1
|
Gu L, Chen J, Hu C, Wang D, Huan S, Rong G, Lv R, Xu T. Integrated transcriptomics and metabolomics study of embryonic breast muscle of Jiaji ducks. BMC Genomics 2024; 25:551. [PMID: 38824564 PMCID: PMC11144331 DOI: 10.1186/s12864-024-10452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Because number of matured muscle fibers in poultry does not increase after birth, the meat yield is mainly determined during embryogenesis. We previously indicated breast muscle grew rapidly from 18th day after hatching (E18) to E27, and almost stopped from E27 to E34 of Jiaji ducks, while the mechanism is unclear. This study utilized RNA-seq to explore the related genes of muscle development and their relationship with small molecule metabolites at E18, E27 and E34 of Jiaji ducks. Several thousand differentially expressed genes (DEGs) were detected among E18, E27 and E34. DEGs expression profiles included 8 trend maps, among which trend 1 was opposite to and trend 6 was consistent with breast muscle development trend of Jiaji ducks. Through joint analysis between trend 1 of DEGs and trend 1 of differential metabolites (DEMs), protein digestion and absorption pathway stood out. The decrease of COL8A2 gene expression will lead to the decrease of arginine content, which will inhibit the development of breast muscle in embryonic Jiaji duck. Similarly, joint analysis between trend 6 of DEGs and trend 6 of DEMs indicated the increase of GAMT gene expression will cause the increase of proline content, and then promote the development of breast muscle of Jiaji duck in embryonic period. These results will be helpful for further understanding the mechanism of muscle yields of Jiaji ducks.
Collapse
Affiliation(s)
- Lihong Gu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, P.R. China
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, P.R. China
| | - Jile Chen
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, P.R. China
- School of Animal Science and Technology, School of Animal Medicine, Huazhong Agricultural University, Hubei Province, Hongshan District, Wuhan, 430072, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, P.R. China
| | - Dingfa Wang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, P.R. China
| | - Shuqian Huan
- College of Animal Science, Hainan University, Haikou, 570228, P.R. China
| | - Guang Rong
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, P.R. China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, P.R. China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, P.R. China.
| |
Collapse
|
2
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
3
|
Cortisol enhances citrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids 2021; 53:1957-1966. [PMID: 34244859 DOI: 10.1007/s00726-021-03039-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
There are marked decreases in plasma concentrations of cortisol and arginine (an essential amino acid for neonates) as well as intestinal citrulline synthesis in piglets during the first 14 days of life. The objective of this study was to test the hypothesis that increasing plasma cortisol concentrations by cortisol administration may prevent the decline in intestinal citrulline and arginine synthesis from proline, thereby possibly increasing plasma arginine concentration in suckling piglets and their growth. Seven-day-old pigs reared by sows received daily intramuscular injections of hydrocortisone 21-acetate (25 mg/kg) or vehicle solution (saline) (n = 10/group). At 14 days of age, piglets were used to prepare jejunal enterocytes. Cells were incubated at 37 °C for 30 min in oxygenated Krebs buffer containing 5 mM glucose, 2 mM [U-14C]proline, and 2 mM glutamine. Cortisol treatment increased plasma cortisol concentration, mitochondrial proline oxidase and N-acetylglutamate synthase activities, cytosolic argininosuccinate lyase activity, and the intracellular concentrations of N-acetylglutamate and carbamoyl phosphate for citrulline and arginine synthesis. However, cortisol treatment induced the expression of intestinal arginase-II for arginine hydrolysis, resulting in no change in plasma arginine concentration. Administration of cortisol had no effect on milk consumption or the whole-body growth rate of piglets, but increased villus height in the jejunum and ileum. Collectively, these results suggest an important role for proline oxidase and N-acetylglutamate in regulating citrulline and arginine synthesis from proline in pig enterocytes. Because proline catabolism plays an important role in modulating protein synthesis, cell proliferation, and arginine production, our findings may have important implications for understanding the role of proline oxidase in the growth and health of the mammalian small intestine.
Collapse
|
4
|
Wu G, Bazer FW, Johnson GA, Hou Y. BOARD-INVITED REVIEW: Arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 2019; 96:5035-5051. [PMID: 30445424 DOI: 10.1093/jas/sky377] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Arginine (Arg) has traditionally not been considered as a deficient nutrient in diets for gestating or lactating swine due to the assumption that these animals can synthesize sufficient amounts of Arg to meet their physiological needs. The lack of full knowledge about Arg nutrition has contributed to suboptimal efficiency of pork production. Over the past 25 yr, there has been growing interest in Arg metabolism in the pig, which is an agriculturally important species and a useful model for studying human biology. Arginine is a highly abundant amino acid in tissues of pigs, a major amino acid in allantoic fluid, and a key regulator of gene expression, cell signaling, and antioxidative reactions. Emerging evidence suggests that dietary supplementation with 0.5% to 1% Arg maintains gut health and prevents intestinal dysfunction in weanling piglets, while enhancing their growth performance and survival. Also, the inclusion of 1% Arg in diets is required to maximize skeletal muscle accretion and feed efficiency in growing pigs, whereas dietary supplementation with 1% Arg reduces muscle loss in endotoxin-challenged pigs. Furthermore, supplementing 0.83% Arg to corn- and soybean meal-based diets promotes embryonic/fetal survival in swine and milk production by lactating sows. Thus, an adequate amount of dietary Arg as a quantitatively major nutrient is necessary to support maximum growth, lactation, and reproduction performance of swine. These results also have important implications for improving the nutrition and health of humans and other animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX.,Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Fuller W Bazer
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
|
6
|
Shoveller AK, Brunton JA, Brand O, Pencharz PB, Ball RO. N-Acetylcysteine is a Highly Available Precursor for Cysteine in the Neonatal Piglet Receiving Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2017; 30:133-42. [PMID: 16517958 DOI: 10.1177/0148607106030002133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cysteine (CYS) is accepted as an indispensable amino acid for infants receiving parenteral nutrition (PN), and CYS is unstable in solution. Thus, developing a method to supply CYS in PN for neonates is needed. N-acetyl-L-cysteine (NAC) is stable in solution and safe for use in humans; therefore, NAC may be a means of supplying parenteral CYS. METHODS We determined the bioavailability of NAC in intravenously (IV)-fed piglets randomized to 1 of 4 diet treatments, each supplying 0.3 g/kg/d methionine and either 0.2 g/kg/d CYS (CON), 0 NAC (zeroNAC), 0.13 NAC (lowNAC), or 0.27 g/kg/d NAC (highNAC). Piglets (2 days old; 1.8 kg, n = 20) were surgically implanted with femoral and jugular catheters. On day 3 postsurgery, test diets were initiated and continued until day 8. Piglets were weighed daily. Blood was sampled 6 hours before test diet initiation and at 0, 6, 12, 18, 24, 36, 48, 60, 72, 84, 96, 108, and 120 hours. Urine was collected on ice in 24-hour sample periods. RESULTS Total mean weight gain was not different between groups; however, average daily gain in the zeroNAC and lowNAC groups declined significantly (p < .05) over the 5-day treatment period. Nitrogen retention was similar between the CON and highNAC groups, both were higher than the lowNAC group, and the zeroNAC treatment produced the lowest nitrogen retention. NAC percent retention was not different between lowNAC and highNAC and was 85.4% and 82.6%, respectively. Plasma NAC was higher in highNAC than lowNAC (p < .05). CONCLUSIONS These data demonstrate that NAC is available as a precursor for CYS to support growth and protein (nitrogen) accretion in piglets administered a parenteral solution.
Collapse
Affiliation(s)
- Anna K Shoveller
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | | | | | |
Collapse
|
7
|
Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 2014; 5:34. [PMID: 24999386 PMCID: PMC4082180 DOI: 10.1186/2049-1891-5-34] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/08/2014] [Indexed: 12/17/2022] Open
Abstract
Amino acids are building blocks for proteins in all animals. Based on growth or nitrogen balance, amino acids were traditionally classified as nutritionally essential or nonessential for mammals, birds and fish. It was assumed that all the “nutritionally nonessential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and optimal health. However, careful analysis of the scientific literature reveals that over the past century there has not been compelling experimental evidence to support this assumption. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, fertility, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and to protect the integrity of the intestinal mucosa. Thus, diets for animals must contain all NEAA to optimize their survival, growth, development, reproduction, and health. Furthermore, NEAA should be taken into consideration in revising the “ideal protein” concept that is currently used to formulate swine and poultry diets. Adequate provision of all amino acids (including NEAA) in diets enhances the efficiency of animal production. In this regard, amino acids should not be classified as nutritionally essential or nonessential in animal or human nutrition. The new Texas A&M University’s optimal ratios of dietary amino acids for swine and chickens are expected to beneficially reduce dietary protein content and improve the efficiency of their nutrient utilization, growth, and production performance.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
8
|
Marion V, Sankaranarayanan S, de Theije C, van Dijk P, Hakvoort TBM, Lamers WH, Köhler ES. Hepatic adaptation compensates inactivation of intestinal arginine biosynthesis in suckling mice. PLoS One 2013; 8:e67021. [PMID: 23785515 PMCID: PMC3681768 DOI: 10.1371/journal.pone.0067021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass) gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass (fl) and Villin-Cre mice. Unexpectedly, Ass (fl/fl) /VilCre (tg/-) mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice). Relative to control mice, citrulline production in the splanchnic region of Ass (fl/fl) /VilCre (tg/-) mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass (fl/fl) /VilCre (tg/-) mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2) and transport (Slc25a13, Slc25a15, and Slc3a2), whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.
Collapse
Affiliation(s)
- Vincent Marion
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Laboratoire de Génetique Médicale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1112, Strasbourg Cedex, France
| | | | - Chiel de Theije
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Paul van Dijk
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Theo B. M. Hakvoort
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Gastrointestinal Research, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter H. Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Gastrointestinal Research, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonore S. Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- *E-mail:
| |
Collapse
|
9
|
Marini JC, Stoll B, Didelija IC, Burrin DG. De novo synthesis is the main source of ornithine for citrulline production in neonatal pigs. Am J Physiol Endocrinol Metab 2012; 303:E1348-53. [PMID: 23074237 PMCID: PMC3774079 DOI: 10.1152/ajpendo.00399.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Citrulline is an amino acid synthesized in the gut and utilized for the synthesis of the conditionally essential amino acid arginine. Recently, the origin of the ornithine utilized for citrulline synthesis has become a matter of discussion. Multiple physiological factors may have contributed to the differences found among different researchers; one of these is the developmental stage of the subjects studied. To test the hypothesis that during the neonatal period de novo synthesis is the main source of ornithine for citrulline synthesis, neonatal piglets were infused intravenously or intragastrically with [U-(13)C(6)]arginine, [U-(13)C(5)]glutamine, or [U-(13)C(5)]proline during the fasted and fed periods. [ureido-(15)N]citrulline and [(2)H(2)]ornithine were infused intravenously for the entire infusion protocol. During fasting, plasma proline (13%) and ornithine (19%) were the main precursors for citrulline synthesis, whereas plasma arginine (62%) was the main precursor for plasma ornithine. During feeding, enteral (27%) and plasma (12%) proline were the main precursors for the ornithine utilized in the synthesis of citrulline, together with plasma ornithine (27%). Enteral proline and glutamine were utilized directly by the gut to produce ornithine utilized for citrulline synthesis. Arginine was not utilized by the gut, which is consistent with the lack of arginase activity in the neonate. Arginine, however, was the main source (47%) of plasma ornithine and in this way contributed to citrulline synthesis. In conclusion, during the neonatal period, the de novo pathway is the predominant source for the ornithine utilized in the synthesis of citrulline, and proline is the preferred precursor.
Collapse
Affiliation(s)
- Juan C Marini
- United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
10
|
Tomlinson C, Rafii M, Ball RO, Pencharz P. Arginine synthesis from enteral glutamine in healthy adults in the fed state. Am J Physiol Endocrinol Metab 2011; 301:E267-73. [PMID: 21540446 DOI: 10.1152/ajpendo.00006.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.
Collapse
Affiliation(s)
- Chris Tomlinson
- Division of Gastroenterology and Nutrition,Research Institute, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009; 37:153-168. [PMID: 19030957 PMCID: PMC2677116 DOI: 10.1007/s00726-008-0210-y] [Citation(s) in RCA: 859] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/05/2008] [Indexed: 12/11/2022]
Abstract
L-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or L-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes. BMC DEVELOPMENTAL BIOLOGY 2008; 8:107. [PMID: 19000307 PMCID: PMC2621195 DOI: 10.1186/1471-213x-8-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/10/2008] [Indexed: 11/19/2022]
Abstract
Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS), ornithine aminotransferase (OAT), argininosuccinate synthetase (ASS), arginase-1 (ARG1), arginase-2 (ARG2), and nitric-oxide synthase (NOS) were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.
Collapse
|
13
|
Zhan Z, Ou D, Piao X, Kim SW, Liu Y, Wang J. Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs. J Nutr 2008; 138:1304-9. [PMID: 18567752 DOI: 10.1093/jn/138.7.1304] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study was conducted to evaluate the effects of dietary arginine levels on microvascular development of the small intestine in early-weaned pigs. Twenty-four crossbred pigs (5.0 +/- 0.3 kg body weight) were individually housed and randomly allotted to 1 of 3 diets supplemented with 0, 0.7, and 1.2% L-arginine (8 pigs per group). Pigs consumed the diets ad libitum for 10 d. We collected blood samples on d 3, 6, and 10. On d 10, 6 pigs from each group were randomly selected and killed for tissue sample collection. Compared with control pigs, dietary supplementation with 0.7% L-arginine increased (P < 0.05) jejunal concentrations of nitrite and nitrate (stable oxidation products of nitric oxide), intestinal villus height, as well as plasma proline and arginine concentrations on d 6 and 10. Dietary supplementation with 0.7% L-arginine also increased (P < 0.05) immunoreactive expression of CD34 in duodenal submucosa, ileal mucosa and submucosa, and expression of vascular endothelial growth factor (VEGF) in duodenal submucosa, jejunal mucosa and submucosa, and ileal mucosa compared with the control and 1.2% L-arginine supplementation. Dietary supplementation with 1.2% L-arginine increased (P < 0.05) the concentration of jejunal endothelin-1 compared with the control pigs. Immunoexpression of VEGF in duodenal mucosa and plasma lysine concentrations on d 6 and 10 were lower (P < 0.05) in pigs supplemented with 1.2% L-arginine than in unsupplemented pigs. Collectively, these findings indicate that the effects of L-arginine on microvascular development are beneficial at lower levels but have adverse effects at higher intakes. Dietary supplementation with 0.7% L-arginine may be a useful method to improve microvascular development in the small intestine of early-weaned pigs.
Collapse
Affiliation(s)
- Zhenfeng Zhan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100094
| | | | | | | | | | | |
Collapse
|
14
|
Orellana RA, Jeyapalan A, Escobar J, Frank JW, Nguyen HV, Suryawan A, Davis TA. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation. Am J Physiol Endocrinol Metab 2007; 293:E1416-25. [PMID: 17848637 DOI: 10.1152/ajpendo.00146.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.
Collapse
Affiliation(s)
- Renán A Orellana
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Urschel KL, Rafii M, Pencharz PB, Ball RO. A multitracer stable isotope quantification of the effects of arginine intake on whole body arginine metabolism in neonatal piglets. Am J Physiol Endocrinol Metab 2007; 293:E811-8. [PMID: 17595215 DOI: 10.1152/ajpendo.00290.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that deficient arginine intake increased the rate of endogenous arginine synthesis from proline. In this paper, we report in vivo quantification of the effects of arginine intake on total endogenous arginine synthesis, on the rates of conversion between arginine, citrulline, ornithine, and proline, and on nitric oxide synthesis. Male piglets, with gastric catheters for diet and isotope infusion and femoral vein catheters for blood sampling, received a complete diet for 2 days and then either a generous (+Arg; 1.80 g x kg(-1) x day(-1); n = 5) or deficient (-Arg; 0.20 g.kg(-1).day(-1); n = 5) arginine diet for 5 days. On day 7, piglets received a primed, constant infusion of [guanido-(15)N(2)]arginine, [ureido-(13)C;5,5-(2)H(2)]citrulline, [U-(13)C(5)]ornithine, and [(15)N;U-(13)C(5)]proline in an integrated study of the metabolism of arginine and its precursors. Arginine synthesis (micromol x kg(-1) x h(-1)) from both proline (+Arg: 42, -Arg: 74, pooled SE: 5) and citrulline (+Arg: 67, -Arg: 120; pooled SE: 15) were higher in piglets receiving the -Arg diet (P < 0.05); and for both diets proline accounted for approximately 60% of total endogenous arginine synthesis. The conversion of proline to citrulline (+Arg: 39, -Arg: 67, pooled SE: 6) was similar to the proline-to-arginine conversion, confirming that citrulline formation limits arginine synthesis from proline in piglets. Nitric oxide synthesis (micromol x kg(-1) x h(-1)), measured by the rate conversion of [guanido-(15)N(2)]arginine to [ureido-(15)N]citrulline, was greater in piglets receiving the +Arg diet (105) than in those receiving the -Arg diet (46, pooled SE: 10; P < 0.05). This multi-isotope method successfully allowed many aspects of arginine metabolism to be quantified simultaneously in vivo.
Collapse
Affiliation(s)
- Kristine L Urschel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
16
|
Castellanos VH, Litchford MD, Campbell WW. Modular protein supplements and their application to long-term care. Nutr Clin Pract 2007; 21:485-504. [PMID: 16998147 DOI: 10.1177/0115426506021005485] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Modular protein supplements are added to either the diet or enteral formula to increase the protein or amino acid intakes of people who are nutritionally compromised. Protein supplements are aggressively marketed to long-term care clinicians because protein energy malnutrition and wounds are a common problem in this care setting. It can be challenging for clinicians to distinguish one product from another and to determine the best product for a specific application or nutrition care goal. Modular protein products can be sorted into 4 categories: (1) protein concentrates derived from a complete protein such as milk, soy, or eggs; (2) protein concentrates derived from collagen, either alone or in combination with a complete protein; (3) doses of 1 or more dispensable (nonessential) amino acids; and (4) hybrids of the complete or collagen-based proteins and amino acid dose. Modular protein supplements are generally provided either as a substrate for protein synthesis or as a source of 1 or more amino acids that may be conditionally indispensable (conditionally essential) under certain disease conditions. This review provides guidelines for the use of modular protein supplements according to their intended physiologic function and the assessment and nutrition care goals of the long-term care resident.
Collapse
|
17
|
Frank JW, Escobar J, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA. Dietary protein and lactose increase translation initiation factor activation and tissue protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 2006; 290:E225-33. [PMID: 16144813 DOI: 10.1152/ajpendo.00351.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in muscle and liver of pigs parenterally infused with amino acids and insulin. To examine the effects of enteral protein and carbohydrate on protein synthesis, pigs (n = 42, 1.7 kg body wt) were fed isocaloric milk diets containing three levels of protein (5, 15, and 25 g x kg body wt(-1) x day(-1)) and two levels of lactose (low = 11 and high = 23 g x kg body wt(-1) x day(-1)) from 1 to 6 days of age. On day 7, pigs were gavage fed after 4-h food deprivation, and tissue protein synthesis rates and biomarkers of mRNA translation were assessed. Piglet growth and protein synthesis rates in muscle and liver increased with dietary protein and plateaued at 15 g x kg body wt(-1) x day(-1) (P < 0.001). Growth tended to be greater in high-lactose-fed pigs (P = 0.07). Plasma insulin was lowest in pigs fed 5 g x kg body wt(-1) x day(-1) protein (P < 0.0001). Plasma branched-chain amino acids increased as protein intake increased (P < 0.0001). Muscle (P < 0.001) and liver (P < or = 0.001) ribosomal protein S6 kinase-1 and eIF4E-binding protein phosphorylation increased with protein intake and plateaued at 15 g x kg body wt(-1) x day(-1). The results indicate that growth and protein synthesis rates in neonatal pigs are influenced by dietary protein and lactose intake and might be mediated by plasma amino acids and insulin levels. However, feeding protein well above the piglet's requirement does not further stimulate the activation of translation initiation or protein synthesis in skeletal muscle and liver.
Collapse
Affiliation(s)
- Jason W Frank
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Urschel KL, Shoveller AK, Pencharz PB, Ball RO. Arginine synthesis does not occur during first-pass hepatic metabolism in the neonatal piglet. Am J Physiol Endocrinol Metab 2005; 288:E1244-51. [PMID: 15657089 DOI: 10.1152/ajpendo.00530.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that first-pass intestinal metabolism is necessary for approximately 50% of whole body arginine synthesis from its major precursor proline in neonatal piglets. Furthermore, the intestine is not the site of increased arginine synthesis observed during dietary arginine deficiency. Primed constant intravenous (iv) and intraportal (ip) infusions of L-[U-14C]proline, and iv infusion of either L-[guanido-14C]arginine or L-[4,5-3H]arginine were used to measure first-pass hepatic arginine synthesis in piglets enterally fed either deficient (0.20 g.kg(-1).day(-1)) or generous (1.80 g.kg(-1).day(-1)) quantities of arginine for 5 days. Conversion of arginine to other urea cycle intermediates and arginine recycling were also calculated for both dietary treatments. Arginine synthesis (g.kg(-1).day(-1)) from proline was greater in piglets (P < 0.05) fed the deficient arginine diet in both the presence (generous: 0.07; deficient: 0.17; pooled SE = 0.01) and absence (generous: 0.06; deficient: 0.20; pooled SE = 0.01) of first-pass hepatic metabolism. There was no net arginine synthesis from proline during first-pass hepatic metabolism regardless of arginine intake. Arginine conversion to urea, citrulline, and ornithine was significantly greater (P < 0.05) in piglets fed the generous arginine diet. Calculated arginine fluxes were significantly lower (P = 0.01) for [4,5-3H]arginine than for [guanido-14C]arginine, and the discrepancy between the values was greater in piglets fed the deficient arginine diet (35% vs. 20%). Collectively, these findings show that first-pass hepatic metabolism is not a site of net arginine synthesis and that piglets conserve dietary arginine in times of deficiency by decreasing hydrolysis and increasing recycling.
Collapse
Affiliation(s)
- Kristine L Urschel
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | | | |
Collapse
|
19
|
Wilkinson DL, Bertolo RFP, Brunton JA, Shoveller AK, Pencharz PB, Ball RO. Arginine synthesis is regulated by dietary arginine intake in the enterally fed neonatal piglet. Am J Physiol Endocrinol Metab 2004; 287:E454-62. [PMID: 15149954 DOI: 10.1152/ajpendo.00342.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine is conditionally indispensable in the neonate, and its synthesis in the intestine is not sufficient to meet requirements. It is not known how neonatal endogenous arginine synthesis is regulated and the degree to which proline and glutamate are used as precursors. Primed, constant intraportal and intragastric infusions of L-[U-14C]proline and L-[3,4-3H]glutamate, and intragastric L-[guanido-14C]arginine were used to measure whole body and first-pass intestinal arginine synthesis in 10 neonatal piglets fed generous (1.80 g.kg(-1).day(-1)) or deficient (0.20 g.kg(-1).day(-1)) quantities of arginine for 5 days. Glutamate tracer was not detected in arginine, indicating a biologically insignificant conversion of <1% of arginine flux. Endogenous arginine synthesis from proline had obligatory (0.36 g.kg(-1).day(-1)) and maximal (0.68 g.kg(-1).day(-1)) levels (P < 0.05, pooled SE 0.05). Although first-pass gut metabolism is responsible for 42-63% of whole body arginine synthesis, the gut is incapable of upregulating proline to arginine conversion during arginine deficiency, compared with a more than threefold increase without first-pass gut metabolism. These data suggest that upregulation of proline-to-arginine conversion occurs via increased arterial extraction of proline by the gut or in nonintestinal tissues. This study demonstrates that dietary arginine is an important regulator of endogenous arginine synthesis in the neonatal piglet and that proline, but not glutamate, is an important precursor for arginine synthesis in the neonate.
Collapse
Affiliation(s)
- Dana Lee Wilkinson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | | | | | | | | | | |
Collapse
|
20
|
Wu G, Jaeger LA, Bazer FW, Rhoads JM. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 2004; 15:442-451. [PMID: 15302078 DOI: 10.1016/j.jnutbio.2003.11.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 10/29/2003] [Accepted: 11/07/2003] [Indexed: 12/01/2022]
Abstract
Arginine, an amino acid that is nutritionally essential for the fetus and neonate, is crucial for ammonia detoxification and the synthesis of molecules with enormous importance (including creatine, nitric oxide, and polyamines). A significant nutritional problem in preterm infants is a severe deficiency of arginine (hypoargininemia), which results in hyperammonemia, as well as cardiovascular, pulmonary, neurological, and intestinal dysfunction. Arginine deficiency may contribute to the high rate of infant morbidity and mortality associated with premature births. Although hypoargininemia in preterm infants has been recognized for more than 30 years, it continues to occur in neonatal intensive care units in the United States and worldwide. On the basis of recent findings, we propose that intestinal citrulline and arginine synthesis (the major endogenous source of arginine) is limited in preterm neonates owing to the limited expression of the genes for key enzymes (e.g., pyrroline-5-carboxylate synthase, argininosuccinate synthase and lyase), thereby contributing to hypoargininemia. Because premature births in humans occur before the normal perinatal surge of cortisol (an inducer of the expression of key arginine-synthetic enzymes), its administration may be a useful tool to advance the maturation of intestinal arginine synthesis in preterm neonates. Additional benefits of cortisol treatment may include the following: 1) allowing early introduction of enteral feeding to preterm infants, which is critical for intestinal synthesis of citrulline, arginine, and polyamines as well as for intestinal motility, integrity, and growth; and 2) shortening the expensive stay of preterm infants in hospitals as a result of accelerated organ maturation and the restoration of full enteral feeding. Further studies of fetal and neonatal arginine metabolism will continue to advance our understanding of the mechanisms responsible for the survival and growth of preterm infants. This new knowledge will be beneficial for designing the next generation of enteral and parenteral amino acid solutions to optimize nutrition and health in this compromised population.
Collapse
Affiliation(s)
- Guoyao Wu
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Few data exist on amino acid needs in infants and children, mainly because until recently, amino acid requirements were determined using nitrogen balance. The advent of the indicator amino acid oxidation (IAAO) method permits studies to be conducted with minimal adaptation to the test amino acid. In light of the very limited data available for human infants, toddlers, and children, it was proposed that a factorial approach should be used to estimate their essential amino acid requirements. Using amino acid oxidation techniques, dietary essential amino acid requirements in adults have been nearly completed. Data on changes in total body potassium are now available for infants and children. From these data it is possible to calculate protein deposition during growth, and hence, it is now possible to estimate the amino acid requirements in children using a factorial model. However, there has been no independent verification of the model. Recently we determined total branched chain-amino acid requirements for young adults and children, and we can provide data to support the validity of the factorial model. IAAO has been used on children with liver disease as young as 3 y. The minimally invasive IAAO model opens the door for determination of dietary essential amino acid requirements in infants and children during health and disease. For study of preterm neonates, we used a piglet model to show that the amino acid needs for parenteral feeding are markedly reduced for several essential amino acids; this suggests that current commercial total parenteral nutrition amino acid solutions are less than ideal.
Collapse
Affiliation(s)
- Paul B Pencharz
- Department of Paediatrics, University of Toronto, and Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8.
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This review reports recent findings on the effect of enterally fed protein and amino acids on metabolism, function, and clinical outcome, particularly during the neonatal period. RECENT FINDINGS Splanchnic tissues metabolize significant proportions of some enteral amino acids and this likely contributes to the higher requirement for these amino acids when they are provided enterally versus parenterally. Splanchnic tissues are particularly key in the provision of nutrition to preterm infants, who possess an exceedingly high protein anabolic drive, but limited tolerance to aggressive enteral feeding. The protein anabolic response to specific proteins is influenced by the rate of digestion and the pattern of feeding, as well as the amino acid composition of the proteins. The post-prandial rise in amino acids and insulin stimulates neonatal tissue protein synthesis by modulation of the nutrient and insulin signaling pathways that lead to translation initiation. A flurry of investigations into the metabolic response and clinical impact of individual amino acids suggests that leucine, glutamine, and arginine, in particular, have specific roles in regulating protein synthesis and immune function. SUMMARY Recent findings suggest that enteral nutrition support that provides an optimum combination of proteins and amino acids can have a beneficial impact on the clinical outcome of patients.
Collapse
Affiliation(s)
- Douglas G Burrin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
23
|
Bertolo RFP, Brunton JA, Pencharz PB, Ball RO. Arginine, ornithine, and proline interconversion is dependent on small intestinal metabolism in neonatal pigs. Am J Physiol Endocrinol Metab 2003; 284:E915-22. [PMID: 12527558 DOI: 10.1152/ajpendo.00269.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that arginine deficiency is exacerbated by the removal of dietary proline in orally, but not parenterally, fed piglets. Therefore, we hypothesized that the net interconversions of proline, ornithine, and arginine primarily occur in the small intestine of neonatal piglets. Ten intragastrically fed piglets received either intraportal (IP) or intragastric (IG) primed, constant infusions of [guanido-(14)C]arginine and [U-(14)C]ornithine + [2,3-(3)H]proline. By infusing amino acid isotopes via the stomach compared with the portal vein, we isolated small intestinal first-pass metabolism in vivo. During IP infusion, fractional net conversions (%) from proline to ornithine (0), ornithine to arginine (11 +/- 6), and ornithine to proline (5 +/- 1) were lower (P < 0.05) than during IG infusion (39 +/- 8, 18 +/- 6, and 42 +/- 12, respectively); we speculate that these data are due to the localization of ornithine aminotransferase to the gut. The balance of these conversions indicated a large synthesis of arginine (70.0 micromol. kg(-1). h(-1)) by the gut, with a corresponding degradation of ornithine (70.8 micromol. kg(-1). h(-1)) and no change in proline balance. Gut synthesis of arginine from proline (48.1 micromol. kg(-1). h(-1)) was 50% of its requirement, whereas proline synthesis from arginine (33.0 micromol. kg(-1). h(-1)) amounted to 10% of its requirement. Overall, arginine synthesis is more dependent on the gut than proline synthesis. In situations in which gut metabolism is compromised, such as during parenteral nutrition or gastrointestinal disease, arginine and proline are individually indispensable because their biosyntheses are negligible.
Collapse
Affiliation(s)
- Robert F P Bertolo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, USA
| | | | | | | |
Collapse
|
24
|
Yu YM, Ryan CM, Castillo L, Lu XM, Beaumier L, Tompkins RG, Young VR. Arginine and ornithine kinetics in severely burned patients: increased rate of arginine disposal. Am J Physiol Endocrinol Metab 2001; 280:E509-17. [PMID: 11171607 DOI: 10.1152/ajpendo.2001.280.3.e509] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine serves multiple roles in the pathophysiological response to burn injury. Our previous studies in burn patients demonstrated a limited net rate of arginine de novo synthesis despite a significantly increased arginine turnover (flux), suggesting that this amino acid is a conditionally indispensable amino acid after major burns. This study used [15N2-guanidino-5,5-2H2]arginine and [5-13C]ornithine as tracers to assess the rate of arginine disposal via its conversion to and subsequent oxidation of ornithine; [5,5-2H2]proline and [5,5,5-2H3]leucine were also used to assess proline and protein kinetics. Nine severely burned patients were studied during a protein-free fast ("basal" or fast) and total parenteral nutrition (TPN) feedings. Compared with values from healthy volunteers, burn injury significantly increased 1) fluxes of arginine, ornithine, leucine, and proline; 2) arginine-to-ornithine conversion; 3) ornithine oxidation; and 4) arginine oxidation. TPN increased arginine-to-ornithine conversion and proportionally increased irreversible arginine oxidation. The elevated arginine oxidation, with limited net de novo synthesis from its immediate precursors, further implies that arginine is a conditionally indispensable amino acid in severely burned patients receiving TPN.
Collapse
Affiliation(s)
- Y M Yu
- Shriners Burns Hospital and Trauma Service, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Wu G, Flynn NE, Knabe DA. Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 2000; 279:E395-402. [PMID: 10913040 DOI: 10.1152/ajpendo.2000.279.2.e395] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was conducted to determine a role for cortisol in regulating intestinal ornithine decarboxylase (ODC) activity and to identify the metabolic sources of ornithine for intestinal polyamine synthesis in suckling pigs. Thirty-two 21-day-old suckling pigs were randomly assigned to one of four groups with eight animals each and received daily intramuscular injections of vehicle solution (sesame oil; control), hydrocortisone 21-acetate (HYD; 25 mg/kg body wt), RU-486 (10 mg/kg body wt, a potent blocker of glucocorticoid receptors), or HYD plus RU-486 for two consecutive days. At 29 days of age, pigs were killed for preparation of jejunal enterocytes. The cytosolic fraction was prepared for determining ODC activity. For metabolic studies, enterocytes were incubated for 45 min at 37 degrees C in 2 ml of Krebs-bicarbonate buffer (pH 7.4) containing 1 mM [U-(14)C]arginine, 1 mM [U-(14)C]ornithine, 1 mM [U-(14)C]glutamine, or 1 mM [U-(14)C]proline plus 1 mM glutamine. Cortisol administration increased intestinal ODC activity by 230%, polyamine (putrescine, spermidine, and spermine) synthesis from ornithine and proline by 75-180%, and intracellular polyamine concentrations by 45-83%. Polyamine synthesis from arginine was not detected in enterocytes of control pigs but was induced in cells of cortisol-treated pigs. There was no detectable synthesis of polyamines from glutamine in enterocytes of all groups of pigs. The stimulating effects of cortisol on intestinal ODC activity and polyamine synthesis were abolished by coadministration of RU-486. Our data indicate that an increase in plasma cortisol concentrations stimulates intestinal polyamine synthesis via a glucocorticoid receptor-mediated mechanism and that proline (an abundant amino acid in milk) is a major source of ornithine for intestinal polyamine synthesis in suckling neonates.
Collapse
Affiliation(s)
- G Wu
- Faculty of Nutrition, Texas A&M University, College Station, Texas 77843, USA.
| | | | | |
Collapse
|