1
|
Walker KL, Walsh DB, Goodney PP, Connell SA, Stone DH, Powell RJ, Rzucidlo EM. Retrospective review of superficial femoral artery stenting in diabetic patients: thiazolidinedione use may decrease reinterventions. BMC Cardiovasc Disord 2014; 14:184. [PMID: 25495345 PMCID: PMC4269962 DOI: 10.1186/1471-2261-14-184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background Diabetics are known to have inferior outcomes following peripheral vascular interventions. Thiazolidinediones are oral diabetic agents which improve outcomes following coronary bare metal stenting. No studies have been performed evaluating thiazolidinedione use and outcomes following lower extremity endovascular interventions. We hypothesize that diabetic patients taking thiazolidinediones at the time of primary superficial femoral artery (SFA) stenting have fewer reinterventions. Methods A retrospective review was performed to identify diabetic patients undergoing primary SFA stenting. The unit of analysis was the extremity. The primary outcome was freedom from target lesion revascularization stratified by thiazolidinedione use, evaluated by Kaplan Meier curves and a log rank test. A Cox proportional hazards model was constructed to determine variables associated with freedom from target lesion revascularization. Results SFA stents were placed in 138 extremities in 128 diabetic patients between August 1, 2001 and July 15, 2012. Twenty-four patients were taking thiazolidinediones at the time of SFA stenting. All patients taking thiazolidinediones had TASC A or B lesions. Twenty-seven extremities in the non-thiazolidinedione group had TASC C or D lesions and were excluded to control for disease severity. Freedom from target lesion revascularization was significantly higher in diabetics taking thiazolidinediones at 2 years, 88.5% vs. 59.4%, P = 0.02, SE < 10%. Cox modeling identified a protective trend for thiazolidinedione use (thiazolidinedione use HR 0.33, 95% CI 0.09-1.13), whereas critical limb ischemia and insulin use were associated with trends for worse freedom from target lesion revascularization. Conclusions This pilot, translation study demonstrates that diabetic patients taking thiazolidinediones at the time of primary SFA stenting have decreased reintervention rates at 2 years. These results may be explained by higher adiponectin levels or other anti-inflammatory effects in patients taking thiazolidinedione. National and regional quality improvement registries should consider collecting information regarding specific diabetic regimens and use of PPAR agonists such as cilostazol and fibrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eva M Rzucidlo
- Section of Vascular Surgery, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
2
|
A Dominant-Negative PPARgamma Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells. PPAR Res 2010; 2009:438673. [PMID: 20300579 PMCID: PMC2837897 DOI: 10.1155/2009/438673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/24/2009] [Indexed: 01/16/2023] Open
Abstract
PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN) PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs). In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT) or constitutively-active (CA) PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs).
Collapse
|
3
|
(1'S)-Acetoxychavicol acetate and its enantiomer inhibit tumor cells proliferation via different mechanisms. Chem Biol Interact 2008; 172:216-23. [PMID: 18281026 DOI: 10.1016/j.cbi.2008.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/25/2007] [Accepted: 01/02/2008] [Indexed: 11/20/2022]
Abstract
Elucidation of the mechanisms underlying potential anticancer drugs continues and unraveling these mechanisms would not only provide a conceptual framework for drug design but also promote use of natural products for chemotherapy. The biological effects of (1'S)-acetoxychavicol acetate ((S)-ACA) have been widely investigated. However, in most cases, a natural product or synthetic racemic compound was used in the study. In this study, we prepared (S)-ACA and its enantiomer (R)-ACA by a lipase-catalyzed esterification method and sought to determine the mechanisms of action of (S)-ACA and (R)-ACA in the growth inhibitory effect in Ehrlich ascites tumor cells (EATC). (S)-ACA caused an accumulation of tumor cells in the G1 phase of the cell cycle, which was accompanied by a decrease in phosphorylated retinoblastoma protein (Rb), an increase in Rb and a decrease in the phosphorylation of p27kip1. However, (R)-ACA caused an accumulation of tumor cells in the G2 phase of the cell cycle, an increase in hyperphosphorylated Rb and an increase in the phosphorylation of p27kip1. The results obtained in the present study demonstrate for the first time, to the best of our knowledge, that both (S)-ACA and (R)-ACA caused the inhibition of tumor cells growth but the inhibition was caused via different mechanisms.
Collapse
|
4
|
Theocharis S, Giaginis C, Parasi A, Margeli A, Kakisis J, Agapitos E, Kouraklis G. Expression of peroxisome proliferator-activated receptor-gamma in colon cancer: correlation with histopathological parameters, cell cycle-related molecules, and patients' survival. Dig Dis Sci 2007; 52:2305-11. [PMID: 17393321 DOI: 10.1007/s10620-007-9794-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Accepted: 01/29/2007] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a ligand-activated transcription factor, is a key regulator of adipogenic differentiation and glucose homeostasis. PPAR-gamma ligands have recently been demonstrated to affect proliferation and differentiation in cancer cells lines. The aim of the present work was to examine PPAR-gamma expression in colon cancer cases. PPAR-gamma expression was examined immunohistochemically in 86 colon cancer cases and was correlated with clinicopathological parameters, tumor proliferative capacity, cell cycle-related molecule expression, and patient survival. Positive PPAR-gamma immunostaining was prominent in 48 of 86 cases (56%). PPAR-gamma positivity was not correlated with Dukes' stage, histological grade of differentiation, lymph node and liver metastasis, venous invasion, tumor proliferative capacity, or patient survival. A statistically significant correlation was found between PPAR-gamma and the expression of cell cycle-related molecules pRb (P < 0.016), cyclin D1 (P <0.009), p16 (P<0.032), and p21 (P<0.033), while a positive trend for cyclin E was also noted (P<0.057). The pattern, intensity, and extent of PPAR-gamma expression in positive cases were not correlated with any of the examined variables. Our findings support evidence for participation of this protein in the biological mechanisms underlying carcinogenic evolution in the colon, also suggesting the importance of specific PPAR-gamma ligands as cell cycle modulators for a future therapeutic approach in colon cancer.
Collapse
Affiliation(s)
- Stamatios Theocharis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 M. Asias str., Goudi, GR11527, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
5
|
Heo KS, Kim DU, Ryoo S, Nam M, Baek ST, Kim L, Park SK, Myung CS, Hoe KL. PPARγ activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide. Biochem Biophys Res Commun 2007; 359:1017-23. [PMID: 17573040 DOI: 10.1016/j.bbrc.2007.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/05/2007] [Indexed: 11/19/2022]
Abstract
Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPARalpha activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPARgamma activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H(2)O(2), but of O2(.-), and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G(1)-S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21(Cip1) expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2(.-) is located at the crossroads between LDL signaling and cell proliferation.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Humans
- Lipoproteins, LDL/administration & dosage
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- PPAR gamma/metabolism
- Superoxide Dismutase/metabolism
- Superoxides/metabolism
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Turmelle YP, Shikapwashya O, Tu S, Hruz PW, Yan Q, Rudnick DA. Rosiglitazone inhibits mouse liver regeneration. FASEB J 2006; 20:2609-11. [PMID: 17077279 DOI: 10.1096/fj.06-6511fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The remarkable regenerative potential of the liver is well known. Recent investigations have shown that this regenerative response is impaired in mouse models of fatty liver disease. Other studies demonstrate that mice engineered for liver-specific overexpression of the peroxisome proliferator activated receptor gamma (PPARgamma) develop significant hepatic steatosis. These observations suggest that precise regulation of hepatic PPARgamma activity may be essential for normal liver regeneration. To test this hypothesis, we analyzed the effects of PPARgamma-activating thiazolidinediones on liver regeneration in the rodent partial hepatectomy model. Thiazolidinediones with different PPARgamma-activating potencies were administered to mice, and those mice were subjected to partial hepatectomy and analyzed for resulting effects on hepatocellular proliferation and signaling pathways important during normal liver regeneration. The results showed that thiazolidinediones suppress liver regeneration with efficacies that correlate with their relative PPARgamma-activating potencies. These studies provide the first evidence linking regulation of PPARgamma activity and the hepatic regenerative response.
Collapse
Affiliation(s)
- Yumirle P Turmelle
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
7
|
Liu H, Zang C, Fenner MH, Liu D, Possinger K, Koeffler HP, Elstner E. Growth inhibition and apoptosis in human Philadelphia chromosome-positive lymphoblastic leukemia cell lines by treatment with the dual PPARalpha/gamma ligand TZD18. Blood 2006; 107:3683-92. [PMID: 16403907 DOI: 10.1182/blood-2005-05-2103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Treatment of adult Philadelphia chromosome-positive lymphocytic leukemia is rarely successful. We report here the effects of TZD18, a novel dual ligand specific for peroxisome proliferator-activated receptor alpha and gamma (PPARalpha/gamma) on Ph(+) lymphocytic leukemia cell lines BV173, SD1, and SupB-15. Exposure of these cells to TZD18 resulted in growth inhibition in a dose- and time-dependent manner that was associated with G(1) cell cycle arrest. This effect was much stronger than that mediated by the PPARgamma ligand pioglitazone (PGZ), which also belongs to the thiazolidinediones (TZD) class of ligands. However, it may not be mediated through PPARgamma or PPARalpha activation because antagonists of PPARgamma and PPARalpha cannot reverse it. Study of the key regulators of cell cycle progression by Western blot analysis showed that the expression of the cyclin-dependent kinase inhibitor (CDKI) p27(kip1), but not that of p21(cip1), was enhanced, whereas that of c-Myc, cyclin E, cyclin D2, and cyclin-dependent kinases 2 and 4 (CDK-2 and CDK-4) was decreased when these cells were treated with TZD18 (10 or 20 microM). Therefore, the up-regulation of p27(kip1) and the down-regulation of CDK-2 and CDK-4 may, at least in part, account for the G(1) cell cycle arrest. Furthermore, a remarkable induction of apoptosis was observed in the cells treated with this dual ligand. No obvious alteration of bcl-2 protein level occurred, but bax was up-regulated in these TZD18-treated cells. Activation of caspase 8 and caspase 9 by TZD18 was also observed. Importantly, NF-kappaB DNA-binding activity was markedly decreased by the TZD18 treatment. In addition, TZD18 enhanced the growth inhibitory effect of imatinib, a specific tyrosine kinase inhibitor therapeutically used in the treatment of Ph(+) leukemia. Overall, our findings strongly suggest that TZD18 may offer a new therapeutic approach to aid in the treatment of Ph(+) lymphocytic leukemia.
Collapse
MESH Headings
- Apoptosis/drug effects
- Benzamides
- Cell Cycle/drug effects
- Cell Division/drug effects
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p27
- Humans
- Imatinib Mesylate
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Ligands
- NF-kappa B/metabolism
- PPAR alpha/agonists
- PPAR alpha/genetics
- PPAR gamma/agonists
- PPAR gamma/genetics
- Phenyl Ethers/administration & dosage
- Phenyl Ethers/pharmacology
- Piperazines/administration & dosage
- Pyrimidines/administration & dosage
- Thiazolidinediones/administration & dosage
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Hongyu Liu
- Division of Hematology/Oncology, School of Medicine Charité, Humboldt University, Schumannstrasse 20/21, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Loy CJ, Evelyn S, Lim FK, Liu MH, Yong EL. Growth dynamics of human leiomyoma cells and inhibitory effects of the peroxisome proliferator-activated receptor-γ ligand, pioglitazone. ACTA ACUST UNITED AC 2005; 11:561-6. [PMID: 16051682 DOI: 10.1093/molehr/gah199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Uterine leiomyomas (fibroids) are the most frequent tumour of the female reproductive tract and are the primary cause of hysterectomies in women worldwide. Effective treatment options are few. In a search for alternative treatments, we have established primary cultures of human leiomyoma cells and adjacent myometrial tissues, and documented their growth dynamics in response to estradiol (E2) and pioglitazone (PIO), a peroxisome proliferation-activated receptor-gamma (PPARgamma) ligand, currently in clinical use for type II diabetes mellitus. Human uterine primary cell cultures display morphology and desmin content consistent with their smooth muscle origin. Surprisingly, leiomyoma cells exhibited slower proliferation patterns relative to matched myometrial cells, both in the absence and presence of E2, suggesting that tumour genesis may not be because of increased growth potential but could be related to suppression of growth-inhibiting factors in vivo. PIO significantly inhibited the cell proliferation of both myometrial and leiomyoma cells in a dose-dependent manner. Our results suggest the possibility of using PPARgamma ligands, such as PIO, as therapeutic agents for the conservative management of uterine fibroids.
Collapse
Affiliation(s)
- C J Loy
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
9
|
Ragolia L, Palaia T, Koutrouby TB, Maesaka JK. Inhibition of cell cycle progression and migration of vascular smooth muscle cells by prostaglandin D2 synthase: resistance in diabetic Goto-Kakizaki rats. Am J Physiol Cell Physiol 2004; 287:C1273-81. [PMID: 15240344 DOI: 10.1152/ajpcell.00230.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis plays a clear role in the atherosclerotic process. Recently, we reported on the inhibition of the exaggerated growth phenotype of VSMCs isolated from hypertensive rats by lipocalin-type prostaglandin D2 synthase (L-PGDS). In the present study, we report the differential effects of L-PGDS on VSMC cell cycle progression, migration, and apoptosis in wild-type VSMCs vs. those from a type 2 diabetic model. In wild-type VSMCs, exogenously added L-PGDS delayed serum-induced cell cycle progression from the G1 to S phase, as determined by gene array analysis and the decreased protein expressions of cyclin-dependent kinase-2, p21Cip1, and cyclin D1. Cyclin D3 protein expression was unaffected by L-PGDS, although its gene expression was stimulated by L-PGDS in wild-type cells. In addition, platelet-derived growth factor-induced VSMC migration was inhibited by L-PGDS in wild-type cells. Type 2 diabetic VSMCs, however, were resistant to the L-PGDS effects on cell cycle progression and migration. L-PGDS did suppress the hyperproliferation of diabetic cells, albeit through a different mechanism, presumably involving the 2.5-fold increase in apoptosis and the concomitant 10-fold increase of L-PGDS uptake we observed in these cells. We propose that in wild-type VSMCs, L-PGDS retards cell cycle progression and migration, precluding hyperplasia of the tunica media, and that diabetic cells appear resistant to the inhibitory effects of L-PGDS, which consequently may help explain the increased atherosclerosis observed in diabetes.
Collapse
Affiliation(s)
- Louis Ragolia
- Vascular Biology Laboratory, Winthrop-University Hospital, Mineola, New York 11501, USA.
| | | | | | | |
Collapse
|
10
|
Theocharis S, Margeli A, Vielh P, Kouraklis G. Peroxisome proliferator-activated receptor-gamma ligands as cell-cycle modulators. Cancer Treat Rev 2004; 30:545-54. [PMID: 15325034 DOI: 10.1016/j.ctrv.2004.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors, initially described as molecular targets for compounds which induce peroxisomal proliferation. PPAR-gamma, the best characterized of the PPARs, is a ligand-activated transcription factor and a key regulator of adipogenic differentiation and glucose homeostasis. PPAR-gamma ligands have recently been demonstrated to affect proliferation, differentiation and apoptosis of different cell types. Recent in vitro and in vivo studies suggest the importance of specific PPAR-gamma ligands as cell-cycle modulators, establishing their antineoplastic properties. In this review, the latest knowledge on the role of PPAR-gamma ligands as cell-cycle modulators is presented, discussing also their role in cell proliferation, apoptosis and cancer.
Collapse
Affiliation(s)
- Stamos Theocharis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias Street, GR 11527 Athens, Greece.
| | | | | | | |
Collapse
|
11
|
Dong Y, Chi SL, Borowsky AD, Fan Y, Weiss RH. Cytosolic p21Waf1/Cip1 increases cell cycle transit in vascular smooth muscle cells. Cell Signal 2004; 16:263-9. [PMID: 14636896 DOI: 10.1016/s0898-6568(03)00136-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intracellular localization of signaling proteins is critical in directing their interactions with both upstream and downstream signaling cascade components. While initially described as a cyclin kinase inhibitor, p21Waf1/Cip1 has since been shown to have bimodal effects on cell cycle progression and cell proliferation, and evidence is emerging that intracellular localization of this protein plays a role in directing its signaling properties by dictating its interactions with downstream molecules. Since we have previously demonstrated a pro-apoptotic and cell cycle inhibitory effect of p21 attenuation after transfection of antisense p21 oligodeoxynucleotides (ODN) in several cell lines, we asked whether cytosolic p21 mediates a positive effect on vascular smooth muscle (VSM) cell cycle transit. We now show that transfection of a nuclear-localization signal deficient (DeltaNLS) p21 construct into VSM cells results in increased cytosolic levels of p21 and causes increased cell cycle transit as measured by [3H]thymidine incorporation. Thus, at least in VSM cells, cytosolic localization of p21 is a means by which this signaling protein transmits pro-mitogenic signals to the proteins responsible for G1/S transition. Furthermore, compartmentalization of p21 may help explain the biphasic nature of p21 in a variety of cell types and may lead to therapeutic advances directed at modulating pathologic cell growth in vascular diseases and cancer.
Collapse
Affiliation(s)
- Yao Dong
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
12
|
Zang C, Liu H, Posch MG, Waechter M, Facklam M, Fenner MH, Ruthardt M, Possinger K, Phillip Koeffler H, Elstner E. Peroxisome proliferator-activated receptor gamma ligands induce growth inhibition and apoptosis of human B lymphocytic leukemia. Leuk Res 2004; 28:387-97. [PMID: 15109539 DOI: 10.1016/j.leukres.2003.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Accepted: 07/31/2003] [Indexed: 11/19/2022]
Abstract
This study examined the expression and structural intactness of peroxisome proliferator-activated receptor gamma (PPARgamma) in human acute lymphocytic leukemia (ALL) cells and determined the effect of PPARgamma ligands on growth and apoptosis of these cells. We noted that all lymphocytic leukemia cell lines expressed PPARgamma and no PPARgamma mutations were found in these cell lines as indicated by SSCP analysis. Effect of the PPARgamma ligands on the proliferation, differentiation and apoptosis of B type ALL cells was further examined. Treatment of these cells with the PPARgamma ligands Pioglitazone (PGZ) and 15-deoxy-delta (12,14)-prostaglandin J2 (15d-PGJ2) resulted in growth inhibition in a dose-dependent manner which was associated with a G1 to S cell cycle arrest. However, this effect appeared to be PPARgamma-independent since several PPARgamma antagonists could not reverse this effect. No differentiation was induced by this treatment. Four out of five cell lines underwent apoptosis after culture with the PPARgamma ligands. This effect was partially caspase-dependent because a pan-caspase inhibitor partially reversed this effect. In conclusion, our results suggest that PPARgamma ligands may offer a new therapeutic approach to aid in the treatment of ALL.
Collapse
Affiliation(s)
- Chuanbing Zang
- Division of Oncology/Hematology, School of Medicine (Charité), Humboldt University, Schumannstr. 20/21, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ward JE, Gould H, Harris T, Bonacci JV, Stewart AG. PPAR gamma ligands, 15-deoxy-delta12,14-prostaglandin J2 and rosiglitazone regulate human cultured airway smooth muscle proliferation through different mechanisms. Br J Pharmacol 2004; 141:517-25. [PMID: 14718259 PMCID: PMC1574213 DOI: 10.1038/sj.bjp.0705630] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The influence of two peroxisome proliferator-activated receptor gamma (PPARgamma) ligands, a thiazolidinedione, rosiglitazone (RG) and the prostaglandin D2 metabolite 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) on the proliferation of human cultured airway smooth muscle (HASM) was examined. The increases in HASM cell number in response to basic fibroblast growth factor (bFGF, 300 pm) or thrombin (0.3 U ml-1) were significantly inhibited by either RG (1-10 microM) or 15d-PGJ2 (1-10 microM). The effects of RG, but not 15d-PGJ2, were reversed by the selective PPARgamma antagonist GW9662 (1 microM). Neither RG nor 15d-PGJ2 (10 microM) decreased cell viability, or induced apoptosis, suggesting that the regulation of cell number was due to inhibition of proliferation, rather than increased cell death. Flow-cytometric analysis of HASM cell cycle distribution 24 h after bFGF addition showed that RG prevented the progression of cells from G1 to S phase. In contrast, 15d-PGJ2 caused an increase in the proportion of cells in S phase, and a decrease in G2/M, compared to bFGF alone. Neither RG nor 15d-PGJ2 inhibited ERK phosphorylation measured 6 h post mitogen addition. The bFGF-mediated increase in cyclin D1 protein levels after 8 h was reduced in the presence of 15d-PGJ2, but not RG. Although both RG and 15d-PGJ2 can inhibit proliferation of HASM irrespective of the mitogen used, only the antiproliferative effects of RG appear to be PPARgamma-dependent. The different antimitogenic mechanisms of 15d-PGJ2 and synthetic ligands for PPARgamma may be exploited to optimise the potential for these compounds to inhibit airway remodelling in asthma. British Journal of Pharmacology (2004) 141, 517-525. doi:10.1038/sj.bjp.0705630
Collapse
Affiliation(s)
- Jane E Ward
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
14
|
Chen YE, Fu M, Zhang J, Zhu X, Lin Y, Akinbami MA, Song Q. Peroxisome proliferator-activated receptors and the cardiovascular system. VITAMINS AND HORMONES 2003; 66:157-88. [PMID: 12852255 DOI: 10.1016/s0083-6729(03)01005-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin resistance syndrome (also called syndrome X) includes obesity, diabetes, hypertension, and dyslipidemia and is a complex phenotype of metabolic abnormalities. The disorder poses a major public health problem by predisposing individuals to coronary heart disease and stroke, the leading causes of mortality in Western countries. Given that hypertension, diabetes, dyslipidemia, and obesity exhibit a substantial heritable component, it is postulated that certain genes may predispose some individuals to this cluster of cardiovascular risk factors. Emerging data suggest that peroxisome proliferator-activated receptors (PPARs), including alpha, gamma, and delta, are important determinants that may provide a functional link between obesity, hypertension, and diabetes. It has been well documented that hypolipidemic fibrates and antidiabetic thiazolidinediones are synthetic ligands for PPAR alpha and PPAR gamma, respectively. In addition, PPAR natural ligands, such as leukotriene B4 for PPAR alpha, 15-deoxy-delta 12,14-prostaglandin J2 for PPAR gamma, and prostacyclin for PPAR delta, are known to be eicosanoids and fatty acids. Studies have documented that PPARs are present in all critical vascular cells: endothelial cells, vascular smooth muscle cells, and monocyte-macrophages. These observations suggest that PPARs not only control lipid metabolism but also regulate vascular diseases such as atherosclerosis and hypertension. In this review, we present structure and tissue distribution of PPAR nuclear receptors, discuss the mechanisms of action and regulation, and summarize the rapid progress made in this area of study and its impact on the cardiovascular system.
Collapse
Affiliation(s)
- Yuqing E Chen
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bruemmer D, Yin F, Liu J, Berger JP, Kiyono T, Chen J, Fleck E, Van Herle AJ, Forman BM, Law RE. Peroxisome proliferator-activated receptor gamma inhibits expression of minichromosome maintenance proteins in vascular smooth muscle cells. Mol Endocrinol 2003; 17:1005-18. [PMID: 12677008 DOI: 10.1210/me.2002-0410] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Using a cDNA array consisting only of cell cycle genes, we found that a novel nonthiazolidinedione partial peroxisome proliferator-activated receptor gamma (PPARgamma) agonist (nTZDpa) inhibited expression of minichromosome maintenance (MCM) proteins 6 and 7 in vascular smooth muscle cells. MCM proteins are required for the initiation and elongation stages of DNA replication and are regulated by the transcription factor E2F. Mitogen-induced MCM6 and MCM7 mRNA expression was potently inhibited by nTZDpa and to a lesser degree by the full PPARgamma agonist, rosiglitazone. Inhibition of MCM6 and MCM7 expression by nTZDpa and rosiglitazone paralleled their effect to inhibit phosphorylation of the retinoblastoma protein and cell proliferation. Transient transfection experiments revealed that the nTZDpa inhibited mitogen-induced MCM6 and MCM7 promoter activity, implicating a transcriptional mechanism. Adenoviral-mediated E2F overexpression reversed the suppressive effect of nTZDpa on MCM6 and MCM7 expression. Furthermore, activity of a luciferase reporter plasmid driven by multiple E2F elements was inhibited by nTZDpa, indicating that their down-regulation by nTZDpa involves an E2F-dependent mechanism. Overexpression of dominant-negative PPARgamma or addition of a PPARgamma antagonist, GW 9662, blocked nTZDpa inhibition of MCM7 transcription. Adenovirus-mediated overexpression of constitutively active PPARgamma inhibited MCM7 expression in a similar manner as the nTZDpa. These findings provide strong evidence that activation of PPARgamma attenuates MCM7 transcription and support the important role of this nuclear receptor in regulating vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Dennis Bruemmer
- Division of Endocrinology, Diabetes and Hypertension and The Gonda (Goldschmied) Diabetes Center, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wong GA, Tang V, El-Sabeawy F, Weiss RH. BMP-2 inhibits proliferation of human aortic smooth muscle cells via p21Cip1/Waf1. Am J Physiol Endocrinol Metab 2003; 284:E972-9. [PMID: 12527559 DOI: 10.1152/ajpendo.00385.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone-morphogenetic proteins (BMP)-2 and -7, multifunctional members of the transforming growth factor (TGF)-beta superfamily with powerful osteoinductive effects, cause cell cycle arrest in a variety of transformed cell lines by activating signaling cascades that involve several cyclin-dependent kinase inhibitors (CDKIs). CDKIs in the cip/kip family, p21(Cip1/Waf1) and p27(Kip1), have been shown to negatively regulate the G1 cyclins and their partner cyclin-dependent kinase proteins, resulting in BMP-mediated growth arrest. Bone morphogens have also been associated with antiproliferative effects in vascular tissue by unknown mechanisms. We now show that BMP-2-mediated inhibition of platelet-derived growth factor (PDGF)-stimulated human aortic smooth muscle cell (HASMC) proliferation is accompanied by increased levels of p21 protein. Antisense oligodeoxynucleotides specific for p21 attenuate BMP-2-induced inhibition of proliferation when transfected into HASMCs, demonstrating that BMP-2 inhibits PDGF-stimulated proliferation of HASMCs through induction of p21. Whether p21-mediated induction of cell cycle arrest by BMP-2 sets the stage for osteogenic differentiation of vascular smooth muscle cells, ultimately leading to vascular mineralization, remains to be investigated.
Collapse
Affiliation(s)
- Gail A Wong
- Department of Internal Medicine, Division of Endocrinology, Clinical Nutrition and Vascular Medicine, University of California-Davis, UC Davis Medical Center, 4150 V Street, PSSB G400, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
17
|
Vosper H, Khoudoli GA, Graham TL, Palmer CNA. Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther 2002; 95:47-62. [PMID: 12163127 DOI: 10.1016/s0163-7258(02)00232-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dyslipidaemia is a major risk factor in the development of atherosclerosis, and lipid lowering is achieved clinically using fibrate drugs and statins. Fibrate drugs are ligands for the fatty acid receptor peroxisome proliferator-activated receptor (PPAR)alpha, and the lipid-lowering effects of this class of drugs are mediated by the control of lipid metabolism, as directed by PPARalpha. PPARalpha ligands also mediate potentially protective changes in the expression of several proteins that are not involved in lipid metabolism, but are implicated in the pathogenesis of heart disease. Clinical studies with bezafibrate and gemfibrozil support the hypothesis that these drugs may have a significant protective effect against cardiovascular disease. The thiazolidinedione group of insulin-sensitising drugs are PPARgamma ligands, and these have beneficial effects on serum lipids in diabetic patients and have also been shown to inhibit the progression of atherosclerosis in animal models. However, their efficacy in the prevention of cardiovascular-associated mortality has yet to be determined. Recent studies have found that PPARdelta is also a regulator of serum lipids. However, there are currently no drugs in clinical use that selectively activate this receptor. It is clear that all three forms of PPARs have mechanistically different modes of lipid lowering and that drugs currently available have not been optimised on the basis of PPAR biology. A new generation of rationally designed PPAR ligands may provide substantially improved drugs for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Helen Vosper
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | | | |
Collapse
|
18
|
Elangbam CS, Brodie TA, Brown HR, Nold JB, Raczniak TJ, Tyler RD, Lightfoot RM, Wall HG. Vascular effects of GI262570X (PPAR-gamma agonist) in the brown adipose tissue of Han Wistar rats: a review of 1-month, 13-week, 27-week and 2-year oral toxicity studies. Toxicol Pathol 2002; 30:420-6. [PMID: 12187934 DOI: 10.1080/01926230290105640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe and discuss microscopic findings in the brown adipose tissue (BAT) blood vessels of Han Wistar rats treated with GI262570X, a peroxisome proliferator-activated receptor-gamma agonist (PPAR-gamma agonist) by oral gavage for 28 days, 13 weeks, 27 weeks, and 2 years. Review of these studies revealed a consistent vascular change, consisting of multifocal fatty infiltration in the BAT of treated rats. A similar vascular change was not seen in other vessels or organs. Microscopically, fatty infiltration was characterized primarily by round, clear vacuoles within the tunica media and/or tunica adventitia of small and medium-sized arteries and arterioles. Occasionally, these vacuoles had peripherally located nuclei and morphologically resembled adipocytes, suggesting a well-characterized PPAR effect (ie, differentiation of stem cells or preadipocytes into mature adipocytes). However, administration of GI262570X up to 2 years failed to induce more severe or progressive lesions in the blood vessels of rat BAT and, in particular, did not result in induction of any atherosclerotic-like lesions or foam cell infiltration. At the longer exposure, there was an apparent reduction of severity and/or incidence, indicating a possible adaptive response. These results suggest that the possibility of generating atherosclerotic-like lesions through prolonged treatment of GI262570X (PPAR-gamma agonist) is highly unlikely in rats.
Collapse
Affiliation(s)
- Chandikumar S Elangbam
- Department of Pathology, GlaxoSmithKline Inc, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|