1
|
Men J, Zhao C, Xiang C, Zhu G, Yu Z, Wang P, Wu S, Zhang Y, Li Y, Wang L, Gong X, Yang X, Zou S, Ma J, Cui C, Li H, Ma X, Wu W, Wang Y. Effects of high-intensity interval training on physical morphology, cardiopulmonary function, and metabolic indicators in older adults: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2025; 16:1526991. [PMID: 40201761 PMCID: PMC11975580 DOI: 10.3389/fendo.2025.1526991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025] Open
Abstract
Background Despite the growing attention towards the efficacy of high-intensity interval training (HIIT) on older adult health, a consensus regarding the pleiotropic effects of HIIT in this population is yet to be reached. Previous studies have predominantly focused on specific outcomes or particular groups, lacking comprehensive analysis. Objective We aimed to conduct a systematic evaluation of the impact of HIIT on body composition, cardiopulmonary function, and metabolic parameters in older adults. Methods The databases searched included PubMed, Web of Science, Cochrane Library, Scopus, WanFang, and other relevant sources from the inception of the database until July 2023. Randomized controlled trials (RCTs) on the effects of HIIT on body shape, cardiopulmonary function, and metabolic parameters in the older adult were searched. Results A total of 87 RCTs meeting the criteria were included, involving 4,213 older adult people. Meta-analysis results showed that HIIT significantly improved body fat percentage (BF%) [MD: -1.63%, p = 0.005], maximal oxygen uptake (VO2max) [MD: 2.46 mL min-1 kg-1, p < 0.00001], maximal heart rate (HRmax) [MD: 2.83 beats min-1, p = 0.02], and high-density lipoprotein (HDL) levels [MD: 0.04 mmol L-1, p = 0.002]. However, for systolic blood pressure (SBP) [MD: 0.49 mmHg, p = 0.60], resting heart rate (HRrest) [MD: -0.95 BPM -1, p = 0.24], triglycerides (TG) [tendency for MD: -0.02 mmol L-1, p = 0.61], low-density lipoprotein (LDL) [MD: -0.04 mmol L-1, p = 0.27] had no significant effect. Sensitivity analysis found that HIIT significantly improved waist circumference (WC) [MD: -1.89 cm, p = 0.17], diastolic blood pressure (DBP) [MD: -0.63 mmHg, p = 0.23], respiratory exchange rate (RER) [MD: 0.01, p = 0.20], total cholesterol (TC) [MD: 0.10 mmol L-1, p = 0.14], and fasting plasma glucose (FPG) [MD:-0.20 mmol L-1, p = 0.08], but the results lacked robustness. There was no significant improvement in DBP [MD: -0.63 mmHg, p = 0.23] and body mass index (BMI) [MD: -0.36 kg m-2, p = 0.06]. Conclusions HIIT has shown certain potential and advantages in improving the physical health of the older adult, especially in cardiopulmonary function. However, more high-quality studies are needed to confirm the effects of HIIT on the physical health of the older adult in the future. It also provides a reference for the clinical practice and family health management of HIIT in the older adult and the development of HIIT guidelines. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/myprospero, identifier CRD42023460252.
Collapse
Affiliation(s)
- Jie Men
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Chengrui Zhao
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Chenmin Xiang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guoyu Zhu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhengyang Yu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Pengbo Wang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Simin Wu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Yuxi Zhang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Yishan Li
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Liuliu Wang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xueyan Gong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital Department of Immunology & Rheumatology, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xiang Yang
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Shuangling Zou
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Jia Ma
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Chenglong Cui
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Hao Li
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xuedi Ma
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Wenjie Wu
- Fenyang College, Shanxi Medical University, Fenyang, China
| | - Yaoming Wang
- Fenyang College, Shanxi Medical University, Fenyang, China
| |
Collapse
|
2
|
Rahmati M, Nikooie R. High-intensity interval training alleviates STZ-induced muscle atrophy by restoration of nuclear positioning defects in C57BL/6 male mice. Sci Rep 2025; 15:6891. [PMID: 40011606 DOI: 10.1038/s41598-025-91259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
We tested the hypothesis that improper myonuclei arrangement and morphology are involved in diabetes-induced myofiber atrophy and whether and how high-intensity interval training (HIIT) affects these impairments in isolated skeletal muscle myofibers. STZ-induced diabetes decreased muscle fiber cross-sectional area (CSA) mediated by reduced myonuclear number, enhanced nuclear apoptotic, and failed nuclear accretion from satellite cells. STZ-induced muscle atrophy was accompanied by improper nuclear positioning (sinus of the maximum diameter angles and distance between adjacent myonuclei) and morphology (maximum diameter, area, and volume of the nuclei), which was mediated by suppressed expression of proteins involved in nuclear positioning including KIF5B, dynein, and Nesprin1. Disturbing nuclear positioning by inhibition of Kinsein1 activity reduced CSA to a greater extent than in diabetes alone, suggesting STZ-induced muscle atrophy is mediated by changes in nuclear positioning. HIIT alleviated the STZ-induced decline in muscle CSA and myonuclei per fiber by restoring myonuclear morphometry impairments and improper nuclear positioning to the normal level. HIIT-induced increase in muscle CSA deterred by inhibition of Kinesin1 activity, suggesting its effect is mediated by proper nuclear positioning. These findings suggest that normal nuclear positioning are required for the changes in fiber size properties associated with HIIT in diabetic skeletal muscle fibers.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Exercise Physiology, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Rohollah Nikooie
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Lu Y, Baker JS, Ying S, Lu Y. Effects of practical models of low-volume high-intensity interval training on glycemic control and insulin resistance in adults: a systematic review and meta-analysis of randomized controlled studies. Front Endocrinol (Lausanne) 2025; 16:1481200. [PMID: 39917538 PMCID: PMC11798773 DOI: 10.3389/fendo.2025.1481200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Objectives The aim of this systematic review and meta-analysis was to investigate the effects of practical models of low-volume high-intensity interval training protocols (LV-HIIT) on glucose control and insulin resistance compared with moderate-intensity continuous training (MICT) protocols and no-exercise controls (CON). Methods Four databases (PubMed, Web of Science, Scopus, and Cochrane Library) were searched for randomized controlled studies conducted using LV-HIIT interventions (HIIT/SIT protocols involving ≤ 15 min of intense training, within a session lasting ≤ 30 min; < 30 s all-out sprint for SIT additionally). The inclusion criteria required glucose and insulin resistance markers to be evaluated pre- and post-intervention among adults who were not trained athletes. Results As a result, twenty studies were included, and meta-analyses were conducted using sixteen studies employing HIIT protocols. Compared with CON, LV-HIIT with reduced intensity and extended interval duration significantly improved fasting glucose (FPG) (mean difference (MD) in mg/dL=-16.63; 95% confidence interval (CI): -25.30 to -7.96; p<0.001) and HbA1c (MD=-0.70; 95% CI: -1.10 to -0.29; p<0.001). Greater improvements were found in participants who were overweight/obese or having type 2 diabetes (T2D). FPG decreased with every additional second of interval duration (β;=-0.10; 95% CI: -0.19 to -0.00; p=0.046). FPI (β;=-0.65; 95% CI: -1.27 to -0.02; p=0.042) and HOMA-IR (β;=-0.22; 95% CI: -0.36 to -0.09; p=0.001) decreased with every additional minute of interval duration per session. HOMA-IR also decreased with every additional minute of weekly interval duration (β;=-0.06; 95%CI: -0.08 to -0.04; p<0.001). Compared with MICT, LV-HIIT was more effective in improving insulin sensitivity (SMD=-0.40; 95%CI: -0.70 to -0.09; p=0.01), but there were no differences in FPG, FPI, HbA1c or HOMA-IR (p>0.05). The effect of LV-HIIT on FPI was larger compared with MICT among individuals who lost weight. Conclusion Conclusively, a practical model of LV-HIIT with reduced intensity and extended interval was effective in improving glucose control and its effects were similar to MICT. Greater improvements were found in individuals with overweight/obesity or T2D in protocols with longer intervals or accumulated interval duration per session/week. More large-scale, randomized controlled studies with similar intervention protocols in a wide range of population are warranted to confirm these important results. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024516594.
Collapse
Affiliation(s)
- Yining Lu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Julien S. Baker
- Centre for Population Health and Medical Informatics, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Shanshan Ying
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yichen Lu
- Department of Sport and Physical Education, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
4
|
Opazo-Díaz E, Montes-de-Oca-García A, Galán-Mercant A, Marín-Galindo A, Corral-Pérez J, Ponce-González JG. Characteristics of High-Intensity Interval Training Influence Anthropometrics, Glycemic Control, and Cardiorespiratory Fitness in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med 2024; 54:3127-3149. [PMID: 39358495 DOI: 10.1007/s40279-024-02114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Exercise is a non-pharmacological intervention for type 2 diabetes mellitus (T2DM), including moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). Despite diverse exercise protocol variations, the impact of these variations in HIIT on T2DM anthropometrics, glycemic control, and cardiorespiratory fitness (CRF) remains unclear. OBJECTIVE The aim was to examine the influence of HIIT protocol characteristics on anthropometrics, glycemic control, and CRF in T2DM patients and compare it to control (without exercise) and MICT. METHODS This review is registered in PROSPERO (CRD42021281398) and follows Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search, employing "high-intensity interval training" and "diabetes mellitus" in PubMed and Web of Science databases, with a "randomized controlled trial" filter, spanned articles up to January 2023. RESULTS Of 190 records, 29 trials were included, categorized by HIIT interval duration, training volume, and intervention period. Long-duration, high-volume, and long-term HIIT yields superior outcomes compared to control conditions for body mass, waist circumference, fasting plasma glucose, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), glycosylated hemoglobin (%HbA1c), and CRF. The findings favored HIIT over MICT for body mass in long-duration, high-volume, and short-term intervals (mean difference [MD] - 3.45, - 3.13, and - 5.42, respectively, all p < 0.05) and for CRF in long and medium work intervals and high volume (MD 1.91, 2.55, and 2.43, respectively, all p < 0.05), as well as in medium and long-term intervention (MD 2.66 and 2.21, respectively, all p < 0.05). Regardless of specific HIIT characteristics, no differences were found in the HIIT versus MICT comparison for glycemic control. CONCLUSIONS Specific HIIT protocol characteristics influence changes in anthropometrics, glycemic control, and CRF compared to control groups. However, compared to MICT, only longer duration, higher volume, and short-term HIIT improved body mass, waist circumference, and CRF in individuals with T2DM.
Collapse
Affiliation(s)
- Edgardo Opazo-Díaz
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
- Exercise Physiology Lab, Physical Therapy Department, University of Chile, Santiago, Chile
| | - Adrián Montes-de-Oca-García
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain.
| | - Alejandro Galán-Mercant
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
- MOVE-IT Research Group, Department of Nursing and Physiotherapy, Faculty of Health Sciences, University of Cádiz, Cádiz, Spain
| | - Alberto Marín-Galindo
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Juan Corral-Pérez
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Jesús Gustavo Ponce-González
- ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
5
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Petro JL, Fragozo-Ramos MC, Milán AF, Aristizabal JC, Calderón JC, Gallo-Villegas J. Efficacy of high-intensity interval training versus continuous training on serum myonectin and lipid outcomes in adults with metabolic syndrome: A post-hoc analysis of a clinical trial. PLoS One 2024; 19:e0307256. [PMID: 39024345 PMCID: PMC11257237 DOI: 10.1371/journal.pone.0307256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Myonectin is a myokine with potential effects on the lipid metabolism; however, its regulation by exercise in humans remains unclear. We aimed to compare the efficacy of high-intensity interval training low-volume (HIIT) versus moderate-intensity continuous training (MICT) on serum myonectin, serum lipids, appendicular fat and lean mass, and intramuscular lipids in humans. METHODS Secondary analysis of a controlled, randomized, clinical trial in adults of both sexes with metabolic syndrome, who underwent a supervised, three-times/week, 12-week treadmill program. HIIT (n = 29) consisted of six intervals with one-minute, high-intensity phases at 90% of peak oxygen consumption (VO2peak) for a total of 22 min. MICT (n = 31) trained at 60% of VO2peak for 36 min. Serum myonectin was measured using a human enzyme-linked immunosorbent assay. Lipid profile was determined by enzymatic methods and free fatty acids (FFA) were measured by gas chromatography. Fat and lean mass were assessed by dual-energy X-ray absorptiometry. Intramuscular lipids were measured through proton magnetic resonance spectroscopy. RESULTS Subjects had a mean age of 50.8±6.0 years and body mass index of 30.6±4.0 kg/m2. Compared to MICT, HIIT was not superior at increasing serum myonectin (p = 0.661) or linoleic acid (p = 0.263), reducing palmitic (p = 0.286) or stearic acid (p = 0.350), or improving lipid profile (all p>0.05), appendicular fat mass index -AFMI- (p = 0.713) or appendicular lean mass percentage -ALM- (p = 0.810). Compared to baseline, only HIIT significantly increased myonectin (p = 0.042), with a large effect size, although both interventions reduced AFMI and increased ALM with a large effect size. Lipid profile, FFA and intramuscular lipids did not change in any intervention group (p>0.05). CONCLUSIONS Compared to MICT, HIIT low volume did not demonstrate superiority in improving serum lipids. The fact that both training types reduced AFMI without paralleled significant changes in serum myonectin suggests that this myokine may have a minor effect on short-middle-term exercise-induced fat mobilization.
Collapse
Affiliation(s)
- Jorge L Petro
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- Research Group in Physical Activity, Sports and Health Sciences-GICAFS, Universidad de Córdoba, Montería, Colombia
| | - María Carolina Fragozo-Ramos
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Andrés F Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Juan C Aristizabal
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Jaime Gallo-Villegas
- Sports Medicine Postgraduate Program and GRINMADE Research Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- SICOR Center, Medellín, Colombia
| |
Collapse
|
7
|
Knudsen CB, Nielsen J, Ørtenblad N, Mohr M, Overgaard K, Vigh-Larsen JF. No net utilization of intramuscular lipid droplets during repeated high-intensity intermittent exercise. Am J Physiol Endocrinol Metab 2023; 325:E700-E710. [PMID: 37877795 DOI: 10.1152/ajpendo.00298.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
Intramuscular lipids are stored as subsarcolemmal or intramyofibrillar droplets with potential diverse roles in energy metabolism. We examined intramuscular lipid utilization through transmission electron microscopy during repeated high-intensity intermittent exercise, an aspect that is hitherto unexplored. Seventeen moderately to well-trained males underwent three periods (EX1-EX3) of 10 × 45-s high-intensity cycling [∼100%-120% Wattmax (Wmax)] combined with maximal repeated sprints (∼250%-300% Wmax). M. vastus lateralis biopsies were obtained at baseline, after EX1, and EX3. During the complete exercise session, no net decline in either subsarcolemmal or intermyofibrillar lipid volume density occurred. However, a temporal relationship emerged for subsarcolemmal lipids with an ∼11% increase in droplet size after EX1 (P = 0.024), which reverted to baseline levels after EX3 accompanied by an ∼30% reduction in the numerical density of subsarcolemmal lipid droplets compared with both baseline (P = 0.019) and after EX1 (P = 0.018). Baseline distinctions were demonstrated with an approximately twofold higher intermyofibrillar lipid volume in type 1 versus type 2 fibers (P = 0.008), mediated solely by a higher number rather than the size of lipid droplets (P < 0.001). No fiber-type-specific differences were observed in subsarcolemmal lipid volume although type 2 fibers exhibited ∼17% larger droplets (P = 0.034) but a lower numerical density (main effect; P = 0.010) including 3% less droplets at baseline. Collectively, these findings suggest that intramuscular lipids do not serve as an important substrate during high-intensity intermittent exercise; however, the repeated exercise pattern mediated a temporal remodeling of the subsarcolemmal lipid pool. Furthermore, fiber-type- and compartment-specific differences were found at baseline underscoring the heterogeneity in lipid droplet deposition.NEW & NOTEWORTHY Undertaking a severe repeated high-intensity intermittent exercise protocol led to no net decline in neither subsarcolemmal nor intermyofibrillar lipid content in the thigh muscle of young moderately to well-trained participants. However, a temporal remodeling of the subsarcolemmal pool of lipid droplets did occur indicative of potential transient lipid accumulation. Moreover, baseline fiber-type distinctions in subcellular lipid droplet deposition were present underscoring the diversity in lipid droplet storage among fiber types and subcellular regions.
Collapse
Affiliation(s)
- Christian B Knudsen
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Centre of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Kristian Overgaard
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Jeppe F Vigh-Larsen
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Schleh MW, Ahn C, Ryan BJ, Chugh OK, Luker AT, Luker KE, Gillen JB, Ludzki AC, Van Pelt DW, Pitchford LM, Zhang T, Rode T, Howton SM, Burant CF, Horowitz JF. Both moderate- and high-intensity exercise training increase intramyocellular lipid droplet abundance and modify myocellular distribution in adults with obesity. Am J Physiol Endocrinol Metab 2023; 325:E466-E479. [PMID: 37729021 PMCID: PMC10864005 DOI: 10.1152/ajpendo.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Yu P, Zhu Z, He J, Gao B, Chen Q, Wu Y, Zhou J, Cheng Y, Ling J, Zhang J, Shi A, Huang H, Sun R, Gao Y, Li W, Liu X, Yan Z. Effects of high-intensity interval training, moderate-intensity continuous training, and guideline-based physical activity on cardiovascular metabolic markers, cognitive and motor function in elderly sedentary patients with type 2 diabetes (HIIT-DM): a protocol for a randomized controlled trial. Front Aging Neurosci 2023; 15:1211990. [PMID: 37649720 PMCID: PMC10465302 DOI: 10.3389/fnagi.2023.1211990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Background and objective Sedentary behavior is of increasing concern in older patients with type 2 diabetes mellitus (T2DM) due to its potential adverse effects on cardiovascular health, cognitive function, and motor function. While regular exercise has been shown to improve the health of individuals with T2DM, the most effective exercise program for elderly sedentary patients with T2DM remains unclear. Therefore, the objective of this study was to assess the impact of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and guideline-based physical activity programs on the cardiovascular health, cognitive function, and motor function of this specific population. Methods This study will be a randomized, assessor-blind, three-arm controlled trial. A total of 330 (1:1:1) elderly sedentary patients diagnosed with T2DM will be randomly assigned the HIIT group (10 × 1-min at 85-95% peak HR, intersperse with 1-min active recovery at 60-70% peak HR), MICT (35 min at 65-75% peak HR), and guideline-based group (guideline group) for 12 weeks training. Participants in the guideline group will receive 1-time advice and weekly remote supervision through smartphones. The primary outcomes will be the change in glycosylated hemoglobin (HbA1c) and brain-derived neurotrophic factor (BDNF) after 12-weeks. Secondary outcomes will includes physical activity levels, anthropometric parameters (weight, waist circumference, hip circumference, and body mass index), physical measurements (fat percentage, muscle percentage, and fitness rate), cardiorespiratory fitness indicators (blood pressure, heart rate, vital capacity, and maximum oxygen), biochemical markers (high-density lipoprotein, low-density lipoprotein, triglycerides, total cholesterol, and HbA1c), inflammation level (C-reactive protein), cognitive function (reaction time and dual-task gait test performance), and motor function (static balance, dynamic balance, single-task gait test performance, and grip strength) after 12 weeks. Discussion The objective of this study is to evaluate the effect of 12 weeks of HIIT, MICT, and a guideline-based physical activity program on elderly sedentary patients diagnosed with T2DM. Our hypothesis is that both HIIT and MICT will yield improvements in glucose control, cognitive function, cardiopulmonary function, metabolite levels, motor function, and physical fitness compared to the guideline group. Additionally, we anticipate that HIIT will lead to greater benefits in these areas. The findings from this study will provide valuable insights into the selection of appropriate exercise regimens for elderly sedentary individuals with T2DM. Ethics and dissemination This study has been approved by the Ethics Review Committee of the Reproductive Hospital Affiliated with China Medical University (approval number: 202203). Informed consent will be obtained from all participants or their guardians. Upon completion, the authors will submit their findings to a peer-reviewed journal or academic conference for publication. Clinical trial registration Chinese Clinical Trial Registry, identifier ChiCTR2200061573.
Collapse
Affiliation(s)
- Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi, China
| | - Zicheng Zhu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiahui He
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Bohua Gao
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Qi Chen
- Laboratory of Exercise Physiology, Liaoning Province Sports Development Center, Shenyang, Liaoning, China
| | - Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhou
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yixuan Cheng
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ao Shi
- St. George’s University of London, London, United Kingdom
- School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Huijing Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China
| | - Yan Gao
- College of Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Weiguang Li
- Cardiology Department, Liaoning Province Jinqiu Hospital, Shenyang, Liaoning, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China
| | - Zhiwei Yan
- College of Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Fachada V, Silvennoinen M, Sahinaho UM, Rahkila P, Kivelä R, Hulmi JJ, Kujala U, Kainulainen H. Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1 α. Int J Mol Sci 2023; 24:ijms24054282. [PMID: 36901715 PMCID: PMC10002284 DOI: 10.3390/ijms24054282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.
Collapse
|
11
|
Skelly LE, MacInnis MJ, Bostad W, McCarthy DG, Jenkins EM, Archila LR, Tarnopolsky MA, Gibala MJ. Human skeletal muscle mitochondrial responses to single-leg intermittent or continuous cycle exercise training matched for absolute intensity and total work. Scand J Med Sci Sports 2023; 33:872-881. [PMID: 36779702 DOI: 10.1111/sms.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
There is renewed interest in the potential for interval (INT) training to increase skeletal muscle mitochondrial content including whether the response differs from continuous (CONT) training. Comparisons of INT and CONT exercise are impacted by the manner in which protocols are "matched", particularly with respect to exercise intensity, as well as inter-individual differences in training responses. We employed single-leg cycling to facilitate a within-participant design and test the hypothesis that short-term INT training would elicit a greater increase in mitochondrial content than work- and intensity-matched CONT training. Ten young healthy adults (five males and five females) completed 12 training sessions over 4 weeks with each leg. Legs were randomly assigned to complete either 30 min of CONT exercise at a challenging sustainable workload (~50% single-leg peak power output; Wpeak) or INT exercise that involved 10 × 3-min bouts at the same absolute workload. INT bouts were interspersed with 1 min of recovery at 10% Wpeak and each CONT session ended with 10 min at 10% Wpeak. Absolute and mean intensity, total training time, and volume were thus matched between legs but the pattern of exercise differed. Contrary to our hypothesis, biomarkers of mitochondrial content including citrate synthase maximal activity, mitochondrial protein content and subsarcolemmal mitochondrial volume increased after CONT (p < 0.05) but not INT training. Both training modes increased single-leg Wpeak (p < 0.01) and time to exhaustion at 70% of single-leg Wpeak (p < 0.01). In a work- and intensity-matched comparison, short-term CONT training increased skeletal muscle mitochondrial content whereas INT training did not.
Collapse
Affiliation(s)
- Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - William Bostad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Linda R Archila
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
de Almeida ME, Nielsen J, Petersen MH, Wentorf EK, Pedersen NB, Jensen K, Højlund K, Ørtenblad N. Altered intramuscular network of lipid droplets and mitochondria in type 2 diabetes. Am J Physiol Cell Physiol 2023; 324:C39-C57. [PMID: 36409174 DOI: 10.1152/ajpcell.00470.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Excessive storage of lipid droplets (LDs) in skeletal muscles is a hallmark of type 2 diabetes. However, LD morphology displays a high degree of subcellular heterogeneity and varies between single muscle fibers, which impedes the current understanding of lipid-induced insulin resistance. Using quantitative transmission electron microscopy (TEM), we conducted a comprehensive single-fiber morphological analysis to investigate the intramuscular network of LDs and mitochondria, and the effects of 8 wk of high-intensity interval training (HIIT) targeting major muscle groups, in patients with type 2 diabetes and nondiabetic obese and lean controls. We found that excessive storage of intramuscular lipids in patients with type 2 diabetes was exclusively explained by extremely large LDs situated in distinct muscle fibers with a location-specific deficiency in subsarcolemmal mitochondria. After HIIT, this intramuscular deficiency was improved by a remodeling of LD size and subcellular distribution and mitochondrial content. Analysis of LD morphology further revealed that individual organelles were better described as ellipsoids than spheres. Moreover, physical contact between LD and mitochondrial membranes indicated a dysfunctional interplay between organelles in the diabetic state. Taken together, type 2 diabetes should be recognized as a metabolic disease with high cellular heterogeneity in intramuscular lipid storage, underlining the relevance of single-cell technologies in clinical research. Furthermore, HIIT changed intramuscular LD storage toward nondiabetic characteristics.
Collapse
Affiliation(s)
- Martin Eisemann de Almeida
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Maria Houborg Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Emil Kleis Wentorf
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Niklas Bigum Pedersen
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kurt Jensen
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Islam H, Gillen JB. Skeletal muscle mechanisms contributing to improved glycemic control following intense interval exercise and training. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:20-28. [PMID: 36994179 PMCID: PMC10040385 DOI: 10.1016/j.smhs.2023.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
High-intensity and sprint interval training (HIIT and SIT, respectively) enhance insulin sensitivity and glycemic control in both healthy adults and those with cardiometabolic diseases. The beneficial effects of intense interval training on glycemic control include both improvements seen in the hours to days following a single session of HIIT/SIT and those which accrue with chronic training. Skeletal muscle is the largest site of insulin-stimulated glucose uptake and plays an integral role in the beneficial effects of exercise on glycemic control. Here we summarize the skeletal muscle responses that contribute to improved glycemic control during and following a single session of interval exercise and evaluate the relationship between skeletal muscle remodelling and improved insulin sensitivity following HIIT/SIT training interventions. Recent evidence suggests that targeting skeletal muscle mechanisms via nutritional interventions around exercise, particularly with carbohydrate manipulation, can enhance the acute glycemic benefits of HIIT. There is also some evidence of sex-based differences in the glycemic benefits of intense interval exercise, with blunted responses observed after training in females relative to males. Differences in skeletal muscle metabolism between males and females may contribute to sex differences in insulin sensitivity following HIIT/SIT, but well-controlled studies evaluating purported muscle mechanisms alongside measurement of insulin sensitivity are needed. Given the greater representation of males in muscle physiology literature, there is also a need for more research involving female-only cohorts to enhance our basic understanding of how intense interval training influences muscle insulin sensitivity in females across the lifespan.
Collapse
|
14
|
Fachada V, Rahkila P, Fachada N, Turpeinen T, Kujala UM, Kainulainen H. Enlarged PLIN5-uncoated lipid droplets in inner regions of skeletal muscle type II fibers associate with type 2 diabetes. Acta Histochem 2022; 124:151869. [PMID: 35220055 DOI: 10.1016/j.acthis.2022.151869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 01/02/2023]
Abstract
Skeletal muscle physiology remains of paramount importance in understanding insulin resistance. Due to its high lipid turnover rates, regulation of intramyocellular lipid droplets (LDs) is a key factor. Perilipin 5 (PLIN5) is one of the most critical agents in such regulation, being often referred as a protector against lipotoxicity and consequent skeletal muscle insulin resistance. We examined area fraction, size, subcellular localization and PLIN5 association of LDs in two fiber types of type 2 diabetic (T2D), obese (OB) and healthy (HC) individuals by means of fluorescence microscopy and image analysis. We found that T2D type II fibers have a significant sub-population of large and internalized LDs, uncoated by PLIN5. Based on this novel result, additional hypotheses for the pathophysiology of skeletal muscle insulin resistance are formulated, together with future research directions.
Collapse
Affiliation(s)
- Vasco Fachada
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland.
| | - Paavo Rahkila
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| | - Nuno Fachada
- Lusofona University, COPELABS, Lisboa 1749-024, Portugal
| | - Tuomas Turpeinen
- Department of Physics, University of Jyvaskyla, Jyvaskyla 40014, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyvaskyla, Rautpohjankatu 8, Jyvaskyla 40014, Finland
| |
Collapse
|
15
|
Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci 2022; 298:120522. [PMID: 35367244 DOI: 10.1016/j.lfs.2022.120522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023]
Abstract
Lipid droplets (LD) are not just lipid stores. They are now recognized as highly dynamic organelles, having a life cycle that includes biogenesis, growth, steady-state, transport, and catabolism. Importantly, LD exhibit different features in terms of size, number, lipid composition, proteins, and interaction with other organelles, and all these features exert an impact on cellular homeostasis. The imbalance of LD function causes non-alcoholic fatty liver disease (NAFLD). Studies show that exercise attenuates NAFLD by decreasing LD content; however, reports show metabolic benefits without changes in LD amount (intrahepatic triglyceride levels) in NAFLD. Due to the multiple effects of exercise in LD features, we think that these metabolic benefits occur through changes in LD features in NAFLD, rather than only the reduction in content. Exercise increases energy mobilization and utilization from storages such as LD, and is one of the non-pharmacological treatments against NAFLD. Therefore, exercise modification of LD could be a target for NAFLD treatment. Here, we review the most up-to-date literature on this topic, and focus on recent findings showing that LD features could play an important role in the severity of NAFLD.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Skelly LE, Bailleul C, Gillen JB. Physiological Responses to Low-Volume Interval Training in Women. SPORTS MEDICINE - OPEN 2021; 7:99. [PMID: 34940959 PMCID: PMC8702506 DOI: 10.1186/s40798-021-00390-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Interval training is a form of exercise that involves intermittent bouts of relatively intense effort interspersed with periods of rest or lower-intensity exercise for recovery. Low-volume high-intensity interval training (HIIT) and sprint interval training (SIT) induce physiological and health-related adaptations comparable to traditional moderate-intensity continuous training (MICT) in healthy adults and those with chronic disease despite a lower time commitment. However, most studies within the field have been conducted in men, with a relatively limited number of studies conducted in women cohorts across the lifespan. This review summarizes our understanding of physiological responses to low-volume interval training in women, including those with overweight/obesity or type 2 diabetes, with a focus on cardiorespiratory fitness, glycemic control, and skeletal muscle mitochondrial content. We also describe emerging evidence demonstrating similarities and differences in the adaptive response between women and men. Collectively, HIIT and SIT have consistently been demonstrated to improve cardiorespiratory fitness in women, and most sex-based comparisons demonstrate similar improvements in men and women. However, research examining insulin sensitivity and skeletal muscle mitochondrial responses to HIIT and SIT in women is limited and conflicting, with some evidence of blunted improvements in women relative to men. There is a need for additional research that examines physiological adaptations to low-volume interval training in women across the lifespan, including studies that directly compare responses to MICT, evaluate potential mechanisms, and/or assess the influence of sex on the adaptive response. Future work in this area will strengthen the evidence-base for physical activity recommendations in women.
Collapse
|
17
|
Energy transfer between the mitochondrial network and lipid droplets in insulin resistant skeletal muscle. CURRENT OPINION IN PHYSIOLOGY 2021; 24:100487. [PMID: 35274067 PMCID: PMC8903156 DOI: 10.1016/j.cophys.2022.100487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria and lipid droplets in the insulin resistant skeletal muscle of type 2 diabetic individuals have both been heavily investigated independently and are characterized by more fragmented, dysfunctional mitochondrial networks and larger lipid droplets compared to skeletal muscle of healthy individuals. Specialized contacts between mitochondrial and lipid droplet membranes are known to decrease in diabetic muscle, though it remains unclear how energy transfer at the remaining mitochondria-lipid droplet contact sites may be altered by type 2 diabetes. The purpose of this review is to highlight recent data on mitochondrial structure and function and lipid droplet dynamics in type 2 diabetic skeletal muscle and to underscore the need for more detailed investigations into the functional nature of mitochondria-lipid droplet interactions in type 2 diabetes.
Collapse
|
18
|
Gilloteaux J, Nicaise C, Sprimont L, Bissler J, Finkelstein JA, Payne WR. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct Pathol 2021; 45:346-375. [PMID: 34743665 DOI: 10.1080/01913123.2021.1983099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St George's University School of Medicine, K B Taylor Global Scholar's Program at the University of Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK.,Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium.,Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Charles Nicaise
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - Lindsay Sprimont
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - John Bissler
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA.,Division of Nephrology at St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Judith A Finkelstein
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Warren R Payne
- Institute for Sport and Health, Footscray Park Campus, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Tanaka S, Madokoro S, Inaoka PT, Yamazaki T. Blood lipid profile changes in type 2 diabetic rats after tail suspension and reloading. Lipids Health Dis 2021; 20:84. [PMID: 34334135 PMCID: PMC8327430 DOI: 10.1186/s12944-021-01511-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose The effects of the tail suspension and reloading on the protein and lipid metabolism in muscle and blood in type 2 diabetes mellitus (T2DM) are unclear. This study evaluated the hypothesis that skeletal muscle catabolism is greater in T2DM than in non-diabetes mellitus (non-DM) rats and that the activity-dependent changes in the intramuscular lipid accumulation and blood lipid profile are poorer in T2DM than in non-DM rats. Methods T2DM and non-DM rats were suspended for two weeks followed by reloading for two weeks. The muscle and blood were then examined. Results In contrast to our hypothesis, there was no marked difference between the T2DM and non-DM groups in terms of the skeletal muscle catabolism and activity-dependent changes in intramuscular lipid accumulation. However, the blood lipid profile increased in the T2DM group compared to the non-DM group. One interesting finding in this study was the decrease in non-high-density lipoprotein (non-HDL) cholesterol levels after one week of reloading followed by a significant increase in the non-HDL cholesterol levels after two weeks of reloading in the T2DM group. Conclusion These results suggest that a dramatic increase in activity after a period of inactivity may rapidly improve the blood lipid profile in T2DM rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01511-y.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan.
| | - Sachiko Madokoro
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Pleiades Tiharu Inaoka
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Toshiaki Yamazaki
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| |
Collapse
|
20
|
Gildea N, McDermott A, Rocha J, O'Shea D, Green S, Egaña M. Time-course of V̇o 2 kinetics responses during moderate-intensity exercise subsequent to HIIT versus moderate-intensity continuous training in type 2 diabetes. J Appl Physiol (1985) 2021; 130:1646-1659. [PMID: 33792400 DOI: 10.1152/japplphysiol.00952.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the time-course of changes in oxygen uptake (V̇o2) and muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin, [HHb + Mb]) kinetics during transitions to moderate-intensity cycling following 12 wk of low-volume high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) in adults with type 2 diabetes (T2D). Participants were randomly assigned to MICT (n = 10, 50 min of moderate-intensity cycling), HIIT (n = 9, 10 × 1 min at ∼90% maximal heart rate), or nonexercising control (n = 9) groups. Exercising groups trained three times per week, and measurements were taken every 3 wk. [HHb + Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O2 delivery to O2 utilization was assessed by the Δ[HHb + Mb]/ΔV̇o2 ratio. The pretraining time constant of the primary phase of V̇o2 (τV̇o2p) decreased (P < 0.05) at wk 3 of training in both MICT (from 44 ± 12 to 32 ± 5 s) and HIIT (from 42 ± 8 to 32 ± 4 s) with no further changes thereafter, whereas no changes were reported in controls. The pretraining overall dynamic response of muscle deoxygenation (τ'[HHb + Mb]) was faster than τV̇o2p in all groups, resulting in Δ[HHb + Mb]/V̇o2p showing a transient "overshoot" relative to the subsequent steady-state level. After 3 wk, the Δ[HHb + Mb]/V̇o2p overshoot was eliminated only in the training groups, so that τ'[HHb + Mb] was not different to τV̇o2p in MICT and HIIT. The enhanced V̇o2 kinetics response consequent to both MICT and HIIT in T2D was likely attributed to a training-induced improvement in matching of O2 delivery to utilization.NEW & NOTEWORTHY High-intensity interval training and moderate-intensity continuous training elicited faster pulmonary oxygen uptake (V̇o2) kinetics during moderate-intensity cycling within 3 wk of training with no further changes thereafter in individuals with type 2 diabetes. These adaptations were accompanied by unaltered near-infrared spectroscopy-derived muscle deoxygenation (i.e. deoxygenated hemoglobin and myoglobin concentration, [HHb+Mb]) kinetics and transiently reduced Δ[HHb+Mb]-to-ΔV̇o2 ratio, suggesting an enhanced blood flow distribution within the active muscles subsequent to both training interventions.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Kahn D, Perreault L, Macias E, Zarini S, Newsom SA, Strauss A, Kerege A, Harrison K, Snell-Bergeon J, Bergman BC. Subcellular localisation and composition of intramuscular triacylglycerol influence insulin sensitivity in humans. Diabetologia 2021; 64:168-180. [PMID: 33128577 PMCID: PMC7718332 DOI: 10.1007/s00125-020-05315-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Subcellular localisation is an important factor in the known impact of bioactive lipids, such as diacylglycerol and sphingolipids, on insulin sensitivity in skeletal muscle; yet, the role of localised intramuscular triacylglycerol (IMTG) is yet to be described. Excess accumulation of IMTG in skeletal muscle is associated with insulin resistance, and we hypothesised that differences in subcellular localisation and composition of IMTG would relate to metabolic health status in humans. METHODS We evaluated subcellular localisation of IMTG in lean participants, endurance-trained athletes, individuals with obesity and individuals with type 2 diabetes using LC-MS/MS of fractionated muscle biopsies and insulin clamps. RESULTS Insulin sensitivity was significantly different between each group (athletes>lean>obese>type 2 diabetes; p < 0.001). Sarcolemmal IMTG was significantly greater in individuals with obesity and type 2 diabetes compared with lean control participants and athletes, but individuals with type 2 diabetes were the only group with significantly increased saturated IMTG. Sarcolemmal IMTG was inversely related to insulin sensitivity. Nuclear IMTG was significantly greater in individuals with type 2 diabetes compared with lean control participants and athletes, and total and saturated IMTG localised in the nucleus had a significant inverse relationship with insulin sensitivity. Total cytosolic IMTG was not different between groups, but saturated cytosolic IMTG species were significantly increased in individuals with type 2 diabetes compared with all other groups. There were no significant differences between groups for IMTG concentration in the mitochondria/endoplasmic reticulum. CONCLUSIONS/INTERPRETATION These data reveal previously unknown differences in subcellular IMTG localisation based on metabolic health status and indicate the influence of sarcolemmal and nuclear IMTG on insulin sensitivity. Additionally, these studies suggest saturated IMTG may be uniquely deleterious for muscle insulin sensitivity. Graphical abstract.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Macias
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Allison Strauss
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen Harrison
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janet Snell-Bergeon
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
22
|
Seibert JT, Najt CP, Heden TD, Mashek DG, Chow LS. Muscle Lipid Droplets: Cellular Signaling to Exercise Physiology and Beyond. Trends Endocrinol Metab 2020; 31:928-938. [PMID: 32917515 PMCID: PMC7704552 DOI: 10.1016/j.tem.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Conventionally viewed as energy storage depots, lipid droplets (LDs) play a central role in muscle lipid metabolism and intracellular signaling, as recognized by recent advances in our biological understanding. Specific subpopulations of muscle LDs, defined by location and associated proteins, are responsible for distinct biological functions. In this review, the traditional view of muscle LDs is examined, and the emerging role of LDs in intracellular signaling is highlighted. The effects of chronic and acute exercise on muscle LD metabolism and signaling is discussed. In conclusion, future directions for muscle LD research are identified. The primary focus will be on human studies, with inclusion of select animal/cellular/non-muscle studies as appropriate, to provide the underlying mechanisms driving the observed findings.
Collapse
Affiliation(s)
- Jacob T Seibert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy D Heden
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa S Chow
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, Van Pelt DW, Pitchford LM, Chenevert TL, Gioscia-Ryan RA, Howton SM, Rode T, Hummel SL, Burant CF, Little JP, Horowitz JF. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. J Clin Endocrinol Metab 2020; 105:5850995. [PMID: 32492705 PMCID: PMC7347288 DOI: 10.1210/clinem/dgaa345] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/28/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. METHODS Thirty-one inactive adults with obesity (age: 31 ± 6 years; body mass index: 33 ± 3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. RESULTS Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P < 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P < 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. CONCLUSION Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Pallavi Varshney
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | | | - Rachel A Gioscia-Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott L Hummel
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Jeffrey F. Horowitz, PhD, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI, USA 48109-2214.
| |
Collapse
|
24
|
Gemmink A, Schrauwen P, Hesselink MKC. Exercising your fat (metabolism) into shape: a muscle-centred view. Diabetologia 2020; 63:1453-1463. [PMID: 32529413 PMCID: PMC7351830 DOI: 10.1007/s00125-020-05170-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
Fatty acids are an important energy source during exercise. Training status and substrate availability are determinants of the relative and absolute contribution of fatty acids and glucose to total energy expenditure. Endurance-trained athletes have a high oxidative capacity, while, in insulin-resistant individuals, fat oxidation is compromised. Fatty acids that are oxidised during exercise originate from the circulation (white adipose tissue lipolysis), as well as from lipolysis of intramyocellular lipid droplets. Moreover, hepatic fat may contribute to fat oxidation during exercise. Nowadays, it is clear that myocellular lipid droplets are dynamic organelles and that number, size, subcellular distribution, lipid droplet coat proteins and mitochondrial tethering of lipid droplets are determinants of fat oxidation during exercise. This review summarises recent insights into exercise-mediated changes in lipid metabolism and insulin sensitivity in relation to lipid droplet characteristics in human liver and muscle. Graphical abstract.
Collapse
Affiliation(s)
- Anne Gemmink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD, Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Pino MF, Stephens NA, Eroshkin AM, Yi F, Hodges A, Cornnell HH, Pratley RE, Smith SR, Wang M, Han X, Coen PM, Goodpaster BH, Sparks LM. Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with Type 2 diabetes. Physiol Genomics 2019; 51:586-595. [PMID: 31588872 DOI: 10.1152/physiolgenomics.00014.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.
Collapse
Affiliation(s)
- Maria F Pino
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Miao Wang
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Xianlin Han
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| |
Collapse
|
26
|
Sjöros T, Saunavaara V, Löyttyniemi E, Koivumäki M, Heinonen IHA, Eskelinen J, Virtanen KA, Hannukainen JC, Kalliokoski KK. Intramyocellular lipid accumulation after sprint interval and moderate-intensity continuous training in healthy and diabetic subjects. Physiol Rep 2019; 7:e13980. [PMID: 30740933 PMCID: PMC6369060 DOI: 10.14814/phy2.13980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 11/24/2022] Open
Abstract
The effects of sprint interval training (SIT) on intramyocellular (IMCL) and extramyocellular (EMCL) lipid accumulation are unclear. We tested the effects of SIT and moderate-intensity continuous training (MICT) on IMCL and EMCL accumulation in a randomized controlled setting in two different study populations; healthy untrained men (n 28) and subjects with type 2 diabetes (T2D) or prediabetes (n 26). Proton magnetic resonance spectroscopy (1 H MRS) was used to determine IMCL and EMCL in the Tibialis anterior muscle (TA) before and after a 2-week exercise period. The exercise period comprised six sessions of SIT or MICT cycling on a cycle ergometer. IMCL increased after SIT compared to MICT (P = 0.042) in both healthy and T2D/prediabetic subjects. On EMCL the training intervention had no significant effect. In conclusion, IMCL serves as an important energy depot during exercise and can be extended by high intensity exercise. The effects of high intensity interval exercise on IMCL seem to be similar regardless of insulin sensitivity or the presence of T2D.
Collapse
Affiliation(s)
| | - Virva Saunavaara
- Turku PET CentreTurku University HospitalTurkuFinland
- Department of Medical PhysicsDivision of Medical ImagingTurku University HospitalTurkuFinland
| | | | | | | | | | - Kirsi A. Virtanen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Turku PET CentreTurku University HospitalTurkuFinland
| | | | | |
Collapse
|