1
|
Tran NNQ, Choi H, Sactivel B, Oh YJ, Maeng HJ, Kim MK, Lee J, Kim YB, Lee DH, Oh BC, Jun HS, Chun KH. The dual targeting effects of KD025 on casein kinase 2 and ROCK2 in a mouse model of diet-induced obesity. Biochem Pharmacol 2025; 237:116933. [PMID: 40210126 DOI: 10.1016/j.bcp.2025.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
KD025(belumosudil), a selective ROCK2 inhibitor, exhibits unique anti-adipogenic activity through inhibition of casein kinase 2 (CK2). This study investigated the dual inhibitory effects of KD025 on metabolism in a diet-induced obese model. C57BL/6 mice on a high fat diet (HFD) were treated with KD025 for 4 weeks, while fasudil (a pan-ROCK inhibitor) and CX-4945 (a CK2-specific inhibitor) served as comparison treatments. KD025 significantly reduced body weight gain without affecting food intake, serum insulin, or fasting blood glucose levels. In contrast, while both CX-4945 and fasudil treatments showed a trend toward weight reduction, these results were not statistically significant. KD025 improved lipid metabolism by significantly lowering LDL cholesterol and triglyceride, although it slightly impaired glucose metabolism, as observed in insulin and glucose tolerance tests. Weight reduction in the KD025- and CX-4945-treated groups was attributed to decreased adipose tissue mass, particularly in inguinal (ingWAT) and epididymal (epiWAT) fat depots. Hematoxylin and eosin (H&E) staining confirmed smaller adipocyte size in these groups. KD025 had no significant effect on serum levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), or monocyte chemoattractant protein-1 (MCP-1) with varied inflammatory responses. Furthermore, KD025 and CX-4945 upregulated adipogenic and browning markers, such as Cebpa, Cidea, and Pparg in the epiWAT, though without significant UCP1 expression. Overall, KD025 effectively reduced weight gain in HFD-fed mice through dual inhibition of CK2 and ROCK2, highlighting its potential as a therapeutic agent for obesity-related conditions.
Collapse
Affiliation(s)
- Nhu Nguyen Quynh Tran
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hojung Choi
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Bathiga Sactivel
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Yu Jin Oh
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Kyung Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
2
|
Guo H, Ma L, Duolikun D, Yao Q. Comprehensive microarray analysis for the identification of therapeutic targets within HIF-1α signalling networks in diet-induced obesity via hypothalamic inflammation. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 69:e240098. [PMID: 40062973 PMCID: PMC11895521 DOI: 10.20945/2359-4292-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/04/2024] [Indexed: 03/14/2025]
Abstract
OBJECTIVE A high-fat diet (HFD) significantly contributes to obesity and alters the neurological function of the brain. This study explored the influence of hypoxia-inducible factor (HIF-1) and its downstream molecules on obesity progression in the context of HFD-induced hypothalamic inflammation. MATERIALS AND METHODS Utilizing a bioinformatics approach alongside animal models, targets and pathways related to hypothalamic obesity were identified via network analysis, gene target identification, gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and subsequent validation in animal models. RESULTS HIF-1α has the potential to regulate the immune response by promoting immune infiltration and increasing the population of immune cells, particularly memory CD4 T cells, in the hypothalamus, primarily through its influence on ksr2 expression. Additionally, the analysis predicted five drugs capable of enhancing HIF-1-Ksr2 signalling. CONCLUSION In conclusion, targeting Ksr2 with specific drugs represents a potential approach for addressing HFD-induced obesity. These novel findings lay the groundwork for developing dietary supplements and therapeutic interventions.
Collapse
Affiliation(s)
- Hai Guo
- Department of Anesthesiology, the First Affiliated Hospital of
Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Perioperative Organ Protection Laboratory (XJDX1411),
Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Lijuan Ma
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Dilihumaier Duolikun
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Qiaoling Yao
- Department of Physiology, School of Basic Medical Sciences,
Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases,
Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of
High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
4
|
Shi J, Wei L. ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity. FASEB Bioadv 2024; 6:85-102. [PMID: 38463696 PMCID: PMC10918988 DOI: 10.1096/fba.2024-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we investigated the roles of ROCK1 in regulating structural and functional features of caveolae located at the cell membrane of cardiomyocytes, adipocytes, and mouse embryonic fibroblasts (MEFs) as well as related physiopathological effects. Caveolae are small bulb-shaped cell membrane invaginations, and their roles have been associated with disease conditions. One of the unique features of caveolae is that they are physically linked to the actin cytoskeleton that is well known to be regulated by RhoA/ROCKs pathway. In cardiomyocytes, we observed that ROCK1 deficiency is coincident with an increased caveolar density, clusters, and caveolar proteins including caveolin-1 and -3. In the mouse cardiomyopathy model with transgenic overexpressing Gαq in myocardium, we demonstrated the reduced caveolar density at cell membrane and reduced caveolar protein contents. Interestingly, coexisting ROCK1 deficiency in cardiomyocytes can rescue these defects and preserve caveolar compartmentalization of β-adrenergic signaling molecules including β1-adrenergic receptor and type V/VI adenylyl cyclase. In cardiomyocytes and adipocytes, we detected that ROCK1 deficiency increased insulin signaling with increased insulin receptor activation in caveolae. In MEFs, we identified that ROCK1 deficiency increased caveolar and total levels of caveolin-1 and cell membrane repair ability after mechanical or chemical disruptions. Together, these results demonstrate that ROCK1 can regulate caveolae plasticity and multiple functions including compartmentalization of signaling molecules and cell membrane repair following membrane disruption by mechanical force and oxidative damage. These findings provide possible molecular insights into the beneficial effects of ROCK1 deletion/inhibition in cardiomyocytes, adipocytes, and MEFs under certain diseased conditions.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
5
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
6
|
Skandalis SS. CD44 Intracellular Domain: A Long Tale of a Short Tail. Cancers (Basel) 2023; 15:5041. [PMID: 37894408 PMCID: PMC10605500 DOI: 10.3390/cancers15205041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
CD44 is a single-chain transmembrane receptor that exists in multiple forms due to alternative mRNA splicing and post-translational modifications. CD44 is the main cell surface receptor of hyaluronan as well as other extracellular matrix molecules, cytokines, and growth factors that play important roles in physiological processes (such as hematopoiesis and lymphocyte homing) and the progression of various diseases, the predominant one being cancer. Currently, CD44 is an established cancer stem cell marker in several tumors, implying a central functional role in tumor biology. The present review aims to highlight the contribution of the CD44 short cytoplasmic tail, which is devoid of any enzymatic activity, in the extraordinary functional diversity of the receptor. The interactions of CD44 with cytoskeletal proteins through specific structural motifs within its intracellular domain drives cytoskeleton rearrangements and affects the distribution of organelles and transport of molecules. Moreover, the CD44 intracellular domain specifically interacts with various cytoplasmic effectors regulating cell-trafficking machinery, signal transduction pathways, the transcriptome, and vital cell metabolic pathways. Understanding the cell type- and context-specificity of these interactions may unravel the high complexity of CD44 functions and lead to novel improved therapeutic interventions.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Dohnalkova E, Bayer RL, Guo Q, Bamidele AO, Kim Lee HS, Valenzuela-Pérez L, Krishnan A, Pavelko KD, Guisot NES, Bunyard P, Kim YB, Ibrahim SH, Gores GJ, Hirsova P. Rho-associated protein kinase 1 inhibition in hepatocytes attenuates nonalcoholic steatohepatitis. Hepatol Commun 2023; 7:02009842-202306010-00031. [PMID: 37267252 DOI: 10.1097/hc9.0000000000000171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND NASH is the progressive form of NAFLD characterized by lipotoxicity, hepatocyte injury, tissue inflammation, and fibrosis. Previously, Rho-associated protein kinase (ROCK) 1 has been implicated in lipotoxic signaling in hepatocytes in vitro and high-fat diet-induced lipogenesis in vivo. However, whether ROCK1 plays a role in liver inflammation and fibrosis during NASH is unclear. Here, we hypothesized that pathogenic activation of ROCK1 promotes murine NASH pathogenesis. METHODS AND RESULTS Patients with NASH had increased hepatic ROCK1 expression compared with patients with fatty liver. Similarly, hepatic ROCK1 levels and activity were increased in mice with NASH induced by a western-like diet that is high in fat, fructose, and cholesterol (FFC). Hepatocyte-specific ROCK1 knockout mice on the FFC diet displayed a decrease in liver steatosis, hepatic cell death, liver inflammation, and fibrosis compared with littermate FFC-fed controls. Mechanistically, these effects were associated with a significant attenuation of myeloid cell recruitment. Interestingly, myeloid cell-specific ROCK1 deletion did not affect NASH development in FFC-fed mice. To explore the therapeutic opportunities, mice with established NASH received ROCKi, a novel small molecule kinase inhibitor of ROCK1/2, which preferentially accumulates in liver tissue. ROCK inhibitor treatment ameliorated insulin resistance and decreased liver injury, inflammation, and fibrosis. CONCLUSIONS Genetic or pharmacologic inhibition of ROCK1 activity attenuates murine NASH, suggesting that ROCK1 may be a therapeutic target for treating human NASH.
Collapse
Affiliation(s)
- Ester Dohnalkova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biological and Medical Sciences, Charles University, Hradec Kralove, Czech Republic
| | - Rachel L Bayer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Qianqian Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adebowale O Bamidele
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Samar H Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Lin X, Wang L, Lu X, Zhang Y, Zheng R, Chen R, Zhang W. Targeting of G-protein coupled receptor 40 alleviates airway hyperresponsiveness through RhoA/ROCK1 signaling pathway in obese asthmatic mice. Respir Res 2023; 24:56. [PMID: 36803977 PMCID: PMC9938616 DOI: 10.1186/s12931-023-02361-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Obesity increases the severity of airway hyperresponsiveness (AHR) in individuals with asthma, but the mechanism is not well elucidated. G-protein coupled receptor 40 (GPR40) has been found to induce airway smooth muscle contraction after activated by long-chain fatty acids (LC-FFAs), suggesting a close correlation between GPR40 and AHR in obese. In this study, C57BL/6 mice were fed a high-fat diet (HFD) to induce obesity with or without ovalbumin (OVA) sensitization, the regulatory effects of GPR40 on AHR, inflammatory cells infiltration, and the expression of Th1/Th2 cytokines were evaluated by using a small-molecule antagonist of GPR40, DC260126. We found that the free fatty acids (FFAs) level and GPR40 expression were greatly elevated in the pulmonary tissues of obese asthmatic mice. DC260126 greatly reduced methacholine-induced AHR, ameliorated pulmonary pathological changes and decreased inflammatory cell infiltration in the airways in obese asthma. In addition, DC260126 could down-regulate the levels of Th2 cytokines (IL-4, IL-5, and IL-13) and pro-inflammatory cytokines (IL-1β, TNF-α), but elevated Th1 cytokine (IFN-γ) expression. In vitro, DC260126 could remarkedly reduce oleic acid (OA)-induced cell proliferation and migration in HASM cells. Mechanistically, the effects that DC260126 alleviated obese asthma was correlated with the down-regulation of GTP-RhoA and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1). Herein, we proved that targeting of GPR40 with its antagonist helped to mitigate multiple parameters of obese asthma effectively.
Collapse
Affiliation(s)
- Xixi Lin
- grid.417384.d0000 0004 1764 2632Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Like Wang
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Xiaojie Lu
- grid.268099.c0000 0001 0348 3990School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Yuanyuan Zhang
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Rongying Zheng
- grid.417384.d0000 0004 1764 2632Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Ruijie Chen
- grid.417384.d0000 0004 1764 2632Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
9
|
Kargarfard M, Nobari H, Kamyar K, Zadeh AK, Oliveira R. Effects of 12-week moderate aerobic exercise on ROCK2 activity, hs-CRP and glycemic index in obese patients with impaired glucose tolerance. Physiol Behav 2022; 257:113976. [PMID: 36183850 DOI: 10.1016/j.physbeh.2022.113976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/23/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Obesity is a chronic low-grade inflammatory state that is related to prediabetes, increased Rhoassociated kinase 2 (ROCK2) activity and concentration of high-sensitivity C-reactive protein (hs-CRP). Therefore, the study was conducted to investigate the effects of 12-week moderate aerobic exercise on ROCK2 activity, hs-CRP, glycosylated hemoglobin A1C (HbA1c), and glycemic index in obese patients with impaired glucose tolerance. METHODS In a quasi-experimental design with pre and post-test, 42 obese men with prediabetes [mean±SD, age: 44.73 ± 3.30 years, body mass index (BMI): 33.22 ± 2.05 kg/m2, HbA1c: 6.29 % ± 0.75] were allocated into two randomized homogeneous groups: Aerobic training group (AT, n=22) or control group (C, n=20). Exercise group performed a moderate aerobic exercise program three sessions per week, 60 minutes per session for 12 weeks. Body mass, BMI, maximal oxygen consumption (VO2max), serum levels of fasting blood glucose (FBG), insulin, insulin resistance (HOMA-IR), homeostasis model assessment of β-cell function (HOMA-B); HbA1c, hs-CRP, or ROCK2 activity were measured before and after the study period. The data were analyzed using repeated measures ANOVA 2×2 and paired sample t test at a significant level of p < 0.05. RESULTS AT caused a significant reduction in body mass (p≤ 0.001), BMI (p= 0.04), HOMA-B (p=0.003), serum levels of FBG (p= 0.002), HbA1c (p= 0.039), hs-CRP (p≤ 0.0001), and ROCK2 activity (p= 0.001). In contrast, in the same group, a significant increase was observed in VO2max (p= 0.04). CONCLUSION The results of this study showed that moderate aerobic exercise was an effective and safe method to prevent type 2 diabetes and cardiovascular diseases in obese men with prediabetes by improving glucose metabolism, reduction of body mass, ROCK2 activity and serum levels of hs-CRP.
Collapse
Affiliation(s)
- Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran; Department of motor performance, Faculty of Physical Education and Mountain Sports, Transilvania, University of Braşov, 500068 Braşov, Romania; Department of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain.
| | - Kian Kamyar
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Ali Khosravi Zadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran.
| | - Rafael Oliveira
- Sports Science School of Rio Maior, Polytechnic Institute of Santarém, 2040-413 Rio Maior, Portugal; Research Center in Sport Sciences, Health Sciences and Human Development, 5001-801 Vila Real, Portugal; Life Quality Research Centre, 2040-413 Rio Maior, Portugal.
| |
Collapse
|
10
|
Weng X, Maxwell-Warburton S, Hasib A, Ma L, Kang L. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab 2022; 33:318-332. [PMID: 35249813 DOI: 10.1016/j.tem.2022.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
CD44, a cell-surface glycoprotein, has long been studied as a cancer molecule due to its essential role in physiological activities in normal cells and pathological activities in cancer cells, such as cell proliferation, adhesion, and migration; angiogenesis; inflammation; and cytoskeleton rearrangement. Yet, recent evidence suggests a role of CD44 in metabolism, especially insulin resistance in obesity and diabetes. In line with the current concept of fibroinflammation in obesity and insulin resistance, CD44 as the main receptor of the extracellular matrix component, hyaluronan (HA), has been shown to regulate diet-induced insulin resistance in muscle and other insulin-sensitive tissues. In this review, we integrate current evidence for a role of CD44 in regulating glucose and lipid homeostasis and speculate about its involvement in the pathogenesis of chronic metabolic diseases, including obesity and diabetes. We summarize the current development of CD44-targeted therapies and discuss its potential for the use in treating metabolic diseases.
Collapse
Affiliation(s)
- Xiong Weng
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | - Annie Hasib
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Lifeng Ma
- School of Medicine, Xizang Minzhu University, Xianyang, Shaanxi, China
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
11
|
Wei L, Shi J. Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:886534. [PMID: 35769086 PMCID: PMC9234286 DOI: 10.3389/fendo.2022.886534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and associated complications increasingly jeopardize global health and contribute to the rapidly rising prevalence of type 2 diabetes mellitus and obesity-related diseases. Developing novel methods for the prevention and treatment of excess body adipose tissue expansion can make a significant contribution to public health. Rho kinase is a Rho-associated coiled-coil-containing protein kinase (Rho kinase or ROCK). The ROCK family including ROCK1 and ROCK2 has recently emerged as a potential therapeutic target for the treatment of metabolic disorders. Up-regulated ROCK activity has been involved in the pathogenesis of all aspects of metabolic syndrome including obesity, insulin resistance, dyslipidemia and hypertension. The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in both white and beige adipogenesis. Studies using ROCK pan-inhibitors in animal models of obesity, diabetes, and associated complications have demonstrated beneficial outcomes. Studies via genetically modified animal models further established isoform-specific roles of ROCK in the pathogenesis of metabolic disorders including obesity. However, most reported studies have been focused on ROCK1 activity during the past decade. Due to the progress in developing ROCK2-selective inhibitors in recent years, a growing body of evidence indicates more attention should be devoted towards understanding ROCK2 isoform function in metabolism. Hence, studying individual ROCK isoforms to reveal their specific roles and principal mechanisms in white and beige adipogenesis, insulin sensitivity, energy balancing regulation, and obesity development will facilitate significant breakthroughs for systemic treatment with isoform-selective inhibitors. In this review, we give an overview of ROCK functions in the pathogenesis of obesity and insulin resistance with a particular focus on the current understanding of ROCK isoform signaling in white and beige adipogenesis, obesity and thermogenesis in adipose tissue and other major metabolic organs involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lei Wei
- *Correspondence: Lei Wei, ; Jianjian Shi,
| | | |
Collapse
|
12
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Chen X, Tan QQ, Tan XR, Li SJ, Zhang XX. Circ_0057558 promotes nonalcoholic fatty liver disease by regulating ROCK1/AMPK signaling through targeting miR-206. Cell Death Dis 2021; 12:809. [PMID: 34446693 PMCID: PMC8390503 DOI: 10.1038/s41419-021-04090-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver disorders that is featured by the extensive deposition of fat in the hepatocytes. Current treatments are very limited due to its unclear pathogenesis. Here, we investigated the function of circ_0057558 and miR-206 in NAFLD. High-fat diet (HFD) feeding mouse was used as an in vivo NAFLD model and long-chain-free fatty acid (FFA)-treated liver cells were used as an in vitro NAFLD model. qRT-PCR was used to measure levels of miR-206, ROCK1 mRNA, and circ_0057558, while Western blotting was employed to determine protein levels of ROCK1, p-AMPK, AMPK, and lipogenesis-related proteins. Immunohistochemistry were performed to examine ROCK1 level. Oil-Red O staining was used to assess the lipid deposition in cells. ELISA was performed to examine secreted triglyceride (TG) level. Dual-luciferase assay was used to validate interactions of miR-206/ROCK1 and circ_0057558/miR-206. RNA immunoprecipitation was employed to confirm the binding of circ_0057558 with miR-206. Circ_0057558 was elevated while miR-206 was reduced in both in vivo and in vitro NAFLD models. miR-206 directly bound with ROCK1 3'-UTR and suppressed lipogenesis and TG secretion through targeting ROCK1/AMPK signaling. Circ_0057558 directly interacted with miR-206 to disinhibit ROCK1/AMPK signaling. Knockdown of circ_0057558 or overexpression of miR-206 inhibited lipogenesis, TG secretion and expression of lipogenesis-related proteins. ROCK1 knockdown reversed the effects of circ_0057558 overexpression. Injection of miR-206 mimics significantly ameliorated NAFLD progression in vivo. Circ_0057558 acts as a miR-206 sponge to de-repress the ROCK1/AMPK signaling and facilitates lipogenesis and TG secretion, which greatly contributes to NAFLD development and progression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China
| | - Qing-Qing Tan
- Department of Biology, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xin-Rui Tan
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China
| | - Shi-Jun Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China
| | - Xing-Xing Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
14
|
Tran NNQ, Chun KH. ROCK2-Specific Inhibitor KD025 Suppresses Adipocyte Differentiation by Inhibiting Casein Kinase 2. Molecules 2021; 26:4747. [PMID: 34443331 PMCID: PMC8401933 DOI: 10.3390/molecules26164747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
KD025, a ROCK2 isoform-specific inhibitor, has an anti-adipogenic activity which is not mediated by ROCK2 inhibition. To identify the target, we searched binding targets of KD025 by using the KINOMEscanTM screening platform, and we identified casein kinase 2 (CK2) as a novel target. KD025 showed comparable binding affinity to CK2α (Kd = 128 nM). By contrast, CK2 inhibitor CX-4945 and ROCK inhibitor fasudil did not show such cross-reactivity. In addition, KD025 effectively inhibited CK2 at a nanomolar concentration (IC50 = 50 nM). We examined if the inhibitory effect of KD025 on adipocyte differentiation is through the inhibition of CK2. Both CX-4945 and KD025 suppressed the generation of lipid droplets and the expression of proadipogenic genes Pparg and Cebpa in 3T3-L1 cells during adipocyte differentiation. Fasudil exerted no significant effect on the quantity of lipid droplets, but another ROCK inhibitor Y-27632 increased the expression of Pparg and Cebpa. Both CX-4945 and KD025 acted specifically in the middle stage (days 1-3) but were ineffective when treated at days 0-1 or the late stages, indicating that CX-4945 and KD025 may regulate the same target, CK2. The mRNA and protein levels of CK2α and CK2β generally decreased in 3T3-L1 cells at day 2 but recovered thereafter. Other well-known CK2 inhibitors DMAT and quinalizarin inhibited effectively the differentiation of 3T3-L1 cells. Taken together, the results of this study confirmed that KD025 inhibits ROCK2 and CK2, and that the inhibitory effect on adipocyte differentiation is through the inhibition of CK2.
Collapse
Affiliation(s)
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea;
| |
Collapse
|
15
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
16
|
Rome S, Blandin A, Le Lay S. Adipocyte-Derived Extracellular Vesicles: State of the Art. Int J Mol Sci 2021; 22:ijms22041788. [PMID: 33670146 PMCID: PMC7916840 DOI: 10.3390/ijms22041788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
White adipose tissue (WAT) is involved in long-term energy storage and represents 10–15% of total body weight in healthy humans. WAT secretes many peptides (adipokines), hormones and steroids involved in its homeostatic role, especially in carbohydrate–lipid metabolism regulation. Recently, adipocyte-derived extracellular vesicles (AdEVs) have been highlighted as important actors of intercellular communication that participate in metabolic responses to control energy flux and immune response. In this review, we focus on the role of AdEVs in the cross-talks between the different cellular types composing WAT with regard to their contribution to WAT homeostasis and metabolic complications development. We also discuss the AdEV cargoes (proteins, lipids, RNAs) which may explain AdEV’s biological effects and demonstrate that, in terms of proteins, AdEV has a very specific signature. Finally, we list and suggest potential therapeutic strategies to modulate AdEV release and composition in order to reduce their deleterious effects during the development of metabolic complications associated with obesity.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM/1060- INRAE/1397, University of Lyon, Lyon-Sud Faculty of Medicine, 69310 Pierre Benite, France
- Institute of Functional Genomic of Lyon (IGFL), ENS, CNRS UMR 5242, University of Lyon, 69364 Lyon, France
- Correspondence: (S.R.); (S.L.L.)
| | - Alexia Blandin
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
| | - Soazig Le Lay
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
- Correspondence: (S.R.); (S.L.L.)
| |
Collapse
|
17
|
Gupta P, Taiyab A, Hassan MI. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:47-85. [PMID: 33632470 DOI: 10.1016/bs.apcsb.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Diabetes mellitus has emerged as a severe burden on the medical health system across the globe. Presently, around 422 million people are suffering from diabetes which is speculated to be expanded to about 600 million by 2035. Patients with type 2 diabetes are at increased risk of developing detrimental metabolic and cardiovascular complications. The scientific understanding of this chronic disease and its underlying root cause is not yet fully unraveled. Protein kinases are well known to regulate almost every cellular process through phosphorylation of target protein in diverse signaling pathways. The important role of several protein kinases including AMP-activated protein kinase, IκB kinase and protein kinase C have been well demonstrated in various animal models. They modulate glucose tolerance, inflammation and insulin resistance in the cells via acting on diverse downstream targets and signaling pathways. Thus, modulating the activity of potential human kinases which are significantly involved in diabetes by targeting with small molecule inhibitors could be an attractive therapeutic strategy to tackle diabetes. In this chapter, we have discussed the potential role of protein kinases in glucose metabolism and insulin sensitivity, and in the pathogenesis of diabetes mellitus. Furthermore, the small molecules reported in the literature that can be potentially used for the treatment of diabetes have been discussed in detail.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
18
|
Muñoz VR, Gaspar RC, Kuga GK, Pavan ICB, Simabuco FM, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. The Effects of Aging on Rho-Kinase and Insulin Signaling in Skeletal Muscle and White Adipose Tissue of Rats. J Gerontol A Biol Sci Med Sci 2020; 75:432-436. [PMID: 30596894 DOI: 10.1093/gerona/gly293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
The insulin receptor substrate 1 regulates insulin-mediated glucose uptake and is a target of Rho-kinase (Rock); however, the relationship between age-related insulin resistance and Rock signaling specifically in skeletal muscle and adipose tissue is unknown. We evaluated the content and activity of Rock in C2C12 myotubes, and in skeletal muscle and white adipose tissue (WAT) from two rodent models that differ in their patterns of body fat accumulation during aging (Wistar and Fischer 344 rats). Body fat gain in the Wistar rats was greater than in Fischer rats and only Wistar rats had impairment of whole-body insulin sensitivity. Rock activity and insulin signaling were impaired in skeletal muscle in both rat models, but only middle-aged Wistar rats had higher Rock activity in WAT. These data are consistent with a positive role of Rock in regulating insulin signaling in both skeletal muscle and its negative role in the adipose tissue, suggesting that Rock activity in adipose tissue is important in age-related insulin resistance.
Collapse
Affiliation(s)
- Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Gabriel Keine Kuga
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Postgraduate Program in Motor Science - São Paulo State University (UNESP).,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys Esper Cintra
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
Nonalcoholic hepatitis (NASH) is the progressive inflammatory form of nonalcoholic fatty liver disease. Although the mechanisms of hepatic inflammation in NASH remain incompletely understood, emerging literature implicates the proinflammatory environment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. Interestingly, numerous NASH-promoting kinases in hepatocytes, immune cells, and adipocytes are activated by the lipotoxic insult associated with obesity. In the current review, we discuss recent advances in NASH-promoting kinases as disease mediators and therapeutic targets. The focus of the review is mainly on the mitogen-activated protein kinases including mixed lineage kinase 3, apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase, and p38 MAPK; the endoplasmic reticulum (ER) stress kinases protein kinase RNA-like ER kinase and inositol-requiring protein-1α; as well as the Rho-associated protein kinase 1. We also discuss various pharmacological agents targeting these stress kinases in NASH that are under different phases of development.
Collapse
Affiliation(s)
- Samar H. Ibrahim
- Division of Gastroenterology & Hepatology in the Department of Pediatrics, Rochester, Minnesota.,Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| | - Petra Hirsova
- Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| | - Gregory J. Gores
- Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Seo JA, Kang MC, Yang WM, Hwang WM, Kim SS, Hong SH, Heo JI, Vijyakumar A, Pereira de Moura L, Uner A, Huang H, Lee SH, Lima IS, Park KS, Kim MS, Dagon Y, Willnow TE, Aroda V, Ciaraldi TP, Henry RR, Kim YB. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun 2020; 11:2024. [PMID: 32332780 PMCID: PMC7181874 DOI: 10.1038/s41467-020-15963-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity. Hepatokines are proteins secreted by the liver that can regulate whole body metabolism. Here the authors identify apolipoprotein J as a hepatokine that regulates muscle glucose metabolism and insulin resistance through a low-density lipoprotein receptor-related protein−2 mediated mechanism in mice.
Collapse
Affiliation(s)
- Ji A Seo
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Won Min Hwang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Soo Hyun Hong
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Columbia University, New York, NY, USA
| | - Jee-In Heo
- Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Achana Vijyakumar
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Leandro Pereira de Moura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,School of Applied Science, University of Campinas, Limeira, Brazil
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,East Carolina University, East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Seung Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Inês S Lima
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Universidade Nova de Lisboa, Lisboa, Portugal
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Min Seon Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Thomas E Willnow
- Molecular Cardiovascular Research, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Vanita Aroda
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Identification of novel functions of the ROCK2-specific inhibitor KD025 by bioinformatics analysis. Gene 2020; 737:144474. [PMID: 32057928 DOI: 10.1016/j.gene.2020.144474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Rho-associated protein kinases (ROCKs) have various cellular functions, which include actin cytoskeleton remodeling and vesicular trafficking, and there are two major mammalian ROCK isotypes, namely, ROCK1 (ROKβ) and ROCK2 (ROKα). The ROCK2-specific inhibitor KD025 (SLx-2119) is currently undergoing phase II clinical trials, but its cellular functions have not been fully explored. In this study, we investigated the functions of KD025 at the genomics level by bioinformatics analysis using the GSE8686 microarray dataset from the NCBI GEO database, in three different primary human cell lines. An initial microarray analysis conducted by Boerma et al. focused on the effects of KD025 on cell adhesion and blood coagulation, but did not provide comprehensive information on the functions of KD025. Our analysis of differentially expressed genes (DEGs) showed ~70% coincidence with Boerma et al.'s findings, and newly identified that CCND1, CXCL2, NT5E, and SMOX were differentially expressed by KD025. However, due to low numbers of co-regulated DEGs, we were unable to extract the functions of KD025 with significance. To overcome this limitation, we used gene set enrichment analysis (GSEA) and the heatmap hierarchical clustering method. We confirmed KD025 regulated inflammation and adipogenesis pathways, as previously reported experimentally. In addition, we found KD025 has novel regulatory functions on various pathways, including oxidative phosphorylation, WNT signaling, angiogenesis, and KRAS signaling. Further studies are required to systematically characterize these newly identified functions of KD025.
Collapse
|
22
|
Muñoz VR, Gaspar RC, Esteca MV, Baptista IL, Vieira RFL, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. Physical exercise increases ROCK activity in the skeletal muscle of middle-aged rats. Mech Ageing Dev 2020; 186:111213. [PMID: 32032622 DOI: 10.1016/j.mad.2020.111213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
The physical exercise is a potential strategy to control age-related metabolic disorders, such as insulin resistance, impaired glucose homeostasis, and type 2 diabetes. Rho-kinase (ROCK) increases skeletal muscle glucose uptake through Insulin Receptor Substrate 1 (IRS1) phosphorylation. Here, we investigated the role of physical exercise in ROCK pathway in the skeletal muscle of Fischer middle-aged rats. Firstly, we observed the ROCK distribution in different skeletal muscle fiber types. ROCK signaling pathway (ROCK1 and ROCK2) and activity (pMYPT1) were higher in the soleus, which was associated with increased insulin signaling pathway (pIR, pIRS1, pPDK, pGSK3β). Middle-aged rats submitted to physical exercise, showed the upregulation of ROCK2 content and normalized RhoA (ROCK activator enzyme) levels in soleus muscle compared with middle-aged sedentary rats. These molecular changes in middle-aged exercised rats were accompanied by higher insulin signaling (pIRS1, pGSK3β, pAS160, GLUT4) in the soleus muscle. Reinforcing these findings, when pharmacological inhibition of ROCK activity was performed (using Y-27632), the insulin signaling pathway and glucose metabolism-related genes (Tpi, Pgk1, Pgam2, Eno3) were decreased in the soleus muscle of exercised rats. In summary, ROCK signaling seems to contribute with whole-body glucose homeostasis (∼50 %) through its higher upregulation in the soleus muscle in middle-aged exercised rats.
Collapse
Affiliation(s)
- Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Marcos Vinicius Esteca
- Laboratory of Cellular and Tissue Biology, Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Igor Luchini Baptista
- Laboratory of Cellular and Tissue Biology, Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys Esper Cintra
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
23
|
Landry T, Shookster D, Huang H. Tissue-Specific Approaches Reveal Diverse Metabolic Functions of Rho-Kinase 1. Front Endocrinol (Lausanne) 2020; 11:622581. [PMID: 33633690 PMCID: PMC7901932 DOI: 10.3389/fendo.2020.622581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023] Open
Abstract
Rho-kinase 1 (ROCK1) has been implicated in diverse metabolic functions throughout the body, with promising evidence identifying ROCK1 as a therapeutic target in diabetes and obesity. Considering these metabolic roles, several pharmacological inhibitors have been developed to elucidate the mechanisms underlying ROCK1 function. Y27632 and fasudil are two common ROCK1 inhibitors; however, they have varying non-specific selectivity to inhibit other AGC kinase subfamily members and whole-body pharmacological approaches lack tissue-specific insight. As a result, interpretation of studies with these inhibitors is difficult, and alternative approaches are needed to elucidate ROCK1's tissue specific metabolic functions. Fortunately, recent technological advances utilizing molecular carriers or genetic manipulation have facilitated discovery of ROCK1's tissue-specific mechanisms of action. In this article, we review the tissue-specific roles of ROCK1 in the regulation of energy balance and substrate utilization. We highlight prominent metabolic roles in liver, adipose, and skeletal muscle, in which ROCK1 regulates energy expenditure, glucose uptake, and lipid metabolism via inhibition of AMPK2α and paradoxical modulation of insulin signaling. Compared to ROCK1's roles in peripheral tissues, we also describe contradictory functions of ROCK1 in the hypothalamus to increase energy expenditure and decrease food intake via leptin signaling. Furthermore, dysregulated ROCK1 activity in either of these tissues results in metabolic disease phenotypes. Overall, tissue-specific approaches have made great strides in deciphering the many critical metabolic functions of ROCK1 and, ultimately, may facilitate the development of novel treatments for metabolic disorders.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, United States
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, United States
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, United States
- Department of Physiology, East Carolina University, Greenville, NC, United States
- *Correspondence: Hu Huang,
| |
Collapse
|
24
|
Strieder-Barboza C, Baker NA, Flesher CG, Karmakar M, Neeley CK, Polsinelli D, Dimick JB, Finks JF, Ghaferi AA, Varban OA, Lumeng CN, O'Rourke RW. Advanced glycation end-products regulate extracellular matrix-adipocyte metabolic crosstalk in diabetes. Sci Rep 2019; 9:19748. [PMID: 31875018 PMCID: PMC6930305 DOI: 10.1038/s41598-019-56242-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/28/2022] Open
Abstract
The adipose tissue extracellular matrix (ECM) regulates adipocyte cellular metabolism and is altered in obesity and type 2 diabetes, but mechanisms underlying ECM-adipocyte metabolic crosstalk are poorly defined. Advanced glycation end-product (AGE) formation is increased in diabetes. AGE alter tissue function via direct effects on ECM and by binding scavenger receptors on multiple cell types and signaling through Rho GTPases. Our goal was to determine the role and underlying mechanisms of AGE in regulating human ECM-adipocyte metabolic crosstalk. Visceral adipocytes from diabetic and non-diabetic humans with obesity were studied in 2D and 3D-ECM culture systems. AGE is increased in adipose tissue from diabetic compared to non-diabetic subjects. Glycated collagen 1 and AGE-modified ECM regulate adipocyte glucose uptake and expression of AGE scavenger receptors and Rho signaling mediators, including the DIAPH1 gene, which encodes the human Diaphanous 1 protein (hDia1). Notably, inhibition of hDia1, but not scavenger receptors RAGE or CD36, attenuated AGE-ECM inhibition of adipocyte glucose uptake. These data demonstrate that AGE-modification of ECM contributes to adipocyte insulin resistance in human diabetes, and implicate hDia1 as a potential mediator of AGE-ECM-adipocyte metabolic crosstalk.
Collapse
Affiliation(s)
- Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Monita Karmakar
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher K Neeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dominic Polsinelli
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI, USA
| | - Justin B Dimick
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan F Finks
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amir A Ghaferi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver A Varban
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Dankel SN, Røst TH, Kulyté A, Fandalyuk Z, Skurk T, Hauner H, Sagen JV, Rydén M, Arner P, Mellgren G. The Rho GTPase RND3 regulates adipocyte lipolysis. Metabolism 2019; 101:153999. [PMID: 31672447 DOI: 10.1016/j.metabol.2019.153999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Adipose tissue plays a crucial role in diet- and obesity-related insulin resistance, with implications for several metabolic diseases. Identification of novel target genes and mechanisms that regulate adipocyte function could lead to improved treatment strategies. RND3 (RhoE/Rho8), a Rho-related GTP-binding protein that inhibits Rho kinase (ROCK) signaling, has been linked to diverse diseases such as apoptotic cardiomyopathy, heart failure, cancer and type 2 diabetes, in part by regulating cytoskeleton dynamics and insulin-mediated glucose uptake. RESULTS We here investigated the expression of RND3 in adipose tissue in human obesity, and discovered a role for RND3 in regulating adipocyte metabolism. In cross-sectional and prospective studies, we observed 5-fold increased adipocyte levels of RND3 mRNA in obesity, reduced levels after surgery-induced weight loss, and positive correlations of RND3 mRNA with adipocyte size and surrogate measures of insulin resistance (HOMA2-IR and circulating triglyceride/high-density lipoprotein cholesterol (TAG/HDL-C) ratio). By screening for RND3-dependent gene expression following siRNA-mediated RND3 knockdown in differentiating human adipocytes, we found downregulation of inflammatory genes and upregulation of genes related to adipocyte ipolysis and insulin signaling. Treatment of adipocytes with tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), hypoxia or cAMP analogs increased RND3 mRNA levels 1.5-2-fold. Functional assays in primary human adipocytes confirmed that RND3 knockdown reduces cAMP- and isoproterenol-induced lipolysis, which were mimicked by treating cells with ROCK inhibitor. This effect could partly be explained by reduced protein expression of adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (HSL). CONCLUSION We here uncovered a novel differential expression of adipose RND3 in obesity and insulin resistance, which may at least partly depend on a causal effect of RND3 on adipocyte lipolysis.
Collapse
Affiliation(s)
- Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Therese H Røst
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Agné Kulyté
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Zina Fandalyuk
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany; Else Kroener-Fresenius Centre for Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Hans Hauner
- Else Kroener-Fresenius Centre for Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany; German Center of Diabetes Research, Helmholtz Center, Munich, Germany
| | - Jørn V Sagen
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, C2-94 Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
26
|
Diep DTV, Duong KHM, Choi H, Jun HS, Chun KH. KD025 (SLx-2119) suppresses adipogenesis at intermediate stage in human adipose-derived stem cells. Adipocyte 2019; 8:114-124. [PMID: 30860936 PMCID: PMC6768280 DOI: 10.1080/21623945.2019.1590929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rho-associated kinases (ROCKs) have been reported to antagonize adipocyte differentiation, and inhibition of ROCKs by small molecules promotes adipogenesis. Surprisingly, our recent study revealed that the ROCK2-specific inhibitor KD025 (SLx-2119), suppresses differentiation at the intermediate stage in 3T3-L1 preadipocytes. To address whether the anti-adipogenic activity of KD025 is a generalizable property, we examined the effect of KD025 in human adipose-derived stem cells (hADSCs). KD025 significantly suppressed the adipocyte differentiation of hADSCs with downregulation of the protein and mRNA expression of various adipogenic and lipogenic markers, including PPARγ, C/EBPα, SREBP-1c, Glut4 and FABP4. Notably, we observed that adipocyte differentiation is effectively suppressed by exposure to KD025 during the mid-to-late period of adipogenesis but not at the earlier stages, showing stage-specificity. Contrary to expectations, KD025 upregulated the insulin signaling, as confirmed by the increased phosphorylation levels of Akt and GSK-3α/β, and the differentiation-promoting activity of insulin signaling was observed to be overwhelmed by the inhibitory activity. In addition, we observed that other ROCK inhibitors (Y-27632, fasudil, and H-1152P) did not suppress but promoted adipocyte differentiation. These results indicate that KD025 suppresses adipocyte differentiation by modulation of key factors activated at the intermediate stage of differentiation, and not by inhibition of ROCK2.
Collapse
Affiliation(s)
- Duy Trong Vien Diep
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Khue Ha Minh Duong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hojung Choi
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
27
|
Muñoz VR, Gaspar RC, Minuzzi LG, dos Santos Canciglieri R, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. Rho-kinase activity is upregulated in the skeletal muscle of aged exercised rats. Exp Gerontol 2019; 128:110746. [DOI: 10.1016/j.exger.2019.110746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
|
28
|
Wei L, Surma M, Yang Y, Tersey S, Shi J. ROCK2 inhibition enhances the thermogenic program in white and brown fat tissue in mice. FASEB J 2019; 34:474-493. [PMID: 31914704 DOI: 10.1096/fj.201901174rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in adipogenesis. The two ROCK isoforms, ROCK1 and ROCK2, are highly homologous. The contribution of ROCK2 to adipogenesis in vivo has not been elucidated. The present study aimed at the in vivo and in vitro roles of ROCK2 in the regulation of adipogenesis and the development of obesity. We performed molecular, histological, and metabolic analyses in ROCK2+/- and ROCK2+/KD mouse models, the latter harboring an allele with a kinase-dead (KD) mutation. Both ROCK2+/- and ROCK2+/KD mouse models showed a lean body mass phenotype during aging, associated with increased amounts of beige cells in subcutaneous white adipose tissue (sWAT) and increased thermogenic gene expression in all fat depots. ROCK2+/- mice on a high-fat diet showed increased energy expenditure accompanying by reduced obesity, and improved insulin sensitivity. In vitro differentiated ROCK2+/- stromal-vascular (SV) cells revealed increased beige adipogenesis associated with increased thermogenic gene expressions. Treatment with a selective ROCK2 inhibitor, KD025, to inhibit ROCK2 activity in differentiated SV cells reproduced the pro-beige phenotype of ROCK2+/- SV cells. In conclusion, ROCK2 activity-mediated actin cytoskeleton dynamics contribute to the inhibition of beige adipogenesis in WAT, and also promotes age-related and diet-induced fat mass gain and insulin resistance.
Collapse
Affiliation(s)
- Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michelle Surma
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Tersey
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
29
|
Chen X, Tan XR, Li SJ, Zhang XX. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sci 2019; 235:116829. [PMID: 31484042 DOI: 10.1016/j.lfs.2019.116829] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a severe liver disease, which influences the health of people worldwide. However, the specific mechanism of the disease remains unknown, and effective treatments are still lacking. It was reported that Nuclear enriched abundant transcript 1 (NEAT1) obviously was up-regulated in NAFLD model. But the role and underlying mechanism of NEAT1 in NAFLD is unclear. METHODS HepG2 cells were treated by free fatty acids (FFA) and C57BL/6J mice were treated by high-fat diet to establish NAFLD in vitro and in vivo models, respectively. Cell transfection was applied to regulate the expression of NEAT1, ROCK1, and miR-146a-5p. Western blotting and qRT-PCR were used for measuring expression of protein and mRNA level, respectively. Dual luciferase assay was used to detect the target relationship. Oil Red O staining was used to measure the lipid accumulation. HE staining was used for observing pathological feature of liver tissues. RESULTS High levels of NEAT1 and ROCK1, and low level of miR-146a-5p were identified in NAFLD models. NEAT1 could target miR-146a-5p to promote ROCK1 expression. Knockdown of NEAT1, overexpression of miR-146a-5p and knockdown of ROCK1 inhibited lipid accumulation through activating AMPK pathway. CONCLUSION NEAT1 may regulate NAFLD through miR-146a-5p targeting ROCK1, and further affect AMPK/SREBP pathway. This study may provide a new thought for the treatment of NAFLD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha 410011, Hunan Province, PR China
| | - Xin-Rui Tan
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha 410011, Hunan Province, PR China
| | - Shi-Jun Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha 410011, Hunan Province, PR China
| | - Xing-Xing Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
30
|
Huang H, Lee SH, Sousa-Lima I, Kim SS, Hwang WM, Dagon Y, Yang WM, Cho S, Kang MC, Seo JA, Shibata M, Cho H, Belew GD, Bhin J, Desai BN, Ryu MJ, Shong M, Li P, Meng H, Chung BH, Hwang D, Kim MS, Park KS, Macedo MP, White M, Jones J, Kim YB. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J Clin Invest 2018; 128:5335-5350. [PMID: 30226474 DOI: 10.1172/jci63562] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Obesity is a major risk factor for developing nonalcoholic fatty liver disease (NAFLD). NAFLD is the most common form of chronic liver disease and is closely associated with insulin resistance, ultimately leading to cirrhosis and hepatocellular carcinoma. However, knowledge of the intracellular regulators of obesity-linked fatty liver disease remains incomplete. Here we showed that hepatic Rho-kinase 1 (ROCK1) drives obesity-induced steatosis in mice through stimulation of de novo lipogenesis. Mice lacking ROCK1 in the liver were resistant to diet-induced obesity owing to increased energy expenditure and thermogenic gene expression. Constitutive expression of hepatic ROCK1 was sufficient to promote adiposity, insulin resistance, and hepatic lipid accumulation in mice fed a high-fat diet. Correspondingly, liver-specific ROCK1 deletion prevented the development of severe hepatic steatosis and reduced hyperglycemia in obese diabetic (ob/ob) mice. Of pathophysiological significance, hepatic ROCK1 was markedly upregulated in humans with fatty liver disease and correlated with risk factors clustering around NAFLD and insulin resistance. Mechanistically, we found that hepatic ROCK1 suppresses AMPK activity and a ROCK1/AMPK pathway is necessary to mediate cannabinoid-induced lipogenesis in the liver. Furthermore, treatment with metformin, the most widely used antidiabetes drug, reduced hepatic lipid accumulation by inactivating ROCK1, resulting in activation of AMPK downstream signaling. Taken together, our findings establish a ROCK1/AMPK signaling axis that regulates de novo lipogenesis, providing a unique target for treating obesity-related metabolic disorders such as NAFLD.
Collapse
Affiliation(s)
- Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Kinesiology and Physiology, East Carolina University, East Carolina Diabetes and Obesity Institute, Greenville, North Carolina, USA
| | - Seung-Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Inês Sousa-Lima
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Centro de Estudos de Doenҫas Crónicas (CEDOC), Chronic Disease Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Won Min Hwang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sungman Cho
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ji A Seo
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Munehiko Shibata
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Hyunsoo Cho
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Getachew Debas Belew
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Jinhyuk Bhin
- Center for Plant Aging Research and Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Bhavna N Desai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Min Jeong Ryu
- Department of Endocrinology and Metabolism, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Department of Endocrinology and Metabolism, Chungnam National University School of Medicine, Daejeon, Korea
| | - Peixin Li
- Department of Kinesiology and Physiology, East Carolina University, East Carolina Diabetes and Obesity Institute, Greenville, North Carolina, USA.,Department of Comprehensive Surgery Medical and Health Center Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hua Meng
- Department of Comprehensive Surgery Medical and Health Center Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Byung-Hong Chung
- Department of Nutrition Science, Diabetes Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daehee Hwang
- Center for Plant Aging Research and Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Min Seon Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Maria Paula Macedo
- Centro de Estudos de Doenҫas Crónicas (CEDOC), Chronic Disease Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Morris White
- Department of Endocrinology, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John Jones
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Diep DTV, Hong K, Khun T, Zheng M, Ul-Haq A, Jun HS, Kim YB, Chun KH. Anti-adipogenic effects of KD025 (SLx-2119), a ROCK2-specific inhibitor, in 3T3-L1 cells. Sci Rep 2018; 8:2477. [PMID: 29410516 PMCID: PMC5802830 DOI: 10.1038/s41598-018-20821-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/24/2018] [Indexed: 01/13/2023] Open
Abstract
Adipose tissue is a specialized organ that synthesizes and stores fat. During adipogenesis, Rho and Rho-associated kinase (ROCK) 2 are inactivated, which enhances the expression of pro-adipogenic genes and induces the loss of actin stress fibers. Furthermore, pan ROCK inhibitors enhance adipogenesis in 3T3-L1 cells. Here, we show that KD025 (formerly known as SLx-2119), a ROCK2-specific inhibitor, suppresses adipogenesis in 3T3-L1 cells partially through a ROCK2-independent mechanism. KD025 downregulated the expression of key adipogenic transcription factors PPARγ and C/EBPα during adipogenesis in addition to lipogenic factors FABP4 and Glut4. Interestingly, adipogenesis was blocked by KD025 during days 1~3 of differentiation; after differentiation terminated, lipid accumulation was unaffected. Clonal expansion occurred normally in KD025-treated cells. These results suggest that KD025 could function during the intermediate stage after clonal expansion. Data from depletion of ROCKs showed that KD025 suppressed cell differentiation partially independent of ROCK’s activity. Furthermore, no further loss of actin stress fibers emerged in KD025-treated cells during and after differentiation compared to control cells. These results indicate that in contrast to the pro-adipogenic effect of pan-inhibitors, KD025 suppresses adipogenesis in 3T3-L1 cells by regulating key pro-adipogenic factors. This outcome further implies that KD025 could be a potential anti-adipogenic/obesity agent.
Collapse
Affiliation(s)
- Duy Trong Vien Diep
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Kyungki Hong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Triyeng Khun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Mei Zheng
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Asad Ul-Haq
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Hee-Sook Jun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, 21565, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States. .,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.
| |
Collapse
|
32
|
Regulation of hepatic Na+/K+-ATPase in obese female and male rats: involvement of ERK1/2, AMPK, and Rho/ROCK. Mol Cell Biochem 2017; 440:77-88. [PMID: 28819898 DOI: 10.1007/s11010-017-3157-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/05/2017] [Indexed: 12/22/2022]
|
33
|
Tang S, Wu W, Tang W, Ge Z, Wang H, Hong T, Zhu D, Bi Y. Suppression of Rho-kinase 1 is responsible for insulin regulation of the AMPK/SREBP-1c pathway in skeletal muscle cells exposed to palmitate. Acta Diabetol 2017; 54:635-644. [PMID: 28265821 DOI: 10.1007/s00592-017-0976-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/19/2017] [Indexed: 11/28/2022]
Abstract
AIMS Clinical and experimental data suggest that early insulin therapy could reduce lipotoxicity in subjects and animal models with type 2 diabetes mellitus. However, the underlying mechanisms need to be clarified. Sterol regulatory element-binding protein 1c (SREBP-1c), which is negatively regulated by AMP-activated protein kinase (AMPK), plays a critical role in lipotoxicity and insulin resistance in skeletal muscle cells. Here, we investigated the effect and molecular mechanism of insulin intervention on the AMPK/SREBP-1c pathway in skeletal muscle cells with chronic exposure to palmitic acid (PA). METHODS Male C57BL/6 mice were fed with a high-fat diet for 12 weeks and were then treated with insulin, AMPK inhibitor, or metformin. L6 myotubes incubated with palmitic acid (PA) were treated with insulin or metformin. Dominant-negative AMPKα2 (DN-AMPKα2) lentivirus, AMPKα2 siRNA, or Rho-kinase 1 (ROCK1) siRNA were transfected into PA-treated L6 myotubes. RESULTS We found that the ability of PA to stimulate SREBP-1c and inhibit AMPK was reversed by insulin in L6 cells. Moreover, DN-AMPKα2 lentivirus and AMPKα2 siRNA were transfected into PA-treated L6 myotubes, and the decrease in SREBP-1c expression caused by insulin was blocked by AMPK inhibition independent of the phosphatidylinositol-4,5-biphosphate-3-kinase (PI3K)/AKT pathway. The serine/threonine kinase Rho-kinase (ROCK) 1, a downstream effector of the small G protein RhoA, was activated by PA. Interestingly, knockdown of ROCK1 by siRNA blocked the downregulation of AMPK phosphorylation under PA-treated L6 myotubes, which indicated that ROCK1 mediated the effect of insulin action on AMPK. CONCLUSIONS Our study indicated that insulin reduced lipotoxicity via ROCK1 and then improved AMPK/SREBP-1c signaling in skeletal muscle under PA-induced insulin resistance.
Collapse
Affiliation(s)
- Sunyinyan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Wenjun Wu
- Department of Endocrinology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Wenjuan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Rendina-Ruedy E, Graef J, Lightfoot S, Ritchey J, Clarke S, Lucas E, Smith B. Impaired glucose tolerance attenuates bone accrual by promoting the maturation of osteoblasts: Role of Beclin1-mediated autophagy. Bone Rep 2016; 5:199-207. [PMID: 28580387 PMCID: PMC5440954 DOI: 10.1016/j.bonr.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/07/2016] [Indexed: 11/22/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) experience a 1.5-3.5 fold increase in fracture risk, but the mechanisms responsible for these alterations in bone biomechanical properties remain elusive. Macroautophagy, often referred to as autophagy, is regulated by signaling downstream of the insulin receptor. Metabolic changes associated with the progression of glucose intolerance have been shown to alter autophagy in various tissues, but limited information is available in relation to bone cells. The aim of this study was to (a) investigate whether autophagy is altered in bone tissue during impaired glucose tolerance, and (b) determine how autophagy impacts osteoblast differentiation, activity, and maturation. Four-week-old, male C57BL/6 mice were fed a control (Con) or high fat (HF) diet for 2, 8, or 16 wks. Mice on the HF diet demonstrated elevated fasting blood glucose and impaired glucose tolerance. Reduced trabecular bone in the femoral neck was evident in the mice on the HF diet by 8 wks compared to Con mice. Histological evaluation of the tibia suggested that the high fat diet promoted terminal differentiation of the osteoblast to an osteocyte. This shift of the osteoblasts towards a non-mineralizing, osteocyte phenotype appears to be coordinated by Beclin1-mediated autophagy. Consistent with these changes in the osteoblast in vivo, the induction of autophagy was able to direct MC3T3-E1 cells towards a more mature osteoblast phenotype. Although these data are somewhat observational, further investigation is warranted to determine if Beclin1-mediated autophagy is essential for the terminal differentiation of the osteoblasts and whether autophagy is having a protective or deleterious effect on bone in T2DM.
Collapse
Key Words
- AGEs, advanced glycation end products
- AIN, American Institute of Nutrition
- AMPK, adenosine monophosphate-activated protein kinase
- Ambra1, vacuole sorting protein (Vps34/15), activating molecule in Beclin-1 regulator autophagy
- Atg, autophagy-related proteins
- BafA1, bafilomycinA1
- Beclin1, Bcl-2-interacting myosin-like coiled-coil protein
- FIP200, focal adhesion
- Hyperglycemia
- IR, insulin receptor
- Insulin
- LC3, microtubule associated light chain
- Macroautophagy
- Osteocyte
- PE, phosphatidylethanolamine
- ROCK1, rho kinase 1
- Rap, rapamycin
- T2DM, type 2 diabetes mellitus
- ULK1/2, unc-like kinase
- UVRAG, ultraviolet radiation resistance-associated gene
- mTORC1, mammalian or mechanistic target of rapamycin complex
Collapse
Affiliation(s)
- E. Rendina-Ruedy
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - J.L. Graef
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - S.A. Lightfoot
- Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - J.W. Ritchey
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, United States
| | - S.L. Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - E.A. Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - B.J. Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
35
|
Croze RH, Thi WJ, Clegg DO. ROCK Inhibition Promotes Attachment, Proliferation, and Wound Closure in Human Embryonic Stem Cell-Derived Retinal Pigmented Epithelium. Transl Vis Sci Technol 2016; 5:7. [PMID: 27917311 PMCID: PMC5132148 DOI: 10.1167/tvst.5.6.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
Purpose Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell–derived RPE (hESC-RPE) attachment, proliferation, and wound closure. Methods H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. Results Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. Conclusions ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. Translational Relevance Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies.
Collapse
Affiliation(s)
- Roxanne H Croze
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA
| | - William J Thi
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
36
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
37
|
Sousa-Lima I, Park SY, Chung M, Jung HJ, Kang MC, Gaspar JM, Seo JA, Macedo MP, Park KS, Mantzoros C, Lee SH, Kim YB. Methylsulfonylmethane (MSM), an organosulfur compound, is effective against obesity-induced metabolic disorders in mice. Metabolism 2016; 65:1508-21. [PMID: 27621186 DOI: 10.1016/j.metabol.2016.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023]
Abstract
Methylsulfonylmethane (MSM), an organosulfur compound, has been used as a dietary supplement that can improve various metabolic diseases. However, the effect of MSM on obesity-linked metabolic disorders remains unclear. The goal of the current study is to determine whether MSM has beneficial effects on glucose and lipid homeostasis in obesity-associated pathophysiologic states. High-fat diet-induced obese (DIO) and genetically obese diabetic db/db mice treated with MSM (1%-5% v/v, by drinking water) were studied. Metabolic parameters involved in glucose and lipid metabolism were determined. Treatment of DIO mice with MSM leads to a significant decrease in blood glucose levels. DIO mice treated with MSM are hypersensitive to insulin, as evidenced by decreased serum insulin and an increase in the area above the curve during an ITT. Concurrently, MSM reduces hepatic triglyceride and cholesterol contents in DIO mice. These effects are accompanied by reductions in gene expression of key molecules involved in lipogenesis and inflammation. FACS analysis reveals that MSM markedly increases the frequency of B cells and decreases the frequency of myeloid cells in peripheral blood and in bone marrow. Moreover, overnutrition-induced changes of femur microarchitecture are restored by MSM. In db/db mice, a marked impairment in glucose and lipid metabolic profiles is notably ameliorated when MSM is supplemented. These data suggest that MSM has beneficial effects on multiple metabolic dysfunctions, including hyperglycemia, hyperinsulinemia, insulin resistance, and inflammation. Thus, MSM could be the therapeutic option for the treatment of obesity-related metabolic disorders such as type 2 diabetes and fatty liver diseases.
Collapse
Affiliation(s)
- Inês Sousa-Lima
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Centro de Estudos de Doenças Crónicas CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Shin-Young Park
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Chung
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hyun Ju Jung
- Department of Oriental Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Joana M Gaspar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Centro de Estudos de Doenças Crónicas CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ji A Seo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - M Paula Macedo
- Centro de Estudos de Doenças Crónicas CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; APDP - Education and Research Center, Lisbon, Portugal
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University.
| |
Collapse
|
38
|
Guerreiro PS, Coelho JE, Sousa-Lima I, Macedo P, Lopes LV, Outeiro TF, Pais TF. Mutant A53T α-Synuclein Improves Rotarod Performance Before Motor Deficits and Affects Metabolic Pathways. Neuromolecular Med 2016; 19:113-121. [PMID: 27535567 DOI: 10.1007/s12017-016-8435-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
The protein α-synuclein (α-Syn) interferes with glucose and lipid uptake and also activates innate immune cells. However, it remains unclear whether α-Syn or its familial mutant forms contribute to metabolic alterations and inflammation in synucleinopathies, such as Parkinson's disease (PD). Here, we address this issue in transgenic mice for the mutant A53T human α-Syn (α-SynA53T), a mouse model of synucleinopathies. At 9.5 months of age, mice overexpressing α-SynA53T (homozygous) had a significant reduction in weight, exhibited improved locomotion and did not show major motor deficits compared with control transgenic mice (heterozygous). At 17 months of age, α-SynA53T overexpression promoted general reduction in grip strength and deficient hindlimb reflex and resulted in severe disease and mortality in 50 % of the mice. Analysis of serum metabolites further revealed decreased levels of cholesterol, triglycerides and non-esterified fatty acids (NEFA) in α-SynA53T-overexpressing mice. In fed conditions, these mice also showed a significant decrease in serum insulin without alterations in blood glucose. In addition, assessment of inflammatory gene expression in the brain showed a significant increase in TNF-α mRNA but not of IL-1β induced by α-SynA53T overexpression. Interestingly, the brain mRNA levels of Sirtuin 2 (Sirt2), a deacetylase involved in both metabolic and inflammatory pathways, were significantly reduced. Our findings highlight the relevance of the mechanisms underlying initial weight loss and hyperactivity as early markers of synucleinopathies. Moreover, we found that changes in blood metabolites and decreased brain Sirt2 gene expression are associated with motor deficits.
Collapse
Affiliation(s)
- Patrícia S Guerreiro
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal.,VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, 3000, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joana E Coelho
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Inês Sousa-Lima
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Paula Macedo
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,APDP - Associação Protectora dos Diabéticos de Portugal, Rua Rodrigo da Fonseca, 1, 1250-189, Lisbon, Portugal
| | - Luísa V Lopes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Tiago F Outeiro
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Teresa F Pais
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal. .,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
39
|
Zhou X, Li R, Liu X, Wang L, Hui P, Chan L, Saha PK, Hu Z. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity. Sci Rep 2016; 6:29669. [PMID: 27411515 PMCID: PMC4944137 DOI: 10.1038/srep29669] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/21/2016] [Indexed: 01/19/2023] Open
Abstract
Irisin reportedly promotes the conversion of preadipocytes into "brown-like" adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice.
Collapse
Affiliation(s)
- Xiaoshuang Zhou
- Nephrology Division, Shanxi Province People’s Hospital of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Nephrology Division, Shanxi Province People’s Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyan Liu
- Nephrology Division, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Nephrology Division, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng Hui
- Nephrology Division, The third affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Lawrence Chan
- Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Pradip K. Saha
- Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
40
|
Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 2016; 15:639-660. [PMID: 27256476 DOI: 10.1038/nrd.2016.75] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center
| |
Collapse
|
41
|
Soliman H, Varela JN, Nyamandi V, Garcia-Patino M, Lin G, Bankar GR, Jia Z, MacLeod KM. Attenuation of obesity-induced insulin resistance in mice with heterozygous deletion of ROCK2. Int J Obes (Lond) 2016; 40:1435-43. [PMID: 27163743 DOI: 10.1038/ijo.2016.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/26/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity-associated insulin resistance is a major risk factor for the development of type 2 diabetes, cardiovascular disease and non-alcoholic liver disease. Over-activation of the RhoA-Rho kinase (ROCK) pathway has been implicated in the development of obesity-induced insulin resistance, but the relative contribution of ROCK2 has not been elucidated. This was investigated in the present study. METHODS Male ROCK2+/- mice and their wild-type (WT) littermate controls were fed normal chow or a high fat diet (HFD) for 18 weeks. Glucose and insulin tolerance tests were conducted 8 and 16 weeks after the start of feeding. At termination, isoform-specific ROCK activity and insulin signaling were evaluated in epididymal adipose tissue. Adipocyte size was assessed morphometrically, while adipose tissue production of PPARγ was determined by western blotting, and inflammatory cytokines were evaluated by RT-PCR and immunofluorescence. RESULTS The decrease in systemic insulin sensitivity and glucose tolerance produced by high fat feeding was attenuated in ROCK2+/- mice. There was no reduction in food intake, body weight or epididymal fat pad weight in HFD-ROCK2+/- mice. However, the increase in adipocyte size detected in HFD-WT mice was attenuated in HFD-ROCK2+/- mice. The increase in adipose tissue ROCK2 activity produced by high fat feeding in WT mice was also prevented in ROCK2+/- mice, and this was accompanied by improved insulin-induced phosphorylation of Akt. The expression of both isoforms of PPARγ was increased in adipose tissue from HFD-ROCK2+/- mice, while adipocyte hypertrophy and production of inflammatory cytokines were reduced compared with HFD-WT mice. CONCLUSIONS These data suggest that activation of ROCK2 in adipose tissue contributes to obesity-induced insulin resistance. This may result in part from suppression of PPARγ expression, leading to adipocyte hypertrophy and an increase in inflammatory cytokine production. ROCK2 may be a suitable target to improve insulin sensitivity in obesity.
Collapse
Affiliation(s)
- H Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - J N Varela
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - V Nyamandi
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Garcia-Patino
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G R Bankar
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Z Jia
- Neurosciences and Mental Health, the Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - K M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Okin D, Medzhitov R. The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. Cell 2016; 165:343-56. [PMID: 26997483 DOI: 10.1016/j.cell.2016.02.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 02/08/2023]
Abstract
Control of plasma glucose level is essential to organismal survival. Sustained inflammation has been implicated in control of glucose homeostasis in cases of infection, obesity, and type 2 diabetes; however, the precise role of inflammation in these complex disease states remains poorly understood. Here, we find that sustained inflammation results in elevated plasma glucose due to increased hepatic glucose production. We find that sustained inflammation suppresses CYP7A1, leading to accumulation of intermediate metabolites at the branch point of the mevalonate pathway. This results in prenylation of RHOC, which is concomitantly induced by inflammatory cytokines. Subsequent activation of RHO-associated protein kinase results in elevated plasma glucose. These findings uncover an unexpected mechanism by which sustained inflammation alters glucose homeostasis.
Collapse
Affiliation(s)
- Daniel Okin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
43
|
Zhang R, Feng X, Zhan M, Huang C, Chen K, Tang X, Kang T, Xiong Y, Lei M. Transcription Factor Sp1 Promotes the Expression of Porcine ROCK1 Gene. Int J Mol Sci 2016; 17:ijms17010112. [PMID: 26784181 PMCID: PMC4730353 DOI: 10.3390/ijms17010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) gene plays a crucial role in maintaining genomic stability, tumorigenesis and myogenesis. However, little is known about the regulatory elements governing the transcription of porcine ROCK1 gene. In the current study, the transcription start site (TSS) was identified by 5'-RACE, and was found to differ from the predicted one. The region in ROCK1 promoter which is critical for promoter activity was investigated via progressive deletions. Site-directed mutagenesis indicated that the region from -604 to -554 bp contains responsive elements for Sp1. Subsequent experiments showed that ROCK1 promoter activity is enhanced by Sp1 in a dose-dependent manner, whereas treatment with specific siRNA repressed ROCK1 promoter activity. Electrophoretic mobility shift assay (EMSA), DNA pull down and chromatin immunoprecipitation (ChIP) assays revealed Sp1 can bind to this region. qRT-PCR and Western blotting research followed by overexpression or inhibition of Sp1 indicate that Sp1 can affect endogenous ROCK1 expression at both mRNA and protein levels. Overexpression of Sp1 can promote the expression of myogenic differentiation 1(MyoD), myogenin (MyoG), myosin heavy chain (MyHC). Taken together, we conclude that Sp1 positively regulates ROCK1 transcription by directly binding to the ROCK1 promoter region (from -604 to -532 bp) and may affect the process of myogenesis.
Collapse
Affiliation(s)
- Ruirui Zhang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoting Feng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- College of Life Science and Technology, Wuhan Bioengineering Institute, Wuhan 430070, China.
| | - Mengsi Zhan
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cong Huang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kun Chen
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyin Tang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingting Kang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Minggang Lei
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
45
|
Loirand G. Rho Kinases in Health and Disease: From Basic Science to Translational Research. Pharmacol Rev 2015; 67:1074-95. [PMID: 26419448 DOI: 10.1124/pr.115.010595] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rho-associated kinases ROCK1 and ROCK2 are key regulators of actin cytoskeleton dynamics downstream of Rho GTPases that participate in the control of important physiologic functions, S including cell contraction, migration, proliferation, adhesion, and inflammation. Several excellent review articles dealing with ROCK function and regulation have been published over the past few years. Although a brief overview of general molecular, biochemical, and functional properties of ROCKs is included, an effort has been made to produce an original work by collecting and synthesizing recent studies aimed at translating basic discoveries from cell and experimental models into knowledge of human physiology, pathophysiological mechanisms, and medical therapeutics. This review points out the specificity and distinct roles of ROCK1 and ROCK2 isoforms highlighted in the last few years. Results obtained from genetically modified mice and genetic analysis in humans are discussed. This review also addresses the involvement of ROCKs in human diseases and the potential use of ROCK activity as a biomarker or a pharmacological target for specific inhibitors.
Collapse
Affiliation(s)
- Gervaise Loirand
- Institut National de la Santé et de la Recherche Médicale UMR1087, Université de Nantes, CHU Nantes, l'institut du thorax, Nantes, France
| |
Collapse
|
46
|
Soliman H, Nyamandi V, Garcia-Patino M, Varela JN, Bankar G, Lin G, Jia Z, MacLeod KM. Partial deletion of ROCK2 protects mice from high-fat diet-induced cardiac insulin resistance and contractile dysfunction. Am J Physiol Heart Circ Physiol 2015; 309:H70-81. [PMID: 25910808 DOI: 10.1152/ajpheart.00664.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Abstract
Obesity is associated with cardiac insulin resistance and contractile dysfunction, which contribute to the development of heart failure. The RhoA-Rho kinase (ROCK) pathway has been reported to modulate insulin resistance, but whether it is implicated in obesity-induced cardiac dysfunction is not known. To test this, wild-type (WT) and ROCK2(+/-) mice were fed normal chow or a high-fat diet (HFD) for 17 wk. Whole body insulin resistance, determined by an insulin tolerance test, was observed in HFD-WT, but not HFD-ROCK2(+/-), mice. The echocardiographically determined myocardial performance index, a measure of global systolic and diastolic function, was significantly increased in HFD-WT mice, indicating a deterioration of cardiac function. However, no change in myocardial performance index was found in hearts from HFD-ROCK2(+/-) mice. Speckle-tracking-based strain echocardiography also revealed regional impairment in left ventricular wall motion in hearts from HFD-WT, but not HFD-ROCK2(+/-), mice. Activity of ROCK1 and ROCK2 was significantly increased in hearts from HFD-WT mice, and GLUT4 expression was significantly reduced. Insulin-induced phosphorylation of insulin receptor substrate (IRS) Tyr(612), Akt, and AS160 was also impaired in these hearts, while Ser(307) phosphorylation of IRS was increased. In contrast, the increase in ROCK2, but not ROCK1, activity was prevented in hearts from HFD-ROCK2(+/-) mice, and cardiac levels of TNFα were reduced. This was associated with normalization of IRS phosphorylation, downstream insulin signaling, and GLUT4 expression. These data suggest that increased activation of ROCK2 contributes to obesity-induced cardiac dysfunction and insulin resistance and that inhibition of ROCK2 may constitute a novel approach to treat this condition.
Collapse
Affiliation(s)
- Hesham Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt; and
| | - Vongai Nyamandi
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marysol Garcia-Patino
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Nogueira Varela
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Girish Bankar
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guorong Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhengping Jia
- Neurosciences and Mental Health, Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
47
|
Noda K, Nakajima S, Godo S, Saito H, Ikeda S, Shimizu T, Enkhjargal B, Fukumoto Y, Tsukita S, Yamada T, Katagiri H, Shimokawa H. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice. PLoS One 2014; 9:e110446. [PMID: 25365359 PMCID: PMC4217731 DOI: 10.1371/journal.pone.0110446] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/13/2014] [Indexed: 01/07/2023] Open
Abstract
Background Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD)-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK), a key molecule of metabolic conditions. Methods and Results Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1), with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C. Conclusions These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that Rho-kinase is also a novel therapeutic target of metabolic disorders.
Collapse
Affiliation(s)
- Kazuki Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sota Nakajima
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Saito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Ikeda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Shimizu
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Budbazar Enkhjargal
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Fukumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sohei Tsukita
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Yamada
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
48
|
Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 2014; 5:e29846. [PMID: 25010901 PMCID: PMC4114931 DOI: 10.4161/sgtp.29846] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 12/29/2022] Open
Abstract
Rho-associated coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase. (1)(-) (5) They belong to the AGC family of serine/threonine kinases (6) and play vital roles in facilitating actomyosin cytoskeleton contractility downstream of RhoA and RhoC activation. Since their discovery, ROCK kinases have been extensively studied, unveiling their manifold functions in processes including cell contraction, migration, apoptosis, survival, and proliferation. Two mammalian ROCK homologs have been identified, ROCK1 (also called ROCK I, ROKβ, Rho-kinase β, or p160ROCK) and ROCK2 (also known as ROCK II, ROKα, or Rho kinase), hereafter collectively referred to as ROCK. In this review, we will focus on the structure, regulation, and functions of ROCK.
Collapse
Affiliation(s)
- Linda Julian
- Beatson Institute for Cancer Research; Glasgow, UK
| | | |
Collapse
|