1
|
Wen S, Zhang H, Huang X, Wang C, Dong M, Wang C, Xu C, Yuan Y, Li Y, Zhou L, Yuan X. The Therapeutic Effect and Mechanism of Traditional Chinese Medicine in Type 2 Diabetes Mellitus and Its Complications. Diabetes Metab Syndr Obes 2025; 18:1599-1627. [PMID: 40391051 PMCID: PMC12087792 DOI: 10.2147/dmso.s517874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Traditional Chinese Medicine (TCM) has recently emerged as a beacon for the treatment of diabetes and its complications. Many TCMs that are commonly used, have the potentially demonstrated significant anti-diabetic effects. The mechanisms of these effects have been extensively discussed using modern techniques, such as genomics, mass spectrometry, and network pharmacology. Studies have demonstrated that TCM can influence glucose metabolism and pancreatic function via a diverse array of mechanisms including PI3K/AKT and AMPK pathways. TCM not only exhibits potential in the treatment of diabetes but also reduces the risk of diabetic complications. It is effective in the treatment of diabetic nephropathy (DN), diabetic retinopathy (DR), diabetic neuropathy (DPN), diabetic cardiomyopathy, and peripheral angiopathy. Research has demonstrated that prescriptions, Chinese herbal medicines, and their extracts play a role in a variety of molecular mechanisms such as antioxidation, apoptosis regulation, hypoxia improvement, autophagy, and promotion of glucose and lipid metabolism. The antioxidant properties of TCM have received considerable attention. Recent studies have demonstrated that they are capable of effectively eliminating free radicals from the body and reducing damage to cells caused by oxidative stress. Consequently, they are crucial in the treatment of diabetes and its associated complications. This review summarizes the ever-expanding scope of TCM applicability in the field of diabetes, providing crucial support and innovative ideas for modern healthcare. TCMs could help seek more effective pharmacological targets in basic study and as well serve as the complement to the strategy of diabetic prevention and treatment benefiting the patients. More and more large series of RCT and clinical investigations will eventually examine the efficacy of specific TCM formulas on the therapeutic effect of DM and its complication where currently treatments could not be satisfied.
Collapse
Affiliation(s)
- Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Fudan Zhangjiang Institute, Fudan University, Shanghai, 201203, People’s Republic of China
| | - Haina Zhang
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xing Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Congcong Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chenglin Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Nikpayam O, Jafari A, Faghfouri A, Pasand M, Noura P, Najafi M, Sohrab G. Effect of Menaquinone-7 (MK-7) Supplementation on Anthropometric Measurements, Glycemic Indices, and Lipid Profiles: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Prostaglandins Other Lipid Mediat 2025; 177:106970. [PMID: 40054729 DOI: 10.1016/j.prostaglandins.2025.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Menaquinone-7 (MK-7) is a type of vitamin K that has a longer half-life and stays in the body for a more extended period compared to other types of vitamin K. Recently, the effects of this vitamin on body weight, glycemic control, and lipid profiles have garnered much attention. AIM OF THE REVIEW This systematic review and meta-analysis were performed to evaluate the effects of MK-7 on anthropometric measurements, glycemic indices, and lipid profiles. METHODS A systematic search via appropriate keywords was conducted in electronic databases including PubMed, Scopus, Web of Science, and Google Scholar up to October 2023 to obtain relevant original articles. The quality of studies was evaluated using the Cochrane Collaboration tool. Six original articles met our criteria and were included in the analysis. RESULTS Statistical analysis showed that MK-7 had a desirable effect on inulin (SMD= -0.56; 95 % CI: -0.77, -0.36; P = 0.000, I2 = 84 %, P = 0.000), HbA1c (SMD=-0.32; 95 % CI: -0.55, -0.09; P = 0.007, I2 = 86.8 %, P = 0.000), and homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (SMD= -0.56; 95 % CI: -0.76, -0.35; P = 0.000, I2 = 84.3 %, P = 0.000). Additionally, subgroup analysis revealed negligible effects of MK-7 on total cholesterol (TC), insulin, HbA1c, and HOMA-IR in both genders of patients who received ≤ 90 mg MK-7 for less than 12 weeks. However, MK-7 didn't have any meaningful effect on other factors. CONCLUSION Based on the findings of the present systematic review and meta-analysis, MK-7 may have beneficial effects on glycemic control and TC, although further highly qualified original research is needed for a consistent conclusion.
Collapse
Affiliation(s)
- Omid Nikpayam
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Ali Jafari
- Student Research Committee, Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammadjavad Pasand
- Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Noura
- Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Najafi
- Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Determe W, Hauge SC, Demeuse J, Massonnet P, Grifnée E, Huyghebaert L, Dubrowski T, Schoumacher M, Peeters S, Le Goff C, Evenepoel P, Hansen D, Cavalier E. Osteocalcin: A bone protein with multiple endocrine functions. Clin Chim Acta 2025; 567:120067. [PMID: 39631494 DOI: 10.1016/j.cca.2024.120067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Bones are now recognised as endocrine organs with diverse functions. Osteocalcin, a protein primarily produced by osteoblasts, has garnered significant attention. Research into osteocalcin has revealed its impact on glucose metabolism and its unexpected endocrine role, particularly in its undercarboxylated form (ucOC). This form influences organs, affecting insulin sensitivity and even showing correlations with conditions like type 2 diabetes and cardiovascular diseases. However, analytical challenges are impeding advances in clinical research. Various immunoassays like RIA, EIA, ECLIA, IRMA, and ELISA have been developed to analyse osteocalcin. Recent innovations include techniques like OS-ELISA and OS phage Immuno-PCR, enabling fragment analysis. Advancements also encompass porous silicon for detection and ECLIA for rapid measurements. The limitations of immunoassays lead to ucOC measurement discrepancies, prompting the development of mass spectrometry-based techniques. Mass spectrometry increasingly quantifies carboxylated, undercarboxylated, and fragmented forms of osteocalcin. Mass spectrometry improves routine and clinical analysis accuracy. With heightened specificity, it identifies carboxylation status and serum fragmentations, boosting measurement reliability as a reference method. This approach augments analytical precision, advancing disease understanding, enabling personalised medicine, and ultimately benefiting clinical outcomes. In this review, the different techniques for the analysis of osteocalcin will be explored and compared, and their clinical implications will be discussed.
Collapse
Affiliation(s)
- William Determe
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium.
| | - Sabina Chaudhary Hauge
- Department of Nephrology, Copenhagen University Hospital-Herlev, Copenhagen, Denmark; Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Justine Demeuse
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Philippe Massonnet
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Elodie Grifnée
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Loreen Huyghebaert
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Thomas Dubrowski
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Matthieu Schoumacher
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Stéphanie Peeters
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ditte Hansen
- Department of Nephrology, Copenhagen University Hospital-Herlev, Copenhagen, Denmark; Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| |
Collapse
|
4
|
Kaźmierczak-Barańska J, Karwowski BT. The Protective Role of Vitamin K in Aging and Age-Related Diseases. Nutrients 2024; 16:4341. [PMID: 39770962 PMCID: PMC11676630 DOI: 10.3390/nu16244341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Aging is an inevitable aspect of life, but age-related diseases are not an inseparable part of the aging process, and their risk can be reduced through a healthy lifestyle. Vitamin K has a broader impact than just blood clotting, and yet it remains overshadowed by other vitamins and underestimated by both doctors and consumers. Vitamin K (VK) is a multifunctional micronutrient with anti-inflammatory and antioxidant properties, whose deficiency may cause age-related diseases such as cardiovascular diseases, neurodegenerative diseases and osteoporosis. There is a growing body of evidence supporting the role of vitamin K as a protective nutrient in aging and inflammation. This review summarizes the current knowledge regarding the molecular aspects of the protective role of vitamin K in aging and age-related diseases and its clinical implications.
Collapse
Affiliation(s)
- Julia Kaźmierczak-Barańska
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | | |
Collapse
|
5
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
6
|
Berggren SS, Dahlgren J, Andersson O, Bergman S, Roswall J. Reference limits for osteocalcin in infancy and early childhood: A longitudinal birth cohort study. Clin Endocrinol (Oxf) 2024; 100:399-407. [PMID: 38385947 DOI: 10.1111/cen.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE The longitudinal variations in serum levels of the hormone osteocalcin is largely unknown during infancy and early childhood. Our aim was to establish reference limits for total serum osteocalcin during specific time points from birth until 5 years of age and present those in the context of sex, breastfeeding practices and gestational age (GA). DESIGN Blood samples from 551 Swedish children were analysed at birth, 4, 12, 36 and 60 months of age. Total serum osteocalcin was measured using the IDS-iSYS N-MID Osteocalcin assay technique. Information about the mother, birth, anthropometrics and a food diary were collected. RESULTS Sex-specific and age-specific reference limits were established for the five time points. The median osteocalcin levels over time were 40.8, 90.0, 67.8, 62.2 and 80.9 μg/L for boys and 38.1, 95.5, 78.3, 73.9 and 92.6 μg/L for girls. Lower GA was associated to higher osteocalcin at birth, and ongoing breastfeeding was associated to higher osteocalcin levels. CONCLUSION Osteocalcin followed a wavelike pattern with low levels in the umbilical cord and a postnatal peak during the first year which then declined and rose again by the age of five. Knowledge of this wavelike pattern and association to factors as sex, breastfeeding and GA may help clinicians to interpret individual osteocalcin levels and guide in future research.
Collapse
Affiliation(s)
- Sara S Berggren
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Health Center Hyltebruk, Hyltebruk, Halland, Sweden
| | - Jovanna Dahlgren
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Västra Götalandregion, Queen Silvia Children's Hospital, Lund, Sweden
| | - Ola Andersson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Stefan Bergman
- Department of Public Health and Community Medicine, Primary Health Care Unit, University of Gothenburg, Gothenburg, Sweden
- Spenshult Research and Development Centre, Halmstad, Sweden
| | - Josefine Roswall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Halland Hospital Halmstad, Halmstad, Sweden
| |
Collapse
|
7
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
8
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
9
|
Lacombe J, Guo K, Bonneau J, Faubert D, Gioanni F, Vivoli A, Muir SM, Hezzaz S, Poitout V, Ferron M. Vitamin K-dependent carboxylation regulates Ca 2+ flux and adaptation to metabolic stress in β cells. Cell Rep 2023; 42:112500. [PMID: 37171959 DOI: 10.1016/j.celrep.2023.112500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 02/24/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023] Open
Abstract
Vitamin K is a micronutrient necessary for γ-carboxylation of glutamic acids. This post-translational modification occurs in the endoplasmic reticulum (ER) and affects secreted proteins. Recent clinical studies implicate vitamin K in the pathophysiology of diabetes, but the underlying molecular mechanism remains unknown. Here, we show that mouse β cells lacking γ-carboxylation fail to adapt their insulin secretion in the context of age-related insulin resistance or diet-induced β cell stress. In human islets, γ-carboxylase expression positively correlates with improved insulin secretion in response to glucose. We identify endoplasmic reticulum Gla protein (ERGP) as a γ-carboxylated ER-resident Ca2+-binding protein expressed in β cells. Mechanistically, γ-carboxylation of ERGP protects cells against Ca2+ overfilling by diminishing STIM1 and Orai1 interaction and restraining store-operated Ca2+ entry. These results reveal a critical role of vitamin K-dependent carboxylation in regulation of Ca2+ flux in β cells and in their capacity to adapt to metabolic stress.
Collapse
Affiliation(s)
- Julie Lacombe
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Kevin Guo
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Jessica Bonneau
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Florian Gioanni
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Alexis Vivoli
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Sarah M Muir
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Soraya Hezzaz
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
10
|
Babey ME, Ewing SK, Strotmeyer ES, Napoli N, Schafer AL, Vittinghoff E, Gundberg CM, Schwartz AV. No Evidence of Association Between Undercarboxylated Osteocalcin and Incident Type 2 Diabetes. J Bone Miner Res 2022; 37:876-884. [PMID: 35118705 PMCID: PMC10441038 DOI: 10.1002/jbmr.4519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
Mouse models suggest that undercarboxylated osteocalcin (ucOC), produced by the skeleton, protects against type 2 diabetes development, whereas human studies have been inconclusive. We aimed to determine if ucOC or total OC is associated with incident type 2 diabetes or changes in fasting glucose, insulin resistance (HOMA-IR), or beta-cell function (HOMA-Beta). A subcohort (n = 338; 50% women; 36% black) was identified from participants without diabetes at baseline in the Health, Aging, and Body Composition Study. Cases of incident type 2 diabetes (n = 137) were defined as self-report at an annual follow-up visit, use of diabetes medication, or elevated fasting glucose during 8 years of follow-up. ucOC and total OC were measured in baseline serum. Using a case-cohort design, the association between biomarkers and incident type 2 diabetes was assessed using robust weighted Cox regression. In the subcohort, linear regression models analyzed the associations between biomarkers and changes in fasting glucose, HOMA-IR, and HOMA-Beta over 9 years. Higher levels of ucOC were not statistically associated with increased risk of incident type 2 diabetes (adjusted hazard ratio = 1.06 [95% confidence interval, 0.84-1.34] per 1 standard deviation [SD] increase in ucOC). Results for %ucOC and total OC were similar. Adjusted associations of ucOC, %ucOC, and total OC with changes in fasting glucose, HOMA-IR, and HOMA-Beta were modest and not statistically significant. We did not find evidence of an association of baseline undercarboxylated or total osteocalcin with risk of incident type 2 diabetes or with changes in glucose metabolism in older adults. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Muriel E. Babey
- University of California San Francisco, Division of Endocrinology and Metabolism, San Francisco, CA, USA
| | - Susan K. Ewing
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Elsa S. Strotmeyer
- Department of Epidemiology, University of Pittsburgh, Center for Aging and Population Health, Pittsburgh, PA, USA
| | - Nicola Napoli
- Universita Campus Bio-Medico di Roma, Division of Endocrinology and Diabetes, Rome, Italy
| | - Anne L. Schafer
- University of California San Francisco, Division of Endocrinology and Metabolism, San Francisco, CA, USA
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
- San Francisco VA Medical Center, Endocrine Research Unit, Medical Service, San Francisco, CA, USA
| | - Eric Vittinghoff
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Caren M. Gundberg
- Yale University School of Medicine, Department of Orthopedics, New Haven, CT, USA
| | - Ann V. Schwartz
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| |
Collapse
|
11
|
Bidwell J, Tersey SA, Adaway M, Bone RN, Creecy A, Klunk A, Atkinson EG, Wek RC, Robling AG, Wallace JM, Evans-Molina C. Nmp4, a Regulator of Induced Osteoanabolism, Also Influences Insulin Secretion and Sensitivity. Calcif Tissue Int 2022; 110:244-259. [PMID: 34417862 PMCID: PMC8792173 DOI: 10.1007/s00223-021-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
A bidirectional and complex relationship exists between bone and glycemia. Persons with type 2 diabetes (T2D) are at risk for bone loss and fracture, however, heightened osteoanabolism may ameliorate T2D-induced deficits in glycemia as bone-forming osteoblasts contribute to energy metabolism via increased glucose uptake and cellular glycolysis. Mice globally lacking nuclear matrix protein 4 (Nmp4), a transcription factor expressed in all tissues and conserved between humans and rodents, are healthy and exhibit enhanced bone formation in response to anabolic osteoporosis therapies. To test whether loss of Nmp4 similarly impacted bone deficits caused by diet-induced obesity, male wild-type and Nmp4-/- mice (8 weeks) were fed either low-fat diet or high-fat diet (HFD) for 12 weeks. Endpoint parameters included bone architecture, structural and estimated tissue-level mechanical properties, body weight/composition, glucose-stimulated insulin secretion, glucose tolerance, insulin tolerance, and metabolic cage analysis. HFD diminished bone architecture and ultimate force and stiffness equally in both genotypes. Unexpectedly, the Nmp4-/- mice exhibited deficits in pancreatic β-cell function and were modestly glucose intolerant under normal diet conditions. Despite the β-cell deficits, the Nmp4-/- mice were less sensitive to HFD-induced weight gain, increases in % fat mass, and decreases in glucose tolerance and insulin sensitivity. We conclude that Nmp4 supports pancreatic β-cell function but suppresses peripheral glucose utilization, perhaps contributing to its suppression of induced skeletal anabolism. Selective disruption of Nmp4 in peripheral tissues may provide a strategy for improving both induced osteoanabolism and energy metabolism in comorbid patients.
Collapse
Affiliation(s)
- Joseph Bidwell
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA.
| | - Sarah A Tersey
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, 46202, USA
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN, 46202, USA
| | - Angela Klunk
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Emily G Atkinson
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, IUSM, Indianapolis, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology, & Physiology (ACBP), Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA
| | - Joseph M Wallace
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN, 46202, USA.
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA.
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, USA.
| |
Collapse
|
12
|
The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022; 14:nu14030523. [PMID: 35276879 PMCID: PMC8839902 DOI: 10.3390/nu14030523] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is considered an age-related disorder of the skeletal system, characterized primarily by decreased bone mineral density (BMD), microstructural quality and an elevated risk of fragility fractures. This silent disease is increasingly becoming a global epidemic due to an aging population and longer life expectancy. It is known that nutrition and physical activity play an important role in skeletal health, both in achieving the highest BMD and in maintaining bone health. In this review, the role of macronutrients (proteins, lipids, carbohydrates), micronutrients (minerals—calcium, phosphorus, magnesium, as well as vitamins—D, C, K) and flavonoid polyphenols (quercetin, rutin, luteolin, kaempferol, naringin) which appear to be essential for the prevention and treatment of osteoporosis, are characterized. Moreover, the importance of various naturally available nutrients, whether in the diet or in food supplements, is emphasized. In addition to pharmacotherapy, the basis of osteoporosis prevention is a healthy diet rich mainly in fruits, vegetables, seafood and fish oil supplements, specific dairy products, containing a sufficient amount of all aforementioned nutritional substances along with regular physical activity. The effect of diet alone in this context may depend on an individual’s genotype, gene-diet interactions or the composition and function of the gut microbiota.
Collapse
|
13
|
Leanza G, Fontana F, Lee SY, Remedi MS, Schott C, Ferron M, Hamilton-Hall M, Alippe Y, Strollo R, Napoli N, Civitelli R. Gain-of-Function Lrp5 Mutation Improves Bone Mass and Strength and Delays Hyperglycemia in a Mouse Model of Insulin-Deficient Diabetes. J Bone Miner Res 2021; 36:1403-1415. [PMID: 33831261 PMCID: PMC8360087 DOI: 10.1002/jbmr.4303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 01/26/2023]
Abstract
High fracture rate and high circulating levels of the Wnt inhibitor, sclerostin, have been reported in diabetic patients. We studied the effects of Wnt signaling activation on bone health in a mouse model of insulin-deficient diabetes. We introduced the sclerostin-resistant Lrp5A214V mutation, associated with high bone mass, in mice carrying the Ins2Akita mutation (Akita), which results in loss of beta cells, insulin deficiency, and diabetes in males. Akita mice accrue less trabecular bone mass with age relative to wild type (WT). Double heterozygous Lrp5A214V /Akita mutants have high trabecular bone mass and cortical thickness relative to WT animals, as do Lrp5A214V single mutants. Likewise, the Lrp5A214V mutation prevents deterioration of biomechanical properties occurring in Akita mice. Notably, Lrp5A214V /Akita mice develop fasting hyperglycemia and glucose intolerance with a delay relative to Akita mice (7 to 8 vs. 5 to 6 weeks, respectively), despite lack of insulin production in both groups by 6 weeks of age. Although insulin sensitivity is partially preserved in double heterozygous Lrp5A214V /Akita relative to Akita mutants up to 30 weeks of age, insulin-dependent phosphorylated protein kinase B (pAKT) activation in vitro is not altered by the Lrp5A214V mutation. Although white adipose tissue depots are equally reduced in both compound and Akita mice, the Lrp5A214V mutation prevents brown adipose tissue whitening that occurs in Akita mice. Thus, hyperactivation of Lrp5-dependent signaling fully protects bone mass and strength in prolonged hyperglycemia and improves peripheral glucose metabolism in an insulin independent manner. Wnt signaling activation represents an ideal therapeutic approach for diabetic patients at high risk of fracture. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Giulia Leanza
- Division of Bone and Mineral Diseases, Department of Medicine, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesca Fontana
- Division of Bone and Mineral Diseases, Department of Medicine, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Seung-Yon Lee
- Division of Bone and Mineral Diseases, Department of Medicine, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria S Remedi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Céline Schott
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada.,Molecular Biology Programs & Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada.,Molecular Biology Programs & Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Malcolm Hamilton-Hall
- Division of Bone and Mineral Diseases, Department of Medicine, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yael Alippe
- Division of Bone and Mineral Diseases, Department of Medicine, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rocky Strollo
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Nicola Napoli
- Division of Bone and Mineral Diseases, Department of Medicine, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Department of Medicine, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Jaschke N, Sipos W, Hofbauer LC, Rachner TD, Rauner M. Skeletal endocrinology: where evolutionary advantage meets disease. Bone Res 2021; 9:28. [PMID: 34050126 PMCID: PMC8163738 DOI: 10.1038/s41413-021-00149-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The regulation of whole-body homeostasis by the skeleton is mediated by its capacity to secrete endocrine signaling molecules. Although bone-derived hormones confer several adaptive benefits, their physiological functions also involve trade-offs, thus eventually contributing to disease. In this manuscript, we discuss the origins and functions of two of the best-studied skeletal mediators, fibroblast growth factor 23 and osteocalcin, in an evolutionary context. Moreover, we provide a theoretical framework seeking to explain the broad involvement of these two hormones in amniote physiology as well as their potential to fuel the development and progression of diseases. Vice versa, we outline which perturbations might be amenable to manipulation of these systems and discuss limitations and ongoing challenges in skeletal endocrine research. Finally, we summarize unresolved questions and potential future studies in this thriving field.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang Sipos
- Clinical Department for Farm Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants (Basel) 2021; 10:antiox10040566. [PMID: 33917442 PMCID: PMC8067486 DOI: 10.3390/antiox10040566] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
As human life expectancy is rising, the incidence of age-associated diseases will also increase. Scientific evidence has revealed that healthy diets, including good fats, vitamins, minerals, or polyphenolics, could have antioxidant and anti-inflammatory activities, with antiaging effects. Recent studies demonstrated that vitamin K is a vital cofactor in activating several proteins, which act against age-related syndromes. Thus, vitamin K can carboxylate osteocalcin (a protein capable of transporting and fixing calcium in bone), activate matrix Gla protein (an inhibitor of vascular calcification and cardiovascular events) and carboxylate Gas6 protein (involved in brain physiology and a cognitive decline and neurodegenerative disease inhibitor). By improving insulin sensitivity, vitamin K lowers diabetes risk. It also exerts antiproliferative, proapoptotic, autophagic effects and has been associated with a reduced risk of cancer. Recent research shows that protein S, another vitamin K-dependent protein, can prevent the cytokine storm observed in COVID-19 cases. The reduced activation of protein S due to the pneumonia-induced vitamin K depletion was correlated with higher thrombogenicity and possibly fatal outcomes in COVID-19 patients. Our review aimed to present the latest scientific evidence about vitamin K and its role in preventing age-associated diseases and/or improving the effectiveness of medical treatments in mature adults ˃50 years old.
Collapse
|
16
|
Strollo F, Vernikos J. Aging-like metabolic and adrenal changes in microgravity: State of the art in preparation for Mars. Neurosci Biobehav Rev 2021; 126:236-242. [PMID: 33757818 DOI: 10.1016/j.neubiorev.2021.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 01/11/2023]
Abstract
Endocrine and metabolic changes that typically accompany aging on Earth have been consistently observed in space. Support for the role of gravity in aging has mostly come from ground simulation studies in head down bed rest. However, uncertainties remain and have to be resolved in planning for the ambitious enterprise of sending humans to Mars and back. Stress-related corticosteroid changes and metabolic adaptation to microgravity and their relationship with aging are the object of the present review mostly, albeit of course non exclusively, coming from the personal experience of the authors. The picture coming out of it is that of some, not easily proven, stress-induced cortisol increase accompanied by insulin resistance, both of which represent typical aging-like phenomena mediated by chronic low-grade inflammation. This suggests the need for humans to consider the long journey to safely land, live and work on Mars by taking advantage of integrative medicine solutions including synthetic torpor and/or continuous self-monitoring of eating, sleeping, moving to enable remotely supervised self-treatment.
Collapse
Affiliation(s)
- Felice Strollo
- Elle-Di and San Raffaele Research Institute, Rome, Italy.
| | | |
Collapse
|
17
|
Vitamin K2 (menaquinone-7) increases plasma adiponectin but does not affect insulin sensitivity in postmenopausal women: a randomized controlled trial. Eur J Clin Nutr 2021; 75:1661-1667. [PMID: 33664429 DOI: 10.1038/s41430-021-00884-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Vitamin K is a co-factor in the carboxylation of the bone matrix protein osteocalcin (OC), and thus decreases the concentration of undercarboxylated osteocalcin (ucOC). Animal and in vitro studies suggest that ucOC increases insulin sensitivity. However, epidemiological studies find positive associations between vitamin K intake and insulin sensitivity. We aimed to investigate the effect of vitamin K2 in the form of menaquinone-7 (MK-7) on serum ucOC, bone mass, and insulin sensitivity in postmenopausal women. SUBJECTS/METHODS This was a randomized placebo-controlled trial. One hundred forty-eight postmenopausal women received MK-7 375 µg daily or placebo, as an add-on to calcium (800 mg) and vitamin D (38 µg) for 12 months. We measured serum ucOC, insulin sensitivity by HOMA-IR, and plasma adiponectin and leptin at baseline and after 12 months. RESULTS S-ucOC decreased in the MK-7 group (-70.3 (-75.6; -63.8) %) compared to the placebo group (-7.2 (-15.9; 2.0) %) after 12 months (p < 0.01). P-adiponectin increased in the MK-7 group (6.1 ± 20.1%) (mean ± SD) compared to the placebo group (-0.7 ± 15.5%) after 12 months (p = 0.03). HOMA-IR and p-leptin did not change in the two groups. CONCLUSION Treatment with MK-7 for 12 months decreased p-ucOC, increased p-adiponectin, but did not change insulin sensitivity suggesting that ucOC does not affect insulin sensitivity in healthy postmenopausal women.
Collapse
|
18
|
Al Rifai O, Julien C, Lacombe J, Faubert D, Lira-Navarrete E, Narimatsu Y, Clausen H, Ferron M. The half-life of the bone-derived hormone osteocalcin is regulated through O-glycosylation in mice, but not in humans. eLife 2020; 9:61174. [PMID: 33284103 PMCID: PMC7822592 DOI: 10.7554/elife.61174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Osteocalcin (OCN) is an osteoblast-derived hormone with pleiotropic physiological functions. Like many peptide hormones, OCN is subjected to post-translational modifications (PTMs) which control its activity. Here, we uncover O-glycosylation as a novel PTM present on mouse OCN and occurring on a single serine (S8) independently of its carboxylation and endoproteolysis, two other PTMs regulating this hormone. We also show that O-glycosylation increases OCN half-life in plasma ex vivo and in the circulation in vivo. Remarkably, in human OCN (hOCN), the residue corresponding to S8 is a tyrosine (Y12), which is not O-glycosylated. Yet, the Y12S mutation is sufficient to O-glycosylate hOCN and to increase its half-life in plasma compared to wildtype hOCN. These findings reveal an important species difference in OCN regulation, which may explain why serum concentrations of OCN are higher in mouse than in human. Bones provide support and protection for organs in the body. However, over the last 15 years researchers have discovered that bones also release chemicals known as hormones, which can travel to other parts of the body and cause an effect. The cells responsible for making bone, known as osteoblasts, produce a hormone called osteocalcin which communicates with a number of different organs, including the pancreas and brain. When osteocalcin reaches the pancreas, it promotes the release of another hormone called insulin which helps regulate the levels of sugar in the blood. Osteocalcin also travels to other organs such as muscle, where it helps to degrade fats and sugars that can be converted into energy. It also has beneficial effects on the brain, and has been shown to aid memory and reduce depression. Osteocalcin has largely been studied in mice where levels are five to ten times higher than in humans. But it is unclear why this difference exists or how it alters the role of osteocalcin in humans. To answer this question, Al Rifai et al. used a range of experimental techniques to compare the structure and activity of osteocalcin in mice and humans. The experiments showed that mouse osteocalcin has a group of sugars attached to its protein structure, which prevent the hormone from being degraded by an enzyme in the blood. Human osteocalcin has a slightly different protein sequence and is therefore unable to bind to this sugar group. As a result, the osteocalcin molecules in humans are less stable and cannot last as long in the blood. Al Rifai et al. showed that when human osteocalcin was modified so the sugar group could attach, the hormone was able to stick around for much longer and reach higher levels when added to blood in the laboratory. These findings show how osteocalcin differs between human and mice. Understanding this difference is important as the effects of osteocalcin mean this hormone can be used to treat diabetes and brain disorders. Furthermore, the results reveal how the stability of osteocalcin could be improved in humans, which could potentially enhance its therapeutic effect.
Collapse
Affiliation(s)
- Omar Al Rifai
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Canada
| | - Catherine Julien
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Julie Lacombe
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Erandi Lira-Navarrete
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Henrik Clausen
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Mathieu Ferron
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Canada.,Département de Médecine, Université de Montréal, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
19
|
Serum osteocalcin is associated with subjective stress in people with depression and type 2 diabetes. Psychoneuroendocrinology 2020; 122:104878. [PMID: 33038647 DOI: 10.1016/j.psyneuen.2020.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Low serum osteocalcin is a risk factor for type 2 diabetes mellitus (T2DM), and osteocalcin release from bone is associated with an acute stress response in mice. Both diabetes and stress are associated with depression. Here, we assess relationships between serum osteocalcin, depression and subjective stress in people with T2DM. METHODS Participants with T2DM (HbA1c above 6.4 %, impaired fasting glucose or impaired glucose tolerance) were assessed for a major depressive episode using the research version of the Structured Clinical Interview for DSM-5 depression criteria (SCID-5RV). Subjective stress over the past month was assessed using the Perceived Stress Scale (PSS). Serum carboxylated (cOCN) and fully decarboxylated (dcOCN) osteocalcin were assayed from fasting morning blood by commercial enzyme-linked immunosorbent assay. RESULTS Among 95 participants (mean age 62.4 ± 9.9, 51 % women), 22 % were experiencing a depressive episode (9 men, 12 women). The presence of a depressive episode was not associated with dcOCN or cOCN concentrations; however, higher concentrations of cOCN were associated with higher PSS scores in participants with depression (r = 0.585, p = 0.005). In an analysis of covariance model controlling for age, sex, body mass index, glycemic control (glycosylated hemoglobin), insulin resistance (homeostatic model), depression, and antidepressant use, cOCN was associated with PSS scores (F=10.302, p = 0.002), and this relationship was stronger in those with depression (depression × cOCN interaction F=4.978, p = 0.028). Although associations between dcOCN concentrations and PSS scores did not reach significance, the same trend seen with cOCN concentrations was observed in participants with depression for dcOCN (r=0.365, p=0.10), and for a depression × dcOCN interaction associated with PSS scores in the whole group (F=2.165, p = 0.15). CONCLUSIONS Osteocalcin is a neuroendocrine marker associated with perceived chronic stress among people with T2DM experiencing a depressive episode.
Collapse
|
20
|
Osteocalcin prevents insulin resistance, hepatic inflammation, and activates autophagy associated with high-fat diet-induced fatty liver hemorrhagic syndrome in aged laying hens. Poult Sci 2020; 100:73-83. [PMID: 33357709 PMCID: PMC7772703 DOI: 10.1016/j.psj.2020.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to investigate the effects of osteocalcin (OCN) on fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Thirty 68-week-old White Plymouth laying hens were randomly assigned into conventional single-bird cages, and the cages were randomly allocated into one of 3 treatments (n = 10): normal diet (ND + vehicle, ND + V), high-fat diet (HFD + vehicle, HFD + V), and HFD + OCN (3 μg/bird, 1 time/2 d, i.m.) for 40 d. At day 30, oral glucose tolerance tests (OGTT) and insulin tolerance tests (ITT) were performed. At the end of experiment, the hens were euthanized followed by blood collection. The plasma aspartate transaminase (AST), alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automatic biochemistry analyzer. Pathological changes in the liver were examined under both light and transmission electron microscopes. The plasma inflammatory factors including interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha (TNF-α) were analyzed by ELISA, and the gene expressions of these inflammatory factors in the liver were analyzed by real-time PCR. The level of oxidative stress was evaluated using malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) assay kits, respectively. The results showed that HFD + V hens had more severe liver hemorrhage and fibrosis than ND + V hens (P < 0.05). The ultramicrostructural examination showed that hepatocytes of HFD + V hens exhibited necrotic pyknosis showing great intracellular electron, mitochondrial swelling, shrunk nucleus, and absence of autolysosomes. Osteocalcin mitigated HFD + V-induced pathological changes in aged laying hens. High-fat diet + OCN hens had higher insulin sensitivity; lower liver concentrations of MDA (P = 0.12) but higher GSH-Px (P < 0.05); and lower blood TNF-α concentrations (P < 0.05) and mRNA expressions (P < 0.05) than HFD + V hens. These results suggest OCN functions in preventing the FLHS process in old laying hens through inhibiting excessive energy diet-induced metabolic disorder, oxidative stress, and related pathological damage.
Collapse
|
21
|
Schatz M, Saravanan S, d'Adesky ND, Bramlett H, Perez-Pinzon MA, Raval AP. Osteocalcin, ovarian senescence, and brain health. Front Neuroendocrinol 2020; 59:100861. [PMID: 32781196 DOI: 10.1016/j.yfrne.2020.100861] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Menopause, an inevitable event in a woman's life, significantly increases risk of bone resorption and diseases such as Alzheimer's, vascular dementia, cardiac arrest, and stroke. The sole role of bones, as traditionally regarded, is to provide structural support for skeletal muscles and allow for ambulation, however this concept is becoming quickly outdated. New literature has emerged that suggests the bone cell-derived hormone osteocalcin (OCN) plays a pivotal role in cognition. OCN levels are correlated with bone mass density and bone turnover, and thus are strongly influenced by the changes associated with menopause. The goal of the current review is to discuss potential gaps in our knowledge of OCN and cognition, discrepancies in methods of OCN quantification, and therapies to enhance circulating OCN. A discussion on implementing exercise or low frequency vibration interventions at the menopausal transition to reduce risk and severity of neurological diseases and associated cognitive decline is included.
Collapse
Affiliation(s)
- Marc Schatz
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sharnikha Saravanan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Nathan D d'Adesky
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Helen Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA.
| |
Collapse
|
22
|
Ducy P. Bone Regulation of Insulin Secretion and Glucose Homeostasis. Endocrinology 2020; 161:5895464. [PMID: 32822470 DOI: 10.1210/endocr/bqaa149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
For centuries our image of the skeleton has been one of an inert structure playing a supporting role for muscles and a protective role for inner organs like the brain. Cell biology and physiology modified this view in the 20st century by defining the constant interplay between bone-forming and bone resorbing cells that take place during bone growth and remodeling, therefore demonstrating that bone is as alive as any other tissues in the body. During the past 40 years human and, most important, mouse genetics, have allowed not only the refinement of this notion by identifying the many genes and regulatory networks responsible for the crosstalk existing between bone cells, but have redefined the role of bone by showing that its influence goes way beyond its own physiology. Among its newly identified functions is the regulation of energy metabolism by 2 bone-derived hormones, osteocalcin and lipocalin-2. Their biology and respective roles in this process are the topic of this review.
Collapse
Affiliation(s)
- Patricia Ducy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
23
|
Turcotte AF, Grenier-Larouche T, Lacombe J, Carreau AM, Carpentier AC, Mac-Way F, Tchernof A, Richard D, Biertho L, Lebel S, Marceau S, Ferron M, Gagnon C. Association between changes in bioactive osteocalcin and glucose homeostasis after biliopancreatic diversion. Endocrine 2020; 69:526-535. [PMID: 32419080 DOI: 10.1007/s12020-020-02340-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Bone may regulate glucose homeostasis via uncarboxylated bioactive osteocalcin (ucOCN). This study explored whether changes in ucOCN and bone remodeling are associated with change in glucose homeostasis after biliopancreatic diversion (BPD). METHODS In this secondary exploratory analysis of a 1-year prospective observational study, 16 participants (11 men/5 women; 69% with type 2 diabetes; mean BMI 49.4 kg/m2) were assessed before, 3 days, 3 months and 12 months after BPD. Changes in plasma ucOCN and bone markers (C-terminal telopeptide (CTX), total osteocalcin (OCN)) were correlated with changes in insulin resistance or sensitivity indices (HOMA-IR; adipose tissue insulin resistance index (ADIPO-IR) and insulin sensitivity index (SI) from the hyperinsulinemic-euglycemic clamp), insulin secretion rate (ISR) from the hyperglycemic clamp, and disposition index (DI: SI × ISR) using Spearman correlations before and after adjustment for weight loss. RESULTS ucOCN was unchanged at 3 days but increased dramatically at 3 months (+257%) and 12 months (+498%). Change in ucOCN correlated significantly with change in CTX at 3 months (r = 0.62, p = 0.015) and 12 months (r = 0.64, p = 0.025) before adjustment for weight loss. It also correlated significantly with change in fasting insulin (r = -0.53, p = 0.035), HOMA-IR (r = -0.54, p = 0.033) and SI (r = 0.52, p = 0.041) at 3 days, and ADIPO-IR (r = -0.69, p = 0.003) and HbA1c (r = -0.69, p = 0.005) at 3 months. Change in OCN did not correlate with any glucose homeostasis indices. Results were similar after adjustment for weight loss. CONCLUSION The increase in ucOCN may be associated with the improvement in insulin resistance after BPD, independently of weight loss. These findings need to be confirmed in larger, less heterogeneous populations.
Collapse
Affiliation(s)
- Anne-Frédérique Turcotte
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Centre, Québec City, QC, Canada
- Department of Medicine, Laval University, Québec City, QC, Canada
| | - Thomas Grenier-Larouche
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Lacombe
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Anne-Marie Carreau
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Centre, Québec City, QC, Canada
- Department of Medicine, Laval University, Québec City, QC, Canada
| | - André C Carpentier
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fabrice Mac-Way
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Centre, Québec City, QC, Canada
- Department of Medicine, Laval University, Québec City, QC, Canada
| | - André Tchernof
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Centre, Québec City, QC, Canada
- Department of Medicine, Laval University, Québec City, QC, Canada
- Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Denis Richard
- Department of Medicine, Laval University, Québec City, QC, Canada
- Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Laurent Biertho
- Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
- Department of Surgery, Laval University, Québec City, QC, Canada
| | - Stefane Lebel
- Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
- Department of Surgery, Laval University, Québec City, QC, Canada
| | - Simon Marceau
- Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
- Department of Surgery, Laval University, Québec City, QC, Canada
| | - Mathieu Ferron
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Claudia Gagnon
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Centre, Québec City, QC, Canada.
- Department of Medicine, Laval University, Québec City, QC, Canada.
- Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada.
- Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
24
|
Gancheva S, Zhelyazkova-Savova M. Are Bisphosphonates Associated with Adverse Metabolic and Cognitive Effects? A Study in Intact Rats and Rats Fed High-Fat High-Fructose Diet. Calcif Tissue Int 2020; 107:41-51. [PMID: 32211934 DOI: 10.1007/s00223-020-00684-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022]
Abstract
Osteocalcin, known as a bone gla protein, is considered a regulator of energy metabolism and behavior in its undercarboxylated form (ucOC). Antiresorptive drugs, such as alendronate, reduce serum level of ucOC. The purpose of the current study was to verify if alendronate might impact on energy metabolism and animal behavior by reducing ucOC level and to find out if the presence of metabolic alterations would further worsen these potential adverse effects. Four groups of male Wistar rats (12 per group) were used: a control group, a group receiving high-fat high-fructose diet (HFHF), a group treated with alendronate, and a group receiving alendronate and HFHF. Alendronate was administered subcutaneously in a dose of 50 mcg/kg thrice weekly. Study duration was 15 weeks. Animals were tested for locomotion, anxiety and spatial memory. Glucose and insulin tolerance tests evaluated the glucose metabolism. Visceral obesity was assessed by the weight of right retroperitoneal fat pads. Concentration of ucOC was measured in the serum. Alendronate reduced serum ucOC concentration, increased fasting blood glucose level, and worsened insulin sensitivity. It did not increase visceral adiposity. Fat index was negatively correlated with ucOC in all animals and in the alendronate-treated rats. Alendronate worsened spatial memory of the animals and ucOC levels correlated positively with their cognitive performance.
Collapse
Affiliation(s)
- Silvia Gancheva
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, 55 Marin Drinov Str, 9002, Varna, Bulgaria.
| | - Maria Zhelyazkova-Savova
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, 55 Marin Drinov Str, 9002, Varna, Bulgaria
| |
Collapse
|
25
|
Jaschke N, Hofbauer LC, Göbel A, Rachner TD. Evolving functions of Dickkopf-1 in cancer and immunity. Cancer Lett 2020; 482:1-7. [PMID: 32251706 DOI: 10.1016/j.canlet.2020.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
Dickkopf-1 (DKK-1) is a well-established inhibitor of canonical Wnt-signaling that critically participates in the regulation of bone formation and has been implicated in the development and progression of bone metastases. While the skeleton was originally considered the sole site of DKK-1 synthesis, it has now become clear that the molecule is also highly expressed in T-cells, platelets and multiple cancer cells. In the past years, several new functions of DKK-1 in angiogenesis, cancer cell biology, immune homeostasis and inflammation have been revealed. These novel insights have paved the way for clinical trials investigating the efficacy of anti-DKK-1 antibodies in a variety of different malignancies, most of which are currently still ongoing. In this review, we discuss the evolution and recent advances in DKK-1 research and highlight clinical implications of the available knowledge on the molecule, especially in cancer. Finally, we emphasize outstanding questions and provide an outlook on potential future studies that will aid in further improving our understanding of the pleiotropic roles of DKK-1 in health and disease.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Austria
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|