1
|
Hu Y, He J, Ma Y, Ge L, Lou B, Fang X, Wang H, Xu Y. Arsenic and metabolic diseases: New insights from mesenchymal stem cells. Toxicol Appl Pharmacol 2025; 498:117299. [PMID: 40081540 DOI: 10.1016/j.taap.2025.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Arsenic is a common toxic metal contaminant in the environment. Humans are exposed to arsenic through drinking water, air, food, and medical treatment. Chronic exposure to arsenic is a well-documented risk factor of type 2 diabetes and a potential risk factor of osteoporosis and obesity. Mesenchymal stem cells (MSCs) are adult stem cells with multiple differentiation potential and immunomodulatory capacity. These cells have shown therapeutic potential in experimental studies of metabolic diseases by differentiating into parenchymal cells of damaged tissues, such as islet-like cells and osteoblasts, and resisting chronic inflammation. Meanwhile, when key functional genes were suppressed in MSCs, experimental animals showed metabolic disease-related changes, such as insulin resistance and obesity. Arsenic exposure inhibits the differentiation capacity of MSCs, leads to changes in the synthesis and secretion of immunomodulatory factors, and induces cellular senescence and apoptosis. Therefore, dysfunction and death of MSCs may be important pathogenesis of arsenic-related metabolic diseases. Future studies on the functional changes of MSCs in arsenic-related metabolic diseases and the role of MSCs in arsenic pathogenesis are worthwhile. In addition, the mechanism of arsenic-induced dysfunction in MSCs needs to be explored in depth.
Collapse
Affiliation(s)
- Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Jialin He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Yue Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Lili Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Bin Lou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Xin Fang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Li J, He J, Li Y, Sun D, Zhang W. Glutathion peroxidase 4 (GPX4) and Ribosomal Protein L40 (RPL40) participate in arsenic induced progression of renal cell carcinoma by regulating the NLRP3 mediated classic pyroptosis pathway. Int J Biol Macromol 2025; 310:143129. [PMID: 40239794 DOI: 10.1016/j.ijbiomac.2025.143129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Epidemiological studies have demonstrated that long-term exposure to high‑arsenic water increases the risk of kidney cancer. Kidney dysfunction can lead to the accumulation of metabolic waste and chronic inflammation, with the latter being a significant factor in tumor development. Therefore, it is crucial to investigate how environmental arsenic exposure affects renal function and inflammation, as well as its potential influence on the progression of renal carcinoma. Additionally, pyroptosis plays an essential role in immune responses and the maintenance of cellular homeostasis. However, the role and mechanisms of pyroptosis in arsenic-induced kidney cancer progression remain unexplored. Our findings indicated that low-dose arsenic exposure reduces pyroptosis and promotes abnormal proliferation of renal tubular epithelial cells, while high-dose exposure enhances pyroptosis and damages renal tissue structure in mouse models. Mechanistically, in vitro studies confirmed that low-dose arsenic exposure promotes the progression of renal cell carcinoma by downregulating NLRP3 and inhibiting pyroptosis, whereas high-dose exposure has the opposite effect. Proteomics analysis identified GPX4 and RPL40 as key proteins mediating pyroptosis induced by low and high doses of arsenic, respectively. Furthermore, GPX4 and RPL40 were shown to regulate the malignant progression of renal cell carcinoma through their effects on NLRP3-mediated pyroptosis. This study reveals that arsenic exposure induces pyroptosis via NLRP3, leading to renal injury and influencing the malignant progression of renal cancer. Notably, GPX4 and RPL40 regulate this progression under low and high-dose arsenic exposure, respectively.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Jing He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University), Harbin 150081, China; Joint Key Laboratory of Endemic Diseases (Harbin Medical University Guizhou Medical University Xi'an Jiaotong University), Harbin 150081, China.
| |
Collapse
|
3
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Rosendo GBO, Ferreira RLU, Aquino SLS, Barbosa F, Pedrosa LFC. Glycemic Changes Related to Arsenic Exposure: An Overview of Animal and Human Studies. Nutrients 2024; 16:665. [PMID: 38474793 DOI: 10.3390/nu16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Arsenic (As) is a risk factor associated with glycemic alterations. However, the mechanisms of action and metabolic aspects associated with changes in glycemic profiles have not yet been completely elucidated. Therefore, in this review, we aimed to investigate the metabolic aspects of As and its mechanism of action associated with glycemic changes. METHODS We searched the PubMed (MEDLINE) and Google Scholar databases for relevant articles published in English. A combination of free text and medical subject heading keywords and search terms was used to construct search equations. The search yielded 466 articles; however, only 50 were included in the review. RESULTS We observed that the relationship between As exposure and glycemic alterations in humans may be associated with sex, smoking status, body mass index, age, occupation, and genetic factors. The main mechanisms of action associated with changes induced by exposure to As in the glycemic profile identified in animals are increased oxidative stress, reduced expression of glucose transporter type 4, induction of inflammatory factor expression and dysfunction of pancreatic β cells. CONCLUSIONS Therefore, As exposure may be associated with glycemic alterations according to inter-individual differences.
Collapse
Affiliation(s)
| | | | - Séphora Louyse Silva Aquino
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
5
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
6
|
Martins AC, Ferrer B, Tinkov AA, Caito S, Deza-Ponzio R, Skalny AV, Bowman AB, Aschner M. Association between Heavy Metals, Metalloids and Metabolic Syndrome: New Insights and Approaches. TOXICS 2023; 11:670. [PMID: 37624175 PMCID: PMC10459190 DOI: 10.3390/toxics11080670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Samuel Caito
- School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Romina Deza-Ponzio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| |
Collapse
|
7
|
Calderón-DuPont D, Romero-Córdoba S, Tello JK, Espinosa A, Guerrero B, Contreras AV, Morán-Ramos S, Díaz-Villaseñor A. Impaired white adipose tissue fatty acid metabolism in mice fed a high-fat diet worsened by arsenic exposure, primarily affecting retroperitoneal adipose tissue. Toxicol Appl Pharmacol 2023; 468:116428. [PMID: 36801214 DOI: 10.1016/j.taap.2023.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Fatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied. FA metabolism was evaluated in visceral (epididymal and retroperitoneal) and subcutaneous WAT of C57BL/6 male mice fed control or HFD (12 and 40% kcal fat, respectively) for 16 weeks together with an environmentally relevant chronic arsenic exposure through drinking water (100 μg/l) during the second half of the study. In mice fed HFD, arsenic potentiated the increase of serum markers of selective insulin resistance in WAT and fatty acid re-esterification and the decrease in the lipolysis index. Retroperitoneal was the WAT most affected, where the combination of arsenic and HFD in contrast to HFD, generated higher weight, larger adipocytes, increased triglyceride content, and decreased fasting stimulated lipolysis evidenced by lower phosphorylation of HSL and perilipin. At the transcriptional level, arsenic in mice fed either diet downregulated genes involved in fatty acid uptake (LPL, CD36), oxidation (PPARα, CPT1), lipolysis (ADRß3) and glycerol transport (AQP7 and AQP9). Additionally, arsenic potentiated hyperinsulinemia induced by HFD, despite a slight increase in weight gain and food efficiency. Thus, the second hit of arsenic in sensitized mice by HFD worsens fatty acid metabolism impairment in WAT, mainly retroperitoneal, along with an exacerbated insulin resistance phenotype.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Jessica K Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Maestría en Nutrición Clínica, Universidad Anáhuac Campus Norte, Estado de México 52786, Mexico
| | - Aranza Espinosa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Brenda Guerrero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Alejandra V Contreras
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Translational Molecular Biomarkers, Merck & Co., Inc, Rahway, NJ, USA
| | - Sofia Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico.
| |
Collapse
|
8
|
Lou XY, Boada R, Verdugo V, Simonelli L, Pérez G, Valiente M. Decoupling the adsorption mechanisms of arsenate at molecular level on modified cube-shaped sponge loaded superparamagnetic iron oxide nanoparticles. J Environ Sci (China) 2022; 121:1-12. [PMID: 35654501 DOI: 10.1016/j.jes.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/15/2023]
Abstract
In this study, a commercial cube-shaped open-celled cellulose sponge adsorbent was modified by in-situ co-precipitation of superparamagnetic iron oxide nanoparticles (SPION) and used to remove As(V) from aqueous solutions. Fe K-edge X-ray absorption spectroscopy (XAS) and TEM identified maghemite as the main iron phase of the SPION nanoparticles with an average size 13 nm. Batch adsorption experiments at 800 mg/L showed a 63% increase of adsorption capacity when loading 2.6 wt.% mass fraction of SPION in the cube-sponge. Experimental determination of the adsorption thermodynamic parameters indicated that the As(V) adsorption on the composite material is a spontaneous and exothermic process. As K-edge XAS results confirmed that the adsorption enhancement on the composite can be attributed to the nanoparticles loaded. In addition, adsorbed As(V) did not get reduced to more toxic As(III) and formed a binuclear corner-sharing complex with SPION. The advantageous cube-shape of the sponge-loaded SPION composite together with its high affinity and good adsorption capacity for As(V), good regeneration capability and the enhanced-diffusion attributed to its open-celled structure make this adsorbent a good candidate for industrial applications.
Collapse
Affiliation(s)
- Xiang-Yang Lou
- GTS-UAB Research Group, Department of Chemistry, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Boada
- GTS-UAB Research Group, Department of Chemistry, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Verónica Verdugo
- GTS-UAB Research Group, Department of Chemistry, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura Simonelli
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Gustavo Pérez
- GTS-UAB Research Group, Department of Chemistry, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centro de Excelencia en Nanotecnologia, Leitat Chile, Santiago 7500724, Chile
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
He Z, Xu Y, Ma Q, Zhou C, Yang L, Lin M, Deng P, Yang Z, Gong M, Zhang H, Lu M, Li Y, Gao P, Lu Y, He M, Zhang L, Pi H, Zhang K, Qin S, Yu Z, Zhou Z, Chen C. SOX2 modulated astrocytic process plasticity is involved in arsenic-induced metabolic disorders. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128942. [PMID: 35468398 DOI: 10.1016/j.jhazmat.2022.128942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Metabolic disorders induced by arsenic exposure have attracted great public concern. However, it remains unclear whether hypothalamus-based central regulation mechanisms are involved in this process. Here, we exposed mice to 100 μg/L arsenic in drinking water and established a chronic arsenic exposure model. Our study revealed that chronic arsenic exposure caused metabolic disorders in mice including impaired glucose metabolism and decreased energy expenditure. Arsenic exposure also impaired glucose sensing and the activation of proopiomelanocortin (POMC) neurons in the hypothalamus. In particular, arsenic exposure damaged the plasticity of hypothalamic astrocytic process. Further research revealed that arsenic exposure inhibited the expression of sex-determining region Y-Box 2 (SOX2), which decreased the expression level of insulin receptors (INSRs) and the phosphorylation of AKT. The conditional deletion of astrocytic SOX2 exacerbated arsenic-induced effects on metabolic disorders, the impairment of hypothalamic astrocytic processes, and the inhibition of INSR/AKT signaling. Furthermore, the arsenic-induced impairment of astrocytic processes and inhibitory effects on INSR/AKT signaling were reversed by SOX2 overexpression in primary hypothalamic astrocytes. Together, we demonstrated here that chronic arsenic exposure caused metabolic disorders by impairing SOX2-modulated hypothalamic astrocytic process plasticity in mice. Our study provides evidence of novel central regulatory mechanisms underlying arsenic-induced metabolic disorders and emphasizes the crucial role of SOX2 in regulating the process plasticity of adult astrocytes.
Collapse
Affiliation(s)
- Zhixin He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yudong Xu
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Chao Zhou
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China; Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse 857099, China
| | - Lingling Yang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Min Lin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Huijie Zhang
- School of Medicine, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Muxue Lu
- School of Medicine, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yanqi Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
10
|
Wang B, Tsakiridis EE, Zhang S, Llanos A, Desjardins EM, Yabut JM, Green AE, Day EA, Smith BK, Lally JSV, Wu J, Raphenya AR, Srinivasan KA, McArthur AG, Kajimura S, Patel JS, Wade MG, Morrison KM, Holloway AC, Steinberg GR. The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nat Commun 2021; 12:5163. [PMID: 34453052 PMCID: PMC8397754 DOI: 10.1038/s41467-021-25384-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.
Collapse
Affiliation(s)
- Bo Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shuman Zhang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrea Llanos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julian M Yabut
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander E Green
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Brennan K Smith
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James S V Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amogelang R Raphenya
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Krishna A Srinivasan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G McArthur
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Tinkov AA, Aschner M, Ke T, Ferrer B, Zhou JC, Chang JS, Santamaría A, Chao JCJ, Aaseth J, Skalny AV. Adipotropic effects of heavy metals and their potential role in obesity. Fac Rev 2021; 10:32. [PMID: 33977285 PMCID: PMC8103910 DOI: 10.12703/r/10-32] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies demonstrated an association between heavy metal exposure and the incidence of obesity and metabolic syndrome. However, the particular effects of metal toxicity on adipose tissue functioning are unclear. Therefore, recent findings of direct influence of heavy metals (mercury, cadmium, and lead) and metalloid (arsenic) on adipose tissue physiology are discussed while considering existing gaps and contradictions. Here, we provide a literature review addressing adipose tissue as a potential target of heavy metal toxicity. Experimental in vivo studies demonstrated a significant influence of mercury, cadmium, lead, and arsenic exposure on body adiposity. In turn, in vitro experiments revealed both up- and downregulation of adipogenesis associated with aberrant expression of key adipogenic pathways, namely CCAAT/enhancer-binding protein (C/EBP) and peroxisome proliferator-activated receptor gamma (PPARγ). Comparison of the existing studies on the basis of dose and route of exposure demonstrated that the effects of heavy metal exposure on adipose tissue may be dose-dependent, varying from increased adipogenesis at low-dose exposure to inhibition of adipose tissue differentiation at higher doses. However, direct dose-response data are available in a single study only for arsenic. Nonetheless, both types of these effects, irrespective of their directionality, contribute significantly to metabolic disturbances due to dysregulated adipogenesis. Particularly, inhibition of adipocyte differentiation is known to reduce lipid-storage capacity of adipose tissue, leading to ectopic lipid accumulation. In contrast, metal-associated stimulation of adipogenesis may result in increased adipose tissue accumulation and obesity. However, further studies are required to reveal the particular dose- and species-dependent effects of heavy metal exposure on adipogenesis and adipose tissue functioning.
Collapse
Affiliation(s)
- Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Jane C.-J. Chao
- Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
12
|
Mohajer N, Du CY, Checkcinco C, Blumberg B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front Endocrinol (Lausanne) 2021; 12:780888. [PMID: 34899613 PMCID: PMC8655100 DOI: 10.3389/fendo.2021.780888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Adult and childhood obesity have reached pandemic level proportions. The idea that caloric excess and insufficient levels of physical activity leads to obesity is a commonly accepted answer for unwanted weight gain. This paradigm offers an inconclusive explanation as the world continually moves towards an unhealthier and heavier existence irrespective of energy balance. Endocrine disrupting chemicals (EDCs) are chemicals that resemble natural hormones and disrupt endocrine function by interfering with the body's endogenous hormones. A subset of EDCs called obesogens have been found to cause metabolic disruptions such as increased fat storage, in vivo. Obesogens act on the metabolic system through multiple avenues and have been found to affect the homeostasis of a variety of systems such as the gut microbiome and adipose tissue functioning. Obesogenic compounds have been shown to cause metabolic disturbances later in life that can even pass into multiple future generations, post exposure. The rising rates of obesity and related metabolic disease are demanding increasing attention on chemical screening efforts and worldwide preventative strategies to keep the public and future generations safe. This review addresses the most current findings on known obesogens and their effects on the metabolic system, the mechanisms of action through which they act upon, and the screening efforts through which they were identified with. The interplay between obesogens, brown adipose tissue, and the gut microbiome are major topics that will be covered.
Collapse
Affiliation(s)
- Nicole Mohajer
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Chrislyn Y. Du
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Christian Checkcinco
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Bruce Blumberg
- Deparment of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Deparment of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Deparment of Biomedical Engineering, University of California, Irvine, CA, United States
- *Correspondence: Bruce Blumberg,
| |
Collapse
|
13
|
Pellizzon MA, Ricci MR. Choice of Laboratory Rodent Diet May Confound Data Interpretation and Reproducibility. Curr Dev Nutr 2020; 4:nzaa031. [PMID: 32258990 PMCID: PMC7103427 DOI: 10.1093/cdn/nzaa031] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
The reproducibility of experimental data is challenged by many factors in both clinical and preclinical research. In preclinical studies, several factors may be responsible, and diet is one variable that is commonly overlooked, especially by those not trained in nutrition. In particular, grain-based diets contain complex ingredients, each of which can provide multiple nutrients, non-nutrients, and contaminants, which may vary from batch to batch. Thus, even when choosing the same grain-based diet used in the past by others, its composition will likely differ. In contrast, purified diets contain refined ingredients that offer the ability to control the composition much more closely and maintain consistency from one batch to the next, while minimizing the presence of non-nutrients and contaminants. In this article, we provide several different examples or scenarios showing how the diet choice can alter data interpretation, potentially affecting reproducibility and knowledge gained within any given field of study.
Collapse
|