1
|
Haque MA, Kim NK, Yeji R, Lee B, Ha JH, Lee YM, Kim JJ. Genomic prediction and genome-wide association studies of morphological traits and distraction index in Korean Sapsaree dogs. PLoS One 2024; 19:e0312583. [PMID: 39570887 PMCID: PMC11581321 DOI: 10.1371/journal.pone.0312583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024] Open
Abstract
The Korean Sapsaree dog is a native breed known for its distinctive appearance and historical significance in Korean culture. The accurate estimation of breeding values is essential for the genetic improvement and conservation of such indigenous breeds. This study aimed to evaluate the accuracy of breeding values for body height, body length, chest width, hair length, and distraction index (DI) traits in Korean Sapsaree dogs. Additionally, a genome-wide association study (GWAS) was conducted to identify the genomic regions and nearby candidate genes influencing these traits. Phenotypic data were collected from 378 Korean Sapsaree dogs, and of these, 234 individuals were genotyped using the 170k Illumina CanineHD BeadChip. The accuracy of genomic predictions was evaluated using the traditional BLUP method with phenotypes only on genotyped animals (PBLUP-G), another traditional BLUP method using a pedigree-based relationship matrix (PBLUP) for all individuals, a GBLUP method based on a genomic relationship matrix, and a single-step GBLUP (ssGBLUP) method. Heritability estimates for body height, body length, chest width, hair length, and DI were 0.45, 0.39, 0.32, 0.55, and 0.50, respectively. Accuracy values varied across methods, with ranges of 0.22 to 0.31 for PBLUP-G, 0.30 to 0.57 for PBLUP, 0.31 to 0.54 for GBLUP, and 0.39 to 0.67 for ssGBLUP. Through GWAS, 194 genome-wide significant SNPs associated with studied Sapsaree traits were identified. The selection of the most promising candidate genes was based on gene ontology (GO) terms and functions previously identified to influence traits. Notable genes included CCKAR and DCAF16 for body height, PDZRN3 and CNTN1 for body length, TRIM63, KDELR2, and SUPT3H for chest width, RSPO2, EIF3E, PKHD1L1, TRPS1, and EXT1 for hair length, and DDHD1, BMP4, SEMA3C, and FOXP1 for the DI. These findings suggest that significant QTL, combined with functional candidate genes, can be leveraged to improve the genetic quality of the Sapsaree population. This study provides a foundation for more effective breeding strategies aimed at preserving and enhancing the unique traits of this Korean dog breed.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Na-Kuang Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ryu Yeji
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bugeun Lee
- Sapsaree Breeding Research Institute, Gyeongsan, Republic of Korea
| | - Ji-Hong Ha
- Sapsaree Breeding Research Institute, Gyeongsan, Republic of Korea
| | - Yun-Mi Lee
- Department of Veterinary Nursing, Daekyeung University, Gyeongsan, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Akram MZ, Sureda EA, Corion M, Comer L, Everaert N. Linking gastrointestinal tract structure, function, and gene expression signatures to growth variability in broilers: a novel interpretation for flock uniformity. Poult Sci 2024; 103:104158. [PMID: 39173569 PMCID: PMC11387703 DOI: 10.1016/j.psj.2024.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Variation in body weight (BW) within broiler flocks is a significant challenge in poultry production. Investigating differences in gut-related parameters between low (LBW) and high BW (HBW) chicks may provide insights into the underlying causes of BW heterogeneity. 908 day-old male broiler chicks were reared until d 7 and then ranked into LBW and HBW groups. Thereafter, performance parameters were compared between BW groups periodically. On d 7, 14, and 38, visceral organ characteristics, intestinal permeability, and duodenal and ileal histomorphology were examined. Expression profiles were analyzed for 79 ileal genes related to gut barrier function, immune function, nutrient transport, gut hormones, nutrient receptors, metabolism, and oxidation using high-throughput qPCR. Student's t-tests were performed to compare measurements. Multivariate statistics, including partial least square regression (PLSR) analysis, were applied to identify combinations of key genes discriminating BW groups, offering predictive capability for phenotypic variations. The HBW group remained heavier at each timepoint, which could be explained by higher feed intake. The HBW group had shorter relative small intestine length but higher villus height and villi height/crypt depth ratios. The LBW group demonstrated increased intestinal permeability on d 38. The LBW group showed upregulation of immune response genes including TNF-α on d 7 and CYP450 on d 38, while the HBW group showed higher AHSA1 and HSPA4 expressions on d 7. The LBW group had upregulation of the metabolism genes mTOR and EIF4EBP1 on d 7 and the satiety-induced hormone cholecystokinin on d 14, while the HBW group tended to increase expression of the hunger hormone ghrelin on d 38. Genes related to gut barrier function, nutrient transport, and oxidation categories were consistently upregulated in the HBW group. PLSR models revealed 4, 12, and 11 sets of key genes highly predictive of BW phenotypes on d 7, 14, and 38, respectively. These findings suggest that growth rates are linked to the intestinal size, structure, and function of broiler chickens, offering insights into the underlying mechanisms regulating BW.
Collapse
Affiliation(s)
- Muhammad Zeeshan Akram
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3000-Heverlee, Belgium; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ester Arévalo Sureda
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3000-Heverlee, Belgium
| | - Matthias Corion
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3000-Heverlee, Belgium
| | - Luke Comer
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3000-Heverlee, Belgium
| | - Nadia Everaert
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3000-Heverlee, Belgium.
| |
Collapse
|
3
|
Bai B, Wen Y, Wang J, Wen F, Yan H, Yuan X, Xie J, Zhang R, Xia Q, Wang G. Fatty Acid Desaturase Bmdesat5, Suppressed in the Salivary Glands by Domestication, is Involved in Regulation of Food Intake in Silkworms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14177-14190. [PMID: 38875711 DOI: 10.1021/acs.jafc.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Understanding the evolutionary genetics of food intake regulation in domesticated animals has relevance to evolutionary biology, animal improvement, and obesity treatment. Here, we observed that the fatty acid desaturase gene (Bmdesat5), which regulates food intake, is suppressed in domesticated silkworms, but expressed in the salivary glands of the wild silkworm Bombyx mandarina. The content of its catalytic product, cis-vaccenic acid, was related to the expression levels of Bmdesat5 in the salivary glands of domesticated and wild silkworm strains. These two strains also showed significant differences in food intake. Using orally administering cis-vaccenic acid and transgenic-mediated overexpression, we verified that cis-vaccenic acid functions as a satiation signal, regulating food intake and growth in silkworms. Selection analysis showed that Bmdesat5 experienced selection, especially in the potential promoter, 5'-untranslated, and intron regions. This study highlights the importance of the decrement of satiety in silkworm domestication and provides new insights into the potential involvement of salivary glands in the regulation of satiety in animals, by acting as a supplement to gut-brain nutrient signaling.
Collapse
Affiliation(s)
- Bingchuan Bai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuchan Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Jing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Feng Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hao Yan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xingli Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Jiatong Xie
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ruihan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Genhong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Vosoughi A, Zendehdel M, Hassanpour S. Central effects of the serotoninergic, GABAergic, and cholecystokinin systems on neuropeptide VF (NPVF)-induced hypophagia and feeding behavior in neonatal broiler chicken. Neurosci Lett 2024; 818:137557. [PMID: 37972685 DOI: 10.1016/j.neulet.2023.137557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The study was performed to evaluate the role of central serotoninergic, GABAergic, and cholecystokinin systems in neuropeptide VF (NPVF)-induced hypophagia in broiler chickens. In this study, 9 experiments were designed, each with one control and three treatment groups (n = 44 in each experiment). Control chicks of all groups were subjected to normal saline + Evans blue 0.1 % Intracerebroventricular (ICV) injection. In the first experiment, 3 groups of chicks received NPVF (4, 8, and 16 nmol). In experiment 2-9, one group of chicks received NPVF (16 nmol), another received 10 µg fluoxetine (serotonin reuptake inhibitor) (experiment 2), 1.25 µg PCPA (serotonin synthesis inhibitor) (experiment 3), 1.5 µg SB-242,084 (5-HT2C receptor antagonist) (experiment 4), 15.25 nmol 8-OH-DPAT (5-HT1A receptor antagonist) (experiment 5), 0.5 µg picrotoxin (GABAA receptor antagonist) (experiment 6), 20 ng CGP54626 (GABAB receptor antagonist) (experiment 7), 1 nmol devazepide (CCKA receptor antagonist) (experiment 8), and 1 nmol/L-365(-|-),260 (CCKB receptor antagonist) (experiment 9), and another final group received combination of specific neurotransmitter + NPVF Then, the cumulative food intake was measured until 120 min post-injection. ICV injection of NPVF (8 and 16 nmol) significantly decreased food intake (P < 0.05). Simultaneous injection of fluoxetine + NPVF and also picrotoxin + NPVF significantly increased hypophagia caused by NPVF (P < 0.05). However, co-administration of PCPA + NPVF and also SB242084 + NPVF significantly decreased NPVF-induced hypophagia (P < 0.05). Finally, 8-OH-DPAT, CGP54626, devazepide, and L-365,260 had no effect on the hypophagia brought on by NPVF (P > 0.05). Count-type behaviors were dose-dependent and decreased in groups that received NPVF compared to the control group (P < 0.05). Our finding recommended an interconnection between central NPVF and serotoninergic, GABAergic, and cholecystokinin systems in neonatal chickens.
Collapse
Affiliation(s)
- Anahita Vosoughi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Shahin Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Neeteson AM, Avendaño S, Koerhuis A, Duggan B, Souza E, Mason J, Ralph J, Rohlf P, Burnside T, Kranis A, Bailey R. Evolutions in Commercial Meat Poultry Breeding. Animals (Basel) 2023; 13:3150. [PMID: 37835756 PMCID: PMC10571742 DOI: 10.3390/ani13193150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
This paper provides a comprehensive overview of the history of commercial poultry breeding, from domestication to the development of science and commercial breeding structures. The development of breeding goals over time, from mainly focusing on production to broad goals, including bird welfare and health, robustness, environmental impact, biological efficiency and reproduction, is detailed. The paper outlines current breeding goals, including traits (e.g., on foot and leg health, contact dermatitis, gait, cardiovascular health, robustness and livability), recording techniques, their genetic basis and how trait these antagonisms, for example, between welfare and production, are managed. Novel areas like genomic selection and gut health research and their current and potential impact on breeding are highlighted. The environmental impact differences of various genotypes are explained. A future outlook shows that balanced, holistic breeding will continue to enable affordable lean animal protein to feed the world, with a focus on the welfare of the birds and a diversity of choice for the various preferences and cultures across the world.
Collapse
Affiliation(s)
| | - Santiago Avendaño
- Aviagen Group, Newbridge EH28 8SZ, UK; (S.A.); (A.K.); (T.B.); (R.B.)
| | - Alfons Koerhuis
- Aviagen Group, Newbridge EH28 8SZ, UK; (S.A.); (A.K.); (T.B.); (R.B.)
| | | | - Eduardo Souza
- Aviagen Inc., Huntsville, AL 35805, USA; (E.S.); (J.M.)
| | - James Mason
- Aviagen Inc., Huntsville, AL 35805, USA; (E.S.); (J.M.)
| | - John Ralph
- Aviagen Turkeys Ltd., Tattenhall CH3 9GA, UK;
| | - Paige Rohlf
- Aviagen Turkeys Inc., Lewisburg, WV 24901, USA;
| | - Tim Burnside
- Aviagen Group, Newbridge EH28 8SZ, UK; (S.A.); (A.K.); (T.B.); (R.B.)
| | - Andreas Kranis
- Aviagen Ltd., Newbridge EH28 8SZ, UK; (B.D.); or (A.K.)
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, Midlothian EH25 9RG, UK
| | - Richard Bailey
- Aviagen Group, Newbridge EH28 8SZ, UK; (S.A.); (A.K.); (T.B.); (R.B.)
| |
Collapse
|
6
|
das D Ribeiro JC, Drumond MM, Mancha-Agresti P, Guimarães JPF, da C Ferreira D, Martins MIA, de M Murata PM, de Carvalho AC, Pereira RT, Ribeiro Júnior V, de C Azevedo VA, de P Naves L. Diets Supplemented with Probiotics Improve the Performance of Broilers Exposed to Heat Stress from 15 Days of Age. Probiotics Antimicrob Proteins 2023; 15:1327-1341. [PMID: 36066817 DOI: 10.1007/s12602-022-09989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/10/2023]
Abstract
The poultry sector demands alternative additives to antibiotics that can be used as performance enhancers. Therefore, this experiment was conducted to evaluate the probiotics effects on performance, intestinal health, and redox status of 720 broilers exposed to heat stress from 15 days of age. Eight dietary treatments were evaluated: basal diet (BD) without antibiotic and probiotic (T1); BD supplemented with antibiotic zinc bacitracin (T2), BD supplemented with commercial probiotic of Bacillus subtilis DSM 17,299 (T3), BD supplemented with non-commercial probiotic of Lactococcus lactis NCDO 2118, Lactobacillus delbrueckii CNRZ 327, Escherichia coli CEC15, or Saccharomyces boulardii (T4 to T7), and BD simultaneously supplemented with the four non-commercial probiotics (T8). Feed intake, weight gain, and feed conversion were determined in the period from 1 to 42 days of age. Carcass and cuts yield, abdominal fat deposition, cloacal temperature, weight and length of intestine, activity of myeloperoxidase and eosinophilic peroxidase enzymes in the jejunum, jejunal histomorphometry, relative gene expression in the jejunum (occludin, zonulin, interleukin-8, cholecystokinin, ghrelin, and heat shock protein-70), and liver (heat shock protein-70), in addition to malondialdehyde level and superoxide dismutase activity in the intestine, liver, and blood, were measured in broilers at 42 days old. As main results, broilers fed T1 diet exhibited lower weight gain (3.222 kg) and worse feed conversion (1.70 kg/kg). However, diets containing non-commercial probiotics resulted in up to 3.584 kg of weight gain and improved feed conversion by up to 10%, similar to that observed for broilers of the T2 and T3 groups.
Collapse
Affiliation(s)
- Jéssica C das D Ribeiro
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Mariana M Drumond
- Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais, Belo Horizonte, 30421-169, Brazil
| | - Pamela Mancha-Agresti
- Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais, Belo Horizonte, 30421-169, Brazil
| | - João P F Guimarães
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Daiane da C Ferreira
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Maria I A Martins
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Pedro M de M Murata
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Andressa C de Carvalho
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Raquel T Pereira
- Departamento de Zootecnia, Universidade de São Paulo-ESALQ, Piracicaba, São Paulo, 13418-900, Brazil
| | - Valdir Ribeiro Júnior
- Departamento de Zootecnia, Universidade Federal de Sergipe, Nossa Senhora da Glória, Sergipe, 49680-000, Brazil
| | - Vasco A de C Azevedo
- Departamento de Genética, Universidade Federal de Minas Gerais, Minas Gerais, Ecologia e Evolução, Belo Horizonte, 31270-901, Brazil
| | - Luciana de P Naves
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
7
|
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals (Basel) 2023; 13:2975. [PMID: 37760373 PMCID: PMC10525316 DOI: 10.3390/ani13182975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut hormones released from EECs play a critical role in the regulation of feed intake and the absorption of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been recognized, and many studies have been carried out to elucidate their mechanisms for many years in other species. However, there is a lack of research on the regulation of appetite and nutrient absorption by EEC hormones in chickens. This review suggests the potential significance of EEC hormones on growth and health in chickens under stress conditions induced by diseases and high temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these hormones regulate appetite and nutrient absorption in other species.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Koshkina OA, Rodionov AN, Vetokh AN, Gusev IV, Anshakov DV, Stanishevskaya OI, Dotsev AV, Griffin DK, Zinovieva NA. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds. J Anim Sci Biotechnol 2023; 14:35. [PMID: 36829208 PMCID: PMC9951459 DOI: 10.1186/s40104-022-00813-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/27/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. RESULTS Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). CONCLUSION Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation.
Collapse
Affiliation(s)
- Michael N. Romanov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia ,grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Alexandra S. Abdelmanova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Vladimir I. Fisinin
- grid.4886.20000 0001 2192 9124Federal State Budget Scientific Institution Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Elena A. Gladyr
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Natalia A. Volkova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Olga A. Koshkina
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Andrey N. Rodionov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Anastasia N. Vetokh
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Igor V. Gusev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Dmitry V. Anshakov
- grid.4886.20000 0001 2192 9124Breeding and Genetic Centre “Zagorsk Experimental Breeding Farm” – Branch of the Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Olga I. Stanishevskaya
- grid.473314.6Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, St. Petersburg, Russia
| | - Arsen V. Dotsev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Darren K. Griffin
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| |
Collapse
|
9
|
Johnsson M, Wall H, Lopes Pinto FA, Fleming RH, McCormack HA, Benavides-Reyes C, Dominguez-Gasca N, Sanchez-Rodriguez E, Dunn IC, Rodriguez-Navarro AB, Kindmark A, de Koning DJ. Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems. G3 (BETHESDA, MD.) 2022; 13:6855652. [PMID: 36453438 PMCID: PMC9911068 DOI: 10.1093/g3journal/jkac302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/02/2021] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Fernando A Lopes Pinto
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - Andreas Kindmark
- Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, 751 85 Uppsala, Sweden
| | - Dirk-Jan de Koning
- Corresponding author. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden.
| |
Collapse
|
10
|
Cholecystokinin (CCK) and its receptors (CCK1R and CCK2R) in chickens: functional analysis and tissue expression. Poult Sci 2022; 102:102273. [PMID: 36436379 PMCID: PMC9706633 DOI: 10.1016/j.psj.2022.102273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Cholecystokinin (CCK) is widely distributed in the gastrointestinal tract and central nervous system, regulating a range of physiological functions by activating its receptors (CCK1R and CCK2R). Compared to those in mammals, the CCK gene and its receptors have already been cloned in various birds, such as chickens. However, knowledge regarding their functionality and tissue expression is limited. In this study, we examined the expression of CCK and its 2 receptors in chicken tissues. In addition, the functionality of the 2 receptors was investigated. Using 3 cell-based luciferase reporter systems and western blots, we demonstrated that chicken (c-) CCK1R could be potently activated by cCCK-8S but not cCCK-4, whereas cCCK2R could be activated by cCCK-8S and cCCK-4 with similar efficiency. Using RNA-sequencing, we revealed that cCCK is abundantly expressed in the testis, ileum, and several brain regions (cerebrum, midbrain, cerebellum, hindbrain, and hypothalamus). The abundant expression of CCK in the hypothalamus was further supported by immunofluorescence. In addition, cCCK1R is highly expressed in the pancreas and moderately expressed in various intestinal regions (ileum, cecum, and rectum) and the pituitary gland, whereas cCCK2R expression is primarily restricted to the brain. Our data reveal the differential specificities of CCK receptors for various CCK peptides. In combination with the differential tissue distribution of CCK and its receptors, the present study helps to understanding the physiological functions of CCK/CCKRs in birds.
Collapse
|
11
|
Li Y, Cui ZJ. Transmembrane Domain 3 Is a Transplantable Pharmacophore in the Photodynamic Activation of Cholecystokinin 1 Receptor. ACS Pharmacol Transl Sci 2022; 5:539-547. [PMID: 35983279 PMCID: PMC9379944 DOI: 10.1021/acsptsci.2c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated in photodynamic action by singlet oxygen, but detailed molecular mechanisms are not elucidated. To identify the pharmacophore(s) in photodynamic CCK1R activation, we examined photodynamic activation of point mutants CCK1RM121/3.32A, CCK1RM121/3.32Q, and a chimeric receptor with CCK1R transmembrane domain 3 (TM3) transplanted to muscarinic ACh receptor 3 (M3R) which is unaffected by photodynamic action. These engineered receptors were tagged at the N-terminus with genetically encoded protein photosensitizer miniSOG, and their light-driven photodynamic activation was compared to wild type CCK1R and M3R, as monitored by Fura-2 fluorescent calcium imaging. Photodynamic activations of miniSOG-CCK1RM121/3.32A and miniSOG-CCK1RM121/3.32Q were found to be 55% and 73%, respectively, when compared to miniSOG-CCK1R (100%), whereas miniSOG-M3R was not affected (0% activation). Notably, the chimeric receptor miniSOG-M3R-TM3CCK1R was effectively activated photodynamically (65%). These data suggest that TM3 is an important pharmacophore in photodynamic CCK1R activation, readily transplantable to nonsusceptible M3R for photodynamic activation.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Wang Z, Reid AMA, Wilson PW, Dunn IC. Identification of the Core Promoter and Variants Regulating Chicken CCKAR Expression. Genes (Basel) 2022; 13:1083. [PMID: 35741846 PMCID: PMC9222909 DOI: 10.3390/genes13061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Decreased expression of chicken cholecystokinin A receptor (CCKAR) attenuates satiety, which contributes to increased food intake and growth for modern broilers. The study aims to define the core promoter of CCKAR, and to identify variants associated with expression activity. A 21 kb region around the CCKAR was re-sequenced to detect sequence variants. A series of 5'-deleted promoter plasmids were constructed to define the core promoter of CCKAR. The effects of sequence variants located in promoter (PSNP) and conserved (CSNP) regions on promoter activity were analyzed by comparing luciferase activity between haplotypes. A total of 182 variants were found in the 21 kb region. There were no large structural variants around CCKAR. pNL-328/+183, the one with the shortest insertion, showed the highest activity among the six promoter constructs, implying that the key cis elements regulating CCKAR expression are mainly distributed 328 bp upstream. We detected significant activity differences between high- and low-growth associated haplotypes in four of the six promoter constructs. The high-growth haplotypes of constructs pNL-1646/+183, pNL-799/+183 and pNL-528/+183 showed lower activities than the low-growth haplotypes, which is consistent with decreased expression of CCKAR in high-growth chickens. Lower expression of the high-growth allele was also detected for the CSNP5-containing construct. The data suggest that the core promoter of CCKAR is located the 328 bp region upstream from the transcription start site. Lower expression activities shown by the high-growth haplotypes in the reporter assay suggest that CSNP5 and variants located between 328 bp and 1646 bp upstream form a promising molecular basis for decreased expression of CCKAR and increased growth in chickens.
Collapse
Affiliation(s)
- Zhepeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Angus M. A. Reid
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Peter W. Wilson
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK; (A.M.A.R.); (P.W.W.); (I.C.D.)
| |
Collapse
|
13
|
Jiao Y, Wilson PW, Reid AMA, Dunn IC. The expression of the gastrin/cholecystokinin (GAST/CCK) family and their receptors (CCKAR/CCKBR) in the chicken changes in response to quantitative restriction and reveals a functional role of CCK in the crop. Gen Comp Endocrinol 2022; 321-322:114024. [PMID: 35292263 DOI: 10.1016/j.ygcen.2022.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
Gastrin and cholecystokinin peptides bind a common G-protein coupled receptor, cholecystokinin receptor B (CCKBR) whilst cholecystokinin receptor A (CCKAR) is preferentially bound by CCK. Gastrin and cholecystokinin mediate signalling from the gastrointestinal tract to regulate appetite and digestive function. In this study, expression of the cholecystokinin/gastrin family and distribution of their receptors expression was measured to understand the target organs for the peptides and how expression responds to changes in food intake. We confirmed the restricted expression of gastrin in the antrum and the abundant expression of cholecystokinin in the hypothalamus. The expression of gastrin in the antrum was significantly elevated in broiler breeders when released from feed restriction. CCKBR was most abundant in the hypothalamus and proventriculus. CCKAR was most abundant in the pancreas and crop, more than tenfold greater than the gastrointestinal tract. Cholecystokinin expression in the pancreas increased after removal of food restriction. CCKAR in the gastrointestinal tract peaks around the distal ileum, distal to the peak of cholecystokinin expression. There was virtually no cholecystokinin expression in the caecum but CCKAR expression was high. The CCKAR expression in the crop was unexpected, supporting a role of cholecystokinin in mediating crop emptying which was supported by the observation of in-vitro contraction after cholecystokinin administration. The response to changes in food intake and the expression pattern of the cholecystokinin/gastrin family and their receptors will stimulate and inform new hypotheses on their role in growth in poultry.
Collapse
Affiliation(s)
- Yuping Jiao
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| | - Angus M A Reid
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, EH25 9RG Scotland, UK.
| |
Collapse
|
14
|
Dixon LM, Dunn IC, Brocklehurst S, Baker L, Boswell T, Caughey SD, Reid A, Sandilands V, Wilson PW, D'Eath RB. The effects of feed restriction, time of day and time since feeding on behavioral and physiological indicators of hunger in broiler breeder hens. Poult Sci 2022; 101:101838. [PMID: 35378348 PMCID: PMC8983422 DOI: 10.1016/j.psj.2022.101838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/05/2022] Open
Abstract
Broiler breeder chickens are commercially feed restricted to slow their growth and improve their health and production, however, there is research demonstrating that this leads to chronic hunger resulting in poor welfare. A challenge in these studies is to account for possible daily rhythms or the effects of time since last meal on measures relating hunger. To address this, we used 3 feed treatments: AL (ad libitum fed), Ram (restricted, fed in the morning), and Rpm (restricted, fed in the afternoon) to control for diurnal effects. We then conducted foraging motivation tests and collected home pen behavior and physiological samples at 4 times relative to feeding throughout a 24-h period. The feed treatment had the largest influence on the data, with AL birds weighing more, having lower concentrations of plasma NEFA, and mRNA expression of AGRP and NPY alongside higher expression of POMC in the basal hypothalamus than Ram or Rpm birds (P < 0.001). R birds were more successful at and had a shorter latency to complete the motivation test, and did more walking and less feeding than AL birds in the home pen (P < 0.01). There was little effect of time since last meal on many measures (P > 0.05) but AGRP expression was highest in the basal hypothalamus shortly after a meal (P < 0.05), blood plasma NEFA was higher in R birds just before feeding (P < 0.001) and glucose was higher in Ram birds just after feeding (P < 0.001), and the latency to complete the motivation test was shortest before the next meal (P < 0.05). Time of day effects were mainly found in the difference in activity levels in the home pen when during lights on and lights off periods. In conclusion, many behavioral and physiological hunger measures were not significantly influenced by time of day or time since the last meal. For the measures that do change, future studies should be designed so that sampling is balanced in such a way as to minimize bias due to these effects.
Collapse
|
15
|
Rodrigues VST, Moura EG, Peixoto TC, Soares P, Lopes BP, Bertasso IM, Silva BS, Cabral S, Kluck GEG, Atella GC, Trindade PL, Daleprane JB, Oliveira E, Lisboa PC. The model of litter size reduction induces long-term disruption of the gut-brain axis: An explanation for the hyperphagia of Wistar rats of both sexes. Physiol Rep 2022; 10:e15191. [PMID: 35146951 PMCID: PMC8831958 DOI: 10.14814/phy2.15191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 04/26/2023] Open
Abstract
The gut microbiota affects the host's metabolic phenotype, impacting health and disease. The gut-brain axis unites the intestine with the centers of hunger and satiety, affecting the eating behavior. Deregulation of this axis can lead to obesity onset. Litter size reduction is a well-studied model for infant obesity because it causes overnutrition and programs for obesity. We hypothesize that animals raised in small litters (SL) have altered circuitry between the intestine and brain, causing hyperphagia. We investigated vagus nerve activity, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), gastrointestinal (GI) hormone receptors, and content of bacterial phyla and short-chain fatty acids (SCFAs) in the feces of adult male and female Wistar rats overfed during lactation. On the 3rd day after birth, litter size was reduced to 3 pups/litter (SL males or SL females) until weaning. Controls had normal litter size (10 pups/litter: 5 males and 5 females). The rats were killed at 5 months of age. The male and female offspring were analyzed separately. The SL group of both sexes showed higher food consumption and body adiposity than the respective controls. SL animals presented dysbiosis (increased Firmicutes, decreased Bacteroidetes) and had increased vagus nerve activity. Only the SL males had decreased hypothalamic GLP-1 receptor expression, while only the SL females had lower acetate and propionate in the feces and higher CCK receptor expression in the hypothalamus. Thus, overfeeding during lactation differentially changes the gut-brain axis, contributing to hyperphagia of the offspring of both sexes.
Collapse
Affiliation(s)
- Vanessa S. T. Rodrigues
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Egberto G. Moura
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Thamara C. Peixoto
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Patricia N. Soares
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Bruna P. Lopes
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Iala M. Bertasso
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Beatriz S. Silva
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - S. S. Cabral
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - G. E. G. Kluck
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - G. C. Atella
- Laboratory of Lipids and Lipoprotein BiochemistryBiochemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - P. L. Trindade
- Laboratory for studies of Interactions between Nutrition and GeneticsNutrition InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | - J. B. Daleprane
- Laboratory for studies of Interactions between Nutrition and GeneticsNutrition InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Elaine Oliveira
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| | - Patricia Cristina Lisboa
- Laboratory of Endocrine PhysiologyBiology InstituteState University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
16
|
Kriseldi R, Bedford MR, Dilger RN, Foradori CD, MacKay L, Dozier WA. Effects of phytase supplementation and increased nutrient density on growth performance, carcass characteristics, and hypothalamic appetitive hormone expression and catecholamine concentrations in broilers from 1 to 43 days of age. Poult Sci 2021; 100:101495. [PMID: 34695631 PMCID: PMC8554254 DOI: 10.1016/j.psj.2021.101495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022] Open
Abstract
Two experiments were conducted to evaluate extra-phosphoric effects of phytase and nutrient density on growth performance, meat yield, and hypothalamic appetitive hormone expression and catecholamine concentrations of broilers. Experiment 1 determined differences of digestible amino acid concentrations and AMEn using 256 Yield Plus × Ross 708 broilers (32 cages, 8 birds/cage) fed diets without or with 4,500 phytase units (FTU)/kg inclusion (16 reps/treatment). In Experiment 2, 832 Yield Plus × Ross 708 broilers (32 pens; 26 birds/pen) were provided diets in a 2 × 2 factorial arrangement consisting of 2 nutrient contents (without or with increased density) and 2 phytase inclusions (0 or 4,500 FTU/kg). Increased nutrient density was formulated to contain 0.007, 0.015, 0.013, 0.021, 0.024%, and 61 kcal/kg higher digestible SAA, Lys, Thr, Val, Ile, and AMEn (from Experiment 1) respectively, compared with the control diet. Growth performance was determined at 14, 28, and 40 d of age and carcass characteristics at 41 d of age. At 43 d of age, plasma inositol, hypothalamic appetitive hormone expression, and catecholamine concentrations were determined from 4 birds/pen. Additive effects of phytase inclusion and increased nutrient density resulted in the lowest (P < 0.05) feed conversion from 1 to 40 d of age and the heaviest (P < 0.01) breast meat weights among dietary treatments. Phytase addition numerically increased feed intake (P = 0.06) and BW gain (P = 0.051) compared with birds fed diets without phytase from 1 to 40 d of age. Plasma inositol and dopamine concentrations were 2.3- and 1.2-fold higher (P < 0.01), respectively, in broilers fed phytase-added diets than birds fed diets without phytase inclusion. However, mRNA expression of neuropeptide Y, agouti-related peptide, proopiomelanocortin, cholecystokinin A receptor, ghrelin, and serotonin concentration were not different (P > 0.05) among treatments. These data indicated additive effects of phytase supplementation and increased nutrient density on growth performance and meat accretion of broilers. However, the influence of phytase on feed intake warrants future research.
Collapse
Affiliation(s)
- R Kriseldi
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - R N Dilger
- Department of Animal Science, University of Illinois, Urbana, IL 61801, USA
| | - C D Foradori
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - L MacKay
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - W A Dozier
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
17
|
Wang Z, Zhou W. Research Note: Fine mapping of sequence variants associated with body weight of Lueyang black-boned chicken in the CCKAR gene. Poult Sci 2021; 100:101448. [PMID: 34601445 PMCID: PMC8496170 DOI: 10.1016/j.psj.2021.101448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/21/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Cholecystokinin A receptor (CCKAR) is a key receptor mediating satiety. Previous studies found that decreased expression of CCKAR attenuated satiety, and thus contributed to the high-growth of broiler chickens. The objective of this study is to map sequence variants associated with the growth of chickens in the CCKAR. The CCKAR and upstream 1.4 kb genomic sequences were resequenced to find out all sequence variants using 35 Lueyang black-boned chickens (LBC). Haplotypes were reconstructed using the PHASE program. Linkage disequilibrium between variants was analyzed using the Haploview software. Associations of 33 tag SNPs that captured 89% of all variants with body weight of LBC (n = 675) at 16 (BW16), 20 (BW20) weeks of age and the onset (BWOEP) of egg production were tested using linear mixed models. A total of 126 SNPs were found and formed 41 haplotypes in 35 resequenced samples. Average length of haplotype blocks is 129 bp, indicating that LBC maintains low linkage disequilibrium at the CCKAR locus. Eleven of 33 tag SNPs were significantly associated with BW16, but not with BW20 and BWOEP. These significantly associated variants were most (8/11) distributed in a 2 kb region (chr4:73206169-73208244) around the Exon3. They together with 33 captured variants potentially disrupted binding sites of 471 transcription factors. Twelve variants can disrupt appetite (FOXO1) or lipid metabolism-related TF (AR and C/EBP) motifs. This study recognized chr4:73206169-73208244 as a key region harboring functional variants affecting the growth of chickens.
Collapse
Affiliation(s)
- Zhepeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wenxin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
18
|
Dadousis C, Somavilla A, Ilska JJ, Johnsson M, Batista L, Mellanby RJ, Headon D, Gottardo P, Whalen A, Wilson D, Dunn IC, Gorjanc G, Kranis A, Hickey JM. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genet Sel Evol 2021; 53:70. [PMID: 34496773 PMCID: PMC8424881 DOI: 10.1186/s12711-021-00663-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Body weight (BW) is an economically important trait in the broiler (meat-type chickens) industry. Under the assumption of polygenicity, a "large" number of genes with "small" effects is expected to control BW. To detect such effects, a large sample size is required in genome-wide association studies (GWAS). Our objective was to conduct a GWAS for BW measured at 35 days of age with a large sample size. METHODS The GWAS included 137,343 broilers spanning 15 pedigree generations and 392,295 imputed single nucleotide polymorphisms (SNPs). A false discovery rate of 1% was adopted to account for multiple testing when declaring significant SNPs. A Bayesian ridge regression model was implemented, using AlphaBayes, to estimate the contribution to the total genetic variance of each region harbouring significant SNPs (1 Mb up/downstream) and the combined regions harbouring non-significant SNPs. RESULTS GWAS revealed 25 genomic regions harbouring 96 significant SNPs on 13 Gallus gallus autosomes (GGA1 to 4, 8, 10 to 15, 19 and 27), with the strongest associations on GGA4 at 65.67-66.31 Mb (Galgal4 assembly). The association of these regions points to several strong candidate genes including: (i) growth factors (GGA1, 4, 8, 13 and 14); (ii) leptin receptor overlapping transcript (LEPROT)/leptin receptor (LEPR) locus (GGA8), and the STAT3/STAT5B locus (GGA27), in connection with the JAK/STAT signalling pathway; (iii) T-box gene (TBX3/TBX5) on GGA15 and CHST11 (GGA1), which are both related to heart/skeleton development); and (iv) PLAG1 (GGA2). Combined together, these 25 genomic regions explained ~ 30% of the total genetic variance. The region harbouring significant SNPs that explained the largest portion of the total genetic variance (4.37%) was on GGA4 (~ 65.67-66.31 Mb). CONCLUSIONS To the best of our knowledge, this is the largest GWAS that has been conducted for BW in chicken to date. In spite of the identified regions, which showed a strong association with BW, the high proportion of genetic variance attributed to regions harbouring non-significant SNPs supports the hypothesis that the genetic architecture of BW35 is polygenic and complex. Our results also suggest that a large sample size will be required for future GWAS of BW35.
Collapse
Affiliation(s)
| | | | - Joanna J. Ilska
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Martin Johnsson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lorena Batista
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Denis Headon
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Paolo Gottardo
- Italian Brown Breeders Association, Loc. Ferlina 204, 37012 Bussolengo, Italy
| | - Andrew Whalen
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - David Wilson
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Ian C. Dunn
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Gregor Gorjanc
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Andreas Kranis
- The Roslin Institute, University of Edinburgh, Midlothian, UK
- Aviagen Ltd, Midlothian, UK
| | - John M. Hickey
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
19
|
Momoi Y, Tsusaki T, Yamashita H, Takahashi H. The effectiveness of an SNP marker in the cholecystokinin type A receptor gene for improving growth traits in Amakusa Daioh cross chickens. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Miska KB, Schreier LL, Kahl S, Russell B, Proszkowiec-Weglarz M. Expression of genes associated with nutrient uptake in intestines of chickens with different growth potentials show temporal changes but are not correlated with growth. Br Poult Sci 2021; 63:179-193. [PMID: 34378478 DOI: 10.1080/00071668.2021.1966753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The study was designed to compare the expression of genes that encode proteins located at either the brush border (BB) or basolateral (BL) of the gut epithelium among fast and slow-growing broilers.Six lines of chicks with different growth capacities were used: Ross 708, Hubbard H1 (HH1), Cobb 500, Longnecker's Heritage (LHR), Red-Bro, and the Athens Canadian Randombred Control (ACRB). Birds were sampled between embryonic day (ED) 19 and day 35 post-hatch (PH).Performance parameters indicated that Ross 708, HH1, and Cobb 500 had the highest body weights (BW) while ACRBs had the lowest.Quantitative RT-PCR was performed on 13 genes encoding proteins associated with nutrient processing and uptake. Statistical analysis was carried out (ANOVA) for eight BB genes: Aminopeptidase N (APN), four amino acid transporters, (ATBo,+, BoAT, bo,+AT, EAAT3) a di- and tri- peptide transporter (PepT1), and two sugar transporters (GLUT5 and SGLT1). Analysis of four amino acid transporters (CAT1, CAT2, LAT1, and γ+LAT1), and a single sugar transporter (GLUT2) associated with BL was carried out.Four BB associated genes (APN, EAAT3, BoAT, and b0,+AT) in the small intestine were negatively correlated with growth.In most cases, genes encoding BB proteins increased in expression over time (P<0.05) in the small intestine, while, in the caeca, the expression decreased (P<0.05). The mRNA of BL-associated proteins showed decreased (P<0.05) expression over time in all gut segments, with exception of GLUT2, which increased in expression in the small intestine.The temporal changes in gene expression were consistent among bird lines and BB associated genes tended to increase over time, while BL associated genes tended to decrease over time. Correlation analysis indicated that mRNA expression of nutrient transporter genes may not be a good predictor of growth potential.
Collapse
Affiliation(s)
- Katarzyna B Miska
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Lori L Schreier
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Stanislaw Kahl
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Beverly Russell
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| | - Monika Proszkowiec-Weglarz
- Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, United States
| |
Collapse
|
21
|
Saibaba G, Ruzal M, Shinder D, Yosefi S, Druyan S, Arazi H, Froy O, Sagi D, Friedman-Einat M. Time-Restricted Feeding in Commercial Layer Chickens Improves Egg Quality in Old Age and Points to Lack of Adipostat Activity in Chickens. Front Physiol 2021; 12:651738. [PMID: 34234685 PMCID: PMC8256267 DOI: 10.3389/fphys.2021.651738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
In mammals, time-restricted feeding (TRF) with no caloric restriction provides health benefits and extends longevity, usually with a minor (∼3%) or no reduction in total food consumption. In the current study, a TRF regimen of 6 h free access to food (08:00-14:00 h) was applied to Leghorn chickens from 25 to 86 weeks of age; control birds ate freely during the light hours (06:00-20:00 h). Unexpectedly, the TRF-treated birds consumed, on average, 11.7% less food than the controls. This was manifested by an average reduction of 9.6% in body weight, 2.6-fold in visceral fat accumulation, and 6.5% in egg weight. Hen-housed egg production was reduced by 3.6% in the TRF group compared with the control, along the first 40 weeks of the follow-up (P < 0.05), and changed into a tendency of 0.7% higher egg production thereafter. Several parameters of egg quality showed significant improvement (P < 0.05) in the TRF group compared with the controls. A comparison of diurnal patterns of feed consumption revealed a higher rate of hourly consumption in the TRF group and increased consumption before dark in the control group. In conclusion, the reduced feed intake in response to the TRF treatment and loss in visceral fat accumulation supports the lack of a strong adipostat activity in chickens and different appetite regulation mechanisms compared with mammals. Therefore, future TRF studies in chickens should be adjusted by extending the ad libitum time window. The lower feed intake by the TRF-treated chickens compared with the ad libitum-fed controls seems to reduce the efficiency of egg production. Nevertheless, the improved egg quality and persistence of egg lay at the older age suggest that similarly to mammals, the TRF treatment delayed at least some of the negative impacts associated with advanced age.
Collapse
Affiliation(s)
- Ganesan Saibaba
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Mark Ruzal
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Dima Shinder
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Sara Yosefi
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Hagit Arazi
- Extension Service, Poultry Division, Ministry of Agriculture and Rural Development, Beit Dagan, Israel
| | - Oren Froy
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Sagi
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Miriam Friedman-Einat
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
22
|
Honda K. Peripheral regulation of food intake in chickens: adiposity signals, satiety signals and others. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1898296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- K. Honda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
23
|
Kewan A, Saneyasu T, Kamisoyama H, Honda K. Effects of fasting and re-feeding on the expression of CCK, PYY, hypothalamic neuropeptides, and IGF-related genes in layer and broiler chicks. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110940. [PMID: 33785435 DOI: 10.1016/j.cbpa.2021.110940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cholecystokinin (CCK) and peptide YY (PYY) have been investigated as gut hormones that send satiation signals to the brain in mammals. There is evidence that chicken PYY mRNA expression was the highest in the pancreas compared to other tissues. We recently suggested that insulin-like growth factor (IGF)-1 and its binding proteins (IGFBPs) may be involved in the appetite regulation system in chicks. In the present study, in order to evaluate the possible roles of CCK, PYY, and IGF-related proteins in the appetite regulation system in chicks, we analyzed changes in the mRNA levels of these genes in response to fasting and re-feeding in layer and hyperphagic broiler chicks. In layer chicks, 12 h of fasting reduced the mRNA levels of intestinal CCK, PYY, Y2 receptor, and pancreatic PYY, and these changes were reversed by 12 h of re-feeding. On the other hand, in broiler chicks 12 h of fasting reduced the mRNA levels of intestinal PYY and Y2 receptor, but not intestinal CCK and pancreatic PYY, and these changes were reversed by 12 h of re-feeding. Hypothalamic NPY mRNA significantly increased by 12 h of fasting in both chicks, and these changes were reversed by re-feeding. Also, 12 h of fasting significantly increased the mRNA levels of hypothalamic agouti-related protein and reduced the mRNA levels of hepatic IGF-1 only in broiler chicks, and 12 h of re-feeding did not change these. IGFBP-1 and -2 mRNA levels were markedly increased by 12 h of fasting in both chicks, and these changes were reversed by re-feeding. IGFBP-3 mRNA levels were increased by 12 h of fasting only in layer chicks, while re-feeding reduced the mRNA levels of IGFBP-3 in both types of chicks. These results suggest that several peripheral hormones, such as pancreatic PYY and intestinal CCK, may not play important roles in the regulation of food intake in broiler chicks.
Collapse
Affiliation(s)
- Ahmed Kewan
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
24
|
Practical Application of Miyazaki Jitokko Chickens Selected for a Superior Allele at a Single Nucleotide Polymorphism Site in the Cholecystokinin Type A Receptor Gene. J Poult Sci 2021; 58:12-20. [PMID: 33519282 PMCID: PMC7837808 DOI: 10.2141/jpsa.0190127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to examine 1) whether selection for a superior allele at a single nucleotide polymorphism site (SNP; AB604331, g.420 C>A) of the chicken cholecystokinin type A receptor (CCKAR) gene in Miyazaki Jitokko chickens is detectable in commercial poultry farms, and 2) whether the reproductive traits of the Kyushu Rhode hens, as a maternal stock line of the Miyazaki Jitokko chickens, are affected by SNP selection. Conventional and A-allele fixed (improved) Miyazaki Jitokko chicks were hatched on the same day and raised in a battery cage until 7 days of age. The chicks were then deposited at two commercial poultry farms and reared until slaughter at 126 and 163 days for cockerels and pullets, respectively. Body weight on the day of hatching (day 0), at 5 days of age, and at slaughter were measured. The differences in the body weights of the farm and test groups at slaughter were analyzed using the generalized linear model. A-allele fixation increased the body weight at slaughter by approximately +123.5 g and +131.9 g in cockerels and pullets, respectively. No significant differences between the conventional and improved hens were detected in terms of egg-laying rate, fertilization rate, and hatchability in the Kyushu Rhode hens. The data suggest that fattening chicks can be supplied as usual, even if Kyushu Rhode hens are switched from the conventional to improved type. In conclusion, genetic improvements using the CCKAR SNP site as a marker were effectively established in terms of the growth of the Miyazaki Jitokko chickens in commercial farms and the reproductive traits of the Kyushu Rhode hens.
Collapse
|
25
|
Li Y, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor with Different Genetically Encoded Protein Photosensitizers and from Varied Subcellular Sites. Biomolecules 2020; 10:1423. [PMID: 33050050 PMCID: PMC7601527 DOI: 10.3390/biom10101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated by singlet oxygen (1O2) generated in photodynamic action with sulphonated aluminum phthalocyanine (SALPC) or genetically encoded protein photosensitizer (GEPP) KillerRed or mini singlet oxygen generator (miniSOG). A large number of GEPP with varied 1O2 quantum yields have appeared recently; therefore, in the present work, the efficacy of different GEPP to photodynamically activate CCK1R was examined, as monitored by Fura-2 calcium imaging. KillerRed, miniSOG, miniSOG2, singlet oxygen protein photosensitizer (SOPP), flavin-binding fluorescent protein from Methylobacterium radiotolerans with point mutation C71G (Mr4511C71G), and flavin-binding fluorescent protein from Dinoroseobacter shibae (DsFbFP) were expressed at the plasma membrane (PM) in AR4-2J cells, which express endogenous CCK1R. Light irradiation (KillerRed: white light 85.3 mW‧cm-2, 4' and all others: LED 450 nm, 85 mW·cm-2, 1.5') of GEPPPM-expressing AR4-2J was found to all trigger persistent calcium oscillations, a hallmark of permanent photodynamic CCK1R activation; DsFbFP was the least effective, due to poor expression. miniSOG was targeted to PM, mitochondria (MT) or lysosomes (LS) in AR4-2J in parallel experiments; LED light irradiation was found to all induce persistent calcium oscillations. In miniSOGPM-AR4-2J cells, light emitting diode (LED) light irradiation-induced calcium oscillations were readily inhibited by CCK1R antagonist devazepide 2 nM; miniSOGMT-AR4-2J cells were less susceptible, but miniSOGLS-AR4-2J cells were not inhibited. In conclusion, different GEPPPM could all photodynamically activate CCK1R. Intracellular GEPP photodynamic action may prove particularly suited to study intracellular GPCR.
Collapse
Affiliation(s)
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
26
|
Te Pas MFW, Borg R, Buddiger NJH, Wood BJ, Rebel JMJ, van Krimpen MM, Calus MPL, Park JE, Schokker D. Regulating appetite in broilers for improving body and muscle development - A review. J Anim Physiol Anim Nutr (Berl) 2020; 104:1819-1834. [PMID: 32592266 PMCID: PMC7754290 DOI: 10.1111/jpn.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Appetite is the desire for feed and water and the voluntary intake of feed and is an important regulator of livestock productivity and animal health. Economic traits such as growth rate and muscle development (meat deposition) in broilers are directly correlated to appetite. Factors that may influence appetite include environmental factors, such as stress and temperature variation, and animal‐specific factors, such as learning period, eating capacity and preferences. Feed preferences have been reported to be determined in early life, and this period is important in broilers due to their fast growth and relatively short growth trajectories. This may be of importance when contemplating the use of more circular and sustainable feeds and the optimization of appetite for these feeds. The objective of this review was to review the biological mechanisms underlying appetite using data from human, animal and bird models and to consider the option for modulating appetite particularly as it relates to broiler chickens.
Collapse
Affiliation(s)
- Marinus F W Te Pas
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | | | | | - Benjamin J Wood
- Hendrix Genetics North America Office, Kitchener, ON, Canada
| | - Johanna M J Rebel
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | - Marinus M van Krimpen
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | - Mario P L Calus
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | - Jong-Eun Park
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Jeonju, Korea
| | - Dirkjan Schokker
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Ishikawa S, Asano M, Sakai K, Takahashi H. Verification of the Effectiveness of an SNP Marker in the Cholecystokinin Type A Receptor Gene for Improving Growth Traits in Okumino-kojidori Chickens. J Poult Sci 2020; 57:107-113. [PMID: 32461725 PMCID: PMC7248005 DOI: 10.2141/jpsa.0190078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 11/21/2022] Open
Abstract
A significant association was reported between a single nucleotide polymorphism (SNP; AB604331, g.420 C>A) in the cholecystokinin type A receptor gene and growth traits in some Japanese slow-growing chickens. Demonstration tests of the genetic improvement effect by comparing the superior allele-A fixed chickens with conventional ones were carried out considering the effect of different seasons on growth traits in other slow-growing chickens. Meat-type Okumino-kojidori chickens from Gifu Prefecture are a three-way cross of Gifu-jidori improved, White Plymouth Rock, and Rhode Island Red breeds. We used a total of 468 meat-type Okumino-kojidori: 264 individuals from a private hatchery as conventional chickens and 204 A-allele fixed individuals from the Gifu Prefectural Livestock Research Institute as improved chickens. We performed fattening experiments over two seasons: summer and winter. In each season, experimental birds of both sexes were hatched on the same day, raised in the same chicken house, and fed the same diet ad libitum for 12 weeks. Body weight was recorded at 3, 6, 9, and 12 weeks of age. SNP genotypes were determined using the mismatch amplification mutation assay. Association between the SNP and growth traits was analyzed using generalized linear models built on sex-based, seasonal, additive, and dominance genetic effects. The observed AA, AC, and CC genotype frequencies in the conventional chickens were 0.158, 0.479, and 0.363, respectively; body weight at 12 weeks and average daily gain from 3 to 12 weeks was superior for the A allele compared to the C allele. The improved chickens were heavier than the conventional ones at 12 weeks. Body weight at 12 weeks in allele-A fixed chickens increased by 3.2% compared to the conventional chickens. We concluded that g.420 C>A is a good selective marker that increases slaughter weight in the meat-type Okumino-kojidori chickens.
Collapse
Affiliation(s)
- Sumiyo Ishikawa
- Seki Experiment Station, Department of Swine and Poultry Science, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Miho Asano
- Seki Experiment Station, Department of Swine and Poultry Science, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Kiyoshi Sakai
- Seki Experiment Station, Department of Swine and Poultry Science, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Hideaki Takahashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan
| |
Collapse
|
28
|
Is a Single Nucleotide Polymorphism Marker in the Cholecystokinin A Receptor Gene Practically Suitable for Improving the Growth Traits of Hinai-jidori Chickens? J Poult Sci 2020; 57:99-106. [PMID: 32461724 PMCID: PMC7248008 DOI: 10.2141/jpsa.0190041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously reported a significant association between the single-nucleotide polymorphism (SNP; g.420 C>A) in the cholecystokinin type A receptor gene (CCKAR) and the growth traits of Hinai-dori, a breed of chicken that is indigenous to Japan. Moreover, we have demonstrated that the minor allele of this SNP improved the growth rate in a low-growth line of the Hinai-dori breed. Hence, in the present study, we verified the association between this SNP and the growth traits of the Hinai-jidori chicken: a cross between a Hinai-dori sire and Rhode Island Red dam. In addition, we verified whether the growth rate was improved in Hinai-jidori chickens produced from the parent stocks in which the SNP A/A genotype was fixed by selection (improved Hinai-jidori chickens). The Hinai-jidori female chicks at 4 weeks of age, were subdivided into three genotypic groups (A/A, A/C, and C/C), with 20 chicks in each group, and reared in an open-sided poultry shed until 23 weeks of age. The results showed that the body weight at 23 weeks of age and the average daily gain after 14 weeks of age were significantly higher in group A/A than in group C/C. Subsequently, the improved and the conventional Hinai-jidori chickens were reared until they reached 22 weeks of age to verify the effects on their growth traits. The body weight of the improved Hinai-jidori chickens at 22 weeks was significantly greater than the conventional Hinai-jidori chickens. Moreover, the association between the SNP and body weights of Hinai-jidori chickens at market age (24 weeks) on the production farms showed that the A allele was significantly superior to the C allele. In conclusion, the CCKAR g.420 C>A SNP improves the growth rate of commercial Hinai-jidori chickens and could be a candidate marker for improving the growth performance in selective breeding of Hinai-jidori chickens.
Collapse
|
29
|
Horinouchi S, Nakayama H, Takahashi H. Effect of a Single Nucleotide Polymorphism in the Cholecystokinin Type A Receptor Gene on Growth Traits of the Miyazaki Jitokko Chicken. J Poult Sci 2019; 56:96-100. [PMID: 32055203 PMCID: PMC7005405 DOI: 10.2141/jpsa.0180077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022] Open
Abstract
The Miyazaki Jitokko chicken, native to the Miyazaki Prefecture in southern Kyushu Island, Japan, is the product of a three-way cross involving the Jitokko, White Plymouth Rock, and Kyushu Rhode breeds. In the present study, associations between a single nucleotide polymorphism (SNP; AB604331, g.420 C>A) of the chicken cholecystokinin type A receptor gene and growth traits in Miyazaki Jitokko chickens were investigated. Unrelated male birds (n=120) that had hatched on the same day were raised in the same chicken house and fed the same diet ad libitum from day 0 to 17 weeks of age. Body weight was recorded at 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, and 17 weeks and the average daily gain of each interval was calculated from the body weight data. SNP genotyping of each bird was performed using the mismatch amplification mutation assay. The associations between the SNP and growth traits were examined using the Thesias program. The genotype frequencies of AA, AC, and CC were 0.525, 0.383, and 0.092, respectively. AA birds were significantly heavier than CC birds from 4 to 17 weeks of age. In the estimated effect of alleles, body weight from 1 to 17 weeks of age in birds with the A allele was greater than that in birds with the C allele. During the rearing period, the effect of the A allele on average daily gain in the first half was greater than that in the second half. We conclude that the g.420 C>A SNP can be used as a selection marker for the parent stock lines of the Miyazaki Jitokko chickens to increase their growth performance.
Collapse
Affiliation(s)
- Shojiroh Horinouchi
- Kawaminami Branch, Miyazaki Prefectural Livestock Research Institute, Kawaminami Town 889-1301, Japan
| | - Hiromi Nakayama
- Kawaminami Branch, Miyazaki Prefectural Livestock Research Institute, Kawaminami Town 889-1301, Japan
| | - Hideaki Takahashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan
| |
Collapse
|
30
|
Melo-Duran D, Gonzalez-Ortiz G, Sola-Oriol D, Martinez-Mora M, Perez J, Bedford M. Relationship between peptide YY, cholecystokinin and fermentation products in fasted, re-fed and ad libitum fed broiler chickens. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
The A Allele of the Cholecystokinin Type A Receptor Gene g.420 C > A Polymorphism Improves Growth Traits in Amakusa Daioh Cross Chicken. J Poult Sci 2019; 56:91-95. [PMID: 32055202 PMCID: PMC7005401 DOI: 10.2141/jpsa.0180065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amakusa Daioh cross chickens are F1 hybrids of restored Amakusa Daioh sires and Kyushu Rhode dams. In the present study, the association between a single nucleotide polymorphism (SNP; AB604331, g.420 C>A) in the cholecystokinin type A receptor gene and growth traits in Amakusa Daioh cross chicken were investigated. We used 72 male and 72 female birds that had hatched on the same day, were raised in the same chicken house, and were fed the same diet ad libitum from day 0 to 17 weeks (wks) of age. Body weight was recorded at weekly intervals and average daily gain of each week interval was calculated from body weight data. Birds were sacrificed at 17 wks and carcass traits were recorded. SNP genotyping was carried out using the mismatch amplification mutation assay. Associations between the SNP and growth traits were analyzed by a generalized linear model. Body weight from 6 to 17 wks was higher in birds with the A allele than in birds with the C allele, although significant differences in average daily gain traits between birds with A and C alleles were not detected during most of the duration of the experiment. Carcass data showed that birds with the A allele had heavier wings and a smaller proportion of the gizzard than those with the C allele. The g.420 C>A SNP will be useful as a selection marker for parent stock lines to increase the growth performance of Amakusa Daioh cross chickens.
Collapse
|
32
|
Ma M, Shen M, Qu L, Dou T, Guo J, Hu Y, Lu J, Li Y, Wang X, Wang K. Genome-wide association study for carcase traits in spent hens at 72 weeks old. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1507626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Meng Ma
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Manman Shen
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Taocun Dou
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Jun Guo
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Yuping Hu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Jian Lu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Yongfeng Li
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Xingguo Wang
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| |
Collapse
|
33
|
Yi Z, Li X, Luo W, Xu Z, Ji C, Zhang Y, Nie Q, Zhang D, Zhang X. Feed conversion ratio, residual feed intake and cholecystokinin type A receptor gene polymorphisms are associated with feed intake and average daily gain in a Chinese local chicken population. J Anim Sci Biotechnol 2018; 9:50. [PMID: 29942508 PMCID: PMC6000933 DOI: 10.1186/s40104-018-0261-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background The feed conversion ratio (FCR) and residual feed intake (RFI) are common indexes in measuring feed efficiency for livestock. RFI is a feed intake adjusted for requirements for maintenance and production so these two traits are related. Similarly, FCR is related to feed intake and weight gain because it is their ratio. Cholecystokinin type A receptor (CCKAR) plays an important role in animal digestive process. We examined the interplay of these three parameters in a local Chinese chicken population. Results The feed intake (FI) and body weights (BW) of 1,841 individuals were monitored on a daily basis from 56 to 105 d of age. There was a strong correlation between RFI and average daily feed intake (ADFI) and a negative correlation between the FCR and daily gain (rg = − 0.710). Furthermore, we identified 51 single nucleotide polymorphisms (SNPs) in the CCKAR and 4 of these resulted in amino acid mutations. The C334A mutation was specifically associated with FI and the expected feed intake (EFI) (P < 0.01) and significantly associated with the average daily gain (ADG) (P < 0.05). G1290A was significantly associated with FI and EFI (P < 0.05). Conclusion FCR is apply to weight selecting, and RFI is more appropriate if the breeding focus is feed intake. And C334A and G1290A of the CCKAR gene can be deemed as candidate markers for feed intake and weight gain. Electronic supplementary material The online version of this article (10.1186/s40104-018-0261-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhua Yi
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China.,2Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Xing Li
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China.,2Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Wen Luo
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China.,2Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Zhenqiang Xu
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400 Guangdong China
| | - Congliang Ji
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400 Guangdong China
| | - Yan Zhang
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400 Guangdong China
| | - Qinghua Nie
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China.,2Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| | - Dexiang Zhang
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China.,2Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China.,Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400 Guangdong China
| | - Xiquan Zhang
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642 Guangdong China.,2Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 Guangdong China
| |
Collapse
|
34
|
Caughey SD, Wilson PW, Mukhtar N, Brocklehurst S, Reid A, D'Eath RB, Boswell T, Dunn IC. Sex differences in basal hypothalamic anorectic and orexigenic gene expression and the effect of quantitative and qualitative food restriction. Biol Sex Differ 2018; 9:20. [PMID: 29843787 PMCID: PMC5975468 DOI: 10.1186/s13293-018-0178-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background Research into energy balance and growth has infrequently considered genetic sex, yet there is sexual dimorphism for growth across the animal kingdom. We test the hypothesis that in the chicken, there is a sex difference in arcuate nucleus neuropeptide gene expression, since previous research indicates hypothalamic AGRP expression is correlated with growth potential and that males grow faster than females. Because growth has been heavily selected in some chicken lines, food restriction is necessary to improve reproductive performance and welfare, but this increases hunger. Dietary dilution has been proposed to ameliorate this undesirable effect. We aimed to distinguish the effects of gut fullness from nutritional feedback on hypothalamic gene expression and its interaction with sex. Methods Twelve-week-old male and female fast-growing chickens were either released from restriction and fed ad libitum or a restricted diet plus 15% w/w ispaghula husk, a non-nutritive bulking agent, for 2 days. A control group remained on quantitative restriction. Hypothalamic arcuate nucleus neuropeptides were measured using real-time PCR. To confirm observed sex differences, the experiment was repeated using only ad libitum and restricted fed fast-growing chickens and in a genetically distinct breed of ad libitum fed male and female chickens. Linear mixed models (Genstat 18) were used for statistical analysis with transformation where appropriate. Results There were pronounced sex differences: expression of the orexigenic genes AGRP (P < 0.001) and NPY (P < 0.002) was higher in males of the fast-growing strain. In genetically distinct chickens, males had higher AGRP mRNA (P = 0.002) expression than females, suggesting sex difference was not restricted to a fast-growing strain. AGRP (P < 0.001) expression was significantly decreased in ad libitum fed birds but was high and indistinguishable between birds on a quantitative versus qualitative restricted diet. Inversely, gene expression of the anorectic genes POMC and CART was significantly higher in ad libitum fed birds but no consistent sex differences were observed. Conclusion Expression of orexigenic peptides in the avian hypothalamus are significantly different between sexes. This could be useful starting point of investigating further if AGRP is an indicator of growth potential. Results also demonstrate that gut fill alone does not reduce orexigenic gene expression. Electronic supplementary material The online version of this article (10.1186/s13293-018-0178-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S D Caughey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, Scotland, UK.
| | - P W Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, Scotland, UK
| | - N Mukhtar
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, Scotland, UK
| | - S Brocklehurst
- Bioinformatics and Statistics Scotland, Edinburgh, Scotland, UK
| | - A Reid
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, Scotland, UK
| | - R B D'Eath
- Scotland's Rural College, Edinburgh, Scotland, UK
| | - T Boswell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, England, UK
| | - I C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, EH25 9RG, Scotland, UK
| |
Collapse
|
35
|
Chen C, Wang H, Jiao H, Wang X, Zhao J, Lin H. Feed habituation alleviates decreased feed intake after feed replacement in broilers. Poult Sci 2018; 97:733-742. [DOI: 10.3382/ps/pex358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022] Open
|
36
|
A genome-wide study to identify genes responsible for oviduct development in chickens. PLoS One 2017; 12:e0189955. [PMID: 29281706 PMCID: PMC5744973 DOI: 10.1371/journal.pone.0189955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Molecular genetic tools provide a method for improving the breeding selection of chickens (Gallus gallus). Although some studies have identified genes affecting egg quality, little is known about the genes responsible for oviduct development. To address this issue, here we used a genome-wide association (GWA) study to detect genes or genomic regions that are related to oviduct development in a chicken F2 resource population by employing high-density 600 K single-nucleotide polymorphism (SNP) arrays. For oviduct length and weight, which exhibited moderate heritability estimates of 0.35 and 0.39, respectively, chromosome 1 (GGA1) explained 9.45% of the genetic variance, while GGA4 to GGA8 and GGA11 explained over 1% of the variance. Independent univariate genome-wide screens for oviduct length and weight detected 69 significant SNPs on GGA1 and 49 suggestive SNPs on GGA1, GGA4, and GGA8. One hundred and fourteen suggestive SNPs were associated with oviduct length, while 73 SNPs were associated with oviduct weight. The significant genomic regions affecting oviduct weight ranged from 167.79–174.29 Mb on GGA1, 73.16–75.70 Mb on GGA4, and 4.88–4.92 Mb on GGA8. The genes CKAP2, CCKAR, NCAPG, IGFBP3, and GORAB were shown to have potential roles in oviduct development. These genes are involved in cell survival, appetite, and growth control. Our results represent the first GWA analysis of genes controlling oviduct weight and length. The identification of genomic loci and potential candidate genes affecting oviduct development greatly increase our understanding of the genetic basis underlying oviduct development, which could have an impact on the selection of egg quality.
Collapse
|
37
|
Reid AMA, Wilson PW, Caughey SD, Dixon LM, D'Eath RB, Sandilands V, Boswell T, Dunn IC. Pancreatic PYY but not PPY expression is responsive to short-term nutritional state and the pancreas constitutes the major site of PYY mRNA expression in chickens. Gen Comp Endocrinol 2017; 252:226-235. [PMID: 28694054 PMCID: PMC5576917 DOI: 10.1016/j.ygcen.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
PP-fold peptides such as peptide YY (PYY) and pancreatic polypeptide (PPY) are known to play key roles in vertebrate energy homeostasis. Until recently, no gene sequence was available for avian PYY and therefore a gap in knowledge of regulation of its expression exists in avian species. Here we further evidence the mRNA sequence for chicken PYY and show that the pancreas is the major site of its mRNA expression, with a secondary peak of expression around the distal jejunum, in contrast to mammals where the large intestine is the major site of PYY expression. We also demonstrate that pancreatic PYY expression is responsive to short-term and long-term nutritional state, increasing within hours of feeding, in contrast to intestinal PYY which does not fluctuate to the same extent, and pancreatic PPY which appears to be primarily determined by long-term energy state. Both pancreatic PYY and PPY expression were found to exhibit ontogeny, being evenly distributed throughout the pancreas in young (2wk) chicks but having a decreasing splenic to duodenal gradient by adolescence (12wk).
Collapse
Affiliation(s)
- Angus M A Reid
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom.
| | - Peter W Wilson
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom
| | - Sarah D Caughey
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom
| | - Laura M Dixon
- Scotland's Rural College (SRUC), Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Rick B D'Eath
- Scotland's Rural College (SRUC), Edinburgh EH9 3JG, Scotland, United Kingdom
| | - Victoria Sandilands
- SRUC Avian Science Research Centre, Auchincruive, KA6 5HW, Scotland, United Kingdom
| | - Timothy Boswell
- School of Biology, Newcastle University, NE1 7RU, England, United Kingdom
| | - Ian C Dunn
- Roslin Institute, University of Edinburgh, EH25 9RG, Scotland, United Kingdom
| |
Collapse
|
38
|
Honda K, Saneyasu T, Kamisoyama H. Gut Hormones and Regulation of Food Intake in Birds. J Poult Sci 2017; 54:103-110. [PMID: 32908415 PMCID: PMC7477125 DOI: 10.2141/jpsa.0160100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Gut hormones act as appetite regulatory hormones in mammals. For example, the hunger hormone ghrelin, which is released from the stomach before food intake, stimulates appetite. In contrast, satiety hormones such as cholecystokinin, glucagon-like peptide-1, and peptide YY, which are released from the intestines after food intake, suppress appetite. The effects of these peptides on food intake have been shown to be similar in both mammals and fishes. However, evidence suggests that the physiological roles of these gut hormones may be different between birds and other vertebrates. This review summarizes the current information on the roles of gut hormones in the regulation of food intake in birds, especially in chickens.
Collapse
Affiliation(s)
- Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
39
|
El-Kassas S, Odemuyiwa S, Hajishengallis G, Connell TD, Nashar TO. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells. ACTA ACUST UNITED AC 2017; 7. [PMID: 28149670 DOI: 10.4172/2155-9899.1000471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection.
Collapse
Affiliation(s)
- Seham El-Kassas
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; College of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Solomon Odemuyiwa
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Terry D Connell
- The Department of Microbiology & Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, The Jacobs School of Medicine and Biomedical Research, University at Buffalo, NY 14214, USA
| | - Toufic O Nashar
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
40
|
Boswell T, Dunn IC. Regulation of Agouti-Related Protein and Pro-Opiomelanocortin Gene Expression in the Avian Arcuate Nucleus. Front Endocrinol (Lausanne) 2017; 8:75. [PMID: 28450851 PMCID: PMC5389969 DOI: 10.3389/fendo.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
The arcuate nucleus is generally conserved across vertebrate taxa in its neuroanatomy and neuropeptide expression. Gene expression of agouti-related protein (AGRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) has been established in the arcuate nucleus of several bird species and co-localization demonstrated for AGRP and NPY. The proteins encoded by these genes exert comparable effects on food intake in birds after central administration to those seen in other vertebrates, with AGRP and NPY being orexigenic and CART and α-melanocyte-stimulating hormone anorexigenic. We have focused on the measurement of arcuate nucleus AGRP and POMC expression in several avian models in relation to the regulation of energy balance, incubation, stress, and growth. AGRP mRNA and POMC mRNA are, respectively, up- and downregulated after energy deprivation and restriction. This suggests that coordinated changes in the activity of AGRP and POMC neurons help to drive the homeostatic response to replace depleted energy stores in birds as in other vertebrates. While AGRP and POMC expression are generally positively and negatively correlated with food intake, respectively, we review here situations in some avian models in which AGRP gene expression is dissociated from the level of food intake and may have an influence on growth independent of changes in appetite. This suggests the possibility that the central melanocortin system exerts more pleiotropic functions in birds. While the neuroanatomical arrangement of AGRP and POMC neurons and the sensitivity of their activity to nutritional state appear generally conserved with other vertebrates, detailed knowledge is lacking of the key nutritional feedback signals acting on the avian arcuate nucleus and there appear to be significant differences between birds and mammals. In particular, recently identified avian leptin genes show differences between bird species in their tissue expression patterns and appear less closely linked in their expression to nutritional state. It is presently uncertain how the regulation of the central melanocortin system in birds is brought about in the situation of the apparently reduced importance of leptin and ghrelin compared to mammals.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
- *Correspondence: Timothy Boswell,
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| |
Collapse
|
41
|
Xu Z, Ji C, Zhang Y, Zhang Z, Nie Q, Xu J, Zhang D, Zhang X. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. BMC Genomics 2016; 17:594. [PMID: 27506765 PMCID: PMC4979145 DOI: 10.1186/s12864-016-2861-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/29/2016] [Indexed: 01/07/2023] Open
Abstract
Background Residual feed intake (RFI) is a powerful indicator for energy utilization efficiency and responds to selection. Low RFI selection enables a reduction in feed intake without affecting growth performance. However, the effective variants or major genes dedicated to phenotypic differences in RFI in quality chickens are unclear. Therefore, a genome-wide association study (GWAS) and RNA sequencing were performed on RFI to identify genetic variants and potential candidate genes associated with energy improvement. Results A lower average daily feed intake was found in low-RFI birds compared to high-RFI birds. The heritability of RFI measured from 44 to 83 d of age was 0.35. GWAS showed that 32 of the significant single nucleotide polymorphisms (SNPs) associated with the RFI (P < 10−4) accounted for 53.01 % of the additive genetic variance. More than half of the effective SNPs were located in a 1 Mb region (16.3–17.3 Mb) of chicken (Gallus gallus) chromosome (GGA) 12. Thus, focusing on this region should enable a deeper understanding of energy utilization. RNA sequencing was performed to profile the liver transcriptomes of four male chickens selected from the high and low tails of the RFI. One hundred and sixteen unique genes were identified as differentially expressed genes (DEGs). Some of these genes were relevant to appetite, cell activities, and fat metabolism, such as CCKAR, HSP90B1, and PCK1. Some potential genes within the 500 Kb flanking region of the significant RFI-related SNPs detected in GWAS (i.e., MGP, HIST1H110, HIST1H2A4L3, OC3, NR0B2, PER2, ST6GALNAC2, and G0S2) were also identified as DEGs in chickens with divergent RFIs. Conclusions The GWAS findings showed that the 1 Mb narrow region of GGA12 should be important because it contained genes involved in energy-consuming processes, such as lipogenesis, social behavior, and immunity. Similar results were obtained in the transcriptome sequencing experiments. In general, low-RFI birds seemed to optimize energy employment by reducing energy expenditure in cell activities, immune responses, and physical activity compared to eating. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2861-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenqiang Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong Province, China.,Wen's Nanfang Poultry Breeding Co. Ltd, Guangdong Province, Yunfu, 527400, China
| | - Congliang Ji
- Wen's Nanfang Poultry Breeding Co. Ltd, Guangdong Province, Yunfu, 527400, China
| | - Yan Zhang
- Wen's Nanfang Poultry Breeding Co. Ltd, Guangdong Province, Yunfu, 527400, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong Province, China
| | - Qinghua Nie
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong Province, China
| | - Jiguo Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong Province, China
| | - Dexiang Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong Province, China.,Wen's Nanfang Poultry Breeding Co. Ltd, Guangdong Province, Yunfu, 527400, China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong Province, China.
| |
Collapse
|
42
|
Psifidi A, Fife M, Howell J, Matika O, van Diemen PM, Kuo R, Smith J, Hocking PM, Salmon N, Jones MA, Hume DA, Banos G, Stevens MP, Kaiser P. The genomic architecture of resistance to Campylobacter jejuni intestinal colonisation in chickens. BMC Genomics 2016; 17:293. [PMID: 27090510 PMCID: PMC4835825 DOI: 10.1186/s12864-016-2612-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Campylobacter is the leading cause of foodborne diarrhoeal illness in humans and is mostly acquired from consumption or handling of contaminated poultry meat. In the absence of effective licensed vaccines and inhibitors, selection for chickens with increased resistance to Campylobacter could potentially reduce its subsequent entry into the food chain. Campylobacter intestinal colonisation levels are influenced by the host genetics of the chicken. In the present study, two chicken populations were used to investigate the genetic architecture of avian resistance to colonisation: (i) a back-cross of two White Leghorn derived inbred lines [(61 x N) x N] known to differ in resistance to Campylobacter colonisation and (ii) a 9(th) generation advanced intercross (61 x N) line. RESULTS The level of colonisation with Campylobacter jejuni following experimental infection was found to be a quantitative trait. A back-cross experiment using 1,243 fully informative single nucleotide polymorphism (SNP) markers revealed quantitative trait loci (QTL) on chromosomes 7, 11 and 14. In the advanced intercross line study, the location of the QTL on chromosome 14 was confirmed and refined and two new QTLs were identified located on chromosomes 4 and 16. Pathway and re-sequencing data analysis of the genes located in the QTL candidate regions identified potential pathways, networks and candidate resistance genes. Finally, gene expression analyses were performed for some of the candidate resistance genes to support the results. CONCLUSION Campylobacter resistance in chickens is a complex trait, possibly involving the Major Histocompatibility Complex, innate and adaptive immune responses, cadherins and other factors. Two of the QTLs for Campylobacter resistance are co-located with Salmonella resistance loci, indicating that it may be possible to breed simultaneously for enhanced resistance to both zoonoses.
Collapse
Affiliation(s)
- A Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - M Fife
- The Pirbright Institute, Genetics & Genomics Group, Surrey, GU240NF, UK
| | - J Howell
- The Pirbright Institute, Genetics & Genomics Group, Surrey, GU240NF, UK
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - P M van Diemen
- Jenner Institute, Nuffield Department of Clinical Medicine, The Centre for Cellular and Molecular Physiology, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - R Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - J Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - P M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - N Salmon
- The Pirbright Institute, Genetics & Genomics Group, Surrey, GU240NF, UK
| | - M A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - D A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - G Banos
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Scotland's Rural College, Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - M P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - P Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
43
|
Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Dekkers JCM, Fernando R, Garrick DJ. Mixture models detect large effect QTL better than GBLUP and result in more accurate and persistent predictions. J Anim Sci Biotechnol 2016; 7:7. [PMID: 26870325 PMCID: PMC4750167 DOI: 10.1186/s40104-016-0066-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Accurate evaluation of SNP effects is important for genome wide association studies and for genomic prediction. The genetic architecture of quantitative traits differs widely, with some traits exhibiting few if any quantitative trait loci (QTL) with large effects, while other traits have one or several easily detectable QTL with large effects. METHODS Body weight in broilers and egg weight in layers are two examples of traits that have QTL of large effect. A commonly used method for genome wide association studies is to fit a mixture model such as BayesB that assumes some known proportion of SNP effects are zero. In contrast, the most commonly used method for genomic prediction is known as GBLUP, which involves fitting an animal model to phenotypic data with the variance-covariance or genomic relationship matrix among the animals being determined by genome wide SNP genotypes. Genotypes at each SNP are typically weighted equally in determining the genomic relationship matrix for GBLUP. We used the equivalent marker effects model formulation of GBLUP for this study. We compare these two classes of models using egg weight data collected over 8 generations from 2,324 animals genotyped with a 42 K SNP panel. RESULTS Using data from the first 7 generations, both BayesB and GBLUP found the largest QTL in a similar well-recognized QTL region, but this QTL was estimated to account for 24 % of genetic variation with BayesB and less than 1 % with GBLUP. When predicting phenotypes in generation 8 BayesB accounted for 36 % of the phenotypic variation and GBLUP for 25 %. When using only data from any one generation, the same QTL was identified with BayesB in all but one generation but never with GBLUP. Predictions of phenotypes in generations 2 to 7 based on only 295 animals from generation 1 accounted for 10 % phenotypic variation with BayesB but only 6 % with GBLUP. Predicting phenotype using only the marker effects in the 1 Mb region that accounted for the largest effect on egg weight from generation 1 data alone accounted for almost 8 % variation using BayesB but had no predictive power with GBLUP. CONCLUSIONS In conclusion, In the presence of large effect QTL, BayesB did a better job of QTL detection and its genomic predictions were more accurate and persistent than those from GBLUP.
Collapse
Affiliation(s)
- Anna Wolc
- />Department of Animal Science, Iowa State University, 225D Kildee Hall, Ames, IA 50011 USA
- />Hy-Line International, Dallas Center, IA USA
| | | | | | | | | | - Jack C. M. Dekkers
- />Department of Animal Science, Iowa State University, 225D Kildee Hall, Ames, IA 50011 USA
| | - Rohan Fernando
- />Department of Animal Science, Iowa State University, 225D Kildee Hall, Ames, IA 50011 USA
| | - Dorian J. Garrick
- />Department of Animal Science, Iowa State University, 225D Kildee Hall, Ames, IA 50011 USA
| |
Collapse
|
44
|
Yi G, Shen M, Yuan J, Sun C, Duan Z, Qu L, Dou T, Ma M, Lu J, Guo J, Chen S, Qu L, Wang K, Yang N. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics 2015; 16:746. [PMID: 26438435 PMCID: PMC4595193 DOI: 10.1186/s12864-015-1945-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND As a major economic trait in chickens, egg weight (EW) receives widespread interests in breeding, production and consumption. However, limited information is available for underlying genetic architecture of longitudinal trend in EW. Herein, we measured EWs at nine time points from onset of laying to 60 week of age, and conducted comprehensive genome-wide association studies (GWAS) in 1,534 F2 hens derived from reciprocal crosses between White Leghorn and Dongxiang chickens. RESULTS Egg weights at all ages except the first egg weight (FEW) exhibited high SNP-based heritability estimates (0.47~0.60). Strong pair-wise genetic correlations (0.77~1.00) were found among all EWs. Nine separate univariate genome-wide screens suggested 73 signals showing significant associations with longitudinal EWs. After multivariate and conditional analyses, four variants on three chromosomes remained independent contributions. The minor alleles at two loci exerted consistent and positive substitution effects on EWs, and other two were negative. The four loci together accounted for 3.84 % of the phenotypic variance for FEW and 7.29~11.06 % for EWs from 32 to 60 week of age. We obtained five candidate genes, of which NCAPG harbors a non-synonymous SNP (rs14491030) causing a valine-to-alanine amino-acid substitution. Genome partitioning analysis indicated a strong linear correlation between the variance explained by each chromosome and its length, which provided evidence that EW follows a highly polygenic nature of inheritance. CONCLUSIONS Identification of significant genetic causes that together implicate EWs at different ages will greatly advance our understanding of the genetic basis behind longitudinal EWs, and would be helpful to illuminate the future breeding direction on how to select desired egg size.
Collapse
Affiliation(s)
- Guoqiang Yi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Manman Shen
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Jingwei Yuan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Zhongyi Duan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Taocun Dou
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Meng Ma
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Jian Lu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Jun Guo
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, 225125, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Dunn IC, Wilson PW, D'Eath RB, Boswell T. Hypothalamic Agouti-Related Peptide mRNA is Elevated During Natural and Stress-Induced Anorexia. J Neuroendocrinol 2015; 27:681-91. [PMID: 26017156 PMCID: PMC4973702 DOI: 10.1111/jne.12295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 01/14/2023]
Abstract
As part of their natural lives, animals can undergo periods of voluntarily reduced food intake and body weight (i.e. animal anorexias) that are beneficial for survival or breeding, such as during territorial behaviour, hibernation, migration and incubation of eggs. For incubation, a change in the defended level of body weight or 'sliding set point' appears to be involved, although the neural mechanisms reponsible for this are unknown. We investigated how neuropeptide gene expression in the arcuate nucleus of the domestic chicken responded to a 60-70% voluntary reduction in food intake measured both after incubation and after an environmental stressor involving transfer to unfamiliar housing. We hypothesised that gene expression would not change in these circumstances because the reduced food intake and body weight represented a defended level in birds with free access to food. Unexpectedly, we observed increased gene expression of the orexigenic peptide agouti-related peptide (AgRP) in both incubating and transferred animals compared to controls. Also pro-opiomelanocortin (POMC) mRNA was higher in incubating hens and significantly increased 6 days after exposure to the stressor. Conversely expression of neuropeptide Y and cocaine- and amphetamine-regulated transcript gene was unchanged in both experimental situations. We conclude that AgRP expression remains sensitive to the level of energy stores during natural anorexias, which is of adaptive advantage, although its normal orexigenic effects are over-ridden by inhibitory signals. In the case of stress-induced anorexia, increased POMC may contribute to this inhibitory role, whereas, for incubation, reduced feeding may also be associated with increased expression in the hypothalamus of the anorexigenic peptide vasoactive intestinal peptide.
Collapse
Affiliation(s)
- I C Dunn
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - P W Wilson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - R B D'Eath
- Animal Behaviour & Welfare, Veterinary Science Research Group, SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| | - T Boswell
- School of Biology, Centre for Behaviour and Evolution, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
46
|
Dong Y, Zhang X, Xie M, Arefnezhad B, Wang Z, Wang W, Feng S, Huang G, Guan R, Shen W, Bunch R, McCulloch R, Li Q, Li B, Zhang G, Xu X, Kijas JW, Salekdeh GH, Wang W, Jiang Y. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genomics 2015; 16:431. [PMID: 26044654 PMCID: PMC4455334 DOI: 10.1186/s12864-015-1606-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics. RESULTS We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits. CONCLUSION Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.
Collapse
Affiliation(s)
- Yang Dong
- Kunming University of Science and Technology, Kunming, 650093, China.
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Xiaolei Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Min Xie
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Babak Arefnezhad
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| | - Zongji Wang
- BGI-Shenzhen, Shenzhen, 518083, China.
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | | | | | | | - Rui Guan
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Wenjing Shen
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Rowan Bunch
- CSIRO, Agriculture Flagship, Brisbane, 4065, QLD, Australia.
| | | | - Qiye Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - James W Kijas
- CSIRO, Agriculture Flagship, Brisbane, 4065, QLD, Australia.
| | - Ghasem Hosseini Salekdeh
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Yu Jiang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
47
|
Nassar MK, Goraga ZS, Brockmann GA. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: IV. Growth performance. Anim Genet 2015; 46:441-6. [PMID: 25908024 DOI: 10.1111/age.12298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 11/29/2022]
Abstract
Reciprocal crosses between the inbred lines New Hampshire (NHI) and White Leghorn (WL77) comprising 579 F2 individuals were used to map QTL for body weight and composition. Here, we examine the growth performance until 20 weeks of age. Linkage analysis provided evidence for highly significant QTL on GGA1, 2, 4, 10 and 27 which had specific effects on early or late growth. The highest QTL effects, accounting for 4.6-25.6% of the phenotypic F2 variance, were found on the distal region of GGA4 between 142 and 170 cM (F ≥ 13.68). The NHI QTL allele increased body mass by 141.86 g at 20 weeks. Using body weight as a covariate in the analysis of body composition traits provided evidence for genes in the GGA4 QTL region affecting fat mass independently of body mass. The QTL effect size differed between sexes and depended on the direction of cross. TBC1D1, CCKAR and PPARGC1A are functional candidate genes in the QTL peak region. Our study confirmed the importance of the distal GGA4 region for chicken growth performance. The strong effect of the GGA4 QTL makes fine mapping and gene discovery feasible.
Collapse
Affiliation(s)
- M K Nassar
- Albrecht Daniel Thaer-Institut for Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Z S Goraga
- Debre Zeit Agricultural Research Center, Debre Zeit, Ethiopia
| | - G A Brockmann
- Albrecht Daniel Thaer-Institut for Agricultural and Horticultural Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
48
|
Hocking PM. Unexpected consequences of genetic selection in broilers and turkeys: problems and solutions. Br Poult Sci 2014; 55:1-12. [PMID: 24397366 DOI: 10.1080/00071668.2014.877692] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. Genetic theory leads to the expectation that unexpected consequences of genetic selection for production traits will inevitably occur and that these changes are likely to be undesirable. 2. Both artificial selection for production efficiency and "natural" selection for adaptation to the production environment result in selection sweeps that increase the frequencies of rare recessive alleles that have a negative effect on fitness. 3. Fitness is broadly defined as any trait that affects the ability to survive, reproduce and contribute to the next generation, such as musculoskeletal disease in growing broiler chickens and multiple ovulation in adult broiler parents. 4. Welfare concerns about the negative effects of genetic selection on bird welfare are sometimes exaggerated but are nevertheless real. Breeders have paid increasing attention to these traits over several decades and have demonstrated improvement in pedigree flocks. There is an urgent need to monitor changes in commercial flocks to ensure that genetic change is accompanied by improvements in that target population. 5. New technologies for trait measurement, whole genome selection and targeted genetic modification hold out the promise of efficient and rapid improvement of welfare traits in future breeding of broiler chickens and turkeys. The potential of targeted genetic modification for enhancing welfare traits is considerable, but the goal of achieving public acceptability for the progeny of transgenic poultry will be politically challenging.
Collapse
Affiliation(s)
- P M Hocking
- a The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Easter Bush , Midlothian , EH25 9RG , UK
| |
Collapse
|
49
|
Coble DJ, Fleming D, Persia ME, Ashwell CM, Rothschild MF, Schmidt CJ, Lamont SJ. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genomics 2014; 15:1084. [PMID: 25494716 PMCID: PMC4299486 DOI: 10.1186/1471-2164-15-1084] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. RESULTS Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. CONCLUSIONS Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.
Collapse
Affiliation(s)
- Derrick J Coble
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Damarius Fleming
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Michael E Persia
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Chris M Ashwell
- />Department of Poultry Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Max F Rothschild
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Carl J Schmidt
- />Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA
| | - Susan J Lamont
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
50
|
Agulleiro MJ, Cortés R, Leal E, Ríos D, Sánchez E, Cerdá-Reverter JM. Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2014; 205:251-9. [PMID: 24561275 DOI: 10.1016/j.ygcen.2014.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/11/2023]
Abstract
The melanocortin system is one of the most complex hormonal systems in vertebrates. Atypically, the signaling of melanocortin receptors is regulated by the binding of endogenous antagonists, named agouti-signaling protein (ASIP) and agouti-related protein (AGRP). Teleost specific genome duplication (TSGD) rendered new gene copies in teleost fish and up to four different genes of the agouti family of peptides have been characterized. In this paper, molecular cloning was used to characterize mRNA of the agouti family of peptides in sea bass. Four different genes were identified: AGRP1, ASIP1, AGRP2 and ASIP2. The AGRP1 gene is mainly expressed in the brain whereas ASIP1 is mainly expressed in the ventral skin. Both ASIP2 and AGRP2 are expressed in the brain and the pineal gland but also in some peripheral tissues. Immunocytochemical studies demonstrated that AGRP1 is exclusively expressed within the lateral tuberal nucleus, the homologue of the mammalian arcuate nucleus in fish. Long-term fasting (8-29 days) increased the hypothalamic expression of AGRP1 but depressed AGRP2 expression (15-29 days). In contrast, the hypothalamic expression of ASIP2 was upregulated during short-term fasting suggesting that this peptide could be involved in the short term regulation of food intake in the sea bass.
Collapse
Affiliation(s)
- Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raúl Cortés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Esther Leal
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Diana Ríos
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|