1
|
Hashimoto K. Evaluating the safety of orexin receptor antagonists on reproductive health and sexual function. Mol Psychiatry 2025; 30:1161-1163. [PMID: 39609540 PMCID: PMC11835713 DOI: 10.1038/s41380-024-02858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
2
|
Choi PP, Wang Q, Brenner LA, Li AJ, Ritter RC, Appleyard SM. Lesion of NPY Receptor-expressing Neurons in Perifornical Lateral Hypothalamus Attenuates Glucoprivic Feeding. Endocrinology 2024; 165:bqae021. [PMID: 38368624 PMCID: PMC11043786 DOI: 10.1210/endocr/bqae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.
Collapse
Affiliation(s)
- Pique P Choi
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Qing Wang
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Lynne A Brenner
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Ai-Jun Li
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Robert C Ritter
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Suzanne M Appleyard
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
3
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
4
|
Morssinkhof MWL, van der Werf YD, van den Heuvel OA, van den Ende DA, van der Tuuk K, den Heijer M, Broekman BFP. Influence of sex hormone use on sleep architecture in a transgender cohort. Sleep 2023; 46:zsad249. [PMID: 37715990 PMCID: PMC10636253 DOI: 10.1093/sleep/zsad249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
STUDY OBJECTIVES Sex differences in sleep architecture are well-documented, with females experiencing longer total sleep time, more slow wave sleep (SWS), and shorter Rapid Eye Movement (REM) sleep duration than males. Although studies imply that sex hormones could affect sleep, research on exogenous sex hormones on sleep architecture is still inconclusive. This study examined sleep architecture changes in transgender individuals after 3 months of gender-affirming hormone therapy (GAHT). METHODS We assessed sleep architecture in 73 transgender individuals: 38 transmasculine participants who started using testosterone and 35 transfeminine participants who started using estrogens and antiandrogens. Sleep architecture was measured before GAHT and after 3 months of GAHT for 7 nights using an ambulatory single-electrode sleep EEG device. Changes in sleep architecture were analyzed using linear mixed models, and non-normally distributed outcomes were log-transformed and reported as percentages. RESULTS In transmasculine participants, SWS decreased by 7 minutes (95% CI: -12; -3) and 1.7% (95% CI: -3%; -0.5%), REM sleep latency decreased by 39% (95% CI: -52%; -22%) and REM sleep duration increased by 17 minutes (95% CI: 7; 26) after 3 months of GAHT. In transfeminine participants, sleep architecture showed no significant changes after 3 months of GAHT. CONCLUSIONS Sleep architecture changes after 3 months of masculinizing GAHT in line with sleep in cisgender males, while it shows no changes after feminizing GAHT. The sex-specific nature of these changes raises new questions about sex hormones and sleep. Future research should focus on studying possible underlying neural mechanisms and clinical consequences of these changes.
Collapse
Affiliation(s)
- Margot W L Morssinkhof
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location Vrije Universiteit Amsterdam, The Netherlands
- Department of Psychiatry and Medical Psychology, OLVG, Amsterdam, The Netherlands
- Center of Expertise on Gender Dysphoria, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Daan A van den Ende
- Remote Patient Monitoring & Chronic Care, Philips, Eindhoven, The Netherlands
| | - Karin van der Tuuk
- Department of Obstetrics and Gynecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location Vrije Universiteit Amsterdam, The Netherlands
- Center of Expertise on Gender Dysphoria, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Birit F P Broekman
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, The Netherlands
- Department of Psychiatry and Medical Psychology, OLVG, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Kouhetsani S, Khazali H, Rajabi-Maham H. Orexin antagonism and substance-P: Effects and interactions on polycystic ovary syndrome in the wistar rats. J Ovarian Res 2023; 16:89. [PMID: 37147728 PMCID: PMC10161431 DOI: 10.1186/s13048-023-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder without definitive treatments. Orexin and Substance-P (SP) neuropeptides can affect the ovarian steroidogenesis. Moreover, there are limited studies about the role of these neuropeptides in PCOS. We aimed here to clarify the effects of orexins and SP in PCOS as well as any possible interactions between them. METHODS For this purpose, the animals (n = five rats per group) received intraperitoneally a single dose of SB-334,867-A (orexin-1 receptor antagonist; OX1Ra), JNJ-10,397,049 (orexin-2 receptor antagonist; OX2Ra), and CP-96,345 (neurokinin-1 receptor antagonist; NK1Ra), alone or in combination with each other after two months of PCOS induction. The blocking of orexin and SP receptors was studied in terms of ovarian histology, hormonal changes, and gene expression of ovarian steroidogenic enzymes. RESULTS The antagonists' treatment did not significantly affect the formation of ovarian cysts. In the PCOS groups, the co-administration of OX1Ra and OX2Ra as well as their simultaneous injections with NK1Ra significantly reversed testosterone levels and Cyp19a1 gene expression when compared to the PCOS control group. There were no significant interactions between the PCOS groups that received NK1Ra together with one or both OX1R- and OX2R-antagonists. CONCLUSION The blocking of the orexin receptors modulates abnormal ovarian steroidogenesis in the PCOS model of rats. This suggests that the binding of orexin-A and -B to their receptors reduces Cyp19a1 gene expression while increasing testosterone levels.
Collapse
Affiliation(s)
- Somayeh Kouhetsani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Estradiol-dependent hypocretinergic/orexinergic behaviors throughout the estrous cycle. Psychopharmacology (Berl) 2023; 240:15-25. [PMID: 36571628 PMCID: PMC9816302 DOI: 10.1007/s00213-022-06296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
RATIONALE The female menstrual or estrous cycle and its associated fluctuations in circulating estradiol (E2), progesterone, and other gonadal hormones alter orexin or hypocretin peptide production and receptor activity. Depending on the estrous cycle phase, the transcription of prepro-orexin mRNA, post-translational modification of orexin peptide, and abundance of orexin receptors change in a brain region-specific manner. The most dramatic changes occur in the hypothalamus, which is considered the starting point of the hypothalamic-pituitary-gonadal axis as well as the hub of orexin-producing neurons. Thus, hypothalamus-regulated behaviors, including arousal, feeding, reward processing, and the stress response depend on coordinated efforts between E2, progesterone, and the orexin system. Given the rise of orexin therapeutics for various neuropsychiatric conditions including insomnia and affective disorders, it is important to delineate the behavioral outcomes of this drug class in both sexes, as well as within different time points of the female reproductive cycle. OBJECTIVES Summarize how the menstrual or estrous cycle affects orexin system functionality in animal models in order to predict how orexin pharmacotherapies exert varying degrees of behavioral effects across the dynamic hormonal milieu.
Collapse
|
7
|
The effect of prostaglandins E2 and F2α on orexin system expression in the porcine uterus during the peri-implantation period. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to evaluate the effect of prostaglandins E2 (PGE2) and F2α (PGF2α) on orexins (OXA and OXB) secretion (ELISA), prepro-orexin (PPO) gene expression and the content of orexin receptors (OX1R, OX2R) mRNA (qPCR) and proteins (Western blot) in porcine endometrial and myometrial tissue slices during early pregnancy (days 10–28) and on days 10–11 of the oestrous cycle. On days 10–11 of pregnancy, prostaglandins (PGs) decreased the expression of the PPO gene and OXR gene and protein in the endometrium. On days 12– 13, PGs increased OXB secretion, PGE2 enhanced OXA secretion, and PGF2α suppressed PPO expression. On days 15–16, both PGs inhibited PPO expression and OXB secretion, and PGF2α increased OXA release. On days 27–28, PGs decreased PPO mRNA and OX1R protein levels, PGE2 decreased OX2R protein content, and PGF2α decreased OXB secretion. On days 10-11 of the cycle PGs increased the expression of PPO mRNA and OX2R protein, whereas PGE2 increased OX1R protein content. The effect of PGs on orexin system expression in the porcine myometrium was dependent on the animal physiological status and the concentrations of specific PGs. The study demonstrated that PGs exert regulatory effects on orexin system expression in the porcine uterus, which suggests that a local regulatory mechanism could be responsible for modulating uterine metabolism. The observed differences in PGs’ influence on orexin system expression could be attributed to changes in the sensitivity of the studied tissues, associated with the phase of the oestrous cycle, the stage of early pregnancy or PGs concentration.
Collapse
|
8
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
9
|
Effects of orexin A on PTGS2, PTGES, CBR1 and PGFS mRNA transcript abundances and prostaglandin E2 and F2α concentrations in culture medium of pig uterine explants collected during early gestation and the estrogenic cycle. Anim Reprod Sci 2022; 237:106910. [DOI: 10.1016/j.anireprosci.2021.106910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
|
10
|
Marcos P, Coveñas R. Involvement of the Orexinergic System in Feeding. APPLIED SCIENCES 2021; 12:86. [DOI: 10.3390/app12010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
To know the processes involved in feeding, the dysregulation of hypothalamic neuropeptides promoting anorexigenic/orexigenic mechanisms must be investigated. Many neuropeptides are involved in this behavior and in overweight/obesity. Current pharmacological strategies for the treatment of obesity are unfortunately not very effective and, hence, new therapeutic strategies must be investigated and developed. Due to the crucial role played by orexins in feeding behavior, the aim of this review is to update the involvement of the orexinergic system in this behavior. The studies performed in experimental animal models and humans and the relationships between the orexinergic system and other substances are mentioned and discussed. Promising research lines on the orexinergic system are highlighted (signaling pathways, heterogeneity of the hypothalamic orexinergic neurons, receptor-receptor interaction, and sex differences). Each of the orexin 1 and 2 receptors plays a unique role in energy metabolism, exerting a differential function in obesity. Additional preclinical/clinical studies must be carried out to demonstrate the beneficial effects mediated by orexin receptor antagonists. Because therapies applied are in general ineffective when they are directed against a single target, the best option for successful anti-obesity treatments is the development of combination therapies as well as the development of new and more specific orexin receptor antagonists.
Collapse
Affiliation(s)
- Pilar Marcos
- CRIB (Regional Centre of Biomedical Research), Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
11
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
12
|
Razavinia F, Tehranian N, Sadatmahalleh SJ, Kazemnejad A, Khajetash S, Daryasari SRF, Pahlavan F, Jahanfar S. The influence of mode of delivery, anthropometric indices, and infant's sex on the maternal and cord blood orexin-A levels: A cohort study. J Obstet Gynaecol Res 2021; 47:2363-2370. [PMID: 33870593 DOI: 10.1111/jog.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Orexin as an adipokin hormone plays an important role in appetite regulation, energy metabolism, obesity, diabetes, and cardiovascular disease. The main source of orexin secretion in nonpregnant and pregnant women is adipose tissue and placenta, respectively. This research was conducted to evaluate the association between orexin-A level and the mode of delivery, anthropometric indices, and sex of the infant. METHODS This prospective cohort study was conducted on 69 normal pregnant women. The samples of umbilical cord blood were obtained at the time of delivery, and maternal blood was taken within 24 h of delivery. Serum orexin-A levels were measured by using enzyme-linked immunosorbent assay. Statistical analyses were performed using SPSS and p < 0.05 was considered as significant. RESULTS We found a significant difference between postpartum maternal and umbilical cord orexin-A level both with the mode of delivery (p < 0.001). Also, a significant positive correlation was seen between maternal and umbilical cord serum orexin-A levels (r = -0.61, p < 0.001). There was no relationship between serum orexin-A levels with anthropometric indices and the sex of the neonate (p > 0.05). CONCLUSION Both maternal and umbilical cord serum orexin-A levels were associated with the mode of delivery. Maternal and cord blood orexin-A levels in normal vaginal delivery are higher than cesarean section.
Collapse
Affiliation(s)
- Fatemeh Razavinia
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Tehranian
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shaghayegh Khajetash
- Counseling in Midwifery, Research Committee, School of Nursing and Midwifery Nasibeh, Sari, Iran
| | | | - Fattaneh Pahlavan
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Ægidius HM, Kruse L, Christensen GL, Lorentzen MP, Jørgensen NR, Moresco M, Pizza F, Plazzi G, Jennum PJ, Kornum BR. Pre-treatment of blood samples reveal normal blood hypocretin/orexin signal in narcolepsy type 1. Brain Commun 2021; 3:fcab050. [PMID: 33977264 PMCID: PMC8100001 DOI: 10.1093/braincomms/fcab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
The hypocretin/orexin system regulates arousal through central nervous system mechanisms and plays an important role in sleep, wakefulness and energy homeostasis. It is unclear whether hypocretin peptides are also present in blood due to difficulties in measuring reliable and reproducible levels of the peptides in blood samples. Lack of hypocretin signalling causes the sleep disorder narcolepsy type 1, and low concentration of cerebrospinal fluid hypocretin-1/orexin-A peptide is a hallmark of the disease. This measurement has high diagnostic value, but performing a lumbar puncture is not without discomfort and possible complications for the patient. A blood-based test to assess hypocretin-1 deficiency would therefore be of obvious benefit. We here demonstrate that heating plasma or serum samples to 65°C for 30 min at pH 8 significantly increases hypocretin-1 immunoreactivity enabling stable and reproducible measurement of hypocretin-1 in blood samples. Specificity of the signal was verified by high-performance liquid chromatography and by measuring blood samples from mice lacking hypocretin. Unspecific background signal in the assay was high. Using our method, we show that hypocretin-1 immunoreactivity in blood samples from narcolepsy type 1 patients does not differ from the levels detected in control samples. The data presented here suggest that hypocretin-1 is present in the blood stream in the low picograms per millilitres range and that peripheral hypocretin-1 concentrations are unchanged in narcolepsy type 1.
Collapse
Affiliation(s)
- Helene M Ægidius
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lars Kruse
- Department of Clinical Biochemistry, Rigshospitalet, 2600 Glostrup, Denmark
| | | | - Marc P Lorentzen
- Department of Clinical Biochemistry, Rigshospitalet, 2600 Glostrup, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, 2600 Glostrup, Denmark
| | - Monica Moresco
- Istituto delle Scienze Neurologiche, Ospedale Bellaria, IRCCS Bologna, 40139 Bologna, Italy
| | - Fabio Pizza
- Istituto delle Scienze Neurologiche, Ospedale Bellaria, IRCCS Bologna, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Plazzi
- Istituto delle Scienze Neurologiche, Ospedale Bellaria, IRCCS Bologna, 40139 Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| | - Poul J Jennum
- Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet, 2600 Glostrup, Denmark
| | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
14
|
Zaobidna E, Kiezun M, Dobrzyn K, Szeszko K, Rytelewska E, Kisielewska K, Gudelska M, Bors K, Kopij G, Szymanska K, Kaminska B, Kaminski T, Smolinska N. The influence of orexin B on the transcriptome profile of porcine myometrial explants during early implantation. Theriogenology 2020; 156:205-213. [PMID: 32755720 DOI: 10.1016/j.theriogenology.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
This study aimed to determine the effect of orexin B (OXB) on the global expression pattern and the relationships among differentially expressed genes (DE-genes) in the transcriptome of myometrial explants during the early implantation period in the pig (day 15 of pregnancy). The changes in the transcriptome profile of the porcine myometrium were investigated using the Porcine (V2) Two-colour Gene Expression Microarray, 4 × 44. An analysis of the data from the microarray experiment revealed that 1540 DE-genes were affected by OXB, of which 1135 exhibited fold changes (FC) greater than 1.2 (P < 0.05). Among these, 576 genes were up-regulated and 559 genes were down-regulated. Among the affected biological processes in the myometrial tissue, 76 were enhanced and 31 were suppressed. Furthermore, the differential expression of nine genes, related to the regulation of reproductive functions and metabolic homeostasis, was confirmed by quantitative RT-PCR. A functional analysis of the relationships between DE-genes indicated that OXB interacts with the genes involved in the processes such as the inflammatory response, the response to interleukin-6, cytokine receptor activity, the regulation of cell activation, growth factor receptor binding, lipid modification and the steroid metabolic process. An analysis of DE-genes and their functional relationships suggests that OXB could be involved in the mechanisms such as the regulation of cell proliferation and development, inhibition of contractility, regulation of programmed cell death, and the development of blood vessels, all of which facilitate implantation.
Collapse
Affiliation(s)
- Ewa Zaobidna
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Kinga Bors
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| |
Collapse
|
15
|
Dobrzyn K, Kiezun M, Szeszko K, Kisielewska K, Rytelewska E, Gudelska M, Zaobidna E, Bors K, Kopij G, Szymanska K, Kaminska B, Kaminski T, Smolinska N. Orexin B affects the transcriptome of incubated in vitro porcine endometrial explants from the early-implantation period. Reprod Domest Anim 2020; 56:239-253. [PMID: 32402144 DOI: 10.1111/rda.13700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 01/11/2023]
Abstract
This study determined the effect of orexin B (OXB) on the porcine endometrial transcriptome during the embryo attachment phase. Microarray analyses of gene ontology (GO), biological pathways, networks and differentially expressed genes (DEG) were performed. Orexin B influenced the expression of 887 genes (fold change > 1.2; p < .05): 620 genes were up-regulated, and 267 were down-regulated. The analysis of the relationship between DEG revealed that OXB interacts with genes linked with processes such as cell hormone binding, regulation of hormone levels, lipid transport, steroid metabolic processes, the apoptotic signalling pathway and the acute inflammatory response, which are pivotal for reproductive success. Orexin B played a bivalent role in the early-pregnant uterus by limiting the pregnancy outcome, promoting embryo development, suppressing the immune system and, consequently, preventing embryo rejection. These findings suggest that OXB could be responsible for the proper course of gestation by adapting litter size to the metabolic status of the maternal organism.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kinga Bors
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
16
|
Firouzabadi N, Navabzadeh N, Moghimi-Sarani E, Haghnegahdar M. Orexin/Hypocretin Type 2 Receptor (HCRTR2) Gene as a Candidate Gene in Sertraline-Associated Insomnia in Depressed Patients. Neuropsychiatr Dis Treat 2020; 16:1121-1128. [PMID: 32440126 PMCID: PMC7210038 DOI: 10.2147/ndt.s250141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are considered as first-line drugs for treating depressive disorders. Among the adverse effects reported with sertraline is sleep disturbances; however, the etiology lying beneath is obscure. Orexin, the most recently discovered neurotransmitter, is involved in the sleep cycle. It exerts its physiological actions through orexin or hypocretin type 1 and 2 receptors (HCRTR1 and HCRTR2). Dysfunction of the orexin system contributes to various psychiatric, neurologic and neuropsychiatric disorders. Thus, our study aimed to assess the possible association of genetic variation of HCRTR2 G1246A with hypersomnia reported with sertraline in a group of major depressive disorder (MDD) patients. PATIENTS AND METHODS Ninety-six newly diagnosed MDD patients were enrolled in our cohort study. MDD was assessed using DSM-V criteria. Insomnia Severity Index (ISI) was used to assess insomnia at baseline (week 0) and week 4. Blood samples were collected for further genotyping of HCRTR2 G1246A (rs2653349) using polymerase chain reaction-restriction fragment length polymorphism. RESULTS A significant association between G1264A polymorphism of HCRTR2 and insomnia was observed. Insomnia with sertraline happens by 2.5-fold (P=0.022; odds ratio (OR)=2.5; 95% confidence interval (CI): 1.1-5.7) in patients having GG genotype. Patients with G allele experience insomnia by 2.1-fold more than A allele carriers (P=0.022; OR=2.1; 95% CI= 1.1-4.0). Subgroup analysis showed a significant association between GG genotype as well as the G allele and insomnia only in female MDD patients (P=0.011; OR=4.0; 95% CI=1.3-12.0 and P=0.033; OR=2.4; 95% CI=1.02-5.7, respectively). CONCLUSION In conclusion, the G1246A variant might be a predictor for insomnia in MDD patients treated with sertraline. Our findings support the idea that some variants of the HCRTR might contribute to inter-individual variability in the sleep pattern of patients receiving antidepressants.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Navabzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Moghimi-Sarani
- Department of Psychiatry, School of Medicine, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Maral Haghnegahdar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Dobrzyn K, Kiezun M, Szeszko K, Gudelska M, Kisielewska K, Rytelewska E, Zaobidna E, Wyrebek J, Bors K, Kopij G, Kaminska B, Kaminski T, Smolinska N. The in vitro effect of orexin a on the porcine myometrial transcriptomic profile during the early-implantation period. Theriogenology 2019; 143:157-167. [PMID: 31875568 DOI: 10.1016/j.theriogenology.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 01/11/2023]
Abstract
In pigs, early gestation is the most critical period deciding about the reproduction success, and it depends on many processes, involving a significant number of genes and their products. Myometrium was found to be an important source of factors pivotal for a proper course of gestation. The aim of the study was to determine the effect of orexin A (OXA) on the porcine transcriptome, and the determination of relationships among differentially expressed genes (DEG) in the porcine myometrium during implantation using microarray technology. The analyses of gene ontology (GO), DEG assays, biological pathways and networks were performed. OXA affected the expression of 461 genes with fold-change values greater than 1.2 (p < 0.05). The expression of 260 genes were up-regulated and 201 down-regulated in the OXA-treated myometrium. Twelve genes were selected for qPCR validation of differential expression based on their known role in angiogenesis, immune processes, steroid hormone signaling and prostaglandins synthesis. The analysis of relationship between DEG indicated that OXA interacts with genes involved in the inflammatory response, cytokine binding, cytokine activity, interleukin production, leukocyte migration, angiogenesis and embryonic hemopoiesis. The presented results suggest that OXA may play a key role in ensuring optimal conditions for implanting embryos.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Ewa Zaobidna
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Joanna Wyrebek
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Kinga Bors
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn-Kortowo, Poland.
| |
Collapse
|
18
|
Rytelewska E, Kisielewska K, Gudelska M, Kiezun M, Dobrzyn K, Bors K, Wyrebek J, Kaminska B, Kaminski T, Smolinska N. The effect of orexin a on the StAR, CYP11A1 and HSD3B1 gene expression, as well as progesterone and androstenedione secretion in the porcine uterus during early pregnancy and the oestrous cycle. Theriogenology 2019; 143:179-190. [PMID: 31733930 DOI: 10.1016/j.theriogenology.2019.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/24/2019] [Accepted: 10/13/2019] [Indexed: 12/16/2022]
Abstract
Orexin A (OXA) is primarily known for its involvement in the regulation of feeding behaviour, energy metabolism and sleep/wake cycle. Nevertheless, studies indicate its engagement in the regulation of the porcine reproductive system. Therefore, the aim of this study was to investigate OXA effect (1, 10, 100 nM), in the presence or absence of the selective orexin receptor type 1 antagonist (SB-3348667; 1 μM), on the gene expression of key steroidogenic enzymes: steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase (HSD3B1), as well as on progesterone (P4) and androstenedione (A4) secretion. Endometrial and myometrial tissue explants were collected from gilts on days 10 to 11, 12 to 13, 15 to 16 and 27 to 28 of pregnancy, and on days 10 to 11 of the oestrous cycle (n = 5 per studied period of pregnancy or mid-luteal phase of the oestrous cycle). Gene expression was evaluated by real-time PCR. The level of steroid hormones secreted into the culture medium was examined by radioimmunoassay (RIA). In the present study, in the endometrium, OXA significantly stimulated StAR expression on days 12 to 13, CYP11A1 expression on days 27 to 28 and HSD3B1 expression on days 15 to 16 of pregnancy. Further, in this tissue, OXA decreased StAR mRNA level on days 10 to 11, CYP11A1 mRNA level on days 15 to 16, as well as HSD3B1 mRNA level on days 10 to 11 and 12 to 13 of gestation. Regarding the myometrium, OXA stimulated CYP11A1 gene expression on days 15 to 16 of pregnancy. In this tissue, OXA decreased StAR transcript content on days 15 to 16 and CYP11A1 mRNA level on days 27 to 28. We also demonstrated that OXA alone enhanced P4 secretion in the endometrium on days 10 to 11 and 12 to 13 of gestation. OXA alone has no significant effect on endometrial and myometrial A4 secretion, whereas OXA in combination with OX1R antagonist increased this hormone secretion during all studied stages of pregnancy. Therefore, we can conclude that OXA may affect de novo synthesis and secretion of P4 and A4 in the porcine uterus via participating in the regulation of key steroidogenic enzymes gene expression, as well as modulating steroid hormones secretion during early pregnancy and mid-luteal phase of the oestrous cycle in pigs. However, further research is required to explain the exact role of OXA in the porcine uterus.
Collapse
Affiliation(s)
- Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Kinga Bors
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Joanna Wyrebek
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| |
Collapse
|
19
|
Kisielewska K, Rytelewska E, Gudelska M, Kiezun M, Dobrzyn K, Szeszko K, Bors K, Wyrebek J, Kaminski T, Smolinska N. The effect of orexin B on steroidogenic acute regulatory protein, P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase gene expression, and progesterone and androstenedione secretion by the porcine uterus during early pregnancy and the estrous cycle. J Anim Sci 2019; 97:851-864. [PMID: 30508170 DOI: 10.1093/jas/sky458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to investigate the effect of orexin B (OXB) on progesterone (P4) and androstenedione (A4) secretion by porcine endometrial and myometrial tissue explants and on the expression of key steroidogenic proteins and enzymes involved in steroid production. The hormones secretion and the expression of steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage enzyme (CYP11A1), and 3β-hydroxysteroid dehydrogenase (HSD3B1) were analyzed on days 10 to 11, 12 to 13, 15 to 16, and 27 to 28 of pregnancy and during the luteal phase of the estrous cycle (days 10 to 11). Endometrial and myometrial explants were cultured in vitro in the presence of OXB (1, 10, or 100 nM) and OXB (1, 10, or 100 nM) with 1 µM of JNJ (OX2R antagonist). Gene expression was examined by real-time PCR, and steroid secretion was determined by radioimmunoassay. Orexin B modulated StAR, CYP11A1, HSD3B1 mRNA content depending on the type of uterine tissue, the applied OXB dose, and the stage of pregnancy or the estrous cycle (P < 0.05). Orexin B increased P4 secretion in all stages of early gestation (P < 0.05). Orexin B enhanced the release of A4 on days 12 to 13, 15 to 16, and 27 to 28 of gestation, whereas on days 10 to 11 of early pregnancy, A4 secretion decreased in the endometrium and increased in the myometrium (P < 0.05). These results indicate that OXB affects the expression of key steroidogenic regulators and the secretion of steroid hormones in the porcine uterus during early pregnancy.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kinga Bors
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wyrebek
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
20
|
Fuentes N, Cabello N, Nicoleau M, Chroneos ZC, Silveyra P. Modulation of the lung inflammatory response to ozone by the estrous cycle. Physiol Rep 2019; 7:e14026. [PMID: 30848106 PMCID: PMC6405886 DOI: 10.14814/phy2.14026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that sex differences exist in the control of lung innate immunity; however, the specific roles of sex hormones in the inflammatory response, and the mechanisms involved are unclear. Here, we investigated whether fluctuations in circulating hormone levels occurring in the mouse estrous cycle could affect the inflammatory response to air pollution exposure. For this, we exposed female mice (C57BL/6J, 8 weeks old) at different phases of the estrous cycle to 2 ppm of ozone or filtered air (FA) for 3 h. Following exposure, we collected lung tissue and bronchoalveolar lavage fluid (BAL), and performed lung function measurements to evaluate inflammatory responses and respiratory mechanics. We found a differential inflammatory response to ozone in females exposed in the luteal phase (metestrus, diestrus) versus the follicular phase (proestrus, estrus). Females exposed to ozone in the follicular phase had significantly higher expression of inflammatory genes, including Ccl2, Cxcl2, Ccl20, and Il6, compared to females exposed in the luteal phase (P < 0.05), and displayed differential activation of regulatory pathways. Exposure to ozone in the follicular phase also resulted in higher BAL neutrophilia, lipocalin levels, and airway resistance than exposure in the luteal phase (P < 0.05). Together, these results show that the effects of ozone exposure in the female lung are affected by the estrous cycle phase, and potentially hormonal status. Future studies investigating air pollution effects and inflammation in women should consider the menstrual cycle phase and/or circulating hormone levels.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of PediatricsThe Pennsylvania State University College of MedicineHersheyPennsylvania
| | - Noe Cabello
- Department of PediatricsThe Pennsylvania State University College of MedicineHersheyPennsylvania
| | - Marvin Nicoleau
- Department of PediatricsThe Pennsylvania State University College of MedicineHersheyPennsylvania
| | - Zissis C. Chroneos
- Department of PediatricsThe Pennsylvania State University College of MedicineHersheyPennsylvania
| | - Patricia Silveyra
- Department of PediatricsThe Pennsylvania State University College of MedicineHersheyPennsylvania
- Biobehavioral LaboratoryThe University of North Carolina at Chapel HillChapel HillNorth Carolina
| |
Collapse
|
21
|
Suszka‐Świtek A, Pałasz A, Filipczyk Ł, Menezes IC, Mordecka‐Chamera K, Angelone T, Bogus K, Bacopoulou F, Worthington JJ, Wiaderkiewicz R. The Gn
RH
analogues affect novel neuropeptide
SMIM
20/phoenixin and
GPR
173 receptor expressions in the female rat hypothalamic–pituitary–gonadal (
HPG
) axis. Clin Exp Pharmacol Physiol 2019; 46:350-359. [DOI: 10.1111/1440-1681.13061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/21/2018] [Accepted: 12/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandra Suszka‐Świtek
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Artur Pałasz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Łukasz Filipczyk
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour Faculty of Medicine University of São Paulo São Paulo Brazil
| | - Kinga Mordecka‐Chamera
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiac Physiology Department of Biology, Ecology and Earth Sciences University of Calabria Arcavacata di Rende Italy
| | - Katarzyna Bogus
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care First Department of Pediatrics School of Medicine National and Kapodistrian University of Athens ‘Aghia Sophia’ Children's Hospital Athens Greece
| | - John J. Worthington
- Division of Biomedical and Life Sciences Faculty of Health and Medicine Lancaster University Lancaster UK
| | - Ryszard Wiaderkiewicz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| |
Collapse
|
22
|
Dobrzyn K, Szeszko K, Kiezun M, Kisielewska K, Rytelewska E, Gudelska M, Wyrebek J, Bors K, Kaminski T, Smolinska N. In vitro effect of orexin A on the transcriptomic profile of the endometrium during early pregnancy in pigs. Anim Reprod Sci 2019; 200:31-42. [DOI: 10.1016/j.anireprosci.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023]
|
23
|
Dobrzyn K, Smolinska N, Kiezun M, Szeszko K, Rytelewska E, Kisielewska K, Gudelska M, Kaminski T. The in vitro effect of progesterone on the orexin system in porcine uterine tissues during early pregnancy. Acta Vet Scand 2018; 60:76. [PMID: 30477546 PMCID: PMC6258494 DOI: 10.1186/s13028-018-0430-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/17/2018] [Indexed: 11/11/2022] Open
Abstract
Background Orexin A (OXA) and orexin B (OXB) are hypothalamic-derived peptides that participate in the regulation of energy metabolism, food intake and reproductive function by influencing the hypothalamic-pituitary-ovarian axis. Orexins are also produced in the endometrium, myometrium and placenta, which suggests that they could act as a link between energy metabolism and the reproductive system. Changes in the expression of orexin and the orexin receptor genes and proteins during the oestrous cycle and early gestation in pigs imply that orexin activity may be regulated by local factors within the uterus. The aim of this study was to investigate the influence of progesterone (P4) on the expression of orexin system genes, and proteins in the porcine uterus during early gestation. Gene expression was analyzed by real-time PCR. Adiponectin secretion was determined by ELISA, and the receptors proteins content was defined using western blot analysis. Results In the endometrium, P4 enhanced OXA secretion on days 10 to 11 of gestation and OXB secretion on days 12 to 13. In the myometrium, P4 inhibited the secretion of both orexins on days 15 to 16 and OXB secretion also on days 12 to 13. In the endometrium, P4 inhibited the expression of orexin receptor 1 (OX1R) protein at nearly all times analyzed, whereas the expression of orexin receptor 2 (OX2R) protein was inhibited only on days 15 to 16 of gestation. In the myometrium, P4 stimulated OX1R protein expression on days 12 to 13 and 15 to 16 of gestation and inhibited OX1R protein expression on days 27 to 28. The expression of OX2R protein in the myometrium increased on days 12 to 13 and decreased on days 10 to 11 and 15 to 16. Conclusions The results indicate that P4 could regulate the expression of the orexin system in the porcine uterus during early pregnancy, which suggests the presence of a local feedback loop that could play an important role in the regulation of maternal metabolism during pregnancy. The findings may contribute to the existing knowledge of the mechanisms linking maternal energy metabolism with the regulation of the reproductive system during pregnancy.
Collapse
|
24
|
Basini G, Ciccimarra R, Bussolati S, Grolli S, Ragionieri L, Ravanetti F, Botti M, Gazza F, Cacchioli A, Di Lecce R, Cantoni AM, Grasselli F. Orexin A in swine corpus luteum. Domest Anim Endocrinol 2018; 64:38-48. [PMID: 29733985 DOI: 10.1016/j.domaniend.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 11/27/2022]
Abstract
Orexin A (OXA) is a hypothalamic neuropeptide which acts on 2 known G-protein-coupled receptors. It has been demonstrated that OXA is a central molecular link between food intake and reproduction. More recently, its peripheral role has been investigated, and we demonstrated its involvement in regulating ovarian follicle function. The present study was undertaken to explore a potential physiological role of orexin system in swine corpus luteum, a transient ovarian endocrine organ. Our aim was, first, to analyze the localization and eventual colocalization of OXA and its 2 receptors within the different cell types composing the corpus luteum structure. Second, we wanted to explore the effects of OXA on isolated luteal cells, and finally to verify a potential involvement of OXA in angiogenesis, a crucial event in corpus luteum development. Our data demonstrate the local expression of OXA and its receptors in swine corpus luteum. Luteal cell functions were affected by treatment with OXA. In particular, progesterone production was inhibited (P < 0.05) and nonenzymatic scavenging activity was increased (P < 0.05). Moreover, OXA inhibited (P < 0.05) new vessel growth. Our results suggest that OXA could act locally to play a role in corpus luteum demise.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - R Ciccimarra
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Ravanetti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - M Botti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - A Cacchioli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - A M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
25
|
Fujita S, Hasegawa T, Nishiyama Y, Fujisawa S, Nakano Y, Nada T, Iwata N, Kamada Y, Masuyama H, Otsuka F. Interaction between orexin A and bone morphogenetic protein system on progesterone biosynthesis by rat granulosa cells. J Steroid Biochem Mol Biol 2018; 181:73-79. [PMID: 29545164 DOI: 10.1016/j.jsbmb.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 12/01/2022]
Abstract
The involvement of orexins in reproductive function has been gradually uncovered. However, the functional role of orexins in ovarian steroidogenesis remains unclear. In the present study, we investigated the effects of orexin A on ovarian steroidogenesis by using rat primary granulosa cells that express both OX1 and OX2 receptors for orexins. Treatment with orexin A enhanced progesterone, but not estradiol, biosynthesis induced by FSH, whereas it did not affect basal levels of progesterone or estradiol. In accordance with the effects on steroidogenesis, orexin A increased the mRNA levels of progesterogenic enzymes, including StAR, P450scc and 3βHSD, but not P450arom, and cellular cAMP synthesis induced by FSH. Under the condition of blockage of endogenous BMP actions by noggin or BMP-signaling inhibitors, orexin A failed to increase levels of progesterone synthesis induced by FSH treatment, suggesting that endogenous BMP activity in granulosa cells might be involved in the enhancement of progesterone synthesis by orexin A. Treatment with orexin A impaired Smad1/5/9 activation as well as Id-1 mRNA expression stimulated by BMP-6 and BMP-7, the latter of which was reversed by treatment with an OX1 antagonist. It was also found that orexin A suppressed the mRNA expression of both type-I and -II receptors for BMPs and increased that of inhibitory Smad6 and Smad7 in granulosa cells. On the other hand, treatments with BMP-6 and -7 suppressed the expression of OX1 and OX2. Collectively, the results indicated that orexin A enhances FSH-induced progesterone production, at least in part, by downregulating BMP signaling in granulosa cells. Thus, a new role of orexin A in facilitating progesterone synthesis and functional interaction between the orexin and BMP systems in granulosa cells were revealed.
Collapse
Affiliation(s)
- Shiho Fujita
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Toru Hasegawa
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yuki Nishiyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Satoshi Fujisawa
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Yasuhiko Kamada
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
26
|
Ragionieri L, Ravanetti F, Di Lecce R, Botti M, Ciccimarra R, Bussolati S, Basini G, Gazza F, Cacchioli A. Immunolocalization of Orexin A and its receptors in the different structures of the porcine ovary. Ann Anat 2018; 218:214-226. [PMID: 29738835 DOI: 10.1016/j.aanat.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
Abstract
Orexins are neuropeptides with pleiotropic functions, involved in the coordination of multiple versatile physiological processes, in particular related to food intake and several aspects of the reproductive process. Their actions are carried out through the bond with the related Orexin 1 (OXR1) and Orexin 2 (OXR2) G-protein-coupled receptors. Studies on the expression of the orexinergic system in the female genital organs are scarce and limited to preovulatory gametogenic follicles and corpora lutea isolated from the rest of the ovary. As the description of only these structures is insufficient to provide a complete picture of the organ, the present study is aimed to give a panoramic view of all the ovarian structures and cells expressing Orexin A (OXA) and its receptors in their original localization. Double labeling immunofluorescent methods, applied on frozen sections of the whole organ in both follicular and luteal phase, were used to highlight the particular distribution and colocalization of the proteins. For a better recognition of cellular morphology and a better distinction between gametogenic (healthy) and atretic follicles, also a single labeling immunolocalization of OXA on formalin fixed paraffin embedded tissues and a TUNEL staining were performed. The results indicate that OXA and its two receptors subtypes are expressed in all the different structures composing the swine ovary, albeit in different ways, in both phases of the ovarian cycle. In general, OXA and OXR2 appear diffusely distributed within "health", proliferating and steroid producing cells, while has granular appearance, being presumably associated to cytoplasmic vesicles, in degenerating cells, independently if apoptotic or not. The immunoreactivity for OXR1, instead, is often associated with the nuclear envelope but it is also detectable, to a lesser extent, diffusely distributed in the cytoplasm of growing or steroid producing cells. When cells undertake the path leading to degeneration, also OXR1 immunoreactivity assumes a granular appearance in the cytoplasm and is colocalized with OXA and OXR2. Different roles for the two receptors in the same cell and a different regulation of their expression remain to be investigated. Their comprehension could help studies of follicle development in pig, as part of in vitro oocyte maturation and fertilization programs in livestock.
Collapse
Affiliation(s)
- Luisa Ragionieri
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Francesca Ravanetti
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Rosanna Di Lecce
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Maddalena Botti
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Robert Ciccimarra
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Simona Bussolati
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Giuseppina Basini
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Ferdinando Gazza
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Antonio Cacchioli
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
27
|
Liguori G, Tafuri S, Miyoshi C, Yanagisawa M, Squillacioti C, De Pasquale V, Mirabella N, Vittoria A, Costagliola A. Localization of orexin B and orexin-2 receptor in the rat epididymis. Acta Histochem 2018; 120:292-297. [PMID: 29496265 DOI: 10.1016/j.acthis.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
The peptides orexin A (OXA) and orexin B (OXB) derived from the proteolytic cleavage of a common precursor molecule, prepro-orexin, were originally described in the rat hypothalamus. Successively, they have been found in many other brain regions as well as in peripheral organs of mammals and other less evolved animals. The widespread localization of orexins accounts for the multiple activities that they exert in the body, including the regulation of energy homeostasis, feeding, metabolism, sleep and arousal, stress, addiction, and cardiovascular and endocrine functions. Both OXA and OXB peptides bind to two G-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R) receptor, though with different binding affinity. Altered expression/activity of orexins and their receptors has been associated with a large number of human diseases. Though at present evidence highlighted a role for orexins and cognate receptors in mammalian reproduction, their central and/or local effects on gonadal functions remain poorly known. Here, we investigated the localization of OXB and OX2R in the rat epididymis. Immunohistochemical staining of sections from caput, corpus and cauda segments of the organ showed intense signals for both OXB and OX2R in the principal cells of the lining epithelium, while no staining was detected in the other cell types. Negative results were obtained from immunohistochemical analysis of hypothalamic and testicular tissues from OX2R knock-out mice (OX2R-/-) and OX1R/OX2R double knock-out (OX1R-/-; OX2R-/-) mice, thus demonstrating the specificity of the rabbit polyclonal anti-OX2R antibody used in our study. On contrary, the same antibody clearly showed the presence of OX2R in sections from hypothalamus and testis of normal mice and rats which are well known to express the receptor. Thus, our results provide the first definite evidence for the immunohistochemical localization of OXB and OX2R in the principal cells of rat epididymis.
Collapse
|
28
|
Joshi D, Singh SK. The neuropeptide orexin A - search for its possible role in regulation of steroidogenesis in adult mice testes. Andrology 2018; 6:465-477. [DOI: 10.1111/andr.12475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/27/2022]
Affiliation(s)
- D. Joshi
- Department of Zoology; Institute of Science; Banaras Hindu University; Varanasi India
| | - S. K. Singh
- Department of Zoology; Institute of Science; Banaras Hindu University; Varanasi India
| |
Collapse
|
29
|
Effect of orexin B on CYP17A1 and CYP19A3 expression and oestradiol, oestrone and testosterone secretion in the porcine uterus during early pregnancy and the oestrous cycle. Animal 2018; 12:1921-1932. [PMID: 29366436 DOI: 10.1017/s1751731117003779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Orexin A (OXA) and B (OXB) are hypothalamic neuropeptides identified as regulators of food intake, energy homoeostasis, sleep-wake cycle and arousal. They also create an integrative link between energy homoeostasis and reproduction. Although their functions in the ovaries and testes have been partially explored, to date, less attention has been focused on the role of the peptides in the uterus. The aim of this study was to investigate the effect of one of orexins - orexin B on oestradiol (E2), oestrone (E1) and testosterone (T) secretion by porcine endometrial and myometrial slices as well as the gene expression of key steroidogenic enzymes responsible for steroid production (CYP17A1, CYP19A3) during the luteal phase of the oestrous cycle (days 10 to 11) and early pregnancy (days 10 to 11, 12 to 13, 15 to 16, 27 to 28). Orexin B suppressed E2 secretion by endometrial slices on days 10 to 11 and 15 to 16 of pregnancy, and days 10 to 11 of the cycle. In the myometrium, OXB inhibited E2 production on days 10 to 11 of pregnancy, whereas on days 12 to 13 it enhanced steroid output. Endometrial E1 release was potentiated by the peptide during all studied periods of the cycle and pregnancy, with the exception of days 12 to 13, when an inhibitory effect was observed. Myometrial secretion of E1 was increased, except on days 27 to 28. Testosterone secretion by endometrial slices was increased on days 12 to 13 and 27 to 28 of pregnancy. On days 10 to 11 of the cycle, T release was stimulated in response to the lowest and decreased under the influence of the highest dose of OXB. In the myometrium, T production was inhibited by OXB on days 10 to 11 of pregnancy and during the corresponding period of the cycle. On days 27 to 28 of pregnancy, T release was potentiated by the lowest dose of OXB. Expression of both genes was modified by OXB depending on the period of pregnancy and the type of examined uterine tissues. Our findings suggest that OXB, through modulation of uterine steroidogenesis, may have a regulatory role in the uterus.
Collapse
|
30
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Ragionieri L, Ravanetti F, Botti M, Gazza F, Cacchioli A, Di Lecce R, Cantoni AM, Basini G. Orexin system in swine ovarian follicles. Domest Anim Endocrinol 2018; 62:49-59. [PMID: 29053993 DOI: 10.1016/j.domaniend.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/17/2022]
Abstract
Successful reproduction is strictly linked to metabolic cues. The orexins are a family of hypothalamic neurohormones, well known for their key role in the control of food intake and the involvement in several aspects of the reproductive process. The biological actions of both orexins are carried out through binding to the related Orexin 1 (OX1R) and Orexin 2 (OX2R) G-protein-coupled receptors. The purpose of this study was to investigate the presence of orexin system components in the porcine ovaries, to contribute to expand the knowledge about their pleiotropic role. First, we investigated the localization of orexin A (OXA) and its receptors by immunochemistry in different ovarian districts. Thereafter, we evaluated the expression of the prepro-orexin (PPO) gene and OXA effects on granulosa cell functions. Immunohistochemical study revealed the presence of orexinergic system components in porcine ovarian follicles. Moreover, our data show the expression of PPO messenger RNA in swine ovarian follicles >5 mm. In addition, OXA influences proliferation (P < 0.05), steroidogenic activity (P < 0.05), and redox status of granulosa cells (P < 0.05). Therefore, we hypothesize that OXA could exert a local physiological role in swine ovarian follicles even if further studies are required to deeply define the function of this pleiotropic system.
Collapse
Affiliation(s)
- R Ciccimarra
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Ravanetti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - M Botti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A Cacchioli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
31
|
Cataldi NI, Lux-Lantos VA, Libertun C. Perinatal programming of the orexinergic (hypocretinergic) system in hypothalamus and anterior pituitary by testosterone. Peptides 2018; 99:117-127. [PMID: 28442349 DOI: 10.1016/j.peptides.2017.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/12/2023]
Abstract
Orexins A/B derived from hypothalamic prepro-orexin (PPO) are agonists for orexin receptors 1 (OX1) and 2 (OX2). Previously, we showed clear sex differences in the hypothalamic-pituitary-gonadal orexinergic system in adult rodents. Here, we studied the effect of sexual brain differentiation on the orexinergic system in neuroendocrine structures regulating reproduction. We evaluated: a: proestrous and neonatally androgenized female rats; b: adult males, untreated or gonadectomized in adulthood and injected with oil or estradiol and progesterone (E2/P4); c: control and demasculinized males (perinatally treated with flutamide and later castration) injected either with oil or E2/P4 in adulthood. Rats were sacrificed at 12:00 and 18:00h; blood samples and brains were collected. Hormones were measured using radioimmunoassay. PPO, OX1 and OX2 mRNAs were quantified by qPCR in medial basal hypothalamus, anterior hypothalamus, adenohypophysis, and cortex. Western blots for OX1 were done in the same structures. In normal females, gonadotropins surged at 18:00h coinciding with significant elevations of PPO, OX1 and OX2 mRNAs and OX1 protein in hypothalamus and pituitary; no increases were observed at noon. Afternoon changes were absent in masculinized females. Demasculinized males when treated with E2/P4 showed high PPO, OX1 and OX2 mRNAs and OX1 protein expression in hypothalamus and pituitary at 12:00 and 18:00h compared vehicle-treated controls. The same steroid treatment was ineffective in males with normal brain masculinization. Here we show that neonatal testosterone shapes the sexual differences in the hypothalamic-pituitary orexinergic system in synchronicity to establishing the brain sex differences of the reproductive axis. The female brain controls gonadotropin surges and concurrent elevations of all studied components of the orexinergic system, suggesting its participation as a possible link between food intake, behavior and hormonal control of reproduction.
Collapse
Affiliation(s)
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental-CONICET, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Fisiología y Biofísica, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Smolinska N, Kiezun M, Dobrzyn K, Szeszko K, Maleszka A, Kaminski T. Adiponectin, orexin A and orexin B concentrations in the serum and uterine luminal fluid during early pregnancy of pigs. Anim Reprod Sci 2017; 178:1-8. [PMID: 28089263 DOI: 10.1016/j.anireprosci.2017.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 01/09/2023]
Abstract
Adiponectin is the most abundant adipose-released protein that circulates in human plasma at high concentrations. The neuropeptides orexin A (OXA, hypocretin-1) and orexin B (OXB, hypocretin-2) are derived from a common precursor peptide, prepro-orexin and are produced mainly by neurons located in the lateral hypothalamus. It has been demonstrated that the peptides such as adiponectin and orexins have an important role in the regulation of energy metabolism and neuroendocrine functions. These hormones appear to be implicated in both normal and disturbed pregnancy. The objectives of this study were to determine adiponectin and orexin concentrations in the plasma and uterine luminal fluid (ULF) of pigs during early gestation and to explore the relationships between hormone concentrations and stages of pregnancy. The greatest plasma concentrations of adiponectin were observed on days 15-16 and 27-28 of pregnancy, and the least concentrations were on days 30-32 of gestation and on days 10-11 of the oestrous cycle. In ULF, adiponectin concentrations were greater on days 15-16 of pregnancy and on days 10-11 of the oestrous cycle than on days 10-11 and days 12-13 of pregnancy. The greatest OXA concentrations in the blood plasma were noted on days 10-16 of gestation, and the least OXA concentrations were on days 27-32 of pregnancy and on days 10-11 of the oestrous cycle. Orexin A concentrations in ULF were greater on days 10-11 of the cycle than throughout pregnancy. Serum OXB concentrations were greatest on days 10-11 and 30-32 of pregnancy, and least on days 12-28 of gestation. The greatest OXB concentrations in ULF were on days 10-13 of gestation, and the least OXB concentrations were on days 15-16 of pregnancy. This is first study to demonstrate the presence of adiponectin and orexins in the serum and ULF during early pregnancy of pigs as well as the relationships between adiponectin and orexin concentrations and the stage of pregnancy. The fluctuations in adiponectin and orexin concentrations in the plasma and ULF suggest that the hormones present in ULF are mostly of local origin and that these hormones participate in the processes that accompany early pregnancy.
Collapse
Affiliation(s)
- Nina Smolinska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski Street 1A, 10-719 Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski Street 1A, 10-719 Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski Street 1A, 10-719 Olsztyn, Poland.
| | - Karol Szeszko
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski Street 1A, 10-719 Olsztyn, Poland.
| | - Anna Maleszka
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski Street 1A, 10-719 Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski Street 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
33
|
Czerwinska J, Chojnowska K, Kaminski T, Bogacka I, Smolinska N, Kaminska B. Orexin receptor expression in the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes of free-living European beavers (Castor fiber L.) in different periods of the reproductive cycle. Gen Comp Endocrinol 2017; 240:103-113. [PMID: 27664717 DOI: 10.1016/j.ygcen.2016.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Orexins are hypothalamic neuropeptides acting via two G protein-coupled receptors in mammals: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). In European beavers, which are seasonally breeding animals, the presence and functions of orexins and their receptors remain unknown. Our study aimed to determine the expression of OXR mRNAs and the localization of OXR proteins in hypothalamic-pituitary-adrenal/gonadal (HPA/HPG) axes in free-living beavers. The expression of OXR genes (OX1R, OX2R) and proteins was found in all analysed tissues during three periods of beavers' reproductive cycle (April, July, November). The expression of OXR mRNAs in the beaver HPA axis varied seasonally (P<0.05). The levels of OX1R mRNA also differed between the sexes (P<0.05). In the mediobasal hypothalamus, OX1R transcript content increased in pregnant females in April (P<0.05) and OX2R expression increased in males in July (P<0.05). In the pituitary and adrenals, OX1R mRNA levels were relatively constant in females and peaked in July in males (P<0.05), whereas the OX2R was most highly expressed in males in November and in females in April (P<0.05). In gonads, OX1R expression did not fluctuate between seasons or sexes, but transcript levels were elevated in the testes in November and in the ovaries in July (P<0.05). In turn, OX2R mRNA levels varied between the sexes (P<0.05) and were higher in females (July and November) than in males (P<0.05). The circannual variations in OXR mRNA levels in HPA and HPG axes suggest that the expression of these receptors is associated with sex-specific changes in beavers' reproductive activity and their environmental adaptations.
Collapse
Affiliation(s)
- Joanna Czerwinska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Katarzyna Chojnowska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Iwona Bogacka
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Barbara Kaminska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| |
Collapse
|
34
|
The effect of orexin A on CYP17A1 and CYP19A3 expression and on oestradiol, oestrone and testosterone secretion in the porcine uterus during early pregnancy and the oestrous cycle. Theriogenology 2016; 90:129-140. [PMID: 28166959 DOI: 10.1016/j.theriogenology.2016.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/20/2016] [Accepted: 11/26/2016] [Indexed: 11/20/2022]
Abstract
Orexin A (OXA) is a hypothalamic neuropeptide known for its role in the regulation of food intake and arousal. It is also considered as a link between energy homeostasis and reproduction. Nevertheless, very little is known on the role of this peptide in the uterus. The objective of this study was to investigate OXA effect on oestradiol (E2), oestrone (E1), and testosterone (T) secretion by porcine endometrial and myometrial explants and gene expression of key steroidogenic enzymes involved in steroid production, namely cytochrome P450c17 (CYP17A1) and cytochrome P450 aromatase (CYP19A3), on days 10-11, 12 to 13, 15 to 16 and 27 to 28 of pregnancy and on days 10-11 of the cycle. In endometrium, OXA increased E1 secretion on days 10-11 and 15 to 27 of gestation, and T release on days 12-13. A decrease in E2, E1 and T secretion was noted on days 27-28, 12 to 13 and 10 to 11 of gestation, respectively. OXA enhanced CYP17A1 and CYP19A3 expression on days 15-28 of pregnancy, whereas decreased their expression on days 10-13. In the myometrium, OXA increased E1 secretion on days 10-16 of pregnancy, whereas inhibited the release of E2 and T on days 10-11. CYP17A1 and CYP19A3 genes expression was enhanced on days 27-28 and 12 to 13 of pregnancy, respectively. The expression of both genes was suppressed on days 10-11 and 15 to 16 of pregnancy (P < 0.05). Our findings suggest that OXA, via its influence on steroidogenesis, may play a regulatory role in the uterus.
Collapse
|
35
|
Ventura C, Nieto MRR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, Randi A, Cocca C, Núñez M. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol Biol 2016; 156:1-9. [PMID: 26518068 DOI: 10.1016/j.jsbmb.2015.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
Abstract
Endocrine disruptors (EDs) are compounds that interfere with hormone regulation and influence mammary carcinogenesis. We have previously demonstrated that the pesticide chlorpyrifos (CPF) acts as an ED in vitro, since it induces human breast cancer cells proliferation through estrogen receptor alpha (ERα) pathway. In this work, we studied the effects of CPF at environmental doses (0.01 and 1mg/kg/day) on mammary gland, steroid hormone receptors expression and serum steroid hormone levels. It was carried out using female Sprague-Dawley 40-days-old rats exposed to the pesticide during 100 days. We observed a proliferating ductal network with a higher number of ducts and alveolar structures. We also found an increased number of benign breast diseases, such as hyperplasia and adenosis. CPF enhanced progesterone receptor (PgR) along with the proliferating cell nuclear antigen (PCNA) in epithelial ductal cells. On the other hand, the pesticide reduced the expression of co-repressors of estrogen receptor activity REA and SMRT and it decreased serum estradiol (E2), progesterone (Pg) and luteinizing hormone (LH) levels. Finally, we found a persistent decrease in LH levels among ovariectomized rats exposed to CPF. Therefore, CPF alters the endocrine balance acting as an ED in vivo. These findings warn about the harmful effects that CPF exerts on mammary gland, suggesting that this compound may act as a risk factor for breast cancer.
Collapse
Affiliation(s)
- Clara Ventura
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Rosa Ramos Nieto
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Nadia Bourguignon
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), CONICET, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), CONICET, Argentina
| | - Horacio Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Gabriel Cao
- Instituto de Investigaciones Cardiológicas, CONICET, Argentina
| | - Andrea Randi
- Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Claudia Cocca
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Mariel Núñez
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
36
|
Levanti M, Germanà A, Abbate F. Orexin A expression in the ovary of dog and cat. Reprod Domest Anim 2015; 50:247-250. [PMID: 25601132 DOI: 10.1111/rda.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/04/2014] [Indexed: 01/22/2023]
Abstract
Orexin A and B, also known as hypocretin A and B, are hypothalamic neuropeptides arising from a precursor to the 130 amino acid, called pre-pro orexin. They are synthesized mainly in lateral and posterior hypothalamus and are involved in different functions such as regulation of food intake and energy balance. Orexins and orexin receptors were previously described also in different tissues and organs outside the brain. The aim of this study was to demonstrate by means of the immunofluorescence technique, the presence of orexin A in the ovary of cat and dog, to support the hypothesis of the role of this substance also at the level of the female genital system. The presence of orexin A in the ovary either in dog or in cat is in agreement with previous data on the presence and role of orexins in the female genital system of other species.
Collapse
Affiliation(s)
- M Levanti
- Unit of Anatomy, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - A Germanà
- Unit of Anatomy, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - F Abbate
- Unit of Anatomy, Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Expression of the orexin system in the porcine uterus, conceptus and trophoblast during early pregnancy. Animal 2015; 9:1820-31. [DOI: 10.1017/s1751731115001020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
39
|
Martynska L, Wolinska-Witort E, Chmielowska M, Kalisz M, Baranowska B, Bik W. Effect of orexin A on the release of GnRH-stimulated gonadotrophins from cultured pituitary cells of immature and mature female rats. Neuropeptides 2014; 48:199-205. [PMID: 24931296 DOI: 10.1016/j.npep.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/27/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
Abstract
Orexin A (OxA), also known as hypocretin 1, is a regulatory neuropeptide involved in the control of various autonomic and neuroendocrine functions. It appears to have a significant impact on the regulation of trophic hormones secretion by influencing the hypothalamus and the pituitary. Orexin A acts through two types of receptor found in the pituitary. This suggests the possibility of direct action of OxA at the adenohypophysis level. The aim of this study was to investigate the direct effect of OxA on GnRH (gonadotrophin-releasing hormone)-stimulated LH and FSH secretion from cultured pituitary cells of sexually immature and mature female rats. Anterior pituitary cells obtained from immature and mature female rats (ovariectomized, and ovariectomized and treated with estradiol) were incubated with 10(-10)M or 10(-7)M orexin A for 1 hour and 4h and the effect on GnRH-stimulated (10(-9)M or 10(-6)M) LH and FSH release was examined. The concentrations of secreted gonadotrophins in the culture media were determined by RIA methods. Orexin A significantly inhibited GnRH-stimulated FSH release from pituitary cells isolated from immature female rats, whereas in cells of mature ovariectomized animals, the effect of OxA was dependent on the stimulatory dose of GnRH. When the cells were stimulated with a low dose of GnRH, orexin A inhibited the secretion of gonadotrophins, but when a high dose of GnRH was used, orexin A increased mainly the release of LH. In cultured pituitary cells from ovariectomized, estrogenized mature rats, orexin A inhibited the secretion of LH if the cells were stimulated with a high dose of GnRH. In conclusion, the results of this study revealed that orexin A may modify the sensitivity of gonadotrophic cells to GnRH, and its effect depends on the maturity and estrogen status of the rats from which the cells are isolated.
Collapse
Affiliation(s)
- L Martynska
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - E Wolinska-Witort
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - M Chmielowska
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - M Kalisz
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - B Baranowska
- Department of Clinical Physiology, The Centre of Postgraduate Medical Education, Warsaw, Poland
| | - W Bik
- Department of Clinical Neuroendocrinology, The Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
40
|
Nitkiewicz A, Smolinska N, Maleszka A, Chojnowska K, Kaminski T. Expression of orexins and their precursor in the porcine ovary and the influence of orexins on ovarian steroidogenesis in pigs. Anim Reprod Sci 2014; 148:53-62. [PMID: 24916957 DOI: 10.1016/j.anireprosci.2014.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/16/2014] [Accepted: 03/23/2014] [Indexed: 11/30/2022]
Abstract
Orexins A and B are hypothalamic neuropeptides associated with homeostasis and the reproductive system. The aim of the study was to compare the expression of the prepro-orexin gene and the intensity of orexins immunoreactivity in the porcine ovary (corpora lutea, granulosa and theca interna cells) during four different stages of the oestrous cycle (days: 2-3, 10-12, 14-16 and 17-19) and to examine the in vitro effect of orexins on the secretion of steroid hormones by porcine luteal, granulosa and theca interna cells. The highest expression of prepro-orexin mRNA was observed in theca interna cells on days 17-19 of the oestrous cycle. The highest content of immunoreactive orexin A was noted in corpora lutea on days 10-12 and the highest level of immunoreactive orexin B on days 14-16 of the cycle. Immunoreactive orexin A concentrations were higher in theca interna cells than in granulosa cells, whereas similar levels of immunoreactive orexin B were observed in both cell types. Under in vitro conditions, at the concentration of 10 nM, orexins A and B inhibited FSH-induced oestradiol secretion by granulosa cells. The obtained results suggest that the pattern of orexin peptide expression in the porcine ovary is related to the animals' hormonal status. Our findings imply that orexins can affect porcine reproductive functions through modulation of ovarian steroidogenesis.
Collapse
Affiliation(s)
- Anna Nitkiewicz
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Anna Maleszka
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Katarzyna Chojnowska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
41
|
Arcamone N, D'Angelo L, de Girolamo P, Lucini C, Pelagalli A, Castaldo L. Orexin and orexin receptor like peptides in the gastroenteric tract of Gallus domesticus: An immunohistochemical survey on presence and distribution. Res Vet Sci 2014; 96:234-240. [PMID: 24636542 DOI: 10.1016/j.rvsc.2014.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 12/06/2013] [Accepted: 02/01/2014] [Indexed: 01/22/2023]
Abstract
This study reports the immunohistochemical localization and distribution of orexin A and B-like and their receptors-like peptides in the gastroenteric tract of chicken. The immunoreactivity is distributed in endocrine cells, nerve fibers and neurons, both in the stomach and intestine, and shows a discrete conformity with the data till now reported for Mammals. Our study suggests a possible participation of orexin-like peptides in the modulation of chicken gastroenteric activities and the preservation of their main distribution compared to Mammals. Western blot analysis has confirmed the presence of prepro-orexin and both receptors in the examined tissues. This survey represents the first evidence of the presence of orexin-like peptides in the gastroenteric tract of non mammalian species, and the results could help to better understand the alimentary control and body weight in domestic birds, which are of relevance to determine the productive factors in breeding animals. This study might also serve as a baseline for future experimental studies on the regulation of the gastroenteric functions in non mammalian Vertebrates.
Collapse
Affiliation(s)
- N Arcamone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy.
| | - L D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - P de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - C Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy; Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - L Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| |
Collapse
|
42
|
The effect of the estrous cycle on the expression of prepro-orexin gene and protein and the levels of orexin A and B in the porcine pituitary. Animal 2014; 8:300-7. [DOI: 10.1017/s1751731113002152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Orexin A and B in vitro modify orexins receptors expression and gonadotropins secretion of anterior pituitary cells of proestrous rats. ACTA ACUST UNITED AC 2013; 188:25-30. [PMID: 24333629 DOI: 10.1016/j.regpep.2013.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
Abstract
AIM Orexin A and orexin B (hypocretins) are neuropeptides synthesized mainly by neurons located in the lateral hypothalamus and projections throughout the brain. They are agonists at both the orexin 1 and orexin 2G protein-coupled receptors. They have been related to arousal, sleep and feeding, autonomic and neuroendocrine functions. Their role in the brain control of gonadotropins secretion was postulated in rodents and humans. Previously, we demonstrated the participation of the orexinergic system in attaining successful reproduction in in vivo studies. METHODS We studied in vitro the effects of both neuropeptides, in the presence or absence of selective antagonists, on the mRNA expression of orexin 1 and orexin 2 receptors in anterior pituitary cells of proestrous rats, as well as the direct effects on FSH and LH secretion. RESULTS Both orexin A and orexin B increased FSH and LH secretion; these effects were suppressed by the orexin 1 receptor blocking agent SB-334867 and the orexin 2 receptor antagonists JNJ-10397049. Orexin A and orexin B decreased OX1 receptor mRNA expression and this effect was modified only when both blocking agents were present. Neither orexin A nor the blocking drugs by themselves modified OX2 receptor mRNA expression. Orexin B treatment increased the mRNA expression of OX2 receptor. The effect was abolished only by the OX2 receptor antagonist. CONCLUSION In an in vitro model, we demonstrated a direct effect of orexins on gonadotropins release and orexins receptors expression, underlining the hypothesis that orexins participate in the brain control of pituitary functions.
Collapse
|
44
|
Xu TR, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell Signal 2013; 25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022]
|
45
|
Bastianini S, Berteotti C, Lo Martire V, Silvani A, Zoccoli G. A critical role of hypocretin deficiency in pregnancy. J Sleep Res 2013; 23:186-8. [DOI: 10.1111/jsr.12107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefano Bastianini
- PRISM Lab; Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; Università di Bologna; Bologna Italy
| | - Chiara Berteotti
- PRISM Lab; Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; Università di Bologna; Bologna Italy
| | - Viviana Lo Martire
- PRISM Lab; Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; Università di Bologna; Bologna Italy
| | - Alessandro Silvani
- PRISM Lab; Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; Università di Bologna; Bologna Italy
| | - Giovanna Zoccoli
- PRISM Lab; Department of Biomedical and Neuromotor Sciences; Alma Mater Studiorum; Università di Bologna; Bologna Italy
| |
Collapse
|
46
|
Álvarez-Crespo M, Martínez-Sánchez N, Ruíz-Pino F, Garcia-Lavandeira M, Alvarez CV, Tena-Sempere M, Nogueiras R, Diéguez C, López M. The orexigenic effect of orexin-A revisited: dependence of an intact growth hormone axis. Endocrinology 2013; 154:3589-98. [PMID: 23861376 DOI: 10.1210/en.2013-1251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fifteen years ago orexins were identified as central regulators of energy homeostasis. Since then, that concept has evolved considerably and orexins are currently considered, besides orexigenic neuropeptides, key modulators of sleep-wake cycle and neuroendocrine function. Little is known, however, about the effect of the neuroendocrine milieu on orexins' effects on energy balance. We therefore investigated whether hypothalamic-pituitary axes have a role in the central orexigenic action of orexin A (OX-A) by centrally injecting hypophysectomized, adrenalectomized, gonadectomized (male and female), hypothyroid, and GH-deficient dwarf rats with OX-A. Our data showed that the orexigenic effect of OX-A is fully maintained in adrenalectomized and gonadectomized (females and males) rats, slightly reduced in hypothyroid rats, and totally abolished in hypophysectomized and dwarf rats when compared with their respective vehicle-treated controls. Of note, loss of the OX-A effect on feeding was associated with a blunted OX-A-induced increase in the expression of either neuropeptide Y or its putative regulator, the transcription factor cAMP response-element binding protein, as well as its phosphorylated form, in the arcuate nucleus of the hypothalamus of hypophysectomized and dwarf rats. Overall, this evidence suggests that the orexigenic action of OX-A depends on an intact GH axis and that this neuroendocrine feedback loop may be of interest in the understanding of orexins action on energy balance and GH deficiency.
Collapse
Affiliation(s)
- Mayte Álvarez-Crespo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Başar MM, Han Ü, Çakan M, Alpcan S, Başar H. Orexin expression in different prostate histopathologic examinations: Can it be a marker for prostate cancer? A preliminary result. Turk J Urol 2013; 39:78-83. [PMID: 26328085 DOI: 10.5152/tud.2013.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 11/19/2012] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of the orexin receptor in different prostate pathologies, including prostate adenocarcinoma, benign prostate hyperplasia and chronic prostatitis. MATERIAL AND METHODS A total of 90 patients (mean age 64.01±7.2 years) were enrolled in the study. The patients were divided into three groups of equal numbers based on their histopathologic findings: prostate cancer (Group 1), benign prostate hyperplasia (Group 2) and chronic prostatitis (Group 3). All the tissues were incubated with a primary antibody recognizing the Orexin receptor. The specific cytoplasmic immunoreactivity of the Orexin receptor was semiquantitatively scored for intensity and distribution based on a grading scale. The staining intensity and orexin expression were evaluated using Pearson χ(2) test. RESULTS A heterogeneous staining pattern of the Orexin receptor was observed between the groups. The expression rates were 90% (27/30) in Group 1, 53.3% (16/30) in Group 2 and 26.7% (8/30) in Group 3. While 5 patients (9.3%) in Group 1 showed strong staining, all samples from the other 2 groups showed only weak staining. There were significant differences in staining intensity between the three groups. The expression and distribution of the Orexin receptor was more widespread in Group 1 than in the other groups and was higher in patients with poorly differentiated malignancy. However, there was no significant difference based on Gleason score. CONCLUSION Orexin receptors are found in human prostate tissues and their expression is widespread in prostate cancer and in patients with a higher Gleason score. Therefore, we believe that Orexin immunoreactivity can be considered to be an indicator of poor prognosis and of poorly differentiated prostate cancer cases.
Collapse
Affiliation(s)
- Murad Mehmet Başar
- Department of Urology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Ünsal Han
- Clinic of Pathology, Ankara Dışkapı Yıldırım Beyazıt Education and Training Hospital, Ankara, Turkey
| | - Murat Çakan
- Clinic of Urology, Ankara Dışkapı Yıldırım Beyazıt Education and Training Hospital, Ankara, Turkey
| | - Serhan Alpcan
- Department of Urology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Halil Başar
- Department of Urology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
48
|
Wang C, Moseley CK, Carlin SM, Wilson CM, Neelamegam R, Hooker JM. Radiosynthesis and evaluation of [11C]EMPA as a potential PET tracer for orexin 2 receptors. Bioorg Med Chem Lett 2013; 23:3389-92. [PMID: 23601709 DOI: 10.1016/j.bmcl.2013.03.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
EMPA is a selective antagonist of orexin 2 (OX2) receptors. Previous literature with [(3)H]-EMPA suggest that it may be used as an imaging agent for OX2 receptors; however, brain penetration is known to be modest. To evaluate the potential of EMPA as a PET radiotracer in non-human primate (as a step to imaging in man), we radiolabeled EMPA with carbon-11. Radiosynthesis of [(11)C]N-ethyl-2-(N-(6-methoxypyridin-3-yl)-2-methylphenylsulfonamido)-N-(pyridin-3-ylmethyl)acetamide ([(11)C]EMPA), and evaluation as a potential PET tracer for OX2 receptors is described. Synthesis of an appropriate non-radioactive O-desmethyl precursor was achieved from EMPA with sodium iodide and chlorotrimethylsilane. Selective O-methylation using [(11)C]CH3I in the presence of cesium carbonate in DMSO at room temp afforded [(11)C]EMPA in 1.5-2.5% yield (non-decay corrected relative to trapped [(11)C]CH3I at EOS) with ≥95% chemical and radiochemical purities. The total synthesis time was 34-36min from EOB. Studies in rodent suggested that uptake in tissue was dominated by nonspecific binding. However, [(11)C]EMPA also showed poor uptake in both rats and baboon as measured with PET imaging.
Collapse
Affiliation(s)
- Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Suite 2301, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
49
|
Dehan P, Canon C, Trooskens G, Rehli M, Munaut C, Van Criekinge W, Delvenne P. Expression of type 2 orexin receptor in human endometrium and its epigenetic silencing in endometrial cancer. J Clin Endocrinol Metab 2013; 98:1549-57. [PMID: 23482607 DOI: 10.1210/jc.2012-3263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Orexins A and B are neuropeptides that bind and activate 2 types of receptors. In addition to direct action in the brain, the orexinergic system has broader implications in peripheral organs, and it has been proposed to have a role in the induction of apoptosis. There are very few data on the endometrium. OBJECTIVE The expression and epigenetic regulation of type 2 orexin receptor (OX2R) was investigated in the human endometrium as well as in endometrial endometrioid carcinoma (EEC). METHODS OX2R localization was studied by immunohistochemistry in normal endometrium (n = 24) and in EEC (n = 32). The DNA methylation status of a CpG island located in the first exon of OX2R was analyzed by bisulfite sequencing in normal (n = 18), EEC (n = 34), and 3 endometrial cell lines. On the latter, mRNA expression and Western blotting as well as in vitro induction with orexin were performed. RESULTS Expression of the OX2R protein was detected in normal endometrial epithelia, whereas it was frequently lacking in EEC. This loss was associated with hypermethylation of OX2R in EEC in comparison with normal endometrium (median CpG methylation percentages of 48.85% and 5.85%, respectively). In cell lines, hypermethylation correlated with weak OX2R expression. Additionally, in vitro treatment of the 3 EEC cell lines with orexins A and B did not result in proliferation change CONCLUSIONS Altogether our data provide evidence for the epigenetic silencing of OX2R in EEC. The implication of the OX2R loss in tumoral progression remains to be elucidated.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Case-Control Studies
- Cell Line, Tumor
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Endometrium/metabolism
- Endometrium/pathology
- Epigenesis, Genetic/physiology
- Female
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Gene Silencing/physiology
- Humans
- Middle Aged
- Orexin Receptors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Validation Studies as Topic
Collapse
Affiliation(s)
- P Dehan
- Department of Experimental Pathology, University of Liège, Tour de Pathologie (B23 + 4), Boulevard de l'Hôpital 1, B 4000 Liege Belgium.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang W, Pan Y, Li Q, Wang L. Orexin: a potential role in the process of obstructive sleep apnea. Peptides 2013; 42:48-54. [PMID: 23313149 DOI: 10.1016/j.peptides.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a complicated disease with an unrecognized mechanism. Obesity, sex, age, and smoking have been found to be independent correlates of OSA. Orexin (also named hypocretin) mainly secreted by lateral hypothalamus neurons has a wide array of biological functions like regulating sleep, energy levels and breathing. Several clinical studies found ties between orexin and OSA. Because of the close correlation between orexin and obesity, sex, age and smoking (which are the key risk factors for OSA patients), we hypothesize that orexin may play a key role in the pathogenesis of OSA.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Stomatology, Nanjing Medical University, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|