1
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
2
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Gu Y, An L, Zhou Y, Xue G, Jiao Y, Yang D, Liu S, Cui Z. Effect of Oat Hay as a Substitute for Alfalfa Hay on the Gut Microbiome and Metabolites of Yak Calves. Animals (Basel) 2024; 14:3329. [PMID: 39595381 PMCID: PMC11591026 DOI: 10.3390/ani14223329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
To evaluate the impact of different roughages on the intestinal microbiota of yak calves, we fed them oat hay in substitution of alfalfa hay, in addition to milk replacer and starter powder. Twenty-one 45-day-old male yak calves were selected and randomly assigned to three groups: the milk replacer + starter + alfalfa hay group (AH), the milk replacer + starter + oat hay group (OH), and the milk replacer + starter + mixed hay group (AO), in which the alfalfa hay and oat hay were administered in a 1:1 ratio. All calves in the three groups were fed the same milk replacer and an equivalent amount of dry matter. The formal experiment commenced after a 21-day pre-test period and lasted for 120 days. Following the experiment, the contents of the jejunum and colon were collected to investigate the intestinal microbiota and metabolites using 16S rRNA sequencing and LC-MS metabolomics. The result showed that the AO group had greater final body weights overall than the AH group and OH group (p < 0.05). The AH group and OH group had considerably greater feed-to-gain ratios than the AO group (p < 0.05). At the phylum level, the OH group exhibited an increased relative abundance of Bacteroidota and Spirochaetota in the jejunum (p < 0.05). The relative abundance of Actinobacteriota in the colon was increased in the AO group (p < 0.05). At the genus level, the AO group exhibited a decreased abundance of Clostridium sensu_stricto_1 (p < 0.05), and the OH group showed an increased abundance UCG-005 and Alistipes in the jejunum. There were many differential metabolites in the OH group and AO group compared to the AH group, and the different metabolites of the OH group were associated with the metabolic pathways of the nervous system, sensory system, amino acid metabolism, and lipid metabolism in the jejunum and with lipid metabolism, amino acid metabolism, and the nervous system in the colon. In the AO group, these metabolites were associated with the digestive system and the translation and metabolism of cofactors in the jejunum and with the metabolism of cofactors and vitamins in the colon. In summary, it is feasible to replace alfalfa hay with oat hay based on milk replacer and starter. The combination of the two forages enhanced nutrient absorption, improved immune function, maintained the internal homeostasis of yak calves, and was more beneficial to their growth and development.
Collapse
Affiliation(s)
- Yingchao Gu
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Lele An
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Yanan Zhou
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Guoliang Xue
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Yang Jiao
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Deyu Yang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| | - Zhanhong Cui
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; (Y.G.); (L.A.); (Y.Z.); (G.X.); (Y.J.); (D.Y.); (S.L.)
- Ministry of Agriculture and Rural Affairs Key Laboratory of Animal Nutrition and Forage-Feed of Grazing Yak and Tibetan Sheep in Qinghai-Tibetan Plateau, Xining 810016, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining 810016, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining 810016, China
| |
Collapse
|
4
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
5
|
Montgomery MK, De Nardo W, Watt MJ. Exercise training induces depot-specific remodeling of protein secretion in skeletal muscle and adipose tissue of obese male mice. Am J Physiol Endocrinol Metab 2023; 325:E227-E238. [PMID: 37493472 DOI: 10.1152/ajpendo.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Acute exercise induces changes in circulating proteins, which are known to alter metabolism and systemic energy balance. Skeletal muscle is a primary contributor to changes in the plasma proteome with acute exercise. An important consideration when assessing the endocrine function of muscle is the presence of different fiber types, which show distinct functional and metabolic properties and likely secrete different proteins. Similarly, adipokines are important regulators of systemic metabolism and have been shown to differ between depots. Given the health-promoting effects of exercise, we proposed that understanding depot-specific remodeling of protein secretion in muscle and adipose tissue would provide new insights into intertissue communication and uncover novel regulators of energy homeostasis. Here, we examined the effect of endurance exercise training on protein secretion from fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscle and visceral and subcutaneous adipose tissue. High-fat diet-fed mice were exercise trained for 6 wk, whereas a Control group remained sedentary. Secreted proteins from excised EDL and soleus muscle, inguinal, and epididymal adipose tissues were detected using mass spectrometry. We detected 575 and 784 secreted proteins from EDL and soleus muscle and 738 and 920 proteins from inguinal and epididymal adipose tissue, respectively. Of these, 331 proteins were secreted from all tissues, whereas secretion of many other proteins was tissue and depot specific. Exercise training led to substantial remodeling of protein secretion from EDL, whereas soleus showed only minor changes. Myokines released exclusively from EDL or soleus were associated with glycogen metabolism and cellular stress response, respectively. Adipokine secretion was completely refractory to exercise regulation in both adipose depots. This study provides an in-depth resource of protein secretion from muscle and adipose tissue, and its regulation following exercise training, and identifies distinct depot-specific secretion patterns that are related to the metabolic properties of the tissue of origin.NEW & NOTEWORTHY The present study examines the effects of exercise training on protein secretion from fast-twitch and slow-twitch muscle as well as visceral and subcutaneous adipose tissue of obese mice. Although exercise training leads to substantial remodeling of protein secretion from fast-twitch muscle, adipose tissue is completely refractory to exercise regulation.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
7
|
Lee MK, Ryu H, Van JY, Kim MJ, Jeong HH, Jung WK, Jun JY, Lee B. The Role of Macrophage Populations in Skeletal Muscle Insulin Sensitivity: Current Understanding and Implications. Int J Mol Sci 2023; 24:11467. [PMID: 37511225 PMCID: PMC10380189 DOI: 10.3390/ijms241411467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance is a crucial factor in the development of type 2 diabetes mellitus (T2DM) and other metabolic disorders. Skeletal muscle, the body's largest insulin-responsive tissue, plays a significant role in the pathogenesis of T2DM due to defects in insulin signaling. Recently, there has been growing evidence that macrophages, immune cells essential for tissue homeostasis and injury response, also contribute to the development of skeletal muscle insulin resistance. This review aims to summarize the current understanding of the role of macrophages in skeletal muscle insulin resistance. Firstly, it provides an overview of the different macrophage populations present in skeletal muscle and their specific functions in the development of insulin resistance. Secondly, it examines the underlying mechanisms by which macrophages promote or alleviate insulin resistance in skeletal muscle, including inflammation, oxidative stress, and altered metabolism. Lastly, the review discusses potential therapeutic strategies targeting macrophages to improve skeletal muscle insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Ji Yun Van
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea;
| | - Joo Yun Jun
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA;
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| |
Collapse
|
8
|
Visiedo F, Vázquez-Fonseca L, Ábalos-Martínez J, Broullón-Molanes JR, Quintero-Prado R, Mateos RM, Bugatto F. Maternal elevated inflammation impairs placental fatty acids β-oxidation in women with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1146574. [PMID: 37214247 PMCID: PMC10196201 DOI: 10.3389/fendo.2023.1146574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction An adverse proinflammatory milieu contributes to abnormal cellular energy metabolism response. Gestational diabetes mellitus (GDM) is closely related to an altered maternal inflammatory status. However, its role on lipid metabolism regulation in human placenta has not yet been assessed. The aim of this study was to examine the impact of maternal circulating inflammatory mediators ([TNF]-α, [IL]-6, and Leptin) on placental fatty acid metabolism in GDM pregnancies. Methods Fasting maternal blood and placental tissues were collected at term deliveries from 37 pregnant women (17 control and 20 GDM). Molecular approach techniques as radiolabeled lipid tracers, ELISAs, immunohistochemistry and multianalyte immunoassay quantitative analysis, were used to quantify serum inflammatory factors' levels, to measure lipid metabolic parameters in placental villous samples (mitochondrial fatty acid oxidation [FAO] rate and lipid content [Triglycerides]), and to analyze their possible relationships. The effect of potential candidate cytokines on fatty acid metabolism in ex vivo placental explants culture following C-section a term was also examined. Results Maternal serum IL-6, TNF-α and leptin levels were significantly increased in GDM patients compared with control pregnant women (9,9±4,5 vs. 3,00±1,7; 4,5±2,8 vs. 2,1±1,3; and 10026,7±5628,8 vs. 5360,2±2499,9 pg/ml, respectively). Placental FAO capacity was significantly diminished (~30%; p<0.01), whereas triglyceride levels were three-fold higher (p<0.01) in full-term GDM placentas. Uniquely the maternal IL-6 levels showed an inverse and positive correlation with the ability to oxidize fatty acids and triglyceride amount in placenta, respectively (r= -0,602, p=0.005; r= 0,707, p=0.001). Additionally, an inverse correlation between placental FAO and triglycerides was also found (r=-0.683; p=0.001). Interestingly, we ex vivo demonstrated by using placental explant cultures that a prolonged exposure with IL-6 (10 ng/mL) resulted in a decline in the fatty acid oxidation rate (~25%; p=0.001), along to acute increase (2-fold times) in triglycerides accumulation (p=0.001), and in lipid neutral and lipid droplets deposits. Conclusions Enhanced maternal proinflammatory cytokines levels (essentially IL-6) is closely associated with an altered placental fatty acid metabolism in pregnancies with GDM, which may interfere with adequate delivery of maternal fat across the placenta to the fetus.
Collapse
Affiliation(s)
- Francisco Visiedo
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Luis Vázquez-Fonseca
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Jessica Ábalos-Martínez
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - J. Román Broullón-Molanes
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology “Puerta del Mar” University Hospital, University of Cádiz, Cádiz, Spain
- Area of Obstetrics and Gynaecology, Department of Child and Mother Health and Radiology, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Rocío Quintero-Prado
- Department of Obstetrics and Gynecology, Puerto Real University Hospital, Cadiz, Spain
| | - Rosa María Mateos
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Cádiz, Spain
| | - Fernando Bugatto
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology “Puerta del Mar” University Hospital, University of Cádiz, Cádiz, Spain
- Area of Obstetrics and Gynaecology, Department of Child and Mother Health and Radiology, School of Medicine, University of Cádiz, Cádiz, Spain
| |
Collapse
|
9
|
Kinton S, Dufault MR, Zhang M, George K. Transcriptomic characterization of clinical skeletal muscle biopsy from late-onset Pompe patients. Mol Genet Metab 2023; 138:107526. [PMID: 36774918 DOI: 10.1016/j.ymgme.2023.107526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Pompe disease is a rare lysosomal storage disorder arising from recessive mutations in the acid α-glucosidase gene and resulting in the accumulation of glycogen, particularly in the cardiac and skeletal muscle. The current standard of care is administration of enzyme replacement therapy in the form of alglucosidase alfa or the recently approved avalglucosidase alfa. In order to better understand the underlying cellular processes that are disrupted in Pompe disease, we conducted gene expression analysis on skeletal muscle biopsies obtained from late-onset Pompe disease patients (LOPD) prior to treatment and following six months of enzyme replacement with avalglucosidase alfa. The LOPD patients had a distinct transcriptomic signature as compared to control patient samples, largely characterized by perturbations in pathways involved in lysosomal function and energy metabolism. Although patients were highly heterogeneous, they collectively exhibited a strong trend towards attenuation of the dysregulated genes following just six months of treatment. Notably, the enzyme replacement therapy had a strong stabilizing effect on gene expression, with minimal worsening in genes that were initially dysregulated. Many of the cellular process that were altered in LOPD patients were also affected in the more clinically severe infantile-onset (IOPD) patients. Additionally, both LOPD and IOPD patients demonstrated enrichment across several inflammatory pathways, despite a lack of overt immune cell infiltration. This study provides further insight into Pompe disease biology and demonstrates the positive effects of avalglucosidase alfa treatment.
Collapse
Affiliation(s)
- Sofia Kinton
- Rare and Neurologic Disease Research, Sanofi, 350 Water Street, Cambridge, MA, United States of America.
| | - Michael R Dufault
- Precision Medicine & Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| | - Mindy Zhang
- Precision Medicine & Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| | - Kelly George
- Rare and Neurologic Disease Research, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| |
Collapse
|
10
|
Rochette E, Saidi O, Merlin É, Duché P. Physical activity as a promising alternative for young people with juvenile idiopathic arthritis: Towards an evidence-based prescription. Front Immunol 2023; 14:1119930. [PMID: 36860845 PMCID: PMC9969142 DOI: 10.3389/fimmu.2023.1119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in young people. Although biologics now enable most children and adolescents with JIA to enjoy clinical remission, patients present lower physical activity and spend more time in sedentary behavior than their healthy counterparts. This impairment probably results from a physical deconditioning spiral initiated by joint pain, sustained by apprehension on the part of both the child and the child's parents, and entrenched by lowered physical capacities. This in turn may exacerbate disease activity and lead to unfavorable health outcomes including increased risks of metabolic and mental comorbidities. Over the past few decades, there has been growing interest in the health benefits of increased overall physical activity as well as exercise interventions in young people with JIA. However, we are still far from evidence-based physical activity and / or exercise prescription for this population. In this review, we give an overview of the available data supporting physical activity and / or exercise as a behavioral, non-pharmacological alternative to attenuate inflammation while also improving metabolism, disease symptoms, poor sleep, synchronization of circadian rhythms, mental health, and quality of life in JIA. Finally, we discuss clinical implications, identify gaps in knowledge, and outline a future research agenda.
Collapse
Affiliation(s)
- Emmanuelle Rochette
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Oussama Saidi
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Étienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
| | - Pascale Duché
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| |
Collapse
|
11
|
The role of exercise and hypoxia on glucose transport and regulation. Eur J Appl Physiol 2023; 123:1147-1165. [PMID: 36690907 DOI: 10.1007/s00421-023-05135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Muscle glucose transport activity increases with an acute bout of exercise, a process that is accomplished by the translocation of glucose transporters to the plasma membrane. This process remains intact in the skeletal muscle of individuals with insulin resistance and type 2 diabetes mellitus (T2DM). Exercise training is, therefore, an important cornerstone in the management of individuals with T2DM. However, the acute systemic glucose responses to carbohydrate ingestion are often augmented during the early recovery period from exercise, despite increased glucose uptake into skeletal muscle. Accordingly, the first aim of this review is to summarize the knowledge associated with insulin action and glucose uptake in skeletal muscle and apply these to explain the disparate responses between systemic and localized glucose responses post-exercise. Herein, the importance of muscle glycogen depletion and the key glucoregulatory hormones will be discussed. Glucose uptake can also be stimulated independently by hypoxia; therefore, hypoxic training presents as an emerging method for enhancing the effects of exercise on glucose regulation. Thus, the second aim of this review is to discuss the potential for systemic hypoxia to enhance the effects of exercise on glucose regulation.
Collapse
|
12
|
Górecka M, Krzemiński K, Mikulski T, Ziemba AW. ANGPTL4, IL-6 and TNF-α as regulators of lipid metabolism during a marathon run. Sci Rep 2022; 12:19940. [PMID: 36402848 PMCID: PMC9675781 DOI: 10.1038/s41598-022-17439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to reveal whether marathon running influences regulators of lipid metabolism i.e. angiopoietin-like protein 4 (ANGPTL4), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Plasma concentration of ANGPTL4, IL-6, TNF-α and lipids were determined in samples collected from 11 male runners before the marathon, immediately after the run and at 90 min of recovery. Plasma ANGPTL4 increased during exercise from 55.5 ± 13.4 to 78.1 ± 15.0 ng/ml (P < 0.001). This was accompanied by a significant increase in IL-6, TNF-α, free fatty acids (FFA) and glycerol (Gly) and a decrease in triacylglycerols (TG). After 90 min of recovery ANGPTL4 and TG did not differ from the exercise values, while plasma IL-6, TNF-α, FFA and Gly concentration were significantly lower. The exercise-induced increase in plasma concentration of ANGPTL4 correlated positively with the rise in plasma IL-6, TNF-α, FFA and Gly and negatively with the duration of the run. The increase in plasma IL-6 and TNF-α correlated positively with the rise in Gly. Summarizing, marathon running induced an increase in plasma ANGPTL4 and the value was higher in faster runners. The increase in plasma FFA, IL-6 and TNF-α concentration during a marathon run may be involved in plasma ANGPTL4 release, which could be a compensatory mechanism against FFA-induced lipotoxicity and oxidative stress. All of the analyzed cytokines may stimulate lipolysis during exercise.
Collapse
Affiliation(s)
- Monika Górecka
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Krzysztof Krzemiński
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Tomasz Mikulski
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Andrzej Wojciech Ziemba
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Zamboni M, Mazzali G, Brunelli A, Saatchi T, Urbani S, Giani A, Rossi AP, Zoico E, Fantin F. The Role of Crosstalk between Adipose Cells and Myocytes in the Pathogenesis of Sarcopenic Obesity in the Elderly. Cells 2022; 11:3361. [PMID: 36359757 PMCID: PMC9655977 DOI: 10.3390/cells11213361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
As a result of aging, body composition changes, with a decline in muscle mass and an increase in adipose tissue (AT), which reallocates from subcutaneous to visceral depots and stores ectopically in the liver, heart and muscles. Furthermore, with aging, muscle and AT, both of which have recognized endocrine activity, become dysfunctional and contribute, in the case of positive energy balance, to the development of sarcopenic obesity (SO). SO is defined as the co-existence of excess adiposity and low muscle mass and function, and its prevalence increases with age. SO is strongly associated with greater morbidity and mortality. The pathogenesis of SO is complex and multifactorial. This review focuses mainly on the role of crosstalk between age-related dysfunctional adipose and muscle cells as one of the mechanisms leading to SO. A better understanding of this mechanisms may be useful for development of prevention strategies and treatments aimed at reducing the occurrence of SO.
Collapse
Affiliation(s)
- Mauro Zamboni
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Gloria Mazzali
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Anna Brunelli
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Tanaz Saatchi
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Anna Giani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Andrea P. Rossi
- Geriatrics Division, Department of Medicine, AULSS2, Ospedale Ca’Foncello, 31100 Treviso, Italy
| | - Elena Zoico
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Fantin
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
14
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022. [PMID: 35651325 PMCID: PMC9252895 DOI: 10.5483/bmbrep.2022.55.6.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
15
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022; 55:259-266. [PMID: 35651325 PMCID: PMC9252895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 02/21/2025] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives. [BMB Reports 2022; 55(6): 259-266].
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
17
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
18
|
Pothakam N, Supakankul P, Norseeda W, Liu G, Teltathum T, Naraballobh W, Khamlor T, Sringarm K, Mekchay S. Association of adipocytokine IL-1A and IL-6 genes with intramuscular fat content and fatty acid composition in pigs. Meat Sci 2021; 179:108554. [PMID: 34000609 DOI: 10.1016/j.meatsci.2021.108554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Several adipocytokines are involved in inflammatory and immune responses as well as regulated fat deposition and lipid metabolism in mammals. This study aimed to verify the polymorphisms of the porcine interleukin 1A (IL-1A) and interleukin 6 (IL-6) genes and to assess their association with intramuscular fat (IMF) content and fatty acid (FA) composition in commercial crossbred pigs. Two single nucleotide polymorphisms (SNPs) of the porcine IL-1A g.43722547A>G and IL-6 g.91508173C>T loci were found to be segregating in these crossbred pigs. Furthermore, the porcine IL-1A g.43722547A>G polymorphism was found to be significantly associated with myristic, palmitic, palmitoleic, and eicosadienoic acid levels. Moreover, the porcine IL-6 g.91508173C>T polymorphism was significantly associated with IMF content and homolinolenic acid levels. These results suggest that the polymorphisms of the porcine IL-1A and IL-6 genes correlated with lipid content and FA composition and confirmed the importance of the adipocytokine IL-1A and IL-6 genes as candidate genes for fatty acid composition in the muscles of pigs.
Collapse
Affiliation(s)
- Nanthana Pothakam
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pantaporn Supakankul
- Division of Animal Science, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
| | - Worrarak Norseeda
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Guisheng Liu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Tawatchai Teltathum
- Mae Hong Son Livestock Research and Breeding Center, Mae Hong Son 58000, Thailand
| | - Watcharapong Naraballobh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Trisadee Khamlor
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand; Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand; Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
19
|
Severinsen MCK, Pedersen BK. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr Rev 2020; 41:5835999. [PMID: 32393961 PMCID: PMC7288608 DOI: 10.1210/endrev/bnaa016] [Citation(s) in RCA: 555] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Physical activity decreases the risk of a network of diseases, and exercise may be prescribed as medicine for lifestyle-related disorders such as type 2 diabetes, dementia, cardiovascular diseases, and cancer. During the past couple of decades, it has been apparent that skeletal muscle works as an endocrine organ, which can produce and secrete hundreds of myokines that exert their effects in either autocrine, paracrine, or endocrine manners. Recent advances show that skeletal muscle produces myokines in response to exercise, which allow for crosstalk between the muscle and other organs, including brain, adipose tissue, bone, liver, gut, pancreas, vascular bed, and skin, as well as communication within the muscle itself. Although only few myokines have been allocated to a specific function in humans, it has been identified that the biological roles of myokines include effects on, for example, cognition, lipid and glucose metabolism, browning of white fat, bone formation, endothelial cell function, hypertrophy, skin structure, and tumor growth. This suggests that myokines may be useful biomarkers for monitoring exercise prescription for people with, for example, cancer, diabetes, or neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai Charlotte Krogh Severinsen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat Commun 2020; 11:2695. [PMID: 32483258 PMCID: PMC7264154 DOI: 10.1038/s41467-020-16537-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic factors that are characterized by insulin resistance in skeletal muscle, a prominent site of glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of which the majority are located in non-coding DNA regions. This suggests that most variants mediate their effect by altering the activity of gene-regulatory elements, including enhancers. Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFα. By overlapping enhancer positions with the location of disease-associated genetic variants, and resolving long-range chromatin interactions between enhancers and gene promoters, we identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of these genes also associate with altered whole-body metabolic phenotypes in the murine BXD genetic reference population. Thus, our combined genomic investigations identified genes that are involved in skeletal muscle metabolism. Obesity and type 2 diabetes (T2D) are metabolic disorders characterized by insulin resistance in skeletal muscle. Here, the authors map skeletal muscle enhancer elements dynamically regulated after exposure to free fatty acid palmitate or inflammatory cytokine TNFα and identify target genes involved in metabolic dysfunction in skeletal muscle.
Collapse
|
21
|
Park HS, Lim JS, Lim SK. Determinants of Bone Mass and Insulin Resistance in Korean Postmenopausal Women: Muscle Area, Strength, or Composition? Yonsei Med J 2019; 60:742-750. [PMID: 31347329 PMCID: PMC6660447 DOI: 10.3349/ymj.2019.60.8.742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Muscle mass, strength, and composition determine muscle quantity and quality. However, data on muscle properties in relation to bone mass or insulin resistance are limited in Asian populations. This study aimed to investigate the relative importance of muscle measurements in regards to their relationship with lower bone mass and insulin resistance. MATERIALS AND METHODS In this study, 192 postmenopausal women (age, 72.39±6.07 years) were enrolled. We measured muscle cross-sectional area (CSA) and attenuation at the gluteus maximus and quadriceps muscles through quantitative computed tomography. Muscle strength and physical performance were evaluated with the hand grip test and Short Physical Performance Battery (SPPB). Pearson correlation analysis and linear regression were performed to evaluate the relationship between muscle properties and homeostatic model assessment-insulin resistance (HOMA-IR) or bone mineral density (BMD). RESULTS Muscle CSA, hand grip strength, and SPPB score held positive correlations with spine and hip BMDs, but not with insulin resistance. In contrast, muscle attenuation of the gluteus maximus or quadriceps was inversely related to HOMA-IR (r=-0.194, p=0.018 and r=-0.292, p<0.001, respectively), but not BMD. Compared with the control group, muscle CSA was significantly decreased in patients with osteoporosis; however, decreased muscle attenuation, indicating high fat infiltration, was found only in patients with diabetes. CONCLUSION Muscle mass, strength, and physical performance were associated with low bone mass, and accumulation of intramuscular fat, a histological hallmark of persistently damaged muscles, may play a major role in the development of insulin resistance in Korean postmenopausal women.
Collapse
Affiliation(s)
- Hye Sun Park
- Department of Endocrinology, H Plus Yangji Hospital, Seoul, Korea
| | - Jung Soo Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Institute of Evidence-based Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Kil Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Rochette E, Bourdier P, Pereira B, Doré E, Birat A, Ratel S, Echaubard S, Duché P, Merlin E. TNF blockade contributes to restore lipid oxidation during exercise in children with juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2019; 17:47. [PMID: 31331342 PMCID: PMC6647146 DOI: 10.1186/s12969-019-0354-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Children with juvenile idiopathic arthritis (JIA) have impaired physical abilities. TNF-α plays a crucial role in this pathogenesis, but it is also involved in the use of lipids and muscle health. Objective of this study was to explore substrate oxidation and impact of TNF blockade on energy metabolism in children with JIA as compared to healthy children. METHODS Fifteen non-TNF-blockaded and 15 TNF-blockaded children with JIA and 15 healthy controls were matched by sex, age, and Tanner stage. Participants completed a submaximal incremental exercise test on ergocycle to determine fat and carbohydrate oxidation rates by indirect calorimetry. RESULTS The maximal fat oxidation rate during exercise was lower in JIA children untreated by TNF blockade (134.3 ± 45.2 mg.min- 1) when compared to the controls (225.3 ± 92.9 mg.min- 1, p = 0.007); but was higher in JIA children under TNF blockade (163.2 ± 59.0 mg.min- 1, p = 0.31) when compared to JIA children untreated by TNF blockade. At the same relative exercise intensities, there was no difference in carbohydrate oxidation rate between three groups. CONCLUSIONS Lipid metabolism during exercise was found to be impaired in children with JIA. However, TNF treatment seems to improve the fat oxidation rate in this population. TRIAL REGISTRATION In ClinicalTrials.gov, reference number NCT02977416 , registered on 30 November 2016.
Collapse
Affiliation(s)
- Emmanuelle Rochette
- CHU Clermont-Ferrand, Pédiatrie, Hôpital Estaing, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), EA 3533 Clermont-Ferrand, France
- CRNH-Auvergne, F-63000 Clermont-Ferrand, France
- Pédiatrie, CHU Estaing, 1, place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France
| | - Pierre Bourdier
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), EA 3533 Clermont-Ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Délégation de la Recherche Clinique et Innovations, F-63000 Clermont-Ferrand, France
| | - Eric Doré
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), EA 3533 Clermont-Ferrand, France
- CRNH-Auvergne, F-63000 Clermont-Ferrand, France
| | - Anthony Birat
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), EA 3533 Clermont-Ferrand, France
| | - Sébastien Ratel
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), EA 3533 Clermont-Ferrand, France
| | - Stéphane Echaubard
- CHU Clermont-Ferrand, Pédiatrie, Hôpital Estaing, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
| | - Pascale Duché
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), EA 3533 Clermont-Ferrand, France
- CRNH-Auvergne, F-63000 Clermont-Ferrand, France
- Université de Toulon, Laboratoire IAPS, F-83041 Toulon, France
| | - Etienne Merlin
- CHU Clermont-Ferrand, Pédiatrie, Hôpital Estaing, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, INRA, UMR 1019 UNH, ECREIN, F-63000 Clermont-Ferrand, France
| |
Collapse
|
23
|
Montgomery MK, De Nardo W, Watt MJ. Impact of Lipotoxicity on Tissue "Cross Talk" and Metabolic Regulation. Physiology (Bethesda) 2019; 34:134-149. [PMID: 30724128 DOI: 10.1152/physiol.00037.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity-associated comorbidities include non-alcoholic fatty liver disease, Type 2 diabetes, and cardiovascular disease. These diseases are associated with accumulation of lipids in non-adipose tissues, which can impact many intracellular cellular signaling pathways and functions that have been broadly defined as "lipotoxic." This review moves beyond understanding intracellular lipotoxic outcomes and outlines the consequences of lipotoxicity on protein secretion and inter-tissue "cross talk," and the impact this exerts on systemic metabolism.
Collapse
Affiliation(s)
| | - William De Nardo
- Department of Physiology, The University of Melbourne , Melbourne, Victoria , Australia
| | - Matthew J Watt
- Department of Physiology, The University of Melbourne , Melbourne, Victoria , Australia
| |
Collapse
|
24
|
Mori da Cunha MGMC, Hympanova L, Rynkevic R, Mes T, Bosman AW, Deprest J. Biomechanical Behaviour and Biocompatibility of Ureidopyrimidinone-Polycarbonate Electrospun and Polypropylene Meshes in a Hernia Repair in Rabbits. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1174. [PMID: 30974868 PMCID: PMC6480159 DOI: 10.3390/ma12071174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
Although mesh use has significantly improved the outcomes of hernia and pelvic organ prolapse repair, long-term recurrence rates remain unacceptably high. We aim to determine the in vivo degradation and functional outcome of reconstructed abdominal wall defects, using slowly degradable electrospun ureidopyrimidinone moieties incorporated into a polycarbonate backbone (UPy-PC) implant compared to an ultra-lightweight polypropylene (PP) textile mesh with high pore stability. Twenty four New-Zealand rabbits were implanted with UPy-PC or PP to either reinforce a primary fascial defect repair or to cover (referred to as gap bridging) a full-thickness abdominal wall defect. Explants were harvested at 30, 90 and 180 days. The primary outcome measure was uniaxial tensiometry. Secondary outcomes were the recurrence of herniation, morphometry for musculofascial tissue characteristics, inflammatory response and neovascularization. PP explants compromised physiological abdominal wall compliance from 90 days onwards and UPy-PC from 180 days. UPy-PC meshes induced a more vigorous inflammatory response than PP at all time points. We observed progressively more signs of muscle atrophy and intramuscular fatty infiltration in the entire explant area for both mesh types. UPy-PC implants are replaced by a connective tissue stiff enough to prevent abdominal wall herniation in two-thirds of the gap-bridged full-thickness abdominal wall defects. However, in one-third there was sub-clinical herniation. The novel electrospun material did slightly better than the textile PP yet outcomes were still suboptimal. Further research should investigate what drives muscular atrophy, and whether novel polymers would eventually generate a physiological neotissue and can prevent failure and/or avoid collateral damage.
Collapse
Affiliation(s)
| | - Lucie Hympanova
- (A.W.B.).
- Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium.
- Institute for the Care of Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic.
| | - Rita Rynkevic
- (A.W.B.).
- Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium.
- INEGI, Faculdade de Engenharia da Universidade do Porto, Universidade do Porto, 4099-002 Porto, Portugal.
| | - Tristan Mes
- SupraPolix BV, 5611 Eindhoven, The Netherlands.
| | | | - Jan Deprest
- (A.W.B.).
- Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, 3000 Leuven, Belgium.
- Pelvic Floor Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
25
|
Kraft EN, Cervone DT, Dyck DJ. Ghrelin stimulates fatty acid oxidation and inhibits lipolysis in isolated muscle from male rats. Physiol Rep 2019; 7:e14028. [PMID: 30963694 PMCID: PMC6453820 DOI: 10.14814/phy2.14028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022] Open
Abstract
Ghrelin is classically known as a central appetite-stimulating hormone but has recently been recognized to have a significant role in peripheral tissue energy metabolism. However, the direct effects of ghrelin on skeletal muscle, a major site for glucose and lipid disposal, remain understudied. We found that the two major ghrelin isoforms, acylated and unacylated ghrelin, were able to significantly increase skeletal muscle fatty acid oxidation (~20%) while incorporation of fatty acids into major lipid pools remained unchanged. The increase in fatty acid oxidation was accompanied by increases in acetyl-CoA carboxylase phosphorylation, a downstream target of AMPK. Ghrelin isoforms had no independent effect on lipolysis under unstimulated conditions, but nearly completely abolished epinephrine-stimulated lipolysis. This effect was generally, but not consistently related to a blunting in the phosphorylation of HSL activation sites, Ser660 and 563. Taken together, these findings suggest that ghrelin isoforms have a direct, acute effect on fatty acid oxidation and lipolysis.
Collapse
Affiliation(s)
- Emily N. Kraft
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Daniel T. Cervone
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - David J. Dyck
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
26
|
Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants. Diseases 2018; 7:diseases7010001. [PMID: 30577454 PMCID: PMC6473627 DOI: 10.3390/diseases7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
SET and MYND Domain 1 (SMYD1) is a cardiac and skeletal muscle-specific, histone methyl transferase that is critical for both embryonic and adult heart development and function in both mice and men. We report here that skeletal muscle-specific, myogenin (myoG)-Cre-mediated conditional knockout (CKO) of Smyd1 results in perinatal death. As early as embryonic day 12.5, Smyd1 CKOs exhibit multiple skeletal muscle defects in proliferation, morphology, and gene expression. However, all myotonic descendants are not afflicted equally. Trunk muscles are virtually ablated with excessive accumulation of brown adipose tissue (BAT), forelimb muscles are disorganized and improperly differentiated, but other muscles, such as the masseter, are normal. While expression of major myogenic regulators went unscathed, adaptive and innate immune transcription factors critical for BAT development/physiology were downregulated. Whereas classical mitochondrial BAT accumulation went unscathed following loss of SMYD1, key transcription factors, including PRDM16, UCP-1, and CIDE-a that control skeletal muscle vs. adipose fate, were downregulated. Finally, in rare adults that survive perinatal lethality, SMYD1 controls specification of some, but not all, skeletal muscle fiber-types.
Collapse
|
27
|
Bhatt BA, Dedousis N, Sipula IJ, O'Doherty RM. Elevated metabolic rate and skeletal muscle oxidative metabolism contribute to the reduced susceptibility of NF-κB p50 null mice to obesity. Physiol Rep 2018; 6:e13836. [PMID: 30251338 PMCID: PMC6153426 DOI: 10.14814/phy2.13836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023] Open
Abstract
Mice with a deletion of the p50 subunit of the proinflammatory nuclear factor kappa B pathway (NF-κB p50) have reduced weight compared to wild-type control mice. However, the physiological underpinning of this phenotype remains unknown. This study addressed this issue. Compared to littermate controls, lean male p50 null mice (p50-/- ) had an increased metabolic rate (~20%) that was associated with increased skeletal muscle (SkM, ~35%), but not liver, oxidative metabolism. These metabolic alterations were accompanied by decreases in adiposity, and tissue and plasma triglyceride levels (all ~30%). Notably, there was a marked decrease in skeletal muscle, but not liver, DGAT2 gene expression (~70%), but a surprising reduction in muscle PPARα and CPT1 (both ~20%) gene expression. Exposure to a high-fat diet accentuated the diminished adiposity of p50-/- mice despite elevated caloric intake, whereas plasma triglycerides and free fatty acids (both ~30%), and liver (~40%) and SkM (~50%) triglyceride accumulation were again reduced compared to WT. Although SkM cytokine expression (IL-6 and TNFα, each ~100%) were increased in p50-/- mice, neither cytokine acutely increased SkM oxidative metabolism. We conclude that the reduced susceptibility to diet-induced obesity and dyslipidemia in p50-/- mice results from an increase in metabolic rate, which is associated with elevated skeletal muscle oxidative metabolism and decreased DGAT2 expression.
Collapse
Affiliation(s)
- Bankim A. Bhatt
- Department of MedicineDivision of Endocrinology and MetabolismUniversity of PittsburghPittsburghPennsylvania
| | - Nikolaos Dedousis
- Department of MedicineDivision of Endocrinology and MetabolismUniversity of PittsburghPittsburghPennsylvania
| | - Ian J. Sipula
- Department of MedicineDivision of Endocrinology and MetabolismUniversity of PittsburghPittsburghPennsylvania
| | - Robert M. O'Doherty
- Department of MedicineDivision of Endocrinology and MetabolismUniversity of PittsburghPittsburghPennsylvania
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghPennsylvania
| |
Collapse
|
28
|
|
29
|
Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 2017; 47:600-611. [PMID: 28722106 DOI: 10.1111/eci.12781] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Persistent inflammation is involved in the pathogenesis of chronic diseases such as type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). AIMS The aim of this review was to provide the reader with an update of the mechanisms whereby exercise-induced cytokines may impact cardiometabolic diseases. RESULTS Evidence exists that interleukin (IL)-1β is involved in pancreatic β-cell damage, whereas TNF-α is a key molecule in peripheral insulin resistance. In addition, TNF-α appears to be involved in the pathogenesis of atherosclerosis and heart failure. A marked increase in IL-6 and IL-10 is provoked by exercise and exerts direct anti-inflammatory effects by an inhibition of TNF-α and by stimulating IL-1ra, thereby limiting IL-1β signalling. Moreover, muscle-derived IL-6 appears to have direct anti-inflammatory effects and serves as a mechanism to improve glucose tolerance. In addition, indirect anti-inflammatory effects of long-term exercise are mediated via improvements in body composition. CONCLUSION Physical activity represents a natural, strong anti-inflammatory strategy with minor side effects and should be integrated in the management of patients with cardiometabolic diseases.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, Liu Z, Lee CW, Zaw AM, Chow BKC, Ye K, Chan CB. Tumor Necrosis Factor-α Promotes Phosphoinositide 3-Kinase Enhancer A and AMP-Activated Protein Kinase Interaction to Suppress Lipid Oxidation in Skeletal Muscle. Diabetes 2017; 66:1858-1870. [PMID: 28404596 PMCID: PMC5482076 DOI: 10.2337/db16-0270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is an inflammatory cytokine that plays a central role in obesity-induced insulin resistance. It also controls cellular lipid metabolism, but the underlining mechanism is poorly understood. We report in this study that phosphoinositide 3-kinase enhancer A (PIKE-A) is a novel effector of TNF-α to facilitate its metabolic modulation in the skeletal muscle. Depletion of PIKE-A in C2C12 myotubes diminished the inhibitory activities of TNF-α on mitochondrial respiration and lipid oxidation, whereas PIKE-A overexpression exacerbated these cellular responses. We also found that TNF-α promoted the interaction between PIKE-A and AMP-activated protein kinase (AMPK) to suppress its kinase activity in vitro and in vivo. As a result, animals with PIKE ablation in the skeletal muscle per se display an upregulation of AMPK phosphorylation and a higher preference to use lipid as the energy production substrate under high-fat diet feeding, which mitigates the development of diet-induced hyperlipidemia, ectopic lipid accumulation, and muscle insulin resistance. Hence, our data reveal PIKE-A as a new signaling factor that is important for TNF-α-initiated metabolic changes in skeletal muscle.
Collapse
Affiliation(s)
- Margaret Chui Ling Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Oana Herlea-Pana
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Daniel Brobst
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiuying Yang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Drug Screening Center, Institute of Materia Medica, Beijing, People's Republic of China
| | - John Wood
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiang Hu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhixue Liu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Chi Wai Lee
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Aung Moe Zaw
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
31
|
Wang J, Leung KS, Chow SKH, Cheung WH. Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J Orthop Translat 2017; 10:94-101. [PMID: 29662761 PMCID: PMC5822997 DOI: 10.1016/j.jot.2017.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022] Open
Abstract
Ageing is accompanied by chronic inflammatory responses due to elevated circulatory inflammatory cytokine production. Several inflammatory cytokines have been shown to be responsible for a decrease in muscle mass. However, little is known about the possible relationship between inflammation and sarcopaenia. This review aims to summarise the existing evidence about inflammation and sarcopaenia. Sarcopaenia is defined as an age-related decrease of muscle mass and/or muscle strength; it is caused by multiple factors, such as skeletal muscle atrophy, neuromuscular junction degeneration, hormone imbalance, cytokine imbalance, protein synthesis and proteolysis. Several inflammatory cytokines have been considered to promote muscle loss; C-reactive protein levels are significantly upregulated in sarcopaenia and sarcopenic obesity, and high levels of interleukin-6 are associated with reduced muscle mass and muscle strength (the administration of interleukin-6 could lead to a reduction in muscle mass). Up-regulation of tumour necrosis factor-α expression is also related to the development of sarcopaenia. Signalling pathways, such as protein kinase B/mammalian target of rapamycin, Janus kinase/signal transducer and activator of transcription-5 and signal transducer and activator of transcription 3 signalling, involved in muscle metabolism are regulated by insulin-like growth factor-1, tumour necrosis factor-α and interleukin-6 respectively. In conclusion, the inflammatory cytokines produced during chronic inflammation due to ageing, may influence their respective related pathways, thus leading to age-related muscle deterioration. The translational potential of this article This review can provide more information for sarcopaenia medicine research in terms of anti-inflammation therapy.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Sui Leung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| |
Collapse
|
32
|
Oh KJ, Lee DS, Kim WK, Han BS, Lee SC, Bae KH. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci 2016; 18:ijms18010008. [PMID: 28025491 PMCID: PMC5297643 DOI: 10.3390/ijms18010008] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Obesity and type II diabetes are characterized by insulin resistance in peripheral tissues. A high caloric intake combined with a sedentary lifestyle is the leading cause of these conditions. Whole-body insulin resistance and its improvement are the result of the combined actions of each insulin-sensitive organ. Among the fundamental molecular mechanisms by which each organ is able to communicate and engage in cross-talk are cytokines or peptides which stem from secretory organs. Recently, it was reported that several cytokines or peptides are secreted from muscle (myokines), adipose tissue (adipokines) and liver (hepatokines) in response to certain nutrition and/or physical activity conditions. Cytokines exert autocrine, paracrine or endocrine effects for the maintenance of energy homeostasis. The present review is focused on the relationship and cross-talk amongst muscle, adipose tissue and the liver as secretory organs in metabolic diseases.
Collapse
Affiliation(s)
- Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
33
|
α-MSH and Foxc2 promote fatty acid oxidation through C/EBPβ negative transcription in mice adipose tissue. Sci Rep 2016; 6:36661. [PMID: 27819350 PMCID: PMC5098202 DOI: 10.1038/srep36661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/18/2016] [Indexed: 01/18/2023] Open
Abstract
Alpha melanocyte stimulating hormone (α-MSH) and Forkhead box C2 protein (Foxc2) enhance lipolysis in multiple tissues. However, their relationship in adipose fatty acid oxidation (FAO) remains unclear. Here, we demonstrated that α-MSH and Foxc2 increased palmitate oxidation to CO2 in white (WAT) and brown adipose tissue (BAT). C/EBPβ expression was reduced by α-MSH and Foxc2. FFA level was elevated by α-MSH and pc-Foxc2 treatment along with increased FAO in white and brown adipocytes. The expression of FAO key enzymes, medium-chain acyl-CoA dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) were increased in α-MSH and pc-Foxc2 group. Combination of α-MSH and Foxc2 treatment synergistically promoted FAO through increasing the activity of CPT-1 and phosphorylation of ACC. We found C/EBPβ bind to MC5R and Foxc2 promoter regions and inhibited FAO. cAMP level was increased by α-MSH and Foxc2 individually treated or combined treatment. Furthermore, cAMP/PKA pathway-specific inhibitor (H89) blocked the FAO, despite in α-MSH and Foxc2 both added group. While forskolin, the cAMP agonist, promoted FAO and enhanced the effect of α-MSH and Foxc2. Collectively, α-MSH and Foxc2 mutual promote FAO in WAT and BAT via cAMP/PKA signal pathway. And C/EBPβ as a transcription suppressor inhibits α-MSH and Foxc2 expression and FAO.
Collapse
|
34
|
Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 2016; 54:284-305. [PMID: 26718191 DOI: 10.1007/s12020-015-0834-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
Abstract
Physical inactivity has been recognized, by the World Health Organization as the fourth cause of death (5.5 % worldwide). On the contrary, physical activity (PA) has been associated with improved quality of life and decreased risk of several diseases (i.e., stroke, hypertension, myocardial infarction, obesity, malignancies). Bone turnover is profoundly affected from PA both directly (load degree is the key determinant for BMD) and indirectly through the activation of several endocrine axes. Several molecules, secreted by muscle (myokines) and adipose tissues (adipokines) in response to exercise, are involved in the fine regulation of bone metabolism in response to the energy availability. Furthermore, bone regulates energy metabolism by communicating its energetic needs thanks to osteocalcin which acts on pancreatic β-cells and adipocytes. The beneficial effects of exercise on bone metabolism depends on the intermittent exposure to myokines (i.e., irisin, IL-6, LIF, IGF-I) which, instead, act as inflammatory/pro-resorptive mediators when chronically elevated; on the other hand, the reduction in the circulating levels of adipokines (i.e., leptin, visfatin, adiponectin, resistin) sustains these effects as well as improves the whole-body metabolic status. The aim of this review is to highlight the newest findings about the exercise-dependent regulation of these molecules and their role in the fine regulation of bone metabolism.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | | | - Silvia Perego
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
35
|
Xie Y, Zhang Y, Guo Z, Zeng H, Zheng B. Effect of Alkaloids from Nelumbinis Plumula against Insulin Resistance of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. J Diabetes Res 2016; 2016:3965864. [PMID: 27761469 PMCID: PMC5059548 DOI: 10.1155/2016/3965864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the effects of total alkaloids from Nelumbinis Plumula (NPA) on insulin resistance (IR) of high-fat diet- (HFD-) induced nonalcoholic fatty liver disease (NAFLD). Rats were fed with HFD for 8 weeks to induce NAFLD. Then, the effect of NPA on ameliorating IR in HFD-induced NAFLD was evaluated. Fasting serum insulin was determined using an enzyme-linked immunosorbent assay (ELISA) kit for insulin following the manufacturer's protocol. Some inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were determined using ELISA kits to assess the inflammatory burden in rats. The results showed that HFD could induce a significant increase in blood glucose and IR in rats. However, rats treated with NPA (400 or 600 mg/kg) showed improved IR and reduction in serum inflammatory cytokines TNF-α and IL-6. Further investigation indicated that NPA could inhibit IR by restoring the insulin receptor substrate-1 (IRS-1) and suppressing the expression of c-Jun N-terminal kinase (JNK) phosphorylation. The present results supported the view that the pathogenesis of NAFLD was complex with inflammation, together with increasing serum glucose and IR. Also, JNK and IRS phosphorylation were suggested for their involvement in the modulating of IR during NAFLD progression. Therefore, NPA may serve as a potential natural remedy against IR in NAFLD.
Collapse
Affiliation(s)
- Yong Xie
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
36
|
MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia. Mediators Inflamm 2016; 2016:1438686. [PMID: 27382188 PMCID: PMC4921629 DOI: 10.1155/2016/1438686] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/18/2016] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia has been defined as the aging-related disease with the declined mass, strength, and function of skeletal muscle, which is the major cause of frailty and falls in elders. The activation of inflammatory signal pathways due to diseases and aging is suggested to reveal the critical impact on sarcopenia. Several proinflammatory cytokines, especially interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), play crucial roles in modulation of inflammatory signaling pathway during the aging-related loss of skeletal muscle. MicroRNAs (miRNAs) have emerged as the important regulators for the mass and functional maintenance of skeletal muscle through regulating gene expression of proinflammatory cytokines. In this paper, we have systematically discussed regulatory mechanisms of miRNAs for the expression and secretion of inflammatory cytokines during sarcopenia, which will provide some novel targets and therapeutic strategies for controlling aging-related atrophy of skeletal muscle and corresponding chronic inflammatory diseases.
Collapse
|
37
|
Fitness, adiposopathy, and adiposity are independent predictors of insulin sensitivity in middle-aged men without diabetes. J Physiol Biochem 2016; 72:435-44. [PMID: 27139423 DOI: 10.1007/s13105-016-0488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Adiposopathy, or sick fat, refers to adipose tissue dysfunction that can lead to several complications such as dyslipidemia, insulin resistance, and hyperglycemia. The relative contribution of adiposopathy in predicting insulin resistance remains unclear. We investigated the relationship between adiposopathy, as assessed as a low plasma adiponectin/leptin ratio, with anthropometry, body composition (hydrostatic weighing), insulin sensitivity (hyperinsulinemic-euglycemic clamp), inflammation, and fitness level (ergocycle VO2max, mL/kgFFM/min) in 53 men (aged 34-53 years) from four groups: sedentary controls without obesity (body mass index [BMI] <25 kg/m(2)), sedentary with obesity (BMI > 30 kg/m(2)), sedentary with obesity and glucose intolerance, and endurance trained active without obesity. The adiponectin/leptin ratio was the highest in trained men (4.75 ± 0.82) and the lowest in glucose intolerant subjects with obesity (0.27 ± 0.06; ANOVA p < 0.0001) indicating increased adiposopathy in those with obesity. The ratio was negatively associated with adiposity (e.g., waist circumference, r = -0.59, p < 0.01) and positively associated with VO2max (r = 0.67, p < 0.01) and insulin sensitivity (M/I, r = 0.73, p < 0.01). Multiple regression analysis revealed fitness as the strongest independent predictor of insulin sensitivity (partial R (2) = 0.61). While adiposopathy was also an independent and significant contributor (partial R (2) = 0.10), waist circumference added little power to the model (partial R (2) = 0.024). All three variables remained significant independent predictors when trained subjects were excluded from the model. Plasma lipids were not retained in the model. We conclude that low fitness, adiposopathy, as well as adiposity (and in particular abdominal obesity) are independent contributors to insulin resistance in men without diabetes.
Collapse
|
38
|
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2016; 167:228-56. [PMID: 26408801 DOI: 10.1016/j.trsl.2015.08.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.
Collapse
Affiliation(s)
- Hadi Khodabandehloo
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
39
|
Coles CA. Adipokines in Healthy Skeletal Muscle and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:133-60. [DOI: 10.1007/978-3-319-27511-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 2015; 80:115-125. [PMID: 26453501 PMCID: PMC4657151 DOI: 10.1016/j.bone.2015.02.008] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 12/29/2022]
Abstract
An active lifestyle is crucial to maintain health into old age; inversely, sedentariness has been linked to an elevated risk for many chronic diseases. The discovery of myokines, hormones produced by skeletal muscle tissue, suggests the possibility that these might be molecular mediators of the whole body effects of exercise originating from contracting muscle fibers. Even though less is known about the sedentary state, the lack of contraction-induced myokines or the production of a distinct set of hormones in the inactive muscle could likewise contribute to pathological consequences in this context. In this review, we try to summarize the most recent developments in the study of muscle as an endocrine organ and speculate about the potential impact on our understanding of exercise and sedentary physiology, respectively. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Svenia Schnyder
- Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland.
| |
Collapse
|
41
|
Babenko NA, Kharchenko VS. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. BIOCHEMISTRY (MOSCOW) 2015; 80:104-12. [PMID: 25754045 DOI: 10.1134/s0006297915010125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in "old" hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of "old" cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of age-dependent insulin resistance.
Collapse
Affiliation(s)
- N A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, Kharkov, 61077, Ukraine.
| | | |
Collapse
|
42
|
Ahima RS, Park HK. Connecting Myokines and Metabolism. Endocrinol Metab (Seoul) 2015; 30:235-45. [PMID: 26248861 PMCID: PMC4595346 DOI: 10.3803/enm.2015.30.3.235] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is the largest organ of the body in non-obese individuals and is now considered to be an endocrine organ. Hormones (myokines) secreted by skeletal muscle mediate communications between muscle and liver, adipose tissue, brain, and other organs. Myokines affect muscle mass and myofiber switching, and have profound effects on glucose and lipid metabolism and inflammation, thus contributing to energy homeostasis and the pathogenesis of obesity, diabetes, and other diseases. In this review, we summarize recent findings on the biology of myokines and provide an assessment of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, and the Institute for Diabetes, Obesity and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Hyeong Kyu Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Roles of chronic low-grade inflammation in the development of ectopic fat deposition. Mediators Inflamm 2014; 2014:418185. [PMID: 25143667 PMCID: PMC4131072 DOI: 10.1155/2014/418185] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
Pattern of fat distribution is a major determinant for metabolic homeostasis. As a depot of energy, the storage of triglycerides in adipose tissue contributes to the normal fat distribution. Decreased capacity of fat storage in adipose tissue may result in ectopic fat deposition in nonadipose tissues such as liver, pancreas, and kidney. As a critical biomarker of metabolic complications, chronic low-grade inflammation may have the ability to affect the process of lipid accumulation and further lead to the disorder of fat distribution. In this review, we have collected the evidence linking inflammation with ectopic fat deposition to get a better understanding of the underlying mechanism, which may provide us with novel therapeutic strategies for metabolic disorders.
Collapse
|
44
|
Wueest S, Item F, Boyle CN, Jirkof P, Cesarovic N, Ellingsgaard H, Böni-Schnetzler M, Timper K, Arras M, Donath MY, Lutz TA, Schoenle EJ, Konrad D. Interleukin-6 contributes to early fasting-induced free fatty acid mobilization in mice. Am J Physiol Regul Integr Comp Physiol 2014; 306:R861-7. [DOI: 10.1152/ajpregu.00533.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contracting muscle releases interleukin-6 (IL-6) enabling the metabolic switch from carbohydrate to fat utilization. Similarly, metabolism is switched during transition from fed to fasting state. Herein, we examined a putative role for IL-6 in the metabolic adaptation to normal fasting. In lean C57BL/6J mice, 6 h of food withdrawal increased gene transcription levels of IL-6 in skeletal muscle but not in white adipose tissue. Concomitantly, circulating IL-6 and free fatty acid (FFA) levels were significantly increased, whereas respiratory quotient (RQ) was reduced in 6-h fasted mice. In white adipose tissue, phosphorylation of hormone-sensitive lipase (HSL) was increased on fasting, indicating increased lipolysis. Intriguingly, fasting-induced increase in circulating IL-6 levels and parallel rise in FFA concentration were absent in obese and glucose-intolerant mice. A causative role for IL-6 in the physiological adaptation to fasting was further supported by the fact that fasting-induced increase in circulating FFA levels was significantly blunted in lean IL-6 knockout (KO) and lean C57BL/6J mice treated with neutralizing IL-6 antibody. Consistently, phosphorylation of HSL was significantly reduced in adipose tissue of IL-6-depleted mice. Hence, our findings suggest a novel role for IL-6 in energy supply during early fasting.
Collapse
Affiliation(s)
- Stephan Wueest
- Department of Pediatric Endocrinology and Diabetology and
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Flurin Item
- Department of Pediatric Endocrinology and Diabetology and
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Christina N. Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, Zurich Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Zurich Switzerland
| | - Helga Ellingsgaard
- Division of Endocrinology, Diabetes & Metabolism and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Division of Endocrinology, Diabetes & Metabolism and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Katharina Timper
- Division of Endocrinology, Diabetes & Metabolism and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Margarete Arras
- Division of Surgical Research, University Hospital Zurich, Zurich Switzerland
| | - Marc Y. Donath
- Division of Endocrinology, Diabetes & Metabolism and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Eugen J. Schoenle
- Department of Pediatric Endocrinology and Diabetology and
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Daniel Konrad
- Department of Pediatric Endocrinology and Diabetology and
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| |
Collapse
|
45
|
Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E, Chung J, Watson N, Gardner T, Lee-Young RS, Connor T, Watt MJ, Carpenter K, Hargreaves M, McGee SL, Hevener AL, Febbraio MA. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 2014; 63:1881-94. [PMID: 24430435 PMCID: PMC4030108 DOI: 10.2337/db13-0967] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Clinton R Bruce
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, AustraliaDepartment of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian G Drew
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kálmán Tory
- N-Gene Research Laboratories, Inc., Budapest, Hungary
| | | | - Emma Estevez
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jason Chung
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nadine Watson
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy Gardner
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kevin Carpenter
- Department of Biochemical Genetics, Children's Hospital at Westmead and Disciplines of Genetic Medicine and Paediatrics and Child Health, University of Sydney, New South Wales, Australia
| | - Mark Hargreaves
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, AustraliaN-Gene Research Laboratories, Inc., Budapest, Hungary
| |
Collapse
|
46
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
47
|
Golbidi S, Laher I. Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res 2014; 2014:726861. [PMID: 24563869 PMCID: PMC3915640 DOI: 10.1155/2014/726861] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/18/2013] [Indexed: 12/25/2022] Open
Abstract
The lack of adequate physical activity and obesity created a worldwide pandemic. Obesity is characterized by the deposition of adipose tissue in various parts of the body; it is now evident that adipose tissue also acts as an endocrine organ capable of secreting many cytokines that are though to be involved in the pathophysiology of obesity, insulin resistance, and metabolic syndrome. Adipokines, or adipose tissue-derived proteins, play a pivotal role in this scenario. Increased secretion of proinflammatory adipokines leads to a chronic inflammatory state that is accompanied by insulin resistance and glucose intolerance. Lifestyle change in terms of increased physical activity and exercise is the best nonpharmacological treatment for obesity since these can reduce insulin resistance, counteract the inflammatory state, and improve the lipid profile. There is growing evidence that exercise exerts its beneficial effects partly through alterations in the adipokine profile; that is, exercise increases secretion of anti-inflammatory adipokines and reduces proinflammatory cytokines. In this paper we briefly describe the pathophysiologic role of four important adipokines (adiponectin, leptin, TNF-α, and IL-6) in the metabolic syndrome and review some of the clinical trials that monitored these adipokines as a clinical outcome before and after exercise.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
- *Ismail Laher:
| |
Collapse
|
48
|
Subhi Y, Singh A, Falk MK, Sørensen TL. In patients with neovascular age-related macular degeneration, physical activity may influence C-reactive protein levels. Clin Ophthalmol 2013; 8:15-21. [PMID: 24363550 PMCID: PMC3862739 DOI: 10.2147/opth.s55080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose Association of neovascular age-related macular degeneration (AMD) with C-reactive protein (CRP) was previously reported, indicating a relation to systemic low-grade inflammation. However, visual impairment limits physical activity, and physical activity modulates CRP levels. Here, we investigated the impact of physical activity on CRP levels in patients with neovascular AMD and control individuals. Subjects and methods We recruited participants from our outpatient AMD program, and control individuals from non-AMD patients, visitors, and department staff. After initial screening of 191 individuals, we included 98 patients with neovascular AMD and 77 controls. All were screened using digital fundus photography and optical coherence tomography, and interviewed about medical history and physical activity. Venous blood samples were obtained for high-sensitivity CRP. Results Physically active individuals had lower CRP than physically inactive individuals (P=0.003), and physical activity was associated with lower CRP in patients (P=0.038) and controls (P=0.031). Patients and controls did not differ in percentage physically active (P=0.807) or in overall CRP levels (P=0.394). The independent contribution of physical activity on CRP was confirmed in a multiple regression analysis (P=0.009), in which the presence of neovascular AMD did not contribute significantly (P=0.913). Conclusion Our findings suggest that elevated CRP levels in patients with neovascular AMD are at least partly explained by physical inactivity. Future studies of systemic inflammation among the visually impaired should include disease-related implications, such as the impact of physical activity.
Collapse
Affiliation(s)
- Yousif Subhi
- Department of Ophthalmology, Clinical Eye Research Unit, Copenhagen University Hospital Roskilde and the University of Copenhagen, Copenhagen, Denmark
| | - Amardeep Singh
- Department of Ophthalmology, Clinical Eye Research Unit, Copenhagen University Hospital Roskilde and the University of Copenhagen, Copenhagen, Denmark
| | - Mads Krüger Falk
- Department of Ophthalmology, Clinical Eye Research Unit, Copenhagen University Hospital Roskilde and the University of Copenhagen, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Clinical Eye Research Unit, Copenhagen University Hospital Roskilde and the University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Abstract
Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists of several hundred secreted peptides. This finding provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs such as adipose tissue, liver, pancreas, bones, and brain. In addition, several myokines exert their effects within the muscle itself. Many proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
50
|
Lamprecht M, Obermayer G, Steinbauer K, Cvirn G, Hofmann L, Ledinski G, Greilberger JF, Hallstroem S. Supplementation with a juice powder concentrate and exercise decrease oxidation and inflammation, and improve the microcirculation in obese women: randomised controlled trial data. Br J Nutr 2013; 110:1685-95. [PMID: 23591157 PMCID: PMC3821373 DOI: 10.1017/s0007114513001001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 01/03/2023]
Abstract
Obesity and sedentary lifestyle are associated with increased oxidative stress, inflammation and vessel dysfunction. Previous research has shown that an encapsulated fruit/berry/vegetable juice powder (FBV) supplement or controlled exercise training improve the markers of redox biology, low-grade inflammation and circulation. The aim of the present study was to assess the effects of 8 weeks of supplementation with FBV or placebo, and a single bout of controlled walking on the markers of oxidation, inflammation and skin capillary microcirculation in forty-two obese pre-menopausal women (41 (SD 5) years, non-smokers and BMI 34·5 (SD 3·8) kg/m(2)) using a randomised, double-blind, placebo-controlled design. All assessments were made before and after 8 weeks of capsule supplementation, and pre- and post-30 min of controlled treadmill walking at 70 % of VO2max. Venous blood was collected for the determination of carbonyl proteins (CP), oxidised LDL (ox-LDL), total oxidation status (TOS) of lipids, malondialdehyde, TNF-α and IL-6. Capillary blood flow, O2 saturation of Hb (SO2Hb) and the relative concentration of Hb (rHb) were assessed at a 2 mm skin depth. Following 8 weeks of supplementation, compared with placebo, the FBV group had a significant (P< 0·05) reduction in CP, ox-LDL, TOS and TNF-α, and a significant increase in blood flow, SO2Hb and rHb. Independent of supplementation, moderate exercise significantly increased blood flow and rHb, with a trend towards increased SO2Hb. Compared with placebo, 8 weeks of supplementation with FBV decreased the markers of systemic oxidation and inflammation. Both FBV supplementation and a single walking bout improved the markers of the microcirculation in these obese women.
Collapse
Affiliation(s)
- Manfred Lamprecht
- Institute of Physiological Chemistry, Centre for Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
- Institute of Nutrient Research and Sport Nutrition, Petersbergenstrasse 95b, 8042Graz, Austria
| | - Georg Obermayer
- Institute of Physiological Chemistry, Centre for Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
- Institute of Nutrient Research and Sport Nutrition, Petersbergenstrasse 95b, 8042Graz, Austria
| | - Kurt Steinbauer
- SportchirurgiePlus, Centre for Individual Sport Medicine and Surgery, Berthold Linderweg 15, 8047Graz, Austria
| | - Gerhard Cvirn
- Institute of Physiological Chemistry, Centre for Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
| | - Lidija Hofmann
- FH JOANNEUM, University of Applied Sciences, Eggenberger Allee 11, 8020Graz, Austria
| | - Gerhard Ledinski
- Institute of Physiological Chemistry, Centre for Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
| | - Joachim F. Greilberger
- Institute of Physiological Chemistry, Centre for Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
- Institute of Laboratory Sciences, Dr Greilberger GmbH, Hauptstrasse 140, 8301Laßnitzhöhe, Austria
| | - Seth Hallstroem
- Institute of Physiological Chemistry, Centre for Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
| |
Collapse
|