1
|
Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021; 131:429-450. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The relaxin-3/RXFP3 system is one of several neuropeptidergic systems putatively implicated in regulating the behavioural alterations that characterise clinical depression and anxiety, making it a potential target for clinical translation. Accordingly, this systematic review identified published reports on the role of relaxin-3/RXFP3 signalling in these neuropsychiatric disorders and their behavioural endophenotypes, evaluating evidence from animal and human studies to ascertain any relationship. We searched PubMed, EMBASE, PsycINFO and Google Scholar databases up to February 2021, finding 609 relevant records. After stringent screening, 51 of these studies were included in the final synthesis. There was considerable heterogeneity in study designs and some inconsistency across study outcomes. However, experimental evidence is consistent with an ability of relaxin-3/RXFP3 signalling to promote arousal and suppress depressive- and anxiety-like behaviour. Moreover, meta-analyses of six to eight articles investigating food intake revealed that acute RXFP3 activation had strong orexigenic effects in rats. This appraisal also identified the lack of high-quality clinical studies pertinent to the relaxin-3/RXFP3 system, a gap that future research should attempt to bridge.
Collapse
Affiliation(s)
- Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, United Kingdom
| |
Collapse
|
2
|
Voglsanger LM, Read J, Ch'ng SS, Zhang C, Eraslan IM, Gray L, Rivera LR, Hamilton LD, Williams R, Gundlach AL, Smith CM. Differential Level of RXFP3 Expression in Dopaminergic Neurons Within the Arcuate Nucleus, Dorsomedial Hypothalamus and Ventral Tegmental Area of RXFP3-Cre/tdTomato Mice. Front Neurosci 2021; 14:594818. [PMID: 33584175 PMCID: PMC7873962 DOI: 10.3389/fnins.2020.594818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA). Neurons that express RXFP3 were visualized in coronal brain sections from RXFP3-Cre/tdTomato mice, which express the tdTomato fluorophore within RXFP3-positive cells, and dopaminergic neurons in these areas were visualized by simultaneous immunohistochemical detection of tyrosine hydroxylase-immunoreactivity (TH-IR). Approximately 20% of ARC neurons containing TH-IR coexpressed tdTomato fluorescence, suggesting that RXFP3 can influence the dopamine pathway from the ARC to the pituitary gland that controls prolactin release. The ability of prolactin to reduce leptin sensitivity and increase food consumption therefore represents a potential mechanism by which RXFP3 activation influences feeding. A similar proportion of DMH neurons containing TH-IR expressed RXFP3-related tdTomato fluorescence, consistent with a possible RXFP3-mediated regulation of stress and neuroendocrine circuits. In contrast, RXFP3 was barely detected within the VTA. TdTomato signal was absent from the ARC and DMH in sections from Rosa26-tdTomato mice, suggesting that the cells identified in RXFP3-Cre/tdTomato mice expressed authentic RXFP3-related tdTomato fluorescence. Together, these findings identify potential hypothalamic mechanisms through which RXFP3 influences neuroendocrine control of metabolism, and further highlight the therapeutic potential of targeting RXFP3 in feeding-related disorders.
Collapse
Affiliation(s)
- Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Justin Read
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Laura Gray
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Leni R Rivera
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Lee D Hamilton
- Faculty of Health, School of Exercise and Nutritional Science, Deakin University, Waurn Ponds, VIC, Australia
| | - Richard Williams
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
3
|
DeAdder NP, Gillam HJ, Wilson BC. Relaxin peptides reduce cellular damage in cultured brain slices exposed to transient oxygen–glucose deprivation: an effect mediated by nitric oxide. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of treatment with human relaxins on cell death was studied in oxygen- and glucose-deprived brain slices. In addition, involvement of nitric oxide and the relaxin receptor, RXFP3, was studied. Brain slices ( n = 12–18/group) were cultured under standard conditions for two weeks and then exposed to: ( i) an oxygenated balanced salt solution, ( ii) a deoxygenated, glucose-free balanced salt solution (OGD media), or ( iii) OGD media containing 10−7 mol/L H2 relaxin, 10−7 mol/L H2 relaxin with 50 μmol/L L-NIL, 10−7 mol/L H3 relaxin, or 10−7 mol/L H3 relaxin with 50 μmol/L L-NIL. Cell death was assessed using propidium iodide fluorescence. In a separate experiment, 10−5 mol/L R3 B1-22R (an antagonist of RXFP3) was added to both H2 and H3 relaxin treatments. H2 and H3 relaxin treatment reduced cell damage or death in OGD slices and L-NIL partially attenuated the effect of H3 relaxin. Antagonism of RXFP3 blocked the effect of H3 but not H2 relaxin. These data increase our understanding of the role of relaxin ligands and their receptors in protecting tissues throughout the body from ischemia and reperfusion injury.
Collapse
Affiliation(s)
| | - Hannah J. Gillam
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Brian C. Wilson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
4
|
Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL, Blasiak A. RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J Neurosci 2020; 40:5362-5375. [PMID: 32532885 PMCID: PMC7343322 DOI: 10.1523/jneurosci.2895-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/17/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Binge-eating disorder is the most common eating disorder. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3 (RLN3), which stimulates food intake in rats through the activation of the relaxin-family peptide-3 receptor (RXFP3). Here we demonstrate that a likely mechanism underlying the orexigenic action of RLN3 is RXFP3-mediated inhibition of oxytocin- and arginine-vasopressin-synthesizing paraventricular nucleus (PVN) magnocellular neurosecretory cells. Moreover, we reveal that, in male and female rats, this action depends on M-like potassium conductance. Notably, higher intra- and peri-PVN RLN3 fiber densities were observed in females, which may constitute an anatomic substrate for observed sex differences in binge-eating disorder. Finally, in a model of binge-eating in female rats, RXFP3 blockade within the PVN prevented binge-eating behavior. These data demonstrate a direct RLN3/RXFP3 action in the PVN of male and female rats, identify the associated ionic mechanisms, and reveal that hypothalamic RLN3/RXFP3 signaling regulates binge-eating behavior.SIGNIFICANCE STATEMENT Binge-eating disorder is the most common eating disorder worldwide, affecting women twice as frequently as men. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3, which acts via the relaxin-family peptide-3 receptor (RXFP3). Using a model of binge-eating, we demonstrated that relaxin-3/RXFP3 signaling in the hypothalamic paraventricular nucleus (PVN) is necessary for the expression of binge-eating behavior in female rats. Moreover, we elucidated the neuronal mechanism of RLN3/RXFP3 signaling in PVN in male and female rats and characterized sex differences in the RLN3 innervation of the PVN. These findings increase our understanding of the brain circuits and neurotransmitters involved in binge-eating disorder pathology and identify RXFP3 as a therapeutic target for binge-like eating disorders.
Collapse
Affiliation(s)
- Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Agata Szlaga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ewa Blasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | - Mohammad Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Andrew L Gundlach
- Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| |
Collapse
|
5
|
Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019; 176:3899-3923. [PMID: 31220339 PMCID: PMC6811745 DOI: 10.1111/bph.14774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose Depression and anxiety are common causes of disability, and innovative tools and potential pharmacological targets are actively sought for prevention and treatment. Therapeutic strategies targeting the relaxin‐3 peptide or its primary endogenous receptor, RXFP3, for the treatment of major depression and anxiety disorders have been limited by a lack of compounds with drug‐like properties. We proposed that a hydrocarbon‐stapled mimetic of relaxin‐3, when administered intranasally, might be uniquely applicable to the treatment of these disorders. Experimental Approach We designed a series of hydrocarbon‐stapled relaxin‐3 mimetics and identified the most potent compound using in vitro receptor binding and activation assays. Further, we assessed the effect of intranasal delivery of relaxin‐3 and the lead stapled mimetic in rat models of anxiety and depression. Key Results We developed an i,i+7 stapled relaxin‐3 mimetic that manifested a stabilized α‐helical structure, proteolytic resistance, and confirmed agonist activity in receptor binding and activation in vitro assays. The stapled peptide agonist enhanced food intake after intracerebral infusion in rats, confirming in vivo activity. We showed that intranasal delivery of the lead i,i+7 stapled peptide or relaxin‐3 had orexigenic effects in rats, indicating a potential clinically translatable route of delivery. Further, intranasal administration of the lead i,i+7 stapled peptide exerted anxiolytic and antidepressant‐like activity in anxiety‐ and depression‐related behaviour paradigms. Conclusions and Implications Our preclinical findings demonstrate that targeting the relaxin‐3/RXFP3 receptor system via intranasal delivery of an i,i+7 stapled relaxin‐3 mimetic may represent an effective treatment approach for depression, anxiety, and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Anders Poulsen
- Department of Medicinal Chemistry, Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Norrapat Shih
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Charles William Johannes
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
6
|
van der Peet PL, Gunawan C, Abdul-Ridha A, Ma S, Scott DJ, Gundlach AL, Bathgate RAD, White JM, Williams SJ. Gram scale preparation of clozapine N-oxide (CNO), a synthetic small molecule actuator for muscarinic acetylcholine DREADDs. MethodsX 2018; 5:257-267. [PMID: 30038895 PMCID: PMC6053635 DOI: 10.1016/j.mex.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Chemogenetics uses engineered proteins that are controlled by small molecule actuators, allowing in vivo functional studies of proteins with temporal and dose control, and include Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). One major class of DREADDs are mutated muscarinic receptors that are unresponsive to acetylcholine, and are activated by administration of clozapine N-oxide (CNO). However, CNO is available in only small amounts and large scale studies involving animals and multiple cohorts are prohibitively expensive for many investigators. The precursor, clozapine, is also expensive when purchased from specialist suppliers. Here we report: A simple extraction method of clozapine from commercial tablets; A simple preparation of CNO from clozapine, and for the first time its single-crystal X-ray structure; and That the CNO prepared by this method specifically activates the DREADD receptor hM3Dq in vivo.
This method provides large quantities of CNO suitable for large-scale DREADD applications that is identical to commercial material.
Collapse
Affiliation(s)
- Phillip L van der Peet
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Christian Gunawan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Alaa Abdul-Ridha
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2016; 174:1061-1076. [PMID: 27597467 PMCID: PMC5406295 DOI: 10.1111/bph.13564] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Relaxin‐3 has been proposed to modulate emotional–behavioural functions such as arousal and behavioural activation, appetite regulation, stress responses, anxiety, memory, sleep and circadian rhythm. The nucleus incertus (NI), in the midline tegmentum close to the fourth ventricle, projects widely throughout the brain and is the primary site of relaxin‐3 neurons. Over recent years, a number of preclinical studies have explored the function of the NI and relaxin‐3 signalling, including reports of mRNA or peptide expression changes in the NI in response to behavioural or pharmacological manipulations, effects of lesions or electrical or pharmacological manipulations of the NI, effects of central microinfusions of relaxin‐3 or related agonist or antagonist ligands on physiology and behaviour, and the impact of relaxin‐3 gene deletion or knockdown. Although these individual studies reveal facets of the likely functional relevance of the NI and relaxin‐3 systems for human physiology and behaviour, the differences observed in responses between species (e.g. rat vs. mouse), the clearly identified heterogeneity of NI neurons and procedural differences between laboratories are some of the factors that have prevented a precise understanding of their function. This review aims to draw attention to the current preclinical evidence available that suggests the relevance of the NI/relaxin‐3 system to the pathology and/or symptoms of certain neuropsychiatric disorders and to provide cognizant directions for future research to effectively and efficiently uncover its therapeutic potential. Linked Articles This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc
Collapse
Affiliation(s)
- Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Tharindunee Jayakody
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore
| | - Jia Mei Hong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
8
|
Calvez J, de Ávila C, Timofeeva E. Sex-specific effects of relaxin-3 on food intake and body weight gain. Br J Pharmacol 2016; 174:1049-1060. [PMID: 27245781 DOI: 10.1111/bph.13530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/06/2023] Open
Abstract
Relaxin-3 (RLN3) is a neuropeptide that is strongly expressed in the pontine nucleus incertus (NI) and binds with high affinity to its cognate receptor RXFP3. Central administration of RLN3 in rats increases food intake and adiposity. In humans, RLN3 polymorphism has been associated with obesity and hypercholesterolaemia. Emerging evidence suggests that the effects of RLN3 may have sex-specific aspects. Thus, the RLN3 knockout female but not male mice are hypoactive. RLN3 produced stronger orexigenic and obesogenic effects in female rats compared with male rats. In addition, female rats demonstrated higher sensitivity to lower doses of RLN3. Repeated cycles of food restriction and stress were accompanied by an increase in RLN3 expression and hyperphagia in female but not in male rats. Furthermore, stress-induced binge eating in female rats was blocked by an RXFP3 receptor antagonist. RLN3 increased the expression of corticotropin releasing factor in the paraventricular hypothalamic nucleus in male but not in female rats. Conversely, in female rats, RLN3 increased the expression of orexin in the lateral hypothalamus. There is evidence that orexin directly activates the RLN3 neurons in the NI. The positive reinforcement of the RLN3 effects by orexin may intensify behavioural activation and feeding in females. Sex-specific effects of RLN3 may also depend on differential expression of RXFP3 receptors in the brain. Given the higher sensitivity of females to the orexigenic effects of RLN3 and the stress-induced activation of RLN3, the overall data suggest a possible role for RLN3 in eating disorders that show a higher propensity in women. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Juliane Calvez
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Camila de Ávila
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory. Brain Struct Funct 2016; 222:449-463. [PMID: 27146679 DOI: 10.1007/s00429-016-1227-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 01/09/2023]
Abstract
The medial septum/diagonal band (MS/DB) is a relay region connecting the hypothalamus and brainstem with the hippocampus, and both the MS/DB and dorsal/ventral hippocampus receive strong topographic GABA/peptidergic projections from the nucleus incertus of the pontine tegmentum. The neuropeptide relaxin-3, released by these neurons, is the cognate ligand for a Gi/o-protein-coupled receptor, RXFP3, which is highly expressed within the MS/DB, and both cholinergic and GABAergic neurons in this region of rat brain receive relaxin-3 positive terminals/boutons. Comprehensive in vitro studies have demonstrated that the cell signaling pathways altered by RXFP3 stimulation, include inhibition of forskolin-activated cAMP levels and activation of ERK phosphorylation. In this study we investigated whether intracerebroventricular (icv) injection of RXFP3-A2, a selective relaxin-3 receptor agonist, altered ERK phosphorylation levels in the MS/DB of adult male rats. We subsequently assessed the neurochemical phenotype of phosphorylated (p) ERK-positive neurons in MS/DB after icv RXFP3-A2 administration by dual-label immunostaining for pERK and neuronal markers for cholinergic and GABAergic neurons. Central RXFP3-A2 injection significantly increased levels of pERK immunoreactivity (IR) in MS/DB at 20 and 90 min post-injection, compared to vehicle and naive levels. In addition, RXFP3-A2 increased the number of cells expressing pERK-IR in the MS/DB at 90 (but not 20) min post-injection in cholinergic (but not GABAergic) neurons, which also expressed putative RXFP3-IR. Moreover, icv injection of RXFP3-A2 impaired alternation in a delayed spontaneous T-maze test of spatial working memory. The presence of RXFP3-like IR and the RXFP3-related activation of the MAPK/ERK pathway in MS/DB cholinergic neurons identifies them as a key target of ascending relaxin-3 projections with implications for the acute and chronic modulation of cholinergic neuron activity and function by relaxin-3/RXFP3 signaling.
Collapse
|
10
|
Calvez J, de Ávila C, Matte LO, Guèvremont G, Gundlach AL, Timofeeva E. Role of relaxin-3/RXFP3 system in stress-induced binge-like eating in female rats. Neuropharmacology 2015; 102:207-15. [PMID: 26607097 DOI: 10.1016/j.neuropharm.2015.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/04/2015] [Accepted: 11/13/2015] [Indexed: 11/16/2022]
Abstract
Binge eating is frequently stimulated by stress. The neuropeptide relaxin-3 (RLN3) and its native receptor RXFP3 are implicated in stress and appetitive behaviors. We investigated the dynamics of the central RLN3/RXFP3 system in a newly established model of stress-induced binge eating. Female Sprague-Dawley rats were subjected to unpredictable intermittent 1-h access to 10% sucrose. When sucrose intake stabilized, rats were assessed for consistency of higher or lower sucrose intake in response to three unpredictable episodes of foot-shock stress; and assigned as binge-like eating prone (BEP) or binge-like eating resistant (BER). BEP rats displayed elevated consumption of sucrose under non-stressful conditions (30% > BER) and an additional marked increase in sucrose intake (60% > BER) in response to stress. Conversely, sucrose intake in BER rats was unaltered by stress. Chow intake was similar in both phenotypes on 'non-stress' days, but was significantly reduced by stress in BER, but not BEP, rats. After stress, BEP, but not BER, rats displayed a significant increase in RLN3 mRNA levels in the nucleus incertus. In addition, in response to stress, BEP, but not BER, rats had increased RXFP3 mRNA levels in the paraventricular and supraoptic nuclei of the hypothalamus. Intracerebroventricular administration of a selective RXFP3 antagonist, R3(B1-22)R, blocked the stress-induced increase in sucrose intake in BEP rats and had no effect on sucrose intake in BER rats. These results provide important evidence for a role of the central RLN3/RXFP3 system in the regulation of stress-induced binge eating in rats, and have therapeutic implications for eating disorders.
Collapse
Affiliation(s)
- Juliane Calvez
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Camila de Ávila
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Louis-Olivier Matte
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Geneviève Guèvremont
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
11
|
Smith CM, Walker LL, Chua BE, McKinley MJ, Gundlach AL, Denton DA, Lawrence AJ. Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp Physiol 2015; 100:1064-72. [PMID: 26147879 DOI: 10.1113/ep085349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 01/21/2023]
Abstract
NEW FINDINGS What is the central question of this study? Sodium appetite is controlled by conserved neuronal transmitter-receptor systems. Here, we tested the contribution made by relaxin family peptide 3 receptor (RXFP3), the cognate G-protein-coupled receptor for the neuropeptide relaxin-3. What is the main finding and its importance? Intracerebroventricular infusion of an RXFP3 antagonist reduced in a dose-dependent manner the volume of 0.3 m NaCl consumed by sodium-depleted C57Bl/6J (wild-type) mice. This effect was absent in sodium-depleted Rxfp3 knockout mice, and RXFP3 antagonist infusion did not alter water consumption in wild-type mice subjected to multiple thirst tests, indicating both the pharmacological and the physiological specificity of observed effects. Our findings identify endogenous relaxin-3-RXFP3 signalling as a modulator of sodium appetite. Overconsumption of highly salted foods is common in Western diets and contributes significantly to metabolic disorders such as hypertension, renal dysfunction and diabetes. Sodium appetite, or the desire of terrestrial animals to seek and consume sodium-containing salts, is a behaviour mediated by a set of evolutionarily conserved neuronal systems. In these studies, we tested whether this instinctive behavioural drive is influenced by the G-protein-coupled relaxin family peptide 3 receptor (RXFP3), the cognate receptor for the neuropeptide relaxin-3, because relaxin-3-RXFP3 signalling can modulate arousal, motivation and ingestive behaviours. Intracerebroventricular (i.c.v.) infusion of the selective RXFP3 antagonist, R3(B1-22)R, reduced in a dose-dependent manner the volume of 0.3 m NaCl solution consumed when offered to sodium-depleted C57Bl/6J wild-type mice, relative to vehicle-treated control animals. Notably, i.c.v. R3(B1-22)R infusion did not alter 0.3 m NaCl consumption relative to vehicle in sodium-depleted Rxfp3 knockout mice, confirming the pharmacological specificity of this effect. Furthermore, i.c.v. R3(B1-22)R did not alter the volume of water consumed by wild-type mice in three tests where water drinking was the normal physiological response, suggesting that the ability of R3(B1-22)R to reduce activated salt appetite is specific and not due to a generalized reduction in drinking behaviour. These findings identify, for the first time, that endogenous relaxin-3-RXFP3 signalling is a powerful mediator of salt appetite in mice and further elucidate the functional role of the relaxin-3-RXFP3 system in the integrative control of motivated behaviours.
Collapse
Affiliation(s)
- Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Lesley L Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Michael J McKinley
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| | - Derek A Denton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Office of the Dean, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ. Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br J Pharmacol 2014; 171:2827-41. [PMID: 24641548 DOI: 10.1111/bph.12623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/03/2013] [Accepted: 01/20/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Relaxin family peptide receptor 3 (RXFP3) is expressed in brain areas important for processing sensory information and feeding, suggesting that it may be a target for anti-anxiety and anti-obesity drugs. We examined the effects of H3 relaxin, the biased agonist H2 relaxin and the antagonist, R3(BΔ23-27)R/I5, on RXFP3 signalling to establish their suitability as tools to assess the physiological roles of RXFP3. EXPERIMENTAL APPROACH The signalling profile of the RXFP3 ligands was determined using reporter gene assays, multiplexed signalling assays and direct examination of receptor-G protein and receptor-β-arrestin interactions using BRET. KEY RESULTS H2 relaxin activated p38MAPK and ERK1/2 with lower efficacy than H3 relaxin, but had similar efficacy for JNK1/2 phosphorylation. H2 or H3 relaxin activation of p38MAPK, JNK1/2 or ERK1/2 involved Pertussis toxin-sensitive G-proteins. R3(BΔ23-27)R/I5 blocked H3 relaxin AP-1 reporter gene activation, but not H2 relaxin AP-1 activation or H3 relaxin NF-κB activation. R3(BΔ23-27)R/I5 activated the SRE reporter, but did not inhibit either H2 or H3 relaxin SRE activation. R3(BΔ23-27)R/I5 blocked H3 relaxin-stimulated p38MAPK and ERK1/2 phosphorylation, but was a weak partial agonist for p38MAPK and ERK1/2 signalling. p38MAPK activation by R3(BΔ23-27)R/I5 was G protein-independent. H3 relaxin-activated RXFP3 interacts with Gαi2 , Gαi3 , Gαo A and Gαo B whereas H2 relaxin or R3(BΔ23-27)R/I5 induce interactions only with Gαi2 or Gαo B . Only H3 relaxin promoted RXFP3/β-arrestin interactions that were blocked by R3(BΔ23-27)R/I5. CONCLUSION AND IMPLICATIONS Understanding signalling profile of drugs acting at RXFP3 is essential for development of therapies targeting this receptor.
Collapse
Affiliation(s)
- M Kocan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
13
|
Hosken IT, Sutton SW, Smith CM, Gundlach AL. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res 2014; 278:167-75. [PMID: 25257104 DOI: 10.1016/j.bbr.2014.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
Abstract
Anatomical and pharmacological evidence suggests the neuropeptide, relaxin-3, is the preferred endogenous ligand for the relaxin family peptide-3 receptor (RXFP3) and suggests a number of putative stress- and arousal-related roles for RXFP3 signalling. However, in vitro and in vivo evidence demonstrates exogenous relaxin-3 can activate other relaxin peptide family receptors, and the role of relaxin-3/RXFP3 signalling in specific brain circuits and associated behaviours in mice is not well described. In this study, we characterised the behaviour of cohorts of male and female Rxfp3 gene knockout (KO) mice (C57/B6J(RXFP3TM1/DGen)), relative to wild-type (WT) littermates to determine if this receptor KO strain has a similar phenotype to its ligand KO equivalent. Rxfp3 KO mice displayed similar performance to WT littermates in several acute behavioural paradigms designed to gauge motor coordination (rotarod test), spatial memory (Y-maze), depressive-like behaviour (repeat forced-swim test) and sensorimotor gating (prepulse inhibition of acoustic startle). Notably however, male and female Rxfp3 KO mice displayed robust and consistent (dark phase) hypoactivity on voluntary home-cage running wheels (∼20-60% less activity/h), and a small but significant decrease in anxiety-like behavioural traits in the elevated plus maze and light/dark box paradigms. Importantly, this phenotype is near identical to that observed in two independent lines of relaxin-3 KO mice, suggesting these phenotypes are due to the elimination of ligand or receptor and RXFP3-linked signalling. Furthermore, this behavioural characterisation of Rxfp3 KO mice identifies them as a useful experimental model for studying RXFP3-linked signalling and assessing the selectivity and/or potential off-target actions of RXFP3 agonists and antagonists, which could lead to an improved understanding of dysfunctional arousal in mental health disorders, including depression, anxiety, insomnia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ihaia T Hosken
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Steven W Sutton
- Neuroscience Drug Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
McGavigan AK, O'Hara HC, Amin A, Kinsey-Jones J, Spreckley E, Alamshah A, Agahi A, Banks K, France R, Hyberg G, Wong C, Bewick GA, Gardiner JV, Lehmann A, Martin NM, Ghatei MA, Bloom SR, Murphy KG. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans. Int J Obes (Lond) 2014; 39:447-55. [PMID: 25219528 PMCID: PMC4276721 DOI: 10.1038/ijo.2014.172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/28/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. METHODS We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. RESULTS l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. CONCLUSIONS Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety.
Collapse
Affiliation(s)
- A K McGavigan
- Department of Investigative Medicine, Imperial College London, London, UK
| | - H C O'Hara
- Department of Investigative Medicine, Imperial College London, London, UK
| | - A Amin
- Department of Investigative Medicine, Imperial College London, London, UK
| | - J Kinsey-Jones
- Department of Investigative Medicine, Imperial College London, London, UK
| | - E Spreckley
- Department of Investigative Medicine, Imperial College London, London, UK
| | - A Alamshah
- Department of Investigative Medicine, Imperial College London, London, UK
| | - A Agahi
- Department of Investigative Medicine, Imperial College London, London, UK
| | - K Banks
- Department of Investigative Medicine, Imperial College London, London, UK
| | - R France
- Department of Investigative Medicine, Imperial College London, London, UK
| | - G Hyberg
- AstraZeneca R&D, Mölndal, Sweden
| | - C Wong
- Department of Investigative Medicine, Imperial College London, London, UK
| | - G A Bewick
- 1] Department of Investigative Medicine, Imperial College London, London, UK [2] Division of Diabetes & Nutritional Sciences, King's College London, London, UK
| | - J V Gardiner
- Department of Investigative Medicine, Imperial College London, London, UK
| | - A Lehmann
- 1] AstraZeneca R&D, Mölndal, Sweden [2] NextRx, Gothenburg, Sweden
| | - N M Martin
- Department of Investigative Medicine, Imperial College London, London, UK
| | - M A Ghatei
- Department of Investigative Medicine, Imperial College London, London, UK
| | - S R Bloom
- Department of Investigative Medicine, Imperial College London, London, UK
| | - K G Murphy
- Department of Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
15
|
Rønnekleiv OK, Fang Y, Zhang C, Nestor CC, Mao P, Kelly MJ. Research resource: Gene profiling of G protein-coupled receptors in the arcuate nucleus of the female. Mol Endocrinol 2014; 28:1362-80. [PMID: 24933249 PMCID: PMC4116592 DOI: 10.1210/me.2014-1103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The hypothalamic arcuate nucleus controls many critical homeostatic functions including energy homeostasis, reproduction, and motivated behavior. Although G protein-coupled receptors (GPCRs) are involved in the regulation of these functions, relatively few of the GPCRs have been identified specifically within the arcuate nucleus. Here, using TaqMan low-density arrays we quantified the mRNA expression of nonolfactory GPCRs in mouse arcuate nucleus. An unprecedented number of GPCRs (total of 292) were found to be expressed, of which 183 were known and 109 were orphan GPCRs. The known GPCR genes expressed were classified into several functional clusters including hormone/neurotransmitter, growth factor, angiogenesis and vasoactivity, inflammation and immune system, and lipid messenger receptors. The plethora of orphan genes expressed in the arcuate nucleus were classified into 5 structure-related classes including class A (rhodopsin-like), class B (adhesion), class C (other GPCRs), nonsignaling 7-transmembrane chemokine-binding proteins, and other 7-transmembrane proteins. Therefore, for the first time, we provide a quantitative estimate of the numerous GPCRs expressed in the hypothalamic arcuate nucleus. Finally, as proof of principle, we documented the expression and function of one of these receptor genes, the glucagon-like peptide 1 receptor (Glp1r), which was highly expressed in the arcuate nucleus. Single-cell RT-PCR revealed that Glp1r mRNA was localized in proopiomelanocortin neurons, and using whole-cell recording we found that the glucagon-like peptide 1-selective agonist exendin-4 robustly excited proopiomelanocortin neurons. Thus, the quantitative GPCR data emphasize the complexity of the hypothalamic arcuate nucleus and furthermore provide a valuable resource for future neuroendocrine/endocrine-related experiments.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Physiology and Pharmacology (O.K.R., Y.F., C.Z., C.CN., P.M., M.J.K.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (O.K.R., P.M., M.J.K.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | | | | | | | | | | |
Collapse
|
16
|
Wang XY, Guo YQ, Zhang WJ, Shao XX, Liu YL, Xu ZG, Guo ZY. The electrostatic interactions of relaxin-3 with receptor RXFP4 and the influence of its B-chain C-terminal conformation. FEBS J 2014; 281:2927-36. [PMID: 24802387 DOI: 10.1111/febs.12830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Xin-Yi Wang
- Institute of Protein Research; College of Life Sciences and Technology; Tongji University; Shanghai China
- Central Laboratory; Shanghai East Hospital; Tongji University School of Medicine; China
| | - Yu-Qi Guo
- Institute of Protein Research; College of Life Sciences and Technology; Tongji University; Shanghai China
| | - Wei-Jie Zhang
- Institute of Protein Research; College of Life Sciences and Technology; Tongji University; Shanghai China
| | - Xiao-Xia Shao
- Institute of Protein Research; College of Life Sciences and Technology; Tongji University; Shanghai China
| | - Ya-Li Liu
- Central Laboratory; Shanghai East Hospital; Tongji University School of Medicine; China
| | - Zeng-Guang Xu
- Central Laboratory; Shanghai East Hospital; Tongji University School of Medicine; China
| | - Zhan-Yun Guo
- Institute of Protein Research; College of Life Sciences and Technology; Tongji University; Shanghai China
- Central Laboratory; Shanghai East Hospital; Tongji University School of Medicine; China
| |
Collapse
|
17
|
McGowan BM, Minnion JS, Murphy KG, Roy D, Stanley SA, Dhillo WS, Gardiner JV, Ghatei MA, Bloom SR. Relaxin-3 stimulates the neuro-endocrine stress axis via corticotrophin-releasing hormone. J Endocrinol 2014; 221:337-46. [PMID: 24578294 DOI: 10.1530/joe-13-0603] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Relaxin-3 is a member of the insulin superfamily. It is expressed in the nucleus incertus of the brainstem, which has projections to the hypothalamus. Relaxin-3 binds with high affinity to RXFP1 and RXFP3. RXFP3 is expressed within the hypothalamic paraventricular nucleus (PVN), an area central to the stress response. The physiological function of relaxin-3 is unknown but previous work suggests a role in appetite control, stimulation of the hypothalamic-pituitary-gonadal axis and stress. Central administration of relaxin-3 induces c-fos expression in the PVN and increases plasma ACTH levels in rats. The aim of this study was to investigate the effect of central administration of human relaxin-3 (H3) on the hypothalamic-pituitary-adrenal (HPA) axis in male rodents in vivo and in vitro. Intracerebroventricular (i.c.v) administration of H3 (5 nmol) significantly increased plasma corticosterone at 30 min following injection compared with vehicle. Intra-PVN administration of H3 (1.8-1620 pmol) significantly increased plasma ACTH at 1620 pmol H3 and corticosterone at 180-1620 pmol H3 at 30 min following injection compared with vehicle. The stress hormone prolactin was also significantly raised at 15 min post-injection compared with vehicle. Treatment of hypothalamic explants with H3 (10-1000 nM) stimulated the release of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), but H3 had no effect on the release of ACTH from in vitro pituitary fragments. These results suggest that relaxin-3 may regulate the HPA axis, via hypothalamic CRH and AVP neurons. Relaxin-3 may act as a central signal linking nutritional status, reproductive function and stress.
Collapse
Affiliation(s)
- B M McGowan
- Department of Diabetes and Endocrinology, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, London Section of Investigative Medicine, Department of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Campus, Du Cane Road, London W12 ONN, UK Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Gundlach AL. Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav Brain Res 2014; 268:117-26. [PMID: 24681162 DOI: 10.1016/j.bbr.2014.03.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/10/2023]
Abstract
Behavioural arousal in mammals is regulated by various interacting central monoamine- and peptide-neurotransmitter/receptor systems, which function to maintain awake, alert and active states required for performance of goal-directed activities essential for survival, including food seeking. Existing anatomical and functional evidence suggests the highly-conserved neuropeptide, relaxin-3, which signals via its cognate Gi/o-protein coupled receptor, RXFP3, contributes to behavioural arousal and feeding behaviour in rodents. In studies to investigate this possibility further, adult male C57BL/6J mice were treated with the selective RXFP3 antagonist peptides, R3(B1-22)R/I5(A) and R3(B1-22)R, and motivated food seeking and consumption was assessed as a reflective output of behavioural arousal. Compared to vehicle treatment, intracerebroventricular (icv) injection of RXFP3 antagonists reduced: (i) food anticipatory activity before meal time during food restriction; (ii) consumption of highly palatable food; (iii) consumption of regular chow during the initial dark phase, and; (iv) consumption of regular chow after mild (∼4-h) food deprivation. Effects were not due to sedation and appeared to be specifically mediated via antagonism of relaxin-3/RXFP3 signalling, as RXFP3 antagonist treatment did not alter locomotor activity in wild-type mice or reduce palatable food intake in relaxin-3 deficient (knock-out) mice. Notably, in contrast to similar studies in the rat, icv injection of RXFP3 agonists and infusion into the paraventricular hypothalamic nucleus did not increase food consumption in mice, suggesting species differences in relaxin-3/RXFP3-related signalling networks. Together, our data provide evidence that endogenous relaxin-3/RXFP3 signalling promotes motivated food seeking and consumption, and in light of the established biological and translational importance of other arousal systems, relaxin-3/RXFP3 networks warrant further experimental investigation.
Collapse
Affiliation(s)
- Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew W Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - David Hawkes
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammad Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Smith CM, Walker AW, Hosken IT, Chua BE, Zhang C, Haidar M, Gundlach AL. Relaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases? Front Pharmacol 2014; 5:46. [PMID: 24711793 PMCID: PMC3968750 DOI: 10.3389/fphar.2014.00046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Animal and clinical studies of gene-environment interactions have helped elucidate the mechanisms involved in the pathophysiology of several mental illnesses including anxiety, depression, and schizophrenia; and have led to the discovery of improved treatments. The study of neuropeptides and their receptors is a parallel frontier of neuropsychopharmacology research and has revealed the involvement of several peptide systems in mental illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which is highly responsive to environmental stimuli, particularly neurogenic stressors, and in turn modulates behavioral responses to these stressors and alters key neural processes, including hippocampal theta rhythm and associated learning and memory. Here, we review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt to highlight aspects that are relevant and/or potentially translatable to the etiology and treatment of major depression and anxiety. Evidence pertinent to autism spectrum and metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also nominate some key experimental studies required to better establish the therapeutic potential of this intriguing neuromodulatory signaling system, including an examination of the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common neural substrates and circuitry that are identified as dysfunctional in these debilitating brain diseases.
Collapse
Affiliation(s)
- Craig M Smith
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew W Walker
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Ihaia T Hosken
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Berenice E Chua
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Cary Zhang
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Mouna Haidar
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew L Gundlach
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne VIC, Australia
| |
Collapse
|
20
|
Zhang WJ, Wang XY, Guo YQ, Luo X, Gao XJ, Shao XX, Liu YL, Xu ZG, Guo ZY. The highly conserved negatively charged Glu141 and Asp145 of the G-protein-coupled receptor RXFP3 interact with the highly conserved positively charged arginine residues of relaxin-3. Amino Acids 2014; 46:1393-402. [DOI: 10.1007/s00726-014-1705-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
21
|
Chan LJ, Smith CM, Chua BE, Lin F, Bathgate RAD, Separovic F, Gundlach AL, Hossain MA, Wade JD. Synthesis of fluorescent analogs of relaxin family peptides and their preliminary in vitro and in vivo characterization. Front Chem 2013; 1:30. [PMID: 24790958 PMCID: PMC3982560 DOI: 10.3389/fchem.2013.00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022] Open
Abstract
Relaxin, a heterodimeric polypeptide hormone, is a key regulator of collagen metabolism and multiple vascular control pathways in humans and rodents. Its actions are mediated via its cognate G-protein-coupled receptor, RXFP1 although it also "pharmacologically" activates RXFP2, the receptor for the related, insulin-like peptide 3 (INSL3), which has specific actions on reproduction and bone metabolism. Therefore, experimental tools to facilitate insights into the distinct biological actions of relaxin and INSL3 are required, particularly for studies of tissues containing both RXFP1 and RXFP2. Here, we chemically functionalized human (H2) relaxin, the RXFP1-selective relaxin analog H2:A(4-24)(F23A), and INSL3 to accommodate a fluorophore without marked reduction in binding or activation propensity. Chemical synthesis of the two chains for each peptide was followed by sequential regioselective formation of their three disulfide bonds. Click chemistry conjugation of Cy5.5 at the B-chain N-terminus, with conservation of the disulfide bonds, yielded analogs displaying appropriate selective binding affinity and ability to activate RXFP1 and/or RXFP2 in vitro. The in vivo biological activity of Cy5.5-H2 relaxin and Cy5.5-H2:A(4-24)(F23A) was confirmed in mice, as acute intracerebroventricular (icv) infusion of these peptides (but not Cy5.5-INSL3) stimulated water drinking, an established behavioral response elicited by central RXFP1 activation. The central distribution of Cy5.5-conjugated peptides was examined in mice killed 30 min after infusion, revealing higher fluorescence within brain tissue near-adjacent to the cerebral ventricle walls relative to deeper brain areas. Production of fluorophore-conjugated relaxin family peptides will facilitate future pharmacological studies to probe the function of H2 relaxin/RXFP1 and INSL3/RXFP2 signaling in vivo while tracking their distribution following central or peripheral administration.
Collapse
Affiliation(s)
- Linda J Chan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; School of Chemistry, The University of Melbourne VIC, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Feng Lin
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Department of Biochemistry and Molecular Biology, The University of Melbourne VIC, Australia
| | | | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; School of Chemistry, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; School of Chemistry, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| |
Collapse
|
22
|
Ganella DE, Ma S, Gundlach AL. Relaxin-3/RXFP3 Signaling and Neuroendocrine Function - A Perspective on Extrinsic Hypothalamic Control. Front Endocrinol (Lausanne) 2013; 4:128. [PMID: 24065955 PMCID: PMC3776160 DOI: 10.3389/fendo.2013.00128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/02/2013] [Indexed: 01/08/2023] Open
Abstract
Complex neural circuits within the hypothalamus that govern essential autonomic processes and associated behaviors signal using amino acid and monoamine transmitters and a variety of neuropeptide (hormone) modulators, often via G-protein coupled receptors (GPCRs) and associated cellular pathways. Relaxin-3 is a recently identified neuropeptide that is highly conserved throughout evolution. Neurons expressing relaxin-3 are located in the brainstem, but broadly innervate the entire limbic system including the hypothalamus. Extensive anatomical data in rodents and non-human primate, and recent regulatory and functional data, suggest relaxin-3 signaling via its cognate GPCR, RXFP3, has a broad range of effects on neuroendocrine function associated with stress responses, feeding and metabolism, motivation and reward, and possibly sexual behavior and reproduction. Therefore, this article aims to highlight the growing appreciation of the relaxin-3/RXFP3 system as an important "extrinsic" regulator of the neuroendocrine axis by reviewing its neuroanatomy and its putative roles in arousal-, stress-, and feeding-related behaviors and links to associated neural substrates and signaling networks. Current evidence identifies RXFP3 as a potential therapeutic target for treatment of neuroendocrine disorders and related behavioral dysfunction.
Collapse
Affiliation(s)
- Despina E. Ganella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Rajkumar R, See LKY, Dawe GS. Acute antipsychotic treatments induce distinct c-Fos expression patterns in appetite-related neuronal structures of the rat brain. Brain Res 2013; 1508:34-43. [DOI: 10.1016/j.brainres.2013.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/23/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
24
|
Chemical synthesis and orexigenic activity of rat/mouse relaxin-3. Amino Acids 2013; 44:1529-36. [PMID: 23456488 DOI: 10.1007/s00726-013-1478-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The insulin-like peptide, relaxin-3 was first identified just a decade ago via a genomic database search and is now recognized to be a key neuropeptide with several roles including the regulation of arousal, stress responses and neuroendocrine homeostasis. It also has significant potential as a drug to treat stress and obesity. Its actions are mediated via its cognate G protein-coupled receptor, RXFP3, which is found in abundant numbers in the brain. However, much remains to be determined with respect to the mechanism of neurological action of this peptide. Consequently, the chemical synthesis of the rat and mouse (which share identical primary structures) two-chain, three disulfide peptide was undertaken and the resulting peptide subjected to detailed in vitro and in vivo assay. Use of efficient solid-phase synthesis methods provided the two regioselectively S-protected A- and B-chains which were readily combined via sequential disulfide bond formation. The synthetic rat/mouse relaxin-3 was obtained in high purity and good overall yield. It demonstrated potent orexigenic activity in rats in that central intracerebroventricular infusion led to significantly increased food intake and water drinking.
Collapse
|
25
|
Ghattas MH, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Relaxin-3 is associated with metabolic syndrome and its component traits in women. Clin Biochem 2013; 46:45-8. [DOI: 10.1016/j.clinbiochem.2012.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 09/16/2012] [Indexed: 11/28/2022]
|
26
|
Ganella DE, Callander GE, Ma S, Bye CR, Gundlach AL, Bathgate RAD. Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther 2012; 20:703-16. [PMID: 23135160 DOI: 10.1038/gt.2012.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/30/2012] [Accepted: 09/20/2012] [Indexed: 11/09/2022]
Abstract
Relaxin-3 is a neuropeptide that is abundantly expressed by discrete brainstem neuron populations that broadly innervate forebrain areas rich in the relaxin-3 G-protein-coupled-receptor, RXFP3. Acute and subchronic central administration of synthetic relaxin-3 or an RXFP3-selective agonist peptide, R3/I5, increase feeding and body weight in rats. Intrahypothalamic injection of relaxin-3 also increases feeding. In this study, we developed a recombinant adeno-associated virus 1/2 (rAAV1/2) vector that drives expression and constitutive secretion of bioactive R3/I5 and assessed the effect of intrahypothalamic injections on daily food intake and body weight gain in adult male rats over 8 weeks. In vitro testing revealed that the vector rAAV1/2-fibronectin (FIB)-R3/I5 directs the constitutive secretion of bioactive R3/I5 peptide. Bilateral injection of rAAV1/2-FIB-R3/I5 vector into the paraventricular nucleus produced an increase in daily food intake and body weight gain (P<0.01, ~23%, respectively), relative to control treatment. In a separate cohort of rats, quantitative polymerase chain reaction analysis of hypothalamic mRNA revealed strong expression of R3/I5 transgene at 3 months post-rAAV1/2-FIB-R3/I5 infusion. Levels of mRNA transcripts for the relaxin-3 receptor RXFP3, the hypothalamic 'feeding' peptides neuropeptide Y, AgRP and POMC, and the reproductive hormone, GnRH, were all similar to control, whereas vasopressin and oxytocin (OT) mRNA levels were reduced by ~25% (P=0.051) and ~50% (P<0.005), respectively, in rAAV1/2-FIB-R3/I5-treated rats (at 12 weeks, n=9/8 rats per group). These data demonstrate for the first time that R3/I5 is effective in modulating feeding in the rat by chronic hypothalamic RXFP3 activation and suggest a potential underlying mechanism involving altered OT signalling. Importantly, there was no desensitization of the feeding response over the treatment period and no apparent deleterious health effects, indicating that targeting the relaxin-3-RXFP3 system may be an effective long-term therapy for eating disorders.
Collapse
Affiliation(s)
- D E Ganella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Olucha-Bordonau FE, Otero-García M, Sánchez-Pérez AM, Núñez A, Ma S, Gundlach AL. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol 2012; 520:1903-39. [PMID: 22134882 DOI: 10.1002/cne.23018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tracing studies have revealed that the rat medial and lateral septum are targeted by ascending projections from the nucleus incertus, a population of tegmental GABA neurons. These neurons express the relaxin-family peptide, relaxin-3, and pharmacological modulation of relaxin-3 receptors in medial septum alters hippocampal theta rhythm and spatial memory. In an effort to better understand the basis of these interactions, we have characterized the distribution of relaxin-3 fibers/terminals in relation to different septal neuron populations identified using established protein markers. Dense relaxin-3 fiber plexuses were observed in regions of medial septum containing hippocampal-projecting choline acetyltransferase (ChAT)-, neuronal nitric oxide synthase (nNOS)-, and parvalbumin (PV)-positive neurons. In lateral septum (LS), relaxin-3 fibers were concentrated in the ventrolateral nucleus of rostral LS and the ventral nucleus of caudal LS, with sparse labeling in the dorsolateral and medial nuclei of rostral LS, dorsal nucleus of caudal LS, and ventral portion nuclei. Relaxin-3 fibers were also observed in the septofimbrial and triangular septal nuclei. In the medial septum, we observed relaxin-3-immunoreactive contacts with ChAT-, PV-, and glutamate decarboxylase-67-positive neurons that projected to hippocampus, and contacts between relaxin-3 terminals and calbindin- and calretinin-positive neurons. Relaxin-3 colocalized with synaptophysin in nerve terminals in all septal areas, and ultrastructural analysis revealed these terminals were symmetrical and contacted spines, somata, dendritic shafts, and occasionally other axonal terminals. These data predict that this GABA/peptidergic projection modulates septohippocampal activity and hippocampal theta rhythm related to exploratory navigation, defensive and ingestive behaviors, and responses to neurogenic stressors.
Collapse
Affiliation(s)
- Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Callander GE, Ma S, Ganella DE, Wimmer VC, Gundlach AL, Thomas WG, Bathgate RAD. Silencing relaxin-3 in nucleus incertus of adult rodents: a viral vector-based approach to investigate neuropeptide function. PLoS One 2012; 7:e42300. [PMID: 22876314 PMCID: PMC3410922 DOI: 10.1371/journal.pone.0042300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022] Open
Abstract
Relaxin-3, the most recently identified member of the relaxin peptide family, is produced by GABAergic projection neurons in the nucleus incertus (NI), in the pontine periventricular gray. Previous studies suggest relaxin-3 is a modulator of stress responses, metabolism, arousal and behavioural activation. Knockout mice and peptide infusions in vivo have significantly contributed to understanding the function of this conserved neuropeptide. Yet, a definitive role remains elusive due to discrepancies between models and a propensity to investigate pharmacological effects over endogenous function. To investigate the endogenous function of relaxin-3, we generated a recombinant adeno-associated viral (rAAV) vector expressing microRNA against relaxin-3 and validated its use to knock down relaxin-3 in adult rats. Bilateral stereotaxic infusion of rAAV1/2 EmGFP miR499 into the NI resulted in significant reductions in relaxin-3 expression as demonstrated by ablation of relaxin-3-like immunoreactivity at 3, 6 and 9 weeks and by qRT-PCR at 12 weeks. Neuronal health was unaffected as transduced neurons in all groups retained expression of NeuN and stained for Nissl bodies. Importantly, qRT-PCR confirmed that relaxin-3 receptor expression levels were not altered to compensate for reduced relaxin-3. Behavioural experiments confirmed no detrimental effects on general health or well-being and therefore several behavioural modalities previously associated with relaxin-3 function were investigated. The validation of this viral vector-based model provides a valuable alternative to existing in vivo approaches and promotes a shift towards more physiologically relevant investigations of endogenous neuropeptide function.
Collapse
Affiliation(s)
- Gabrielle E. Callander
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- * E-mail: (GEC); (RADB)
| | - Sherie Ma
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- Department of Medicine (Austin Health), The University of Melbourne, Victoria, Australia
| | - Despina E. Ganella
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
| | - Verena C. Wimmer
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
| | - Andrew L. Gundlach
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| | - Walter G. Thomas
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- * E-mail: (GEC); (RADB)
| |
Collapse
|
29
|
Design, recombinant expression and convenient A-chain N-terminal europium-labelling of a fully active human relaxin-3 analogue. FEBS J 2012; 279:1505-12. [DOI: 10.1111/j.1742-4658.2012.08550.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Shabanpoor F, Akhter Hossain M, Ryan PJ, Belgi A, Layfield S, Kocan M, Zhang S, Samuel CS, Gundlach AL, Bathgate RAD, Separovic F, Wade JD. Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1. J Med Chem 2012; 55:1671-81. [PMID: 22257012 DOI: 10.1021/jm201505p] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Relaxin-3 is a neuropeptide that is implicated in the regulation of stress responses and memory. The elucidation of its precise physiological role(s) has, however, been hampered by cross-activation of the relaxin-2 receptor, RXFP1, in the brain. The current study undertook to develop analogues of human relaxin-3 (H3 relaxin) that can selectively bind and activate its receptor, RXFP3. We developed a high-affinity selective agonist (analogue 2) by removal of the intra-A chain disulfide bond and deletion of 10 residues from the N terminus of the A chain. Further truncation of this analogue from the C terminus of the B chain to Cys(B22) and addition of an Arg(B23) led to a high-affinity, RXFP3-selective, competitive antagonist (analogue 3). Central administration of analogue 2 in rats increased food intake, which was blocked by prior coadministration of analogue 3. These novel RXFP3-selective peptides represent valuable pharmacological tools to study the physiological roles of H3 relaxin/RXFP3 systems in the brain and important leads for the development of novel compounds for the treatment of affective and cognitive disorders.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- Florey Neuroscience Institutes, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies. Amino Acids 2011; 43:983-92. [DOI: 10.1007/s00726-011-1164-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
|
32
|
Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. Relaxin-3 systems in the brain—The first 10 years. J Chem Neuroanat 2011; 42:262-75. [DOI: 10.1016/j.jchemneu.2011.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/24/2011] [Accepted: 05/29/2011] [Indexed: 12/25/2022]
|
33
|
Smith CM, Hosken IT, Sutton SW, Lawrence AJ, Gundlach AL. Relaxin-3 null mutation mice display a circadian hypoactivity phenotype. GENES BRAIN AND BEHAVIOR 2011; 11:94-104. [PMID: 21899720 DOI: 10.1111/j.1601-183x.2011.00730.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterizing the neurocircuits and neurotransmitters that underlie arousal and circadian sleep/wake patterns is an important goal of neuroscience research, with potential implications for understanding human mental illnesses, such as major depression. Recent anatomical and functional studies suggest that relaxin-3 neurons and their ascending projections contribute to these functions via actions on key cortical, limbic and hypothalamic circuits. This study reports the behavioral phenotype of C57BL/6J backcrossed relaxin-3 knockout (KO) mice. Cohorts of adult, male and female relaxin-3 KO and wild-type (WT) littermate mice were subjected to a battery of behavioral tests to assess sensorimotor function and complex behavior. No overt deficits were detected in motor-coordination, spatial memory, sensorimotor gating, anxiety-like behavior or locomotor behavior in novel environments; and no marked genotype differences were observed in response to a chronic stress protocol. Notably however, compared to WT mice, relaxin-3 KO mice displayed robust hypoactivity during the dark/active phase when provided with free home-cage access to voluntary running wheels. This circadian hypoactivity was reflected by reduced time spent and distance traveled on running wheels, coupled with an increase in the time spent immobile, possibly reflecting increased sleeping. Overall, these studies support a role for relaxin-3 signaling in the control of arousal and sleep/wakefulness, and identify the relaxin-3 KO mouse as a useful model to study this role further.
Collapse
Affiliation(s)
- C M Smith
- Howard Florey Institute, Florey Neuroscience Institutes, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
34
|
Watanabe Y, Tsujimura A, Takao K, Nishi K, Ito Y, Yasuhara Y, Nakatomi Y, Yokoyama C, Fukui K, Miyakawa T, Tanaka M. Relaxin-3-deficient mice showed slight alteration in anxiety-related behavior. Front Behav Neurosci 2011; 5:50. [PMID: 21887138 PMCID: PMC3156976 DOI: 10.3389/fnbeh.2011.00050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/01/2011] [Indexed: 11/13/2022] Open
Abstract
Relaxin-3 is a neuropeptide belonging to the relaxin/insulin superfamily. Studies using rodents have revealed that relaxin-3 is predominantly expressed in neurons in the nucleus incertus (NI) of the pons, the axons of which project to forebrain regions including the hypothalamus. There is evidence that relaxin-3 is involved in several functions, including food intake and stress responses. In the present study, we generated relaxin-3 gene knockout (KO) mice and examined them using a range of behavioral tests of sensory/motor functions and emotion-related behaviors. The results revealed that relaxin-3 KO mice exhibited normal growth and appearance, and were generally indistinguishable from wild genotype littermates. There was no difference in bodyweight among genotypes until at least 28 weeks after birth. In addition, there were no significant differences between wild-type and KO mice in locomotor activity, social interaction, hot plate test performance, fear conditioning, depression-like behavior, and Y-maze test performance. However, in the elevated plus maze test, KO mice exhibited a robust increase in the tendency to enter open arms, although they exhibited normal performance in a light/dark transition test and showed no difference from wild-type mice in the time spent in central area in the open field test. On the other hand, a significant increase in the acoustic startle response was observed in KO mice. These results indicate that relaxin-3 is slightly involved in the anxiety-related behavior.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RAD, Sutton SW, Gundlach AL. Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol 2010; 518:4016-45. [PMID: 20737598 DOI: 10.1002/cne.22442] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Relaxin-3 (RLN3) and its native receptor, relaxin family peptide 3 receptor (RXFP3), constitute a newly identified neuropeptide system enriched in mammalian brain. The distribution of RLN3/RXFP3 networks in rat brain and recent experimental studies suggest a role for this system in modulation of arousal, stress, metabolism, and cognition. In order to facilitate exploration of the biology of RLN3/RXFP3 in complementary murine models, this study mapped the neuroanatomical distribution of the RLN3/RXFP3 system in mouse brain. Adult, male wildtype and RLN3 knock-out (KO)/LacZ knock-in (KI) mice were used to map the central distribution of RLN3 gene expression and RLN3-like immunoreactivity (-LI). The distribution of RXFP3 mRNA and protein was determined using [(35)S]-oligonucleotide probes and a radiolabeled RXFP3-selective agonist ([(125)I]-R3/I5), respectively. High densities of neurons expressing RLN3 mRNA, RLN3-associated beta-galactosidase activity and RLN3-LI were detected in the nucleus incertus (or nucleus O), while smaller populations of positive neurons were observed in the pontine raphé, the periaqueductal gray and a region adjacent to the lateral substantia nigra. RLN3-LI was observed in nerve fibers/terminals in nucleus incertus and broadly throughout the pons, midbrain, hypothalamus, thalamus, septum, hippocampus, and neocortex, but was absent in RLN3 KO/LacZ KI mice. This RLN3 neural network overlapped the regional distribution of RXFP3 mRNA and [(125)I]-R3/I5 binding sites in wildtype and RLN3 KO/LacZ KI mice. These findings provide further evidence for the conserved nature of RLN3/RXFP3 systems in mammalian brain and the ability of RLN3/RXFP3 signaling to modulate "behavioral state" and an array of circuits involved in arousal, stress responses, affective state, and cognition.
Collapse
Affiliation(s)
- Craig M Smith
- Florey Neuroscience Institutes, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tanaka M. Relaxin-3/insulin-like peptide 7, a neuropeptide involved in the stress response and food intake. FEBS J 2010; 277:4990-7. [DOI: 10.1111/j.1742-4658.2010.07931.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Relaxin-3/INSL7 Regulates the Stress-response System in the Rat Hypothalamus. J Mol Neurosci 2010; 43:169-74. [DOI: 10.1007/s12031-010-9468-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/27/2010] [Indexed: 11/25/2022]
|
38
|
Luo X, Liu YL, Layfield S, Shao XX, Bathgate RAD, Wade JD, Guo ZY. A simple approach for the preparation of mature human relaxin-3. Peptides 2010; 31:2083-8. [PMID: 20688116 DOI: 10.1016/j.peptides.2010.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/14/2010] [Accepted: 07/14/2010] [Indexed: 11/21/2022]
Abstract
Relaxin-3 (also known as INSL7) is the most recently identified member of the insulin-like family. It is predominantly expressed in the nucleus incertus of the brain and involved in the control of stress response, food intake, and reproduction. In the present work, we have established a simple approach for the preparation of the mature human relaxin-3 peptide. We first designed and recombinantly expressed a single-chain relaxin-3 precursor in E. coli cells. After purification by immobilized metal ion affinity chromatography, refolding in vitro through disulfide reshuffling, and digestion by endoproteinase Asp-N, mature human relaxin-3 was obtained in high yield and at low cost. Peptide mapping and circular dichroism spectroscopy studies suggested that the recombinant relaxin-3 adopted an insulin-like fold with the expected disulfide linkages. The recombinant mature relaxin-3 was fully active in both RXFP3 binding and activation assays. The activity of the single-chain precursor was very low, suggesting that a free C-terminus of the B-chain is necessary for receptor-binding and activation of relaxin-3. Our present work provides a highly efficient approach for the preparation of relaxin-3 as well as its analogues for functional and structural analyses.
Collapse
Affiliation(s)
- Xiao Luo
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Callander GE, Bathgate RAD. Relaxin family peptide systems and the central nervous system. Cell Mol Life Sci 2010; 67:2327-41. [PMID: 20213277 PMCID: PMC11115692 DOI: 10.1007/s00018-010-0304-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/13/2010] [Accepted: 02/03/2010] [Indexed: 11/24/2022]
Abstract
Since its discovery in the 1920s, relaxin has enjoyed a reputation as a peptide hormone of pregnancy. However, relaxin and other relaxin family peptides are now associated with numerous non-reproductive physiologies and disease states. The new millennium bought with it the sequence of the human genome and subsequently new directions for relaxin research. In 2002, the ancestral relaxin gene RLN3 was identified from genome databases. The relaxin-3 peptide is highly expressed in a small region of the brain and in species from teleost to primates and has both conserved sequence and sites of expression. Combined with the discovery of the relaxin family peptide receptors, interest in the role of the relaxin family peptides in the central nervous system has been reignited. This review explores the relaxin family peptides that are expressed in or act upon the brain, the receptors that mediate their actions, and what is currently known of their functions.
Collapse
Affiliation(s)
- G. E. Callander
- Florey Neuroscience Institutes and Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - R. A. D. Bathgate
- Florey Neuroscience Institutes and Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
40
|
Otsubo H, Onaka T, Suzuki H, Katoh A, Ohbuchi T, Todoroki M, Kobayashi M, Fujihara H, Yokoyama T, Matsumoto T, Ueta Y. Centrally administered relaxin-3 induces Fos expression in the osmosensitive areas in rat brain and facilitates water intake. Peptides 2010; 31:1124-30. [PMID: 20214940 DOI: 10.1016/j.peptides.2010.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/29/2022]
Abstract
The expression of the relaxin-3 gene, detected as a new member of the insulin superfamily using human genomic databases, is abundantly present in the brain and testis. Intracerebroventricularly (icv) administered relaxin-3 stimulates food intake. Icv administered relaxin (identical to relaxin-2 in humans) affects the secretion of vasopressin and drinking behavior. Relaxin-3 partly binds relaxin family peptide receptor 1, which is a specific receptor to relaxin. Thus, we hypothesized that relaxin-3 would have physiological effects in the body fluid balance. However, the effects of relaxin-3 in the body fluid balance remain unknown. In the present study, we revealed that icv administered relaxin-3 induced dense Fos-like immunoreactivity (Fos-LI) in the rat hypothalamus and circumventricular organs including the organum vasculosum of the lamina terminalis, the median preoptic nucleus, supraoptic nucleus (SON), the subfornical organ (SFO) and the paraventricular nucleus (PVN), that are related to the central regulation of body fluid balance. Icv administered relaxin-3 (54, 180 and 540 pmol/rat) also induced a significant increase in c-fos gene expression in a dose-dependent manner in the SON, SFO and PVN. Further, icv administered relaxin-3 (180 pmol/rat) significantly increased water intake, and the effect was as strong as that of relaxin-2 (180 pmol/rat). These results suggest that icv administered relaxin-3 activates osmosensitive areas in the brain and plays an important role in the regulation of body fluid balance.
Collapse
Affiliation(s)
- Hiroki Otsubo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
van der Westhuizen ET, Christopoulos A, Sexton PM, Wade JD, Summers RJ. H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3). Mol Pharmacol 2010; 77:759-72. [PMID: 20159943 DOI: 10.1124/mol.109.061432] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Relaxin family peptide 3 receptors (RXFP3) are activated by H3-relaxin to inhibit forskolin-stimulated cAMP accumulation and stimulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. In this study, we sought to identify novel signaling pathways coupled to RXFP3 and to investigate whether other members of the relaxin peptide family activated these pathways. Two patterns of signaling were observed in RXFP3-expressing Chinese hamster ovary (CHO)-K1 and human embryonic kidney (HEK)-293 cells (CHO-RXFP3 and HEK-RXFP3) and murine septal neuron SN56 cell lines: 1) strong inhibition of forskolin-stimulated cAMP accumulation, ERK1/2 activation and nuclear factor (NF)-kappaB reporter gene activation in cells stimulated with H3 relaxin, with weaker activity observed for H2 relaxin, porcine relaxin, or insulin-like peptide (INSL) 3 and 2) strong stimulation of activator protein (AP)-1 reporter genes by H2 relaxin, with weaker activation observed with H3 or porcine relaxin. Two distinct ligand binding sites were identified on RXFP3-expressing cells using two different radioligands. (125)I-INSL5 A-chain/relaxin-3 B-chain chimera bound with high affinity to the RXFP3-expressing cells with competition by H3 relaxin or a H3 relaxin B-chain dimeric peptide, consistent with previous reports. Binding studies with (125)I-H2 relaxin revealed a distinct binding site with potent competition observed with H2 relaxin, H3 relaxin, or INSL3 and weaker competition with porcine relaxin. Thus H3 relaxin potently activates all signaling pathways coupled to RXFP3, whereas H2 relaxin is an AP-1-biased ligand relative to H3 relaxin.
Collapse
|
42
|
C-peptide of preproinsulin-like peptide 7: localization in the rat brain and activity in vitro. Neuroscience 2009; 159:492-500. [PMID: 19373968 DOI: 10.1016/j.neuroscience.2009.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With the use of a rabbit polyclonal antiserum against a conserved region (54-118) of C-peptide of human preproinsulin-like peptide 7, referred to herein as C-INSL7, neurons expressing C-INSL7-immunoreactivity (irC-INSL7) were detected in the pontine nucleus incertus, the lateral or ventrolateral periaqueductal gray, dorsal raphe nuclei and dorsal substantia nigra. Immunoreactive fibers were present in numerous forebrain areas, with a high density in the septum, hypothalamus and thalamus. Pre-absorption of C-INSL7 antiserum with the peptide C-INSL7 (1 microg/ml), but not the insulin-like peptide 7 (INSL7; 1 microg/ml), also known as relaxin 3, abolished the immunoreactivity. Optical imaging with a voltage-sensitive dye bis-[1,3-dibutylbarbituric acid] trimethineoxonol (DiSBAC4(3)) showed that C-INSL7 (100 nM) depolarized or hyperpolarized a small population of cultured rat hypothalamic neurons studied. Ratiometric imaging studies with calcium-sensitive dye fura-2 showed that C-INSL7 (10-1000 nM) produced a dose-dependent increase in cytosolic calcium concentrations [Ca2+]i in cultured hypothalamic neurons with two distinct patterns: (1) a sustained elevation lasting for minutes; and (2) a fast, transitory rise followed by oscillations. In a Ca2+-free Hanks' solution, C-INSL7 again elicited two types of calcium transients: (1) a fast, transitory increase not followed by a plateau phase, and (2) a transitory rise followed by oscillations. INSL7 (100 nM) elicited a depolarization or hyperpolarization in a small population of hypothalamic neurons, and an increase of [Ca2+]i with two patterns that were dissimilar from that of C-INSL7. [125I]C-INSL7 bindings to rat brain membranes were inhibited by C-INSL7 in a dose-dependent manner; the Kd and Bmax. values were 17.7 +/- 8.2 nM and 45.4 +/- 20.5 fmol/mg protein. INSL7 did not inhibit [125I]C-INSL7 binding to rat brain membranes, indicating that C-INSL7 and INSL7 bind to distinct binding sites. Collectively, our result raises the possibility that C-INSL7 acts as a signaling molecule independent from INSL7 in the rat CNS.
Collapse
|
43
|
Smith CM, Lawrence AJ, Sutton SW, Gundlach AL. Behavioral Phenotyping of Mixed Background (129S5:B6) Relaxin-3 Knockout Mice. Ann N Y Acad Sci 2009; 1160:236-41. [DOI: 10.1111/j.1749-6632.2009.03953.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
McGowan BMC, Stanley SA, Ghatei MA, Bloom SR. Relaxin-3 and Its Role in Neuroendocrine Function. Ann N Y Acad Sci 2009; 1160:250-5. [DOI: 10.1111/j.1749-6632.2008.03796.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Dhillo WS, Bewick GA, White NE, Gardiner JV, Thompson EL, Bataveljic A, Murphy KG, Roy D, Patel NA, Scutt JN, Armstrong A, Ghatei MA, Bloom SR. The thyroid hormone derivative 3-iodothyronamine increases food intake in rodents. Diabetes Obes Metab 2009; 11:251-60. [PMID: 18671794 DOI: 10.1111/j.1463-1326.2008.00935.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The thyroid hormone derivative 3-iodothyronamine (T(1)AM), an endogenous biogenic amine, is a potent agonist of the G protein-coupled trace amine-associated receptor 1 (TAAR1). T(1)AM is present in rat brain, and TAAR1 is expressed in hypothalamic nuclei associated with the regulation of energy homeostasis. AIM The aim of this study was to determine the effects of T(1)AM on food intake in rodents. METHODS We determined the effect of (i) intraperitoneal (i.p.) administration of T(1)AM on food intake, oxygen consumption (VO(2)) and locomotor activity in mice; (ii) intracerebroventricular (ICV) injection of T(1)AM on food intake in male rats; (iii) c-fos expression following ventricular administration of T(1)AM in male rats; and (iv) direct injection of T(1)AM into the arcuate nucleus (ARC) of male rats on food intake. RESULTS (i) T(1)AM (4 nmol/kg) significantly increased food intake following i.p. injection in mice but had no effect on VO(2) or locomotor activity. (ii) ICV administration of T(1)AM (1.2 nmol/kg) significantly increased food intake in male rats. (iii) Intraventricular administration of T(1)AM significantly increased c-fos expression in the ARC of male rats. (iv) Direct administration of T(1)AM (0.12, 0.4 and 1.2 nmol/kg) into the ARC of male rats significantly increased food intake. CONCLUSION These data suggest that T(1)AM is an orexigenic factor that may act through the ARC to increase food intake in rodents.
Collapse
Affiliation(s)
- W S Dhillo
- Department of Investigative Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McGowan BM, Stanley SA, Donovan J, Thompson EL, Patterson M, Semjonous NM, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR. Relaxin-3 stimulates the hypothalamic-pituitary-gonadal axis. Am J Physiol Endocrinol Metab 2008; 295:E278-86. [PMID: 18492777 PMCID: PMC2519759 DOI: 10.1152/ajpendo.00028.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamus plays a key role in the regulation of both energy homeostasis and reproduction. Evidence suggests that relaxin-3, a recently discovered member of the insulin superfamily, is an orexigenic hypothalamic neuropeptide. Relaxin-3 is thought to act in the brain via the RXFP3 receptor, although the RXFP1 receptor may also play a role. Relaxin-3, RXFP3, and RXFP1 are present in the hypothalamic paraventricular nucleus, an area with a well-characterized role in the regulation of energy balance that also modulates reproductive function by providing inputs to hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Other members of the relaxin family are known to play a role in the regulation of reproduction. However, the effects of relaxin-3 on reproductive function are unknown. We studied the role of relaxin-3 in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Intracerebroventricular (5 nmol) and intraparaventricular (540-1,620 pmol) administration of human relaxin-3 (H3) in adult male Wistar rats significantly increased plasma luteinizing hormone (LH) 30 min postinjection. This effect was blocked by pretreatment with a peripheral GnRH antagonist. Central administration of human relaxin-2 showed no significant effect on plasma LH. H3 dose-dependently stimulated the release of GnRH from hypothalamic explants and GT(1)-7 cells, which express RXFP1 and RXFP3, but did not influence LH or follicle-stimulating hormone release from pituitary fragments in vitro. We have demonstrated a novel role for relaxin-3 in the stimulation of the HPG axis, putatively via hypothalamic GnRH neurons. Relaxin-3 may act as a central signal linking nutritional status and reproductive function.
Collapse
Affiliation(s)
- B M McGowan
- Dept. of Investigative Medicine, Division of Investigative Science, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|