and exogenous) and intracellular lipid trafficking pathways on lymphatic drug transport and enterocyte-based first-pass metabolism.
Collapse
|
43
|
Abstract
The course of every infection is different. The same pathogen can lead to subclinical, mild, severe or lethal infections in individuals. But is this just chance or determined by individual differences--on the side of the host as well as on the side of the pathogen? If so, we might need to consider these variations for treatment decisions. Indeed, we now understand that genetic polymorphisms and health status represent inborn and acquired risk factors. Similarly, pathogens impress with an increasing number of already identified virulence factors and host response modifiers. The emerging, more complex, view of the factors determining course and outcome of infections promises to enable more tailored and thus, hopefully, more effective treatment decisions.
Collapse
Affiliation(s)
- Corinna Hermann
- Biochemical Pharmacology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
44
|
Hoo RL, Yeung DC, Lam KS, Xu A. Inflammatory biomarkers associated with obesity and insulin resistance: a focus on lipocalin-2 and adipocyte fatty acid-binding protein. Expert Rev Endocrinol Metab 2008; 3:29-41. [PMID: 30743783 DOI: 10.1586/17446651.3.1.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Obesity is an important risk factor for a cluster of metabolic and cardiovascular diseases, including insulin resistance, Type 2 diabetes, nonalcoholic fatty liver disease and atherosclerosis. Systemic low-grade inflammation, characterized by elevated circulating concentrations of proinflammatory factors, has recently been proposed to be a key mediator that links obesity with its medical complications. Adipose tissue is now recognized as the major contributor to systemic inflammation associated with obesity. As obesity develops, adipose tissue is infiltrated with activated macrophages. The 'inflamed' adipose tissue secretes a large number of proinflammatory adipokines and/or cytokines, which can act either in an autocrine manner to perpetuate local inflammation or in an endocrine manner to induce insulin resistance and endothelial dysfunction. In this review, we summarize recent advances in several newly identified adipose tissue-derived inflammatory factors, with the focus on lipocalin-2 and adipocyte fatty acid-binding protein (A-FABP). Both lipocalin-2 and A-FABP possess lipid-binding properties and are important integrators of metabolic and inflammatory pathways. A growing body of evidence from experimental, epidemiological and genetic studies suggests that both lipocalin-2 and A-FABP represent a novel class of serum biomarkers for risk prediction and therapeutic intervention of obesity-related medical complications.
Collapse
Affiliation(s)
- Ruby Lc Hoo
- a University of Hong Kong, Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, L8-40, 21 Sassoon Road, Hong Kong, China.
| | - Dennis Cy Yeung
- b University of Hong Kong, Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, L8-40, 21 Sassoon Road, Hong Kong, China.
| | - Karen Sl Lam
- c University of Hong Kong, Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, L8-40, 21 Sassoon Road, Hong Kong, China.
| | - Aimin Xu
- d University of Hong Kong, Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, L8-40, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
45
|
Abstract
Intestinal monoacylglycerol (MG) metabolism is well known to involve its anabolic reesterification to triacylglycerol (TG). We recently provided evidence for enterocyte MG hydrolysis and demonstrated expression of the monoacylglycerol lipase (MGL) gene in human intestinal Caco-2 cells and rodent small intestinal mucosa. Despite the large quantities of MG derived from dietary TG, the regulation of MG metabolism in the intestine has not been previously explored. In the present studies, we examined the mRNA expression, protein expression, and activities of the two known MG-metabolizing enzymes, MGL and MGAT2, in C57BL/6 mouse small intestine, as well as liver and adipose tissues, during development and under nutritional modifications. Results demonstrate that MG metabolism undergoes tissue-specific changes during development. Marked induction of small intestinal MGAT2 protein expression and activity were found during suckling. Moreover, while substantial levels of MGL protein and activity were detected in adult intestine, its regulation during ontogeny was complex, suggesting post-transcriptional regulation of expression. In addition, during the suckling period MG hydrolytic activity is likely to derive from carboxyl ester lipase rather than MGL. In contrast to intestinal MGL, liver MGL mRNA, protein and activity all increased 5-10-fold during development, suggesting that transcriptional regulation is the primary mechanism for hepatic MGL expression. Three weeks of high fat feeding (40% kcal) significantly induced MGL expression and activity in small intestine relative to low fat feeding (10% kcal), but little change was observed upon starvation, suggesting a role for MGL in dietary lipid assimilation following a high fat intake.
Collapse
Affiliation(s)
- Su-Hyoun Chon
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Yin Xiu Zhou
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Joseph L Dixon
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Judith Storch
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901.
| |
Collapse
|
46
|
Li H, Black PN, Chokshi A, Sandoval-Alvarez A, Vatsyayan R, Sealls W, DiRusso CC. High-throughput screening for fatty acid uptake inhibitors in humanized yeast identifies atypical antipsychotic drugs that cause dyslipidemias. J Lipid Res 2007; 49:230-44. [PMID: 17928635 DOI: 10.1194/jlr.d700015-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acids are implicated in the development of dyslipidemias, leading to type 2 diabetes and cardiovascular disease. We used a standardized small compound library to screen humanized yeast to identify compounds that inhibit fatty acid transport protein (FATP)-mediated fatty acid uptake into cells. This screening procedure used live yeast cells expressing human FATP2 to identify small compounds that reduced the import of a fluorescent fatty acid analog, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C(1)-BODIPY-C(12)). The library used consisted of 2,080 compounds with known biological activities. Of these, approximately 1.8% reduced cell-associated C(1)-BODIPY-C(12) fluorescence and were selected as potential inhibitors of human FATP2-mediated fatty acid uptake. Based on secondary screens, 28 compounds were selected as potential fatty acid uptake inhibitors. Some compounds fell into four groups with similar structural features. The largest group was structurally related to a family of tricyclic, phenothiazine-derived drugs used to treat schizophrenia and related psychiatric disorders, which are also known to cause metabolic side effects, including hypertriglyceridemia. Potential hit compounds were studied for specificity of interaction with human FATP and efficacy in human Caco-2 cells. This study validates this screening system as useful to assess the impact of drugs in preclinical screening for fatty acid uptake.
Collapse
Affiliation(s)
- Hong Li
- Center for Metabolic Disease, Ordway Research Institute, Inc., Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem 2007; 282:19493-501. [PMID: 17507371 DOI: 10.1074/jbc.m703330200] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD36, a membrane protein that facilitates fatty acid uptake, is highly expressed in the intestine on the luminal surface of enterocytes. Cd36 null (Cd36(-/-)) mice exhibit impaired chylomicron secretion but no overall lipid absorption defect. Because chylomicron production is most efficient proximally we examined whether CD36 function is important for proximal lipid absorption. CD36 levels followed a steep decreasing gradient along three equal-length, proximal to distal intestinal segments (S1-S3). Enterocytes isolated from the small intestines of Cd36(-/-) mice, when compared with wild type counterparts, exhibited reduced uptake of fatty acid (50%) and cholesterol (60%) in S1. The high affinity fatty acid uptake component was missing in Cd36(-/-) cells. Fatty acid incorporation into triglyceride and triglyceride secretion were also reduced in Cd36(-/-) S1 enterocytes. In vivo, proximal absorption was monitored using mass spectrometry from oleic acid enrichment of S1 lipids, 90 min (active absorption) and 5 h (steady state) after intragastric olive oil (70% triolein). Oleate enrichment was 50% reduced at 90 min in Cd36(-/-) tissue consistent with defective uptake whereas no differences were measured at 5 h. In Cd36(-/-) S1, mRNA for L-fabp, Dgat1, and apoA-IV was reduced. Protein levels for FATP4, SR-BI, and NPC1L1 were similar, whereas those for apoB48 and apoA-IV were significantly lower. A large increase in NPC1L1 was observed in Cd36(-/-) S2 and S3. The findings support the role of CD36 in proximal absorption of dietary fatty acid and cholesterol for optimal chylomicron formation, whereas CD36-independent mechanisms predominate in distal segments.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Medicine, Division of Nutritional Science, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
48
|
Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007; 6:231-48. [PMID: 17330072 DOI: 10.1038/nrd2197] [Citation(s) in RCA: 1276] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly potent, but poorly water-soluble, drug candidates are common outcomes of contemporary drug discovery programmes and present a number of challenges to drug development - most notably, the issue of reduced systemic exposure after oral administration. However, it is increasingly apparent that formulations containing natural and/or synthetic lipids present a viable means for enhancing the oral bioavailability of some poorly water-soluble, highly lipophilic drugs. This Review details the mechanisms by which lipids and lipidic excipients affect the oral absorption of lipophilic drugs and provides a perspective on the possible future applications of lipid-based delivery systems. Particular emphasis has been placed on the capacity of lipids to enhance drug solubilization in the intestinal milieu, recruit intestinal lymphatic drug transport (and thereby reduce first-pass drug metabolism) and alter enterocyte-based drug transport and disposition.
Collapse
Affiliation(s)
- Christopher J H Porter
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, Parkville campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
49
|
Ménez C, Buyse M, Farinotti R, Barratt G. Inward Translocation of the Phospholipid Analogue Miltefosine across Caco-2 Cell Membranes Exhibits Characteristics of a Carrier-mediated Process. Lipids 2007; 42:229-40. [PMID: 17393228 DOI: 10.1007/s11745-007-3026-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Miltefosine (hexadecylphosphocholine, HePC) is the first effective oral agent for the treatment of visceral leishmaniasis. The characteristics of HePC incorporation into the human intestinal epithelial cell line Caco-2 were investigated in order to understand its oral absorption mechanism. The results provide evidence for the involvement of a carrier-mediated mechanism, since the association of HePC at the apical pole of Caco-2 cells was (1) saturable as a function of time with a rapid initial incorporation over 5 min followed by a more gradual increase; (2) saturable as a function of concentration over the range studied (2-200 microM) with a saturable component which followed Michaelis-Menten kinetics (apparent K (m) 15.7 micromol/L, V (max) 39.2 nmol/mg protein/h) and a nonspecific diffusion component; (3) partially inhibited by low temperature and ATP depletion, indicating the temperature and energy-dependence of the uptake process. Moreover, we demonstrated, by an albumin back-extraction method, that HePC is internalized via translocation from the outer to the inner leaflet of the plasma membrane and that HePC may preferentially diffuse through intact raft microdomains. In conclusion, our results suggest that incorporation of HePC at the apical membrane of Caco-2 cells may occur through a passive diffusion followed by a translocation in the inner membrane leaflet through an active carrier-mediated mechanism.
Collapse
Affiliation(s)
- Cécile Ménez
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612 Faculté de Pharmacie, Univ. Paris-Sud 11, IFR 141, Tour D5, 2éme étage, 5 rue J.B. Clément, Châtenay-Malabry, Cedex 92296, France
| | | | | | | |
Collapse
|
50
|
Sumantran VN. Experimental approaches for studying uptake and action of herbal medicines. Phytother Res 2007; 21:210-4. [PMID: 17163578 DOI: 10.1002/ptr.2055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In order to gain wider credibility, herbal medicines must go through the rigorous scientific scrutiny to which synthetic drugs are subjected, and this includes investigating their absorption, bioavailability and metabolism. This review describes approaches for determining how active compounds in herbal formulations enter the systemic circulation. To assess how bioactive molecules enter the target organs and cells, specific cell lines and organ culture models can be used, followed by in vitro models to show how they may regulate digestion, energy balance and metabolism. This could lead to a better understanding of how herbal medicines affect digestion and absorption; fundamental questions which should be answered in addition to their mechanism of action.
Collapse
Affiliation(s)
- Venil N Sumantran
- Interactive Research School for Health Affairs, Bhartiya Vidyapeeth Deemed University, Dhankawadi, Pune 411034, India.
| |
Collapse
|